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Abstract 15 

We have collected one year of aerosol chemical speciation monitor (ACSM) data in Magadino, 16 

a village located in the south of the Swiss Alpine region, which is one of the most polluted 17 

areas in Switzerlandone of Switzerland's most polluted areas. We analysed the mass spectra of 18 

organic aerosol (OA) by positive matrix factorization factorisation (PMF) using Source source 19 

Finder finder Professional professional (SoFi Pro) to retrieve the origins of OA. Therein, we 20 

deployed the rolling algorithm to account for the temporal changes of the source profiles, which 21 

is closer to the real worldmeasurement. As the first first-ever application of rolling PMF with 22 

ME-2 analysis on a yearlong dataset that was collected forfrom a rural citesite, we resolved 23 

two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA 24 

(BBOA)), one local mass-to-charge ratio (m/z) 58 related OA (LOA58-OA) factor, a less 25 

oxidized oxidised oxygenated OA (LO-OOA) factor, and a more oxidized oxidised oxygenated 26 

OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole 27 

year ranging from 8.1– to 10.1%, while the contribution of BBOA showed a clear seasonal 28 

variation with a range of 8.3–27.4% (highest during winter, lowest during summer) and a yearly 29 

average of 17.1%. The OOA was represented by two factors (LO-OOA and MO-OOA) 30 

throughout the year. OOA (sum of LO-OOA and MO-OOA) contributed 71.6% of the OA 31 

mass, varying from 62.5% (in winter) to 78% (in spring and summer). The uncertainties (σ) for 32 

the modelled OA factors (i.e., rotational uncertainty and statistical variability of the sources) 33 

varied from ±4% (LOA58-OA) to a maximum of ± 40% (LO-OOA). Considering the fact that 34 

BBOA and LO-OOA (showing influences of biomass burning in winter) had significant 35 

contributions to the total OA mass, we suggest a reduction and control ofat BBOA and LO-36 

OOA (showing influences of biomass burning in winter) had significant contributions to the 37 

total OA mass, we suggest reducing and controlling the residential heating as a mitigation 38 

strategy for better air quality and lower PM levels in this region and similar locations. In 39 
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Appendix A, we conducted a head-to-head comparison between the conventional seasonal 40 

PMF analysis and the rolling mechanism. It showedWe found similar or slightly improved 41 

results in terms of mass concentrations, correlations with external tracers and factor profiles of 42 

the constrained POA factors. The rolling results show smaller scaled residuals and enhanced 43 

correlations between OOA factors and corresponding inorganic salts than those of the seasonal 44 

solutions, which was most likely because the rolling PMF analysis can capture the temporal 45 

variations of the oxidation processes for OOA sourcescomponents. Specifically, the time 46 

dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities 47 

of two main ions for OOA factors, m/z 44 (CO2
+) and m/z 43 (mostly C2H3O

+). This rolling 48 

PMF analysis therefore, therefore, provides a more realistic source apportionment (SA) 49 

solution, with time- dependent OA sources. The rolling results show alsoalso show good 50 

agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter 51 

samples, except for winter. This The latter discrepancy is likely because the online 52 

measurement is capable of capturing the fast oxidation processes of biomass burning sources, 53 

in contrast to the 24-hour filter samples. This study demonstrates the strengths of the rolling 54 

mechanism and provides a comprehensive criterion list for ACSM users to obtain reproducible 55 

SA results, and is a role model for similar analyses of such world-wide available data.  56 

1 Introduction 57 

Atmospheric particulate matter (PM) affects human health and climate. In particular, it 58 

influences the radiative balance (IPCC, 2014; von Schneidemesser et al., 2015), reduces 59 

visibility (Chow et al., 2002; Horvath, 1993), and negatively affects human health by triggering 60 

respiratory and cardiovascular diseases and allergies (Daellenbach et al., 2020; Dockery and 61 

Pope, 1994; Mauderly and Chow, 2008; Monn, 2001; Pope and Dockery, 2006; von 62 

Schneidemesser et al., 2015). Fine PM exposure strongly correlates with the global mortality 63 
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rate. Lelieveld et al. (2015) estimated that outdoor air pollution, mostly PM2.5 (PM with an 64 

aerodynamic diameter smaller than 2.5 µm), causes 3.3 million premature deaths per year 65 

worldwide. Despite of this correlation, different aerosol sources may have strongly different 66 

effects on health (Daellenbach et al., 2020). Thus, both climate and health effects are affected 67 

by particle chemical composition, which is related to emission sources of primary particles and 68 

precursor gases for secondary aerosol (IPCC, 2014; Jacobson et al., 2000; Jacobson, 2001; 69 

Lelieveld et al., 2015; Ramanathan et al., 2005). 70 

Organic aerosol (OA) constitutes 20–90% of fine PM (Jimenez et al., 2009; Murphy et al., 71 

