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Abstract

We have-collected one year of aerosol chemical speciation monitor (ACSM) data in Magadino,

a village located in the south of the Swiss Alpine region, which-is-ene-ef-the-most-petuted

areas-a-Switzerlandone of Switzerland's most polluted areas. We analysed the mass spectra of

organic aerosol (OA) by positive matrix factorization-factorisation (PMF) using Seuree-source
Finder-finder Prefessional-professional (SoFi Pro) to retrieve the origins of OA. Therein, we
deployed the rolling algorithm to account for the temporal changes of the source profiles, which
is closer to the real-werldmeasurement. As the first-first-ever application of rolling PMF with

ME-2 analysis on a yearlong dataset that was collected ferfrom a rural ekesite, we resolved

two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA

(BBOA)), one lecal-mass-to-charge ratio (m/z) 58 related OA (EGA58-OA) factor, a less

oxidized-oxidised oxygenated OA (LO-OOA) factor, and a more exidized-oxidised oxygenated
OA (MO-0O0A) factor. HOA showed stable contributions to the total OA through the whole
year ranging from 8.1- to 10.1%, while the contribution of BBOA showed a clear seasonal
variation with a range of 8.3-27.4% (highest during winter, lowest during summer) and a yearly

average of 17.1%.

througheut-theyear—OOA (sum of LO-O0OA and MO-OOA) contributed 71.6% of the OA

mass, varying from 62.5% (in winter) to 78% (in spring and summer). The uncertainties (c) for
the modelled OA factors (i.e., rotational uncertainty and statistical variability of the sources)

varied from £4% (LOA58-0A) to a maximum of + 40% (LO-OOA). Considering the-fact-that

OO0A (showing influences of biomass burning in winter) had significant contributions to the

total OA mass, we suggest reducing and controlling the residential heating as a mitigation

strategy for better air quality and lower PM levels in this region_and similar locations. In
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Appendix A, we conducted a head-to-head comparison between the conventional seasonal
PMF analysis and the rolling mechanism. Hshewed\We found similar or slightly improved
results in terms of mass concentrations, correlations with external tracers and factor profiles of
the constrained POA factors. The rolling results show smaller scaled residuals and enhanced
correlations between OOA factors and corresponding inorganic salts than those of the seasonal

solutions, which was most likely because the rolling PMF analysis can capture the temporal

variations of the oxidation processes for OOA seurcescomponents. Specifically, the time
dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities
of two main ions for OOA factors, m/z 44 (CO2") and m/z 43 (mostly C2H3zO"). This rolling

PMF analysis—therefore, therefore, provides a more realistic source apportionment (SA)

solution; with time-_dependent OA sources. The rolling results shew-alsealso show good
agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter

samples, except for winter. Fhis—The latter discrepancy is likely because the online

measurement is capable of capturing the fast oxidation processes of biomass burning sources,

in_contrast to the 24-hour filter samples. This study demonstrates the strengths of the rolling

mechanism and provides a comprehensive criterion list for ACSM users to obtain reproducible

SA results, and is a role model for similar analyses of such world-wide available data.

1 Introduction

Atmospheric particulate matter (PM) affects human health and climate. In particular, it
influences the radiative balance (IPCC, 2014; von Schneidemesser et al., 2015), reduces
visibility (Chow et al., 2002; Horvath, 1993), and negatively affects human health by triggering
respiratory and cardiovascular diseases and allergies (Daellenbach et al., 2020; Dockery and
Pope, 1994; Mauderly and Chow, 2008; Monn, 2001; Pope and Dockery, 2006; von

Schneidemesser et al., 2015). Fine PM exposure strongly correlates with the global mortality
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rate. Lelieveld et al. (2015) estimated that outdoor air pollution, mostly PM.s (PM with an
aerodynamic diameter smaller than 2.5 um), causes 3.3 million premature deaths per year
worldwide. Despite ef-this correlation, different aerosol sources may have strongly different
effects on health (Daellenbach et al., 2020). Thus, both climate and health effects are affected
by particle chemical composition, which is related to emission sources of primary particles and
precursor gases for secondary aerosol (IPCC, 2014; Jacobson et al., 2000; Jacobson, 2001;

Lelieveld et al., 2015; Ramanathan et al., 2005).

Organic aerosol (OA) constitutes 20-90% of fine PM (Jimenez et al., 2009; Murphy et al.,
2006; Zhang et al., 2007); and contains millions of chemical compounds. Since OA is subject
of an extremely complex mixture of chemical constituents, with highly dynamic spatial and
temporal (seasonal, diurnal, etc.) variability of directly emitted particles and gas-phase
precursors and a complex chemical processing in the atmosphere, elucidation of the chemical
composition and physical properties of OA remains challenging. Identification and

quantification of OA sources with a sophisticated interpolation of beth-spatial-and-temperal

variabiitiesare-essentialfor-a-development-ofspatial and temporal variabilities are essential

for developing effective mitigation strategies for air pollution and a better assessment of the

aerosol effect on both health and climate.

OA source apportionment (SA) and PM composition has-have been studied extensively using
the Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). However, due to
the complexity of the AMS measurements and their high operational expenses, AMS
campaigns are often limited to short thme-periods of a few weeks to months. The aerosol
chemical speciation monitor (ACSM) allows for unattended long-term observation (>1 year)
of non-refractory aerosol particles (Ng et al., 2011a; Frohlich et al., 2013). It makes-H-pessible

to-nvestigate-alsealso makes it possible to investigate the long-term temporal variations of OA
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sources, which is crucial for policymakers to introduce or validate aerosol-related

environmental policies.

Positive matrix factorizsation (PMF, see Section 3.1 in the Supplement) has been used in

various studies for SA of OA ( Lanz et al., 2007; Aiken et al., 2009; Hildebrandt et al., 2011;

Zhang et al., 2011 ;Lanzetak—2007-Mohr et al., 2012; Schurman et al., 2015-Zhang-et-al;

2011). The multilinear engine (ME-2) implementation of PMF (Paatero, 1999) improves model
performance by allowing the use of a priori information (constraints on source profiles and/or
time series) to direct the model towards environmentally meaningful solutions (Canonaco et
al., 2013; Crippa et al., 2014; Frohlich et al., 2015; Lanz et al., 2008; Ripoll et al., 2015). For
long-term data (one year or more) with high time resolution, the composition of a given source
could change considerably due to the meteorological and seasonal variabilities. However, a
major limitation of PMF is the assumption of static factor profiles, such that it fails to respond
to these temporal changes. Therefore, long-term chemically speciated data have been evaluated

monthly or seasonally ( Petit et al., 2014; Bressietal2016:-Canonaco et al., 2015; Minguillon

etal., 2015; Petitetal 2014 Ripoll et al., 2015; Bressi et al., 2016; Reyes-Villegas et al., 2016;

RipeHetal;2015) to at least take the seasonal variations into account. To improve the analysis
of long-term ACSM datasets, a novel approach that utiizes-utilises PMF analysis on a smatler
shorter time rolling window was first proposed by Parworth et al. (2015) and further refined

using ME-2 by Canonaco et al. (2021)Canenace-et-ak+2020). The short length of the rolling

PMF window allows the PMF model to take the temporal variations of the source profiles into
account (e.g., biogenic versus domestic burning influences on oxygenated organic aerosol
(O0A)), which normally provides a-better separation between OA factors. In addition, using
this technique together with bootstrap resampling and a random a-value approach allows users
to assess the statistical and rotational uncertainties of the PMF results (Canonaco et al., 2021;

Tobler et al., 2020).
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In this work, we conducted a ene-one-year ACSM measurement from September 2013 to
October 2014 in Magadino, located in an alpine valley in southern Switzerland. We present a
comprehensive analysis of the ACSM dataset measured in Magadino using a novel PMF
technique, the “rolling PMF”. In addition, we also compare the results of the rolling PMF with
the source apportionment of offline AMS filter samples (Vlachou et al., 2018) and conventional

seasonal PMF analysis.

2 Methodology
2.1 Sampling site
Magadino is in a Swiss alpine valley (46°90°37°” N, 85°60°2”" E, 204 m.a.s.l.), where the
sampling site located. This site belongs to the Swiss National Air Pollution Monitoring

Network (NABEL, https://www.empa.ch/web/s503/nabel). It is around 1.4 km away from the

local train station, Cadenazzo, around 7 km away from the Locarno Airport, and nearly 8 km
away from the Lake Maggiore. This station is surrounded by agricultural fields within a rural
area, which-and is considered as a rural background site. It can be potentially affected by
domestic wood burning, adjacent agricultural activity and transit traffic through the valley. The
site topography favours quite high PM levels due to stagnant meteorological conditions or
boundary layer inversions, especially in winter. The annual average PM1g concentration in
Magadino exceeded the annual average PMso limit value for Switzerland (20 pg-m) for five

years out of the period 2007-2016 (Meteotest, 2017; The Swiss Federal Council, 2018).

2.2 ACSM measurements

In this study, chemical composition and mass loadings of non-refractory constituents of
ambient submicron aerosol particles (NR-PM1) were measured by an Aerodyne quadrupole
ACSM (Ng et al., 2011a). The ACSM uses the same sampling and detection technology as the

AMS but is simplified and designated for long-term monitoring applications by reducing


https://www.empa.ch/web/s503/nabel

F37

138
139
140
141
142
143
144
145
146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

maintenance frequency; at the cost of lower sensitivity, restriction to integer mass resolution,
and no size measurement. Same as for the AMS, sampled submicron particles enter the
instrument through a critical orifice (100 um 1.D.) at a flow rate of 1.4 cm® s (at 20 °C and 1
atm). The sampling flow will pass either through a particle filter or directly into the system
using an automated 3-way switching valve; that is switched every ~30 s. Fhe-sampled-particles

are-foeused-by-an-aerodynamiclenrAn aerodynamic lens focuses the sampled particles into a

narrow beam anrd-which impact on a tungsten surface of around 600 °C, where the non-

refractory particles wvaperize-vaporise and are subsequently ienized-ionised by an electron
impact source (70 eV). The resulting ions are detected by a quadrupole mass-spectrometer up

to a-mass-to-chargeratie mass-to-charge ratio (m/z) =of 148 Th. The particle mass spectrum is

represented by the difference ef-between the total ambient air signal and the particle-free signal.

The quantification of ACSM data requires an estimation of the fraction of NR-PM; that
bounces off the oven without being waperized—vaporised and therefore is not detected

(Canagaratna et al., 2007; Matthew et al., 2008). In this study, a constant collection efficiency

(CE) factor of 0.45 was applied to take it into account. The details of determinations of CE

value was described in Section 1 in the Supplement. A—ecelection—efficieney(CE)factoris
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In this study, we recorded the data with a time resolution of 30 minutes. During the campaign,

Fthe ACSM filament burnt out on 14 ApribApril 2014. This was addressed by switching to the
backup filament already-installed within the instrument (no venting required). Calibration of
the relative ionizatien—ionisation efficiencies (RIE) of particulate nitrate, sulphate, and
ammonium was—were conducted using size-selected (300 nm) pure NHsNO3z and pure
(NH4)2SO4 particles. Calibrations of the relative-tonisation-efficieney{(RIE}, m/z scale, and the
sampling flow was-were performed every 2 months. In this study, we used the averaged RIEs

for nitrate, sulphate, and ammonium, the exact values are shown in Fig S1 of the Supplement.

2.3 Complementary measurements

Meteorological data, including temperature, precipitation, wind speed, wind direction, and
solar radiation are monitored at the NABEL station. In addition, concentrations of trace gases
(SO2, O3, NOx), equivalent black carbon (eBC), and PM1o were measured with a time resolution
of 10 minutes. We used an aethalometer (AE 31 model by Magee Scientific Inc.) to measure
eBC concentrations. Therefore, we conducted SA of eBC by following Zotter et al. (2017)
using Angstrom exponents for eBC from traffic a;,, = 0.9 and wood burning a,,, = 1.68.

More details about eBC source apportionment are provided in Section 1-2 of the StSupplement.

2.4 Preparation of the data and error matrices for PMF

In this study, we used acsm_local 1610 software (Aerodyne Research Inc.) to prepare the PMF
input matrix. In total, this dataset includes 19°708 time points and 67 ions. Of these, CO"-
related variables (lo+ (m/z = 16), lno+ (M/z = 17), and In20+ (M/z = 18)) were excluded from the

spectral matrix prior to a PMF analysis. They are reinserted into the OA factor mass spectra



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

after the PMF analysis using the ratio from the fragmentation table (Allan et al., 2004); the

factor concentrations are likewise adjusted. Fhe-measurement-errormatrix—was—caleulated

according-to-Allan-etal(2003,-2004);According to Allan et al. (2003, 2004), the measurement

error matrix was calculated with a minimum error considered for the uncertainty of all variables

in the data matrix as in Ulbrich et al. (2009). Following the recommendations in Paatero and
Hopke (2003) and Ulbrich et al. (2009), the measurement uncertainty for variables (m/z) with
a signal-to-noise ratio (S/N) < 2 (weak variables) and S/N < 0.2 (bad variables) were increased
by a factor of 2 and 10, respectively. In total, 27 weak ACSM variables were down-weighted.
Additionally, m/z 12 and 13 were not considered during the PMF analyses; due to being noisy

and their overall negative signal. Moreover, m/z 15 is-was not only very noisy (S/N = 0.09);

but may-be also affected by high biases due to potential interference with air signals.
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2.5 Rolling PMF analysis with ME-2

In this study, we conducted a series of steps (seetionSection 3.2 and 3.3 in Sithe Supplement)

to obtain the results we presented in this manuscript. In summary, we first tested potential

sources for each season with seasonal PMF pre-tests, secondly, we obtained stable seasonal

solutions from bootstrap seasonal analysis. Then, we conducted rolling PMF with certain

settings (constraints, number of repeats, length of the window size, and step of rolling window).