2006; Zhang et al., 2007), and contains millions of chemical compounds. Since OA is subject 72 

of an extremely complex mixture of chemical constituents, with highly dynamic spatial and 73 

temporal (seasonal, diurnal, etc.) variability of directly emitted particles and gas-phase 74 

precursors and a complex chemical processing in the atmosphere, elucidation of the chemical 75 

composition and physical properties of OA remains challenging. Identification and 76 

quantification of OA sources with a sophisticated interpolation of both spatial and temporal 77 

variabilities are essential for a development ofspatial and temporal variabilities are essential 78 

for developing effective mitigation strategies for air pollution and a better assessment of the 79 

aerosol effect on both health and climate. 80 

OA source apportionment (SA) and PM composition has have been studied extensively using 81 

the Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). However, due to 82 

the complexity of the AMS measurements and their high operational expenses, AMS 83 

campaigns are often limited to short time periods of a few weeks to months. The aerosol 84 

chemical speciation monitor (ACSM) allows for unattended long-term observation (>1 year) 85 

of non-refractory aerosol particles (Ng et al., 2011a; Fröhlich et al., 2013). It makes it possible 86 

to investigate alsoalso makes it possible to investigate the long-term temporal variations of OA 87 
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sources, which is crucial for policymakers to introduce or validate aerosol-related 88 

environmental policies. 89 

Positive matrix factorizsation (PMF, see Section 3.1 in the Supplement) has been used in 90 

various studies for SA of OA ( Lanz et al., 2007; Aiken et al., 2009; Hildebrandt et al., 2011; 91 

Zhang et al., 2011;Lanz et al., 2007; Mohr et al., 2012; Schurman et al., 2015; Zhang et al., 92 

2011). The multilinear engine (ME-2) implementation of PMF (Paatero, 1999) improves model 93 

performance by allowing the use of a priori information (constraints on source profiles and/or 94 

time series) to direct the model towards environmentally meaningful solutions (Canonaco et 95 

al., 2013; Crippa et al., 2014; Fröhlich et al., 2015; Lanz et al., 2008; Ripoll et al., 2015). For 96 

long-term data (one year or more) with high time resolution, the composition of a given source 97 

could change considerably due to the meteorological and seasonal variabilities. However, a 98 

major limitation of PMF is the assumption of static factor profiles, such that it fails to respond 99 

to these temporal changes. Therefore, long-term chemically speciated data have been evaluated 100 

monthly or seasonally ( Petit et al., 2014; Bressi et al., 2016; Canonaco et al., 2015; Minguillón 101 

et al., 2015; Petit et al., 2014; Ripoll et al., 2015; Bressi et al., 2016; Reyes-Villegas et al., 2016; 102 

Ripoll et al., 2015) to at least take the seasonal variations into account. To improve the analysis 103 

of long-term ACSM datasets, a novel approach that utilizes utilises PMF analysis on a smaller 104 

shorter time rolling window was first proposed by Parworth et al. (2015) and further refined 105 

using ME-2 by Canonaco et al. (2021)Canonaco et al. (2020). The short length of the rolling 106 

PMF window allows the PMF model to take the temporal variations of the source profiles into 107 

account (e.g., biogenic versus domestic burning influences on oxygenated organic aerosol 108 

(OOA)), which normally provides a better separation between OA factors. In addition, using 109 

this technique together with bootstrap resampling and a random a-value approach allows users 110 

to assess the statistical and rotational uncertainties of the PMF results (Canonaco et al., 2021; 111 

Tobler et al., 2020). 112 
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In this work, we conducted a one one-year ACSM measurement from September 2013 to 113 

October 2014 in Magadino, located in an alpine valley in southern Switzerland. We present a 114 

comprehensive analysis of the ACSM dataset measured in Magadino using a novel PMF 115 

technique, the “rolling PMF”. In addition, we also compare the results of the rolling PMF with 116 

the source apportionment of offline AMS filter samples (Vlachou et al., 2018) and conventional 117 

seasonal PMF analysis.  118 

2 Methodology 119 

2.1 Sampling site 120 

Magadino is in a Swiss alpine valley (46°90’37’’ N, 85°60’2’’ E, 204 m.a.s.l.), where the 121 

sampling site located. This site belongs to the Swiss National Air Pollution Monitoring 122 

Network (NABEL, https://www.empa.ch/web/s503/nabel). It is around 1.4 km away from the 123 

local train station, Cadenazzo, around 7 km away from the Locarno Airport, and nearly 8 km 124 

away from the Lake Maggiore. This station is surrounded by agricultural fields within a rural 125 

area, which and is considered as a rural background site. It can be potentially affected by 126 

domestic wood burning, adjacent agricultural activity and transit traffic through the valley. The 127 

site topography favours quite high PM levels due to stagnant meteorological conditions or 128 

boundary layer inversions, especially in winter. The annual average PM10 concentration in 129 