Lastly, we were able to retrieve robust results using specific criteria to define environmental

reasonable solutions. Please refer to sectionSection 3.2 and 3.3 efStin the Supplement for more

detailed description of each step. In this section, we focus on the general introduction of rolling

PMFE with ME-2, the differences between our method vs. the method developed by Canonaco

et al. (2021), and the general settings of the rolling PMF analysis in this study.

11
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Running PMF over the long-term ACSM datasets assumes that the OA source profiles are static
within this time window. Fhis-It can lead to large errors; since OA chemical fingerprints are
expected to vary over time (Paatero et al., 2014). For example, Canonaco et al. (2015) showed
that the variability of summer and winter OOA cannot be accurately represented by a single
pair of OOA profiles. A common way to reduce the model uncertainty arising from this source
is to choose a proper number of OA factors (Sug Park et al., 2000); and then perform a PMF
analysis on a subset of measurements to capture temporal features of OA chemical fingerprints.

Such characterization—characterisation of OA sources on a seasonal basis has been

demonstrated in a number of studies (-Lanz et al., 2008; Crippa et al., 2014; Petit et al., 2014;

Lanzetal;-2008:-Minguilldn et al., 2015; Petit-et-al2014:-Ripoll et al., 2015; Zhang et al.,

2019). {Parworth et al.; (2015) introduced the rolling PMF by running PMF on a small window

(14 days), which advanced with a step of 1 day. This novel technigue enables the source profiles

to adapt to the temporal variabilities. Canonaco et al. (2021) combined the rolling PMF

technique with ME-2 (Section 3.1 in the Supplement) to deal with the rotational ambiquity of

the PMF analysis. In addition, it also used the bootstrap resampling strategy (Efron, 1979) and

random a-values (Section 3.2.2 in the Supplement) to estimate the statistical and rotational

uncertainties of the PMF analysis.

In this study, we mostly followed the methods developed by Canonaco et al. (2021), but with

some modifications. The settings of the rolling PMF window is explicitly explained in Section

3.2.3 of the Supplement). In addition, we also performed a test of rolling window size (i.e., 1,

7,14, and 28 days) using a similar approach (Section 4 in the Supplement). As Canonaco et al.

(2021) did, we also used the criteria-based selection function developed by Canonaco et al.

(2021) to evaluate our PMF runs. The settings of the criteria are provided in Section 3.2.4 of

the Supplement.

12
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However, instead of using published reference factor profiles like Canonaco et al. (2021) have

done, we retrieved the reference profiles of primary and local factors from seasonal bootstrap

analysis (Section 3.2 in the Supplement). Specifically, the reference profiles of hydrocarbon-

like OA (HOA) factor and biomass burning OA (BBOA) factor were retrieved from winter

(December, January, and February, DJF) bootstrapped PMF solution as shown in Fig. S4, and

we got the m/z 58 related (58-OA) factor profile from summer (June, July, and August, JJA)

bootstrapped PMF solution (Fig. S4). The 58-OA was dominated by nitrogen-containing

fragments (at m/z 58, 84, and 98). In general, ACSM estimates organic m/z 98 signal by

dividing organic m/z 84 to a factor of 2 according to the fragmentation table of organic species

that was provided by Allan et al. (2004). Thus, the intensity of m/z 98 is always half of the

intensity of m/z 84 in each factor. This 58-OA only appeared after the filament was switched

on 14 April 2014. The instrument setup thus influenced—stronghystrongly influenced the

sensitivity of these components-{}ikely due to influences of surface ionizsation). The nitrogen-

containing ion, m/z 58, was also observed in {Hildebrandt et al.; (2011) due to the enhanced

surface ionisation in a certain period. In addition, the potassium signal enhanced at the same

time, which further corroborated our hypothesis of the enhanced surface ionisation. Also, since

this factor was constrained through the whole dataset, the PMF model overestimated the mass

concentration of this factor significantly, which leads to high uncertainties for the 58-OA.

Therefore, the time series of this source should be considered as the upper limit, and the real

mass concentration of it could be substantially lower. However, with the low mass

concentration of the 58-OA during the whole campaign, we considered it as a minor factor.

Thus, this factor was considered in the PMF analysis, but no further interpretation of its

potential source will be attempted in this manuscript—Fherefore—we believed-thisfactorwas

13
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we took a different path to define “good” PMF solutions by using a novel student t-test

approach to determine the environmentally reasonable solutions guantitatively with minimum

subjective judgements (Section 3.3 in the Supplement). Overall, we provided a comprehensive

analysis of a long-term ACSM dataset using this state-of-the-art technique in this work. The

results were unfolded in the following section.
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3 Results and discussion

3.1 Overview of PM; sources in Magadino
Considering that the major part of eBC is within PM (Schwarz et al., 2013), we added eBC to

the total NR-PM; from the ACSM to perform a mass closure analysis with-using independent

measurements of PM2s/PMiyo from filters. The gravimetric PM2s and PMio show a high

correlation with the total estimated PM: (NR-PM1 +eBC) (Fig. S1c). The slopes of the linear
fits (+ 1 standard deviation) are 1.62 + 0.05 (R?>=0.81, N=79) for PM25 vs. PM1 and 1.84 + 0.03
(R? = 0.67, N=335) for PM1o vs. PM1. Fhis-It means that the estimated PM; comprised 62%
and 54% of the PM2.s and PM1o mass, respectively. The daily averages of the-inorganic species
concentrations measured by the ACSM and those measured on the filters by ion
chromatography showed a high-good correlation, with R? = 0.83 for SO4%, R? = 0.82 for NO3~
and R% = 0.50 for CI', with slopes close to 1 (Fig. S1a). The 2-week average of total ammonium
and total nitrate measured by the offline AMS technique agreed rather well with the ACSM
ammonium (R? = 0.47) and nitrate (R? = 0.79), as shown in the plots in Fig. S1b. The ion
balance of particulate ammonium, sulphate and nitrate measured by the ACSM showed that

the measured aerosol particles were mostly neutral.

The daily average PM1 components are shown in Fig. 1Fig—%a, with the-an annual average
PM: concentration (including eBC) forthe-period-from September 2013 to October 2014 equal
to 10.2 ug m=. In winter, the average PM; concentration was highest (13.8 pg-m=), with OA
contributing 54% to the total PM1 mass. In summer, the average PM1 mass concentration was

below 10 pg-m3, but the relative contribution of the OA fraction increased to 62%.

17
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Fig. 1 Chemical composition of PM; in Magadino 2013-2014 — daily (a), seasonal (b) and
annual (c) averages. The labels indicate-the non-refractory organics (Org), sulphate (SOa),
nitrate (NO3), ammonium (NH4) and chloride (CI) ienas-measured by the ACSM, and the-black

carbon (BC) measured by light absorption.