Magadino exceeded the annual average PM10 limit value for Switzerland (20 µg·m-3) for five 130 

years out of the period 2007–2016 (Meteotest, 2017; The Swiss Federal Council, 2018). 131 

2.2 ACSM measurements 132 

In this study, chemical composition and mass loadings of non-refractory constituents of 133 

ambient submicron aerosol particles (NR-PM1) were measured by an Aerodyne quadrupole 134 

ACSM (Ng et al., 2011a). The ACSM uses the same sampling and detection technology as the 135 

AMS but is simplified and designated for long-term monitoring applications by reducing 136 

https://www.empa.ch/web/s503/nabel
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maintenance frequency, at the cost of lower sensitivity, restriction to integer mass resolution, 137 

and no size measurement. Same as for the AMS, sampled submicron particles enter the 138 

instrument through a critical orifice (100 µm I.D.) at a flow rate of 1.4 cm3 s-1 (at 20 °C and 1 139 

atm). The sampling flow will pass either through a particle filter or directly into the system 140 

using an automated 3-way switching valve, that is switched every ~30 s. The sampled particles 141 

are focused by an aerodynamic lenAn aerodynamic lens focuses the sampled particles into a 142 

narrow beam and which impact on a tungsten surface of around 600 ℃, where the non-143 

refractory particles vaporize vaporise and are subsequently ionized ionised by an electron 144 

impact source (70 eV). The resulting ions are detected by a quadrupole mass-spectrometer up 145 

to a mass to charge ratio mass-to-charge ratio (m/z) = of 148 Th. The particle mass spectrum is 146 

represented by the difference of between the total ambient air signal and the particle-free signal.   147 

The quantification of ACSM data requires an estimation of the fraction of NR-PM1 that 148 

bounces off the oven without being vaporized vaporised and therefore is not detected 149 

(Canagaratna et al., 2007; Matthew et al., 2008). In this study, a constant collection efficiency 150 

(CE) factor of 0.45 was applied to take it into account. The details of determinations of CE 151 

value was described in Section 1 in the Supplement. A collection efficiency (CE) factor is 152 

typically introduced to correct for particle bounce, which depends on the particulate water 153 

content (Matthew et al., 2008), ammonium nitrate mass fraction (ANMF) and acidity 154 

(Middlebrook et al., 2012). To eliminate humidity effects on CE, a Nafion membrane dryer 155 

(Perma Pure MD) was installed on the sampling inlet. In this study, we compared both, a 156 

constant CE of 0.45 and a time-dependent CE correction suggested by Middlebrook et al., 157 

(2012). It showed that data corrected with a constant CE had a better correlation and slope 158 

closer to 1 when comparing with the chromatographic SO4
2-, NO3

-, and Cl- anions (Fig. S1a). 159 

In addition, as more than 93.5% data have an ANMF smaller than 0.4, only 6.5% of data would 160 

be impacted by a time-dependent CE correction, therefore, the ammonium nitrate particles 161 
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doesn’t have significant effects on CE for this dataset. Overall, this dataset agrees with external 162 

TEOM measurement of both PM2.5 and PM10 daily mass concentrations as shown in Fig S1c 163 

with a constant CE value. 164 

In this study, we recorded the data with a time resolution of 30 minutes. During the campaign, 165 

Tthe ACSM filament burnt out on 14 April,April 2014. This was addressed by switching to the 166 

backup filament already installed within the instrument (no venting required). Calibration of 167 

the relative ionization ionisation efficiencies (RIE) of particulate nitrate, sulphate, and 168 

ammonium was were conducted using size-selected (300 nm) pure NH4NO3 and pure 169 

(NH4)2SO4 particles. Calibrations of the relative ionisation efficiency (RIE), m/z scale, and the 170 

sampling flow was were performed every 2 months. In this study, we used the averaged RIEs 171 

for nitrate, sulphate, and ammonium, the exact values are shown in Fig S1 of the Supplement. 172 

2.3 Complementary measurements 173 

Meteorological data, including temperature, precipitation, wind speed, wind direction, and 174 

solar radiation are monitored at the NABEL station. In addition, concentrations of trace gases 175 

(SO2, O3, NOx), equivalent black carbon (eBC), and PM10 were measured with a time resolution 176 

of 10 minutes. We used an aethalometer (AE 31 model by Magee Scientific Inc.) to measure 177 

eBC concentrations. Therefore, we conducted SA of eBC by following Zotter et al. (2017) 178 

using Ångstrom exponents for eBC from traffic 𝛼𝑡𝑟 = 0.9 and wood burning 𝛼𝑤𝑏 = 1.68. 179 

More details about eBC source apportionment are provided in Section 1 2 of the SISupplement. 180 