Seasonally averaged diurnal cycles of NR-PM; components and ef-eBC are displayed in Fig.
2Fig-2. In this study, all the data is based on local time (Central European Time). In fall, spring
and summer, the diurnals of these pollutants seem to be mainly affected by the development of

the boundary layer height (BLH)BLH . Most of the species show similar diurnal trends for

these three seasons. In addition, summer has the highest sulphate concentration; due to the
enhanced photochemical production. In winter, air pollutants are accumulated during the
evening and night due to the thermal inversion. In general, eBC and organics have higher levels
due to enhanced biomass burning emissions and a lower BLH-boundary-layer-height(BLH).
We observed distinct midday peaks of organics, sulphate, nitrate, ammonium, chloride, and
NOx in the winter. Magadino experienced a series of windless, cold, but sunny periods from
December 2013 to January 2014, including such sharp peaks (Fig. S6a). {+This is-interpreted
te-bewas due to advection within the shallow boundary layer due-to-the-fact-thatas both primary

and secondary pollutants increased simultaneously. At the same time, the Elocal winds-were

very-low speed near the ground was very low.-buttikely One potential explanation was that the

locally and regionally induced orography influenced winds, including vertical diffusion
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processes, caused these delayed midday peaks. However, these processes remain were-ihitiated

during-these-times-thatare-difficult to track without spatially distributed measurements--. Such
phenomena were not observed during cloudy, cold, and windless days (Fig. S6b) without
thermally induced meteorological processes. Unlike other seasons, the dilution process due to
vertical mixing happened only after noon time due to strong inversions during the night and

late irradiation of the valley surface in the winter.
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Fig. 2 Seasonal, diurnal cycles of the measured PMi components (hourly averages) for the
organic and inorganic species (sulphate, nitrate, ammonium, and chloride) of the ACSM, and

guwalent black carbon. w

3.2 Seasonal PMF Pre-tests

The automated rolling PMF analysis requires the knowledge of the reference profiles as well

as the number of factors. ta-this-section,~we-presentThis section presents how the number of

factors were-was determined based on seasonal PMF pre-tests (refer to Section 3.2.1 in the

Supplement for methodology). Initially, unconstrained PMF (3 to 6 factors) was performed

separately for the different seasons by following the SA guidelines provided by Crippa et al.
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(2014). Typically, the HOA profile is eharacterized-characterised by a high contribution of
alkyl fragments (e.g. m/z =43, m/z =57) and the corresponding alkenyl carbo-cations (e.g. m/z
=41, m/z = 55), and the factor profile is relatively consistent over time and different locations.
The BBOA profile exhibits significant signals at m/z = 60 and m/z =73, which are well-known
fragments; arising from fragmentation of anhydrous sugars present in biomass-related

emissions (Alfarra et al., 2007). Forthe-unconstrained-PMFruns-the HOA-profile-ispresent

througheut-the—whele—yearThe HOA profile is present throughout the whole year for the

unconstrained PMF runs, while the BBOA profile exists for all seasons except in summer.

However, as shown in Fig. S2, the measured fraction of m/z = 60 during summer was above

the background level of 0.3% +0.06% for biomass burning-related air masses;-98-3%+0.06%

(Aiken et al., 2009; Cubison et al., 2011; DeCarlo et al., 2008). In addition, the scaled residual
at m/z = 60 was decreased when a BBOA factor profile was constrained. Thus, we decided to
constrain the BBOA factor for all seasons to potentially capture some local events, such as

agricultural-andsome open fires and barbeques in summer.

No evidence for the presence of a cooking-related OA (COA) factor was found based on the
seasonal pre-analysis of the key fragments (m/z 55 and m/z 57). Eigure S3 ¥ shows no
difference in the slope of the absolute mass concentration of m/z 55 vs m/z 57 for different
hours of the day (Fig. S3a), while different seasons show different slopes (Fig. S3b). Therefore,
a COA factor was not considered in the PMF model. Moreover, a rapid increase of the
measured fraction of m/z = 58, 84, and 98 together with m/z 39 (potassium signal) was observed
after a filament exchange on 14 April, 2014. It is-was likely that the ACSM’s sensitivity
towards those ions was changed by the filament exchange. Also, this LOA58-OA factor was
present for spring, summer, and autumn in 2014 in unconstrained PMF runs all the time after

the filament change. Therefore, we kept this factor for these three seasons.
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For the factor(s) with_a secondary origin, we performed PMF models with a different number

of factors (3-6)—were—tested to assess if the oxygenated OA (OOA) factor {with—a-high
I - _ * ion—deri .

of carboxylicacids(Buphissy-et-al2011)) is separable without mixing with primary organic

aerosol (POA) factors {Fig—S6)(with a high contribution of m/z 44 that is likely dominated by

the CO," ion, derived from decomposition of carboxylic acids (Duplissy et al., 2011)). We

conducted these tests (with a different number of factors) independently for the different

seasons (autumn 2013, winter, spring, summer, autumn 2014).

We analysed the winter data first by constraining an HOA factor profile (Crippa et al., 2013)

with a tight a-value of 0.05. The 3-factor solution (with one OOA factor, i.e., less oxidized

OOA (LO-0O0A) and more oxidized OOA (MO-OO0A)) showed similarly good agreement of

HOA and BBOA with the external tracers (NOx, eBC from traffic source (eBCy), eBC from

wood burning source (eBCwb)) as the 4-factor solution (with two OOA factors). However, the

scaled residual of m/z 60 was reduced for the solution with two OOA factors. Moreover, the
solution with one OOA factor was not sufficient to explain the variabilities of measured fas vs
fa3 (excluding the primary organic aerosol (POA) factors). For 5- and 6-factor solutions, the
BBOA and LO-OOA factors started to split. Eventually, we selected the 4-factor solution

(HOA, BBOA, MO-00A, LO-O0A) as the best representation of the winter data.

After the bootstrap seasonal PMF runs of the winter data (details in Section 2-3.2.2 of the
StSupplement), we extracted the HOA and BBOA profiles to use them as the reference factor
profiles (Fig. S4) for the pre-tests of other seasons. For the spring, summer, and autumn seasons,
3- to 6-factor PMF solutions were modelled separately for each season by constraining the
HOA (a-value=0.1) and BBOA (a-value=0.3) profiles. For the 3-factor solution, we observed

an OOA factor with some signals at m/z 58, 84, and 98 which we could not relate to a specific
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source or process. Also, the scaled residuals of variables showed significant levels for these

three ions. In addition, the time series and factor profile of 58-OA were so distinct that PMF

could easily resolve it. When we increased the number of OA factors from 3 to 4, a factor

dominated by m/z 58, 84, and 98 emerged, which-we-named local-erganic-aerosol {LOALS-

OA). However, the OOA factor still showed slight signals at m/z 58, 84, and 98. An increase

Q

exp

in the number of factors from 4 to 5 did not only result in a decrease in , but also in “clean”

OOA factors without mixing with the EOAS8-OA factor. A further increase in the number of

factors did not change QL substantially (< 1%), and the sixth factor was a mathematical split
exp

of the LOAS58-OA factor with m/z 58 as the dominating variable. Thus, the 5-factor PMF model

was chosen as the most appropriate for the spring, summer, and autumn 2014 to be able to

isolate this instrumental artifact via PMF. Note that we did not add the LOA58-OA factor for

the autumn season in 2013 since it appeared only after the filament exchange on 14 April, 2014.