2.4 Preparation of the data and error matrices for PMF 181 

In this study, we used acsm_local_1610 software (Aerodyne Research Inc.) to prepare the PMF 182 

input matrix. In total, this dataset includes 19’708 time points and 67 ions. Of these, CO2
+-183 

related variables (IO+ (m/z = 16), IHO+ (m/z = 17), and IH2O+ (m/z = 18)) were excluded from the 184 

spectral matrix prior to a PMF analysis. They are reinserted into the OA factor mass spectra 185 
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after the PMF analysis using the ratio from the fragmentation table (Allan et al., 2004); the 186 

factor concentrations are likewise adjusted. The measurement error matrix was calculated 187 

according to Allan et al. (2003, 2004),According to Allan et al. (2003, 2004), the measurement 188 

error matrix was calculated with a minimum error considered for the uncertainty of all variables 189 

in the data matrix as in Ulbrich et al. (2009). Following the recommendations in Paatero and 190 

Hopke (2003) and Ulbrich et al. (2009), the measurement uncertainty for variables (m/z) with 191 

a signal-to-noise ratio (S/N) < 2 (weak variables) and S/N < 0.2 (bad variables) were increased 192 

by a factor of 2 and 10, respectively. In total, 27 weak ACSM variables were down-weighted. 193 

Additionally, m/z 12 and 13 were not considered during the PMF analyses, due to being noisy 194 

and their overall negative signal. Moreover, m/z 15 is was not only very noisy (S/N = 0.09), 195 

but may be also affected by high biases due to potential interference with air signals.  196 

2.5 Factor analysis of the organic mass spectra 197 

PMF has been demonstrated to be a useful tool to retrieve the sources of measured organic 198 

aerosol mass spectra with a bilinear factor model (Paatero and Tapper, 1994; Ulbrich et al., 199 

2009):  200 

 201 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘 × 𝑓𝑘𝑗

𝑝

𝑘=1

+ 𝑒𝑖𝑗 (1) 

 202 

where 𝑥𝑖𝑗  is the mass concentration of the 𝑗𝑡ℎ mass spectral variable in the time point 𝑖𝑡ℎ; 𝑔𝑖𝑘 203 

is the contribution of the 𝑘𝑡ℎ  factor in the 𝑖𝑡ℎ  time point; 𝑓𝑘𝑗  is the concentration of the 204 

𝑗𝑡ℎ mass spectral variable in the 𝑘𝑡ℎ factor; and 𝑒𝑖𝑗 is the residual of 𝑗𝑡ℎ variable of the mass 205 

spectra in 𝑖𝑡ℎ  time point. The superscript, p represents the number of factors, which is 206 
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determined by the user. The cost function of PMF uses least squares algorithm by iteratively 207 

minimizing the following quantity Q: 208 

 209 

𝑄 = ∑ ∑(
𝑒𝑖𝑗

𝜎𝑖𝑗
)2

𝑚

𝑗=1

𝑛

𝑖=1

 (2) 

 210 

where 𝜎𝑖𝑗  is an element in the 𝑛 × 𝑚  matrix of the measurement uncertainties, which 211 

corresponds point-by-point to xij. In addition, we normalized quantity 
𝑄

𝑄𝑒𝑥𝑝
 as a mathematical 212 

metric during PMF analysis, where the 𝑄𝑒𝑥𝑝 is: 213 

 214 

𝑄𝑒xp = (𝑛 × 𝑚) − 𝑝 × (𝑛 + 𝑚) (3) 

 215 

The 
𝑄

𝑄𝑒𝑥𝑝
  supports the user to determine the number of factors required for the model by 216 

investigating the effects on this quantity of adding/removing a factor. However, PMF itself 217 

suffers from rotational ambiguity because of the fact that the object function, Q does not 218 

provide unique solutions, that is when 𝐆 ∙ 𝐅 = 𝐆 ∙ 𝐓 ∙ 𝐓−𝟏 ∙ 𝐅, PMF provides a similar value of 219 

Q but very different solutions (rotated matrix 𝐆 = 𝐆 ∙ 𝐓  (rotated factor time series) and 𝐅̅ =220 

𝐓−𝟏 ∙ 𝐅 (rotated factor profiles)). Only one of or even none of these rotated solutions may be 221 

atmospherically relevant. The ME-2 solver (Paatero, 1999) enables theoretically full rotational 222 

control over the factor solutions, which is implanted here by imposing constraints via the a-223 

value approach on one or more elements of 𝐅 and/or 𝐆 (Paatero and Hopke, 2009). The a-value 224 

(ranging from 0 to 1) determines how much the resulting factor (𝑓𝑗,𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) or time series 225 
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(𝑔𝑗,𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) can vary from the input reference factor (𝑓𝑗,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) or time series (𝑔𝑗,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 226 

as shown in Eq. 4a and 4b:  227 

 228 

𝑓𝑗,𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑓𝑗,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ± 𝑎 ∙ 𝑓𝑗,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (4a) 

𝑔𝑗,𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑔𝑗,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ± 𝑎 ∙ 𝑔𝑗,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (4b) 

 229 

Previous work using a-values has shown to efficiently retrieve environmentally reasonable 230 

PMF solutions. This is due to the presence of legitimate a priori constraints which decrease the 231 

degree of rotational ambiguity (Canonaco et al., 2013, 2020; Crippa et al., 2014; Lanz et al., 232 

2008). Here we configured the ME-2 solver and analysed PMF results using SoFi (Source 233 

Finder, Datalystica Ltd., Villigen, Switzerland) Pro 6.D interface (Canonaco et al., 2013, 2020), 234 

developed within the IGOR Pro software (WaveMetrics Inc., Lake Oswego, OR, USA).  235 

2.5 Rolling PMF analysis with ME-2 236 

In this study, we conducted a series of steps (sectionSection 3.2 and 3.3 in SIthe Supplement) 237 

to obtain the results we presented in this manuscript. In summary, we first tested potential 238 

sources for each season with seasonal PMF pre-tests, secondly, we obtained stable seasonal 239 

solutions from bootstrap seasonal analysis. Then, we conducted rolling PMF with certain 240 

settings (constraints, number of repeats, length of the window size, and step of rolling window). 241 

Lastly, we were able to retrieve robust results using specific criteria to define environmental 242 

reasonable solutions. Please refer to sectionSection 3.2 and 3.3 of SIin the Supplement for more 243 

detailed description of each step. In this section, we focus on the general introduction of rolling 244 

PMF with ME-2, the differences between our method vs. the method developed by Canonaco 245 

et al. (2021), and the general settings of the rolling PMF analysis in this study. 246 
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Running PMF over the long-term ACSM datasets assumes that the OA source profiles are static 247 

within this time window. This It can lead to large errors, since OA chemical fingerprints are 248 

expected to vary over time (Paatero et al., 2014). For example, Canonaco et al. (2015) showed 249 

that the variability of summer and winter OOA cannot be accurately represented by a single 250 

pair of OOA profiles. A common way to reduce the model uncertainty arising from this source 251 

is to choose a proper number of OA factors (Sug Park et al., 2000), and then perform a PMF 252 

analysis on a subset of measurements to capture temporal features of OA chemical fingerprints. 253 

Such characterization characterisation of OA sources on a seasonal basis has been 254 

demonstrated in a number of studies ( Lanz et al., 2008; Crippa et al., 2014; Petit et al., 2014; 255 

Lanz et al., 2008; Minguillón et al., 2015; Petit et al., 2014; Ripoll et al., 2015; Zhang et al., 256 

2019). (Parworth et al., (2015) introduced the rolling PMF by running PMF on a small window 257 

(14 days), which advanced with a step of 1 day. This novel technique enables the source profiles 258 

to adapt to the temporal variabilities. Canonaco et al. (2021) combined the rolling PMF 259 

technique with ME-2 (Section 3.1 in the Supplement) to deal with the rotational ambiguity of 260 

the PMF analysis. In addition, it also used the bootstrap resampling strategy (Efron, 1979) and 261 

random a-values (Section 3.2.2 in the Supplement) to estimate the statistical and rotational 262 

uncertainties of the PMF analysis. 263 

In this study, we mostly followed the methods developed by Canonaco et al. (2021), but with 264 

some modifications. The settings of the rolling PMF window is explicitly explained in Section 265 

3.2.3 of the Supplement). In addition, we also performed a test of rolling window size (i.e., 1, 266 

7, 14, and 28 days) using a similar approach (Section 4 in the Supplement). As Canonaco et al. 267 

(2021) did, we also used the criteria-based selection function developed by Canonaco et al. 268 

(2021) to evaluate our PMF runs. The settings of the criteria are provided in Section 3.2.4 of 269 

the Supplement.  270 



13 

 

However, instead of using published reference factor profiles like Canonaco et al. (2021) have 271 

done, we retrieved the reference profiles of primary and local factors from seasonal bootstrap 272 

analysis (Section 3.2 in the Supplement). Specifically, the reference profiles of hydrocarbon-273 

like OA (HOA) factor and biomass burning OA (BBOA) factor were retrieved from winter 274 

(December, January, and February, DJF) bootstrapped PMF solution as shown in Fig. S4, and 275 

we got the m/z 58 related (58-OA) factor profile from summer (June, July, and August, JJA) 276 

bootstrapped PMF solution (Fig. S4). The 58-OA was dominated by nitrogen-containing 277 

fragments (at m/z 58, 84, and 98). In general, ACSM estimates organic m/z 98 signal by 278 

dividing organic m/z 84 to a factor of 2 according to the fragmentation table of organic species 279 

that was provided by Allan et al. (2004). Thus, the intensity of m/z 98 is always half of the 280 

intensity of m/z 84 in each factor. This 58-OA only appeared after the filament was switched 281 

on 14 April 2014. The instrument setup thus influenced stronglystrongly influenced the 282 

sensitivity of these components (likely due to influences of surface ionizsation). The nitrogen-283 

containing ion, m/z 58, was also observed in (Hildebrandt et al., (2011) due to the enhanced 284 

surface ionisation in a certain period. In addition, the potassium signal enhanced at the same 285 

time, which further corroborated our hypothesis of the enhanced surface ionisation. Also, since 286 

this factor was constrained through the whole dataset, the PMF model overestimated the mass 287 

concentration of this factor significantly, which leads to high uncertainties for the 58-OA. 288 