Q

exp

This EOAL8-0A factor was included while running PMF because of the rapid drop of the

from 4 to 5 factors in the PMF model, but the source of this factor will not be discussed in the

manuscript.

3.3 Full--year rolling PMF analysis

Here we present the -optimized-optimised time window size (14 days) (details of the time
window eptimizatien-optimisation are given in Section 4 of the StSupplement and in Fig S10).
In total, we considered 53.4% of the PMF runs (11087 out of 20750) with only 11 non-modelled
data points. The results of the full-year PMF analysis of the 30-min resolved ACSM data are

stmmarized-summarised in Fig. 3Fig—3. The relative contributions of the OA factors are in

addition shown in Fig. 3Fig—3b. The primary traffic-traffic-related HOA had very little
variation (seasonal averages between 8.1 and 10.1%) throughout the year (Eig. 4Fig—4). In

contrast, BBOA showed a distinct yearly cycle (8.3-27.4%) with a yearly averaged
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contribution of 17.1%. It increased significantly (to 27.4%) in winter which is typical for

Alpine valleys (Szidat et al., 2007). It means that biomass burning was the most important

primary OA source during the cold season in Magadino. The eBCwy, showed similar trends as

the BBOA factor time series during the cold seasons (Fig. 3Fig—3c). The contribution of

LOAS8-0OA remained small before the filament was changed on 14 April; 2014, which is

expected because we could not retrieve this factor in seasonal unconstrained PMF runs before

April 2014,
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Fig. 4 OA pie charts for the whole year and ferfor the -different seasons.

In this study, we retrieved two OOA factors, LO-OOA and MO-OOA. Total OOA (LO-
OOA+MO-0O0A) contributed substantially to the total OA mass throughout the whole year,
with an average contribution of 71.6% (Fig. 3Fig-—3b; Fig. 4Fig-4). In general, the contribution
of OOA to the total OA mass did not vary distinctly over the seasons; but reached a maximum

of 90.1% on 12 June; 2014, the day with the highest daily average temperature (30.7 °C).

In this work, we did-made head-to-head comparisons between the beotstrap-seasonalseasonal
bootstrap solutions and the rolling PMF results (see Fig. AlFig—AL, Fig. A2Fig—A2, Fig.
A3Fig-—A3, and Table AlTable-Al in the Appendix) in terms of mass concentrations, factor
profiles, scaled residuals, and correlations between time series for each factor and

corresponding external tracers. We found consistent factor profiles and mass concentrations
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for the constrained factors (i.e., HOA, BBOA, and L8A58-0OA), while OOA factors showed
quite some differences in both mass concentrations and factor profiles. Rolling PMF provided
slightly better correlations and smaller scaled residuals;-t. Therefore, we consider rolling PMF
results to be more environmentally reasonable than those of the seasonal PMF (more details in

Appendix A).

3.3.1 Optimized-Optimised OA factors retrieved from a rolling PMF model

The primary and secondary OA factors retrieved as an annual mean of all eptimized-optimised

PMF solutions together with their diurnal cycles for all seasons are shown in Fig. 5Fig-—5.

in-mere-detat-in-Seetion-3-3:2. Note that the primary factors (HOA, BBOA, and EGA58-0A)
were constrained, where the EOAS8-OA profile was tightly constrained with an a-value of 0.05
due to the uniqueness of its chemical profile-Fhereforeonly-asmatvariation-was-aHewed-for
LOA, while the HOA and BBOA model profiles varied more due to looser constraints (Fig.
S8). HOA and BBOA have-had averaged a-values of 0.207+0.036; and 0.195+0.050,
respectively. In addition, they both had-showed good agreement with previous studies (Crippa
et al., 2014; Ng et al., 2011b). The probability distribution function (PDF) of applied a-values

for selected PMF runs ever-vs time was also investigated (Fig. S8). Most selected runs chose

a-values of 0.1-0.3 for HOA and BBOA. The OOA factors show larger variations in the
chemical profiles because these two factors were not constrained due to the high variability of

oxidation processes governing the secondary factors.
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45  2014: (a) OA factor profiles and (b) seasonal diurnal cycles of HOA, BBOA, LOA, MO-0O0A,
46  and LO-OOA. The ambient temperature is shown on the LO-OOA diurnal plots;+espeetively.
47 In_(a) the error bar is the standard deviation; the black bars show the maximum and the

48  minimum that the variable was allowed to be-vary from the reference profiles. The average,
49 10" and 90" percentiles for a-values of HOA are 0.195, 0.007 and 0.378, respectively. Also,
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the average, 10", and 90" percentiles for a-values of BBOA are 0.202, 0.025 and 0.379,
respectively.

Due to extensive residential wood combustion combined with winter inversions, the
concentrations of BBOA and eBCw, were three times higher at night than at midday. As
discussed above, during winter, all of the air pollutants, including all PMF factors peaked
concurrently at 10-11 a.m. (local time) due to develepment-delayed illumination of the valley

site and slow wind speed near the groundef-the-mixed-boundarytayer (light blue markers in
Fig. 2Fig—2 for total PM1 and Fig. 5Fig-5b). In summer, an additional local photochemical

production led to an increasing MO-OOA mass during the day (red markers in Fig. 5Fig-5b),

similarly-to-the-diurnal-behaviour-of-sulphate to the sulphate diurnal behaviour (R?=0.63). A

night-time increase and a daytime decrease of the LO-OOA mass during spring and summer

apparently followed condensation and re-evaporation cycles of semi-volatile species, similar
to the behaviour of ammonium nitrate. Additionally, nocturnal chemistry of NO3/N2Os radicals
could lead to the formation of HNOz via N2Os hydrolysis and of organic nitrates via oxidation
of VOCs (Brown et al., 2004; Dentener and Crutzen, 1993), thus influencing the diurnal cycles

of both particulate nitrate and LO-OOA (with R? = 0.48 for spring and R? = 0.36 for summer).

In-Flo. 6Fig—6,-we-alsopresent also presents the diurnal cycles of HOA, eBCi and NOy with

different patterns for weekdays and weekends. The hourly averages of HOA and eBCy as-weH
asnd the NOx mixing ratio peak during the morning and evening rush hours over the weekdays,
while on the weekends there is only an evening pollution increase coinciding with the time

when people come back from holidays or night-time leisure activities.
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Fig. 6_Diurnal cycles of HOA (grey symbols), black carbon apportioned to traffic emissions
eBCy _(dashed lines) and NOx (dotted lines) for weekdays (a) and weekends (b). The shaded
areas represent the interquartile range for HOA (1-hour averages)-HOA.

3.3.2 fas/fa3 analysis of secondary OA factors

While m/z 44 is mostly from the fragment of CO>", a fingerprint of oxygenated species, m/z 43
can originate from C>H30" (a fingerprint of semi-volatile species) or CsH7" (a fingerprint of
the primary emissions of hydrocarbon-like species) (Canonaco et al., 2015; Chirico et al., 2010;
Ng et al., 2010). Thus, f4s and f43 are often used to identify the oxidation state of the factors,
which is #mpertant-crucial to differentiate the MO-OOA and LO-OOA factors. Under the
premise that the POA factors and the LOAL8-OA factor are all well-resolved, it is #portant
essential to investigate the relationship between the m/z 44 and m/z 43 signals in the OOA
factors to determine whether or not one/two OOA factors are sufficient to explain the dataset.

In addition, the shapes of the elouds-yellow-red dots shown in an fas vs faz plot (Fig. 7Fig—7)

may also include some source-related information. Fig. 7Figure—7 depicts the relationship
between f42 and fa3 of the-two modelled OOA factors for the different seasons. The yellow cloud
of data points represents the measured fa4 vs fs3 after subtracting the m/z 44 and m/z 43 signals

contributed by the primary HOA, BBOA and LOA58-0OA factors (Eg. S11 and Eq. S12). They

are colour coded by the total OA mass concentration (data points with OA mass concentration

below 2 pg-mare hidden).
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Fig. 7.00Af44 and f43 of OOA (after subtraction of signals contributed by the primary HOA

BBOA and 58-OA factors) for four different seasons. The small yellow/red eleud crosses of
data points represents the fas vs fa3-by-subtracting-thef.4-and-f13-contributed from HOA BBOA
and-58-OAfactors. They are colour-coded by the total OA mass concentration. The bigger size

of eireles—triangles; and squareshexagons represent the ratios between fs4 and fs3_intensities
within the factor profiles of MO-OOA and LO-OOA in seasonal solutions, respectively. While
tThe smaller size of circles —triahrgles—and squares are ratios between fs4 and fi3_intensities
within the factor profiles of MO-OOA and LO-OOA from rolling PMF analysis, which are
colour-coded by the-date and time. The dashed lines representare-the Sally’s triangle from {Ng
et al., (2010){Ng-etal(2011b)} and depicts the region where OOA from several multiple PMF
©0Aanalyses fromduring the last decade resided in the fas vs fasfasvs£43 space.

As shown in Fig. 7Fig—7a, the data points in Sep—Oct (both in 2013 and 2014) were located
on the right side of the triangle presented first by Ng et al. (2010), while the November (2013)
data points were located within the triangle. In addition, the spring and summer data points
(Eig. 7Fig—#c and Fig. 7Fig—#d) were all located rather on the right side of the triangle, but

the winter points lied within the triangle (Fig. 7Fig—7b). We made a similar plot but with
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monthly resolution and different colour codes in Fig. S9. The data points located within the

triangle correspond to the time with a lower temperature than those that are closer to the right
side of the triangle {in Fig. S9). It Fhis-could be explained by the increased biogenic OOA
emisstens—contributions when the temperature was higher, as biogenic OOA tends to be
distributed along the right side of the triangle (Canonaco et al., 2015; Pfaffenberger et al., 2013).
Also, when the temperature decreases, the increased biomass emissions make the OOA points
te-lie vertically within the triangle (Canonaco et al., 2015; Heringa et al., 2011), which is the

case for the winter data (Fig. 7Fig—7b).

In July 2014, the rolling PMF LO-OOA moved towards the left side of the plot due to
increasing influences from m/z 80, m/z 94 (C2HeS2"), m/z 95, and m/z 96 (Fig. S7). Because the

OA signal of m/z 80 is directly calculated from m/z 94 (Allan et al., 2004), we did not

investigate the sources of m/z 80. A—petential-source-of-these-distinet-tons—in3Jdulyln July, a

potential source of these distinct ions ts-was some oxidation products of dimethyl disulphide,

which shows signals at m/z 94, m/z 95, and m/z 96 (NIST Mass Spectrometry Data Center,
2014). Dimethyl disulphide is widely used in pesticides. Considering that the sampling site is
in the middle of a farmland, and the diurnal variation of m/z 94 appeared to have-peaks-peak
during the daytime, we considered the LO-OOA in July to be highly affected by the-agricultural
activities. However, the static factor profiles of summer LO-OOA from the seasonal summer
solution had much smaller intensities for m/z 80 and m/z 94 (Fig. S6S4), which enhanced the

scaled residuals for these two variables in the seasonal solutions.

In winter, LO-OOA (Eig. 9Fig—9b) was highly affected by biomass burning emissions
characterized-characterised by the presence of m/z 60, 73 (Alfarra et al., 2007), and the LO-
OOA position in the fs4 vs a3 space moved towards the right-toptop right direction in the plot
due to the increasing biogenic influence as the temperature rose (Fig. 7Fig—7b, Fig. S9)

(Canonaco et al., 2015).
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Fig. 7Figure—7 also highlights the advantages of rolling PMF over seasonal PMF due to its

time-dependent source profiles. Feral-the seasons-both-seasenal-and-roHingresults-show-that

peintBoth seasonal and rolling results show that the linear combinations of OOA factors could

adequately explain most of the measured OOA points for all the seasons. However, with the

static OOA factors for seasonal PMF solutions, it remains éifficutt-challenging to capture the

variabilities of some measured data points;hHe. In contrast, the rolling PMF OOA factors are

able-tecan move correspondingly with the temporal changes of the clouds, which moves the
factor profiles closer to reality and potentially decreases the scaled residuals significantly (Fig.
A3Fig—A3). Figure S9 also shows the movements of LO-OOA and MO-OOA factor profiles
monthly, where LO-OOA moves towards the right direction as the temperature increases,
except for the two light blue squares (June and July) in Fig. S9a. It is clear that temperature
plays an important role for the positions of LO-OOA and MO-OOA in the fas vs a3 space due
to its influences on the OOA sources (biogenic or anthropogenic) as well as the atmospheric

processes, which is consistent with previous studies in Zurich (Canonaco et al., 2015).