Therefore, the time series of this source should be considered as the upper limit, and the real 289 

mass concentration of it could be substantially lower. However, with the low mass 290 

concentration of the 58-OA during the whole campaign, we considered it as a minor factor. 291 

Thus, this factor was considered in the PMF analysis, but no further interpretation of its 292 

potential source will be attempted in this manuscript. Therefore, we believed this factor was 293 

still environmental relevant.. H owever, it remains challenging to understand its real source 294 

with the limited mass to charge resolution of ACSM. In addition, the contribution of this source 295 
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cannot be quantified consistently since the sensitivities for the key ions in this factor changed 296 

in the middle of the campaign. Therefore, this factor was considered in the PMF analysis, but 297 

no further interpretation of its potential source will be covered in this manuscript. Moreover, 298 

we took a different path to define “good” PMF solutions by using a novel student t-test 299 

approach to determine the environmentally reasonable solutions quantitatively with minimum 300 

subjective judgements (Section 3.3 in the Supplement). Overall, we provided a comprehensive 301 

analysis of a long-term ACSM dataset using this state-of-the-art technique in this work. The 302 

results were unfolded in the following section. 303 

 304 

Rolling PMF analysis with ME-2 305 

In this study, we performed PMF runs with a priori constraints (factor profiles) retrieved from 306 

seasonal bootstrap analysis (Section 2.2 in the SI) on a small and rolling window (i.e., 1, 7, 14, 307 

and 28 days) that could move across the entire dataset with a step of one day (Canonaco et al., 308 

2020; Parworth et al., 2015). In addition, we used the bootstrap re-sampling strategy, which 309 

can randomly choose a subset of the original matrix and replicate some of the rows/columns to 310 

create a new same-size matrix (Efron, 1979). Here, we combined this rolling PMF analysis 311 

with the bootstrap strategy and random a-values for constrained factor profiles to estimate the 312 

statistical and rotational uncertainties of this PMF analysis. More details of this novel technique 313 

is found in Canonaco et al. (2020).  314 

2.5.1 Window settings 315 

In order to retrieve appropriate constraints, we performed PMF pre-tests and bootstrap analysis 316 

for different seasons. More details of the steps, settings of these analysis can be found in Section 317 

2 of the SI. Here, we constrained primary OA factor profiles (hydrocarbon-like OA factor 318 

(HOA) and biomass burning OA (BBOA)) as well as the factor profile of a local factor (LOA) 319 
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using the a-value technique in the rolling PMF analysis. The reference profiles of HOA and 320 

BBOA were from the winter bootstrapped PMF solution (Dec, Jan, and Feb) as shown in Fig. 321 

S6. With a higher contribution of the biomass burning trace ion m/z 60 in the winter, we expect 322 

a more representative and robust BBOA profile from the winter solution than from other 323 

seasons. The LOA profile was retrieved from the summer bootstrapped PMF solution (Jun, Jul, 324 

and Aug) (Fig. S6). To allow the factor profile to adapt itself over time, a random a-value 325 

within a range of 0.4 with a step of 0.1 is applied for HOA and BBOA. Canonaco et al. (2020) 326 

suggested that an upper a-value of 0.4 is sufficient to cover the temporal variation of OA source 327 

profiles. Moreover, due to the uniqueness of the LOA chemical profile, it is tightly constrained 328 

with a constant a-value of 0.05. The LOA factor appeared only after the filament had been 329 

changed (14 April, 2014), and its mass spectrum is dominated by nitrogen-containing 330 

fragments (at m/z 58, 84, and 98).  331 

In total, we constrained HOA and BBOA factors with random a-value (0–0.4, with a step of 332 

0.1), and an exact a-value (0.05) for LOA factor in the rolling PMF analysis. There are 25 333 

(N=5×5) possible a-value combinations within an individual rolling window. Therefore, 50 334 

PMF iterations for each time window are sufficient to cover all possibilities of the a-value 335 

combinations. With the rolling window of 50 repeats, each data point (except the data within 336 

the first and last time window) will actually have many PMF iterations (i.e., N=length of the 337 

window×50), where bootstrap resampling and random combinations of constraints is 338 

performed. This allows to estimate the statistical and rotational uncertainties of the PMF factors 339 

(Canonaco et al., 2020). To find the optimum length of the time windows, we tested four 340 

different lengths of the time windows (N=1, 7, 14, 28) using the same approaches as in 341 

Canonaco et al. (2020). We determined the optimum length of the time window based on the 342 

number of missing data points (un-modelled data due to the selection based on the criteria) 343 

while applying the same thresholds for the same criteria. 344 
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2.5.2 Criteria settings 345 

Performing a rolling analysis for a one-year data with 50 repeats per window requires several 346 

tens of thousands of PMF runs. Manual inspection of all PMF runs is impractical and therefore 347 

was replaced by monitoring user-defined criterion scores (Canonaco et al., 2020). In this study, 348 

R2 values of the time series of modelled HOA vs NOx and eBCtr were used for HOA. The 349 

BBOA factor was inspected using the variation of m/z=60 explained by BBOA (Table S1). For 350 

these time series based criteria, (criterion 1 to criterion 3 in Table S1), we deployed student t-351 

test to minimize subjective judgment while determining the thresholds (more discussions in 352 

Section 2.3 of the SI).  353 

Typically, OOA factors are dominated by the signals of f43 (C2H3O
+ at m/z = 43) and f44 (CO2

+ 354 

at m/z = 44)  that correspond to the less and more oxygenated ion fragments (Canonaco et al., 355 

2015; Ng et al., 2010), where f is the fraction of a variable, i.e. the intensity Im/z normalized by 356 

the sum of the intensities of all organic m/z variables. In this study, we were able to retrieve 357 

two OOA factors (i.e., more oxidized OOA (MO-OOA) and less oxidized OOA (LO-OOA)) 358 

for the whole year, while MO-OOA can be at either at 4th or 5th position because there are two 359 

unconstrained factors. Thus, we used the f44 for the 4th factor to sort the unconstrained OOA 360 

factors to ensure MO-OOA and LO-OOA sitting on the 4th and 5th position, respectively. The 361 

details of the sorting scheme can be found in Canonaco et al. (2020). At the same time, we also 362 

monitored the f43 in LO-OOA and f44 in MO-OOA to make sure they are not zero. With this set 363 

of criteria, we were able to only select “good” (atmospherically relevant) PMF runs before 364 

averaging. 365 
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3 Results and discussion 366 

3.1 Overview of PM1 sources in Magadino 367 

Considering that the major part of eBC is within PM1 (Schwarz et al., 2013), we added eBC to 368 

the total NR-PM1 from the ACSM to perform a mass closure analysis with using independent 369 

measurements of PM2.5/PM10 from filters. The gravimetric PM2.5 and PM10 show a high 370 

correlation with the total estimated PM1 (NR-PM1 +eBC) (Fig. S1c). The slopes of the linear 371 

fits (± 1 standard deviation) are 1.62 ± 0.05 (R2 = 0.81, N=79) for PM2.5 vs. PM1 and 1.84 ± 0.03 372 

(R2 = 0.67, N=335) for PM10 vs. PM1. This It means that the estimated PM1 comprised 62% 373 

and 54% of the PM2.5 and PM10 mass, respectively. The daily averages of the inorganic species 374 

concentrations measured by the ACSM and those measured on the filters by ion 375 

chromatography showed a high good correlation, with R2 = 0.83 for SO4
2-, R2 = 0.82 for NO3

- 376 

and R2 = 0.50 for Cl-, with slopes close to 1 (Fig. S1a). The 2-week average of total ammonium 377 

and total nitrate measured by the offline AMS technique agreed rather well with the ACSM 378 

ammonium (R2 = 0.47) and nitrate (R2 = 0.79), as shown in the plots in Fig. S1b. The ion 379 

balance of particulate ammonium, sulphate and nitrate measured by the ACSM showed that 380 

the measured aerosol particles were mostly neutral. 381 

The daily average PM1 components are shown in Fig. 1Fig. 1a, with the an annual average 382 

PM1 concentration (including eBC) for the period from September 2013 to October 2014 equal 383 

to 10.2 µg m-3. In winter, the average PM1 concentration was highest (13.8 µg·m-3), with OA 384 

contributing 54% to the total PM1 mass. In summer, the average PM1 mass concentration was 385 

below 10 µg·m-3, but the relative contribution of the OA fraction increased to 62%. 386 



18 

 

 387 

Fig. 1 Chemical composition of PM1 in Magadino 2013-2014 – daily (a), seasonal (b) and 388 

annual (c) averages. The labels indicate the non-refractory organics (Org), sulphate (SO4), 389 

nitrate (NO3), ammonium (NH4) and chloride (Cl) ions measured by the ACSM, and the black 390 

carbon (BC) measured by light absorption. 391 

 392 

Seasonally averaged diurnal cycles of NR-PM1 components and of eBC are displayed in Fig. 393 

2Fig. 2. In this study, all the data is based on local time (Central European Time). In fall, spring 394 

and summer, the diurnals of these pollutants seem to be mainly affected by the development of 395 

the boundary layer height (BLH)BLH, m. Most of the species show similar diurnal trends for 396 

these three seasons. In addition, summer has the highest sulphate concentration, due to the 397 

enhanced photochemical production. In winter, air pollutants are accumulated during the 398 

evening and night due to the thermal inversion. In general, eBC and organics have higher levels 399 

due to enhanced biomass burning emissions and a lower BLH boundary layer height (BLH). 400 