3.3.3 Statistical and rotational uncertainties

As suggested by Canonaco et al. (2021)Canonace—et—ak—(2020), combining the bootstrap

resampling and the random a-value techniques together with the rolling mechanism, we

calculated the standard deviation (o) and the mean (p) of the mass concentration for each data
point from each OA factor in selected “good” PMF runs. We estimated the uncertainty of each
OA factor using the slope of the linear fit of 6 vs . (Fig. 8Fig-8). Since the LOAS58-OA factor
was tightly constrained with an a-value of 0.05, it has-had the smallest variability (4%). Overall,
we found relatively smaller errors of HOA, BBOA, and MO-OOA (i.e., 18%, 14%, and 19%,
respectively) and an error of 25% for LO-OOA, which is comparable with the previous study

(Canonaco et al., 2021). The errors for both the MO-OOA and the LO-OOA factor showed
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some temperature dependence. However, this actually varied with time, and the errors did not
significantly change when we separated-divided the dataset into four different temperature

groups. Still, data points with higher temperature tended to have larger error for the total OOA

than with lower temperature (Fig. 8Fig—8f). Thisis-because-more-complex-agingprocessesfor

was most likely due to the increase of biogenic emissions and the increasing photochemistry

(high O3 and NO> concentration) at high temperature (>20 °C), which caused the complexity

of the OOA sources.
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3.3.4 Online vs. offline

The mass concentrations for HOA, BBOA; and total OOA were compared with corresponding
off-line AMS results (Vlachou et al., 2018) (Fig. S11). Despite some disagreement during
winter (BBOA and total OOA), BBOA showed a high correlation —with the offline results for
both PM1o and PM5, with R? of 0.83 and 0.84, respectively. The correlation for total OOA
was somehow lower, with R? of 0.31 and 0.46 for the offline results of PM1o and PM25 OOA,

respectively. Fig. 9a shows that the rolling results had a higher OOA concentration during the

winter season than the offline PM»s/PMjig results, while the rolling results present a lower

BBOA concentration during the winter season than the offline PM»s/PMig results (Fig. S11b).

PM: s/PM g results regarding BBOA are most likely due to the fact that theAs shown in Fig.

9b,- LO-OO0A in the rolling results was-were heavily affected by biomass burning with apparent

biomass trace ions (i.e., m/z 60 and 73Fig-—9B). The offline results apportioned this biomass

burning--affected LO-OOA into BBOA, whereas the online ACSM measurements with a
higher time resolution were capable to—eaptureof capturing the fast oxidation process of
biomass burning sources. In addition, the rolling PMF technique enabled the LO-OOA factor
profile to adapt to the temporal viabilities of OA sources, so the relatively aged biomass
burning OA fraction related-seurees-was apportioned into LO-OOA during winter-time by

rolling PMF. Therefore, the offline AMS technique tended to underestimate OOA but

overestimate BBOA in this study. The yellow line in Fig. 9Fig—9a depicts the mass

concentration of m/z 60 within LO-OOA, which clearly shows significant enhancements during

winter, as well as a good agreement with the LO-OO0A-total OOA time series from the rolling

results. Figure S11 shows that HOA did not correlate at all, which may-be-is expected because
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22  HOA is typically not water-water-soluble, and therefore has a very low recovery rate of 0.11

23  for the offline AMS technique based on the previous-study-by-Daellenbach et al. (2016).
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725  Fig. 9 (a) Time series of total oxygenated organic aerosol (LO-OOA+MO-0O0A) from online
726  and offline source apportionment solutions, together with fso in LO-OOA for online solution
727  and levoglucosan in PMg filters; (b) Averaged LO-OOA factor profile from the online solution
728  during DJF (Dec, Jan, and Feb), when online total OOA is significantly higher than that of the

729  offline solutions.

730

731 4 Conclusions

732 Inthis study, we conducted the first rolling PMF analysis on a 13-month ACSM data collected
33  atarural site of-in Switzerland. With the help of the a-shert-small rolling PMF time window

34  tegether-withand the random a-value and bootstrap resampling analysis, we obtained a time
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dependent SA result with error estimations. Overall, we resolved a comprehensive 5-factor
solution with HOA, BBOA, LOA58-0A, MO-0O0A, and LO-OOA. The contribution of HOA
was constant during the year (8.1-10.1%), while BBOA showed a clear seasonal variation (8.3—
27.4%), which peaked during winter (due to an increased residential heating source) and
contributed least in summer. OOA was a dominant source throughout the year, with a
contribution of 71.6% on a yearly average. However, the biomass burning source had a strong
influence on LO-OOA formation in winter. Together with BBOA, they make residential
heating a considerable source at Magadino during winter. Therefore, a-mitigation of residential
wood combustion should be considered fora+eduction-efto reduce PM levels in Magadino and

similar locations, especially in winter.

This manuscript also provided a recommended criterion list (Table S1) as-weH-asnd a novel
way to define thresholds with minimum subjective judgements (student’s t-test), which could
be a leading example for other SoFi Pro users to conduct rolling PMF. To ensure a good
representation of the modelled POA factors and to validate the SA results, we also used the
correlations between the PMF factor time series and external data. Both HOA and BBOA
agreed well with the corresponding external tracers (NOy, eBCy, and eBCwp) for the yearly
cycles, except for summer. This is because the aethalometer model for eBC SA has higher
uncertainties with smaller eBCw, mass concentrations. Also, NOx could originate from multiple
sources in this season. Therefore, we used HOA vs: eBC and EVig ppo4 t0 justify these two
factors in summer. The correlation of HOA vs eBC had an R? of 0.28, with an EVy ggo4 Of
0.55 in summer. Moreover, the MO-OOA and LO-OOA factors were well correlated weH-with
inorganic SO4 and NOg, respectively. The identified primary and secondary OA factor profiles
were consistent with the OA factors previously found at a-variety-efvarious urban, rural, and

remote European locations.
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This paper assessed the statistical and rotational uncertainties of the PMF solution by
combining the bootstrap resampling technique and the random a-value approach. It shows
relatively small errors for constrained factors compared with a previous study in Zurich

(Canonaco et al., 2021), and comparable errors for the OOA factors.

We also presented a head-to-head comparison between seasonal PMF solutions and the rolling
PMF solution. The POA factors showed good agreement between seasonal and rolling PMF
solution, while the OOA factors exhibited greater differences. Overall, the rolling PMF

retrieved-a-somewhat-betterselutionprovided slightly better agreements -interms-efagreement

with external tracers, especially;-but-much-better-correlations between the OOA factors and
corresponding inorganic salts. In addition, the rolling PMF results provided more-a better

representation of the measurementsreahisticresults by adapting the temporal variations of OOA

factors in the fas vs fa3 space, which also led to much smaller scaled residuals than for the

seasonal PMF. Therefore, the rolling PMF is highly useful when the user wishes to better

separate OOA factors (especially during cold seasons) and better represent the measurements.

In addition, we will also recommend using the rolling PMF to facilitate the analysis of long-

term trends of OA sources with some prior knowledge of OA sources. However, it remains

challenging to objectively define the transition point to an improved source apportionment for

rolling PMF analysis when a different number of OA factors is necessary for different periods.

UAnN upcoming manuscript (Via et al., in prep.) will present more details of the comparison

between rolling and seasonal results for multiple datasets. The time series of BBOA and total

OOA agreed well with those from offline AMS AS-SA results (Vlachou et al., 2018), except

for winter when the fa

by—the—offline—AMS—technigueoffline AMS technique did not capture the fast oxidation

processes of biomass burning emissions.
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Knowledge of diurnal, seasonal and annual changes in OA sources is essential for interpreting
the yearly cycles of OA and defining mitigation strategies for air quality. With the help of more
accurate and realistic OA sources together with an estimation of the statistical uncertainty of
PMF, more constraints can be provided both for climate and air quality models. These
improved results are therefore highly valuable for policy-makers to solve aerosol-related

environmental issues.
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791 5 Appendix A: Comparison between seasonal and rolling PMF

792 solutions

793  The bootstrapped seasonal PMF solutions were compared with the ful-full-year rolling PMF

794 results as follows. Forcach-factor—thecorrelabiopswith-edermal dalathedoniniensitdestp-the

795

796  appertionment—techniques—were—comparedThe correlations with external data, the ion

797  intensities in the factor profiles and the mass concentrations retrieved from the two different

798  source apportionment technigues were compared for each factor. The correlations of the factor

799  time series with external data (i.e., NOx, eBCt, eBCwb, €BCtotoal, SO4, NO3, and NHg) are

’800 presented in Table AlTable-Al. The rolling results shewed-generatygenerally showed

801  slightly better correlations between LO-OOA and NOz, MO-OOA and SOs, and total OOA

802  with NHathan the seasonal PMF results, which is consistent with the comparison results from

’803 Canonaco et al. (2021)Canenace-et-al{2020}. A significant improvement was evident for LO-

804  OOA vs NOs in spring (with R? increasing from 0.02 to 0.48). Concerning the correlations of

805 POA factors with external data, rolling results and seasonal showed similar results

|806 Table Al Correlation coefficients (Rj.qrson) between the factor contributions and expected

807  tracers over the year and for individual meteorological seasons (p<0.05).
Factor Yearly SON_2013 DJF MAM JA SON_2014

Seasonal Rolling | Seasonal | Rolling | Seasonal | Rolling | Seasonal | Rolling | Seasonal | Rolling | Seasonal | Rolling
HOA / NO, 0.37 0.35 0.52 0.5 0.46 0.47 0.34 0.36 0.15 0.15 0.44 0.42
:(;/é:/ 0.34 0.33 0.29 0.35 0.41 0.42 0.39 0.31 N/A N/A 0.38 0.39

HOA / eBC 0.55 0.51 0.79 0.77 0.77 0.73 0.5 0.41 0.29 0.28 0.5 0.47
Bel::::Ab/ 0.82 0.82 0.81 0.79 0.84 0.81 0.67 0.6 N/A N/A 0.3 0.27
MOS-&?_A/ 0.58 0.49 0.49 0.61 0.52 0.49 0.62 0.66 0.63 0.57 0.43 0.46
LO;“%(:_A/ 0.11 0.32 0.28 0.42 0.28 0.23 0.02 0.48 0.33 0.36 0.19 0.29
OOA/ NH,* 0.46 0.44 0.52 0.55 0.34 0.26 0.73 0.75 0.48 0.47 0.57 0.59

808
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As-shewn-in-Fig. AlFigure-Al ~which-shews-showed a good agreement for two techniques,
except for MO-OOA and LO-OOA. In general, the slope of 1.09 for rolling total OOA vs
seasonal OOA suggests a slight underestimation of the OOA contribution by the seasonal PMF
solutions, while the slope (<1) for HOA and BBOA suggests that the seasonal PMF solutions
overestimate HOA and BBOA. In addition, EOA58-0OA shows the best agreement between the
seasonal and rolling solutions; due to the tight constraint of LOA58-OA with an a-value of

0.05.

The LO-OOA and MO-OOA factors showed worse agreement than the POA factors for the
whole dataset. They had good correlations in each meteorological season, however, with
different slopes. For instance, seasonal PMF underestimated LO-OOA in spring and fall 2014,
but both seasons showed a high correlation with rather narrow scattering. The underestimation
of LO-OOA by seasonal PMF was compensated by the overestimation of MO-OOA for these
two seasons, therefore, the summed OOA still showed a high correlation between rolling and
seasonal PMF results. This is expected, as the rolling PMF allows the source profiles to adapt

to temporal variations, while seasonal PMF only has static source profiles.
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826  Fig. A1 Comparison of the mass concentrations resulting from rolling PMF and from the
827  seasonal analysis for each factor (colour coded by date and time).

828

829  The differences in the major variables of the OOA factors (i.e., m/z 44, 43, and 60) shifted the

830 mass concentrations significantly. Therefore, we also compared the factor profiles for both
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techniques (Fig. A2Fig—A2). For instance, LO-OOA during spring showed higher intensity at
m/z 44 for the rolling PMF results than for the seasonal PMF results (Fig. A2Fig—A2), which
caused the underestimation of LO-OOA for the seasonal PMF in spring. When we averaged
the total OOA factor using mass-weighted MO-OOA and LO-OOA factors, rolling PMF
yielded higher m/z 60 for all seasons. As a result, seasonal PMF slightly underestimated the
summed OOA factors by around 9%; but slightly overestimated the POA factors by less than

<6%.

The profiles of the constrained factors (HOA, BBOA, LOAS58-OA) from the rolling results
show very high correlation with the seasonal results (Eig. A2Fig—A2), which suggests that the
primary factors and the tightly constrained factor (LOA58-OA) were consistent with the static

profiles from the seasonal PMF analysis.
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844  Fig. A2 Profile comparisons between rolling results and seasonal results for each factor (log
845  scale).

846

47  We compared the scaled residuals from both source apportionment techniques (Eig. A3Fig-
48  A3). The rolling PMF solution had smaller scaled residuals (narrower histogram and the centre
849  was closer to 0) than that of the seasonal PMF solution, which is expected because rolling PMF

850 had more flexibility to adapt to the temporal variabilities of the OA sources.
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Fig. A3 Distribution of the scaled residuals over the whole year for the seasonal solution (a)
and the rolling solution (b).

SummarizingSummarising, HOA and BBOA were consistent for beth-rolling and seasonal
PMF analysis in terms of the time series, correlations with external tracers, and factor profiles
due to the consistency of their chemical factor profiles. In contrast, the MO-OOA and LO-

OOA factors were more scattered in terms-ef-averaged-factor-profiles-and-mass-concentration;

which-suggestsaveraged factor profiles and mass concentration, suggesting that seasonal PMF
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analysis was not sufficient to capture these temporal variabilities of their oxidation processes.
Also, rolling PMF showed smaller scaled residuals. Therefore, we conclude that the rolling

PMF analysis provides more realistic results than the seasonal analysis.
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