We observed distinct midday peaks of organics, sulphate, nitrate, ammonium, chloride, and 401 

NOx in the winter. Magadino experienced a series of windless, cold, but sunny periods from 402 

December 2013 to January 2014, including such sharp peaks (Fig. S6a). It This is interpreted 403 

to bewas due to advection within the shallow boundary layer due to the fact thatas both primary 404 

and secondary pollutants increased simultaneously. At the same time, the Llocal winds were 405 

very low speed near the ground was very low. but likely One potential explanation was that the 406 

locally and regionally induced orography influenced winds, including vertical diffusion 407 
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processes, caused these delayed midday peaks. However, these processes remain were initiated 408 

during these times that are difficult to track without spatially distributed measurements. . Such 409 

phenomena were not observed during cloudy, cold, and windless days (Fig. S6b) without 410 

thermally induced meteorological processes. Unlike other seasons, the dilution process due to 411 

vertical mixing happened only after noon time due to strong inversions during the night and 412 

late irradiation of the valley surface in the winter.  413 

 414 

Fig. 2 Seasonal, diurnal cycles of the measured PM1 components (hourly averages) for the 415 

organic and inorganic species (sulphate, nitrate, ammonium, and chloride) of the ACSM, and 416 

equivalent black carbon.Seasonal diurnal cycles of PM1 constituents calculated as an hourly 417 

average for ACSM organic and inorganic species (sulphate, nitrate, ammonium, and chloride) 418 

and equivalent black carbon. 419 

 420 

3.2 Seasonal PMF Pre-tests 421 

The automated rolling PMF analysis requires the knowledge of the reference profiles as well 422 

as the number of factors. In this section, we presentThis section presents how the number of 423 

factors were was determined based on seasonal PMF pre-tests (refer to Section 3.2.1 in the 424 

Supplement for methodology). Initially, unconstrained PMF (3 to 6 factors) was performed 425 

separately for the different seasons by following the SA guidelines provided by Crippa et al. 426 
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(2014). Typically, the HOA profile is characterized characterised by a high contribution of 427 

alkyl fragments (e.g. m/z =43, m/z =57) and the corresponding alkenyl carbo cations (e.g. m/z 428 

= 41, m/z = 55), and the factor profile is relatively consistent over time and different locations. 429 

The BBOA profile exhibits significant signals at m/z = 60 and m/z =73, which are well-known 430 

fragments, arising from fragmentation of anhydrous sugars present in biomass-related 431 

emissions (Alfarra et al., 2007). For the unconstrained PMF runs, the HOA profile is present 432 

throughout the whole yearThe HOA profile is present throughout the whole year for the 433 

unconstrained PMF runs, while the BBOA profile exists for all seasons except in summer. 434 

However, as shown in Fig. S2, the measured fraction of m/z = 60 during summer was above 435 

the background level of 0.3% ±0.06% for biomass burning-related air masses, 0.3% ±0.06% 436 

(Aiken et al., 2009; Cubison et al., 2011; DeCarlo et al., 2008). In addition, the scaled residual 437 

at m/z = 60 was decreased when a BBOA factor profile was constrained. Thus, we decided to 438 

constrain the BBOA factor for all seasons to potentially capture some local events, such as 439 

agricultural andsome open fires and barbeques in summer. 440 

No evidence for the presence of a cooking-related OA (COA) factor was found based on the 441 

seasonal pre-analysis of the key fragments (m/z 55 and m/z 57). Figure S3 It shows no 442 

difference in the slope of the absolute mass concentration of m/z 55 vs m/z 57 for different 443 

hours of the day (Fig. S3a), while different seasons show different slopes (Fig. S3b). Therefore, 444 

a COA factor was not considered in the PMF model. Moreover, a rapid increase of the 445 

measured fraction of m/z = 58, 84, and 98 together with m/z 39 (potassium signal) was observed 446 

after a filament exchange on 14 April, 2014. It is was likely that the ACSM’s sensitivity 447 

towards those ions was changed by the filament exchange. Also, this LOA58-OA factor was 448 

present for spring, summer, and autumn in 2014 in unconstrained PMF runs all the time after 449 

the filament change. Therefore, we kept this factor for these three seasons. 450 
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For the factor(s) with a secondary origin, we performed PMF models with a different number 451 

of factors (3–6) were tested to assess if the oxygenated OA (OOA) factor (with a high 452 

contribution of m/z 44 that is likely dominated by the CO2
+ ion, derived from decomposition 453 

of carboxylic acids (Duplissy et al., 2011)) is separable without mixing with primary organic 454 

aerosol (POA) factors (Fig. S6)(with a high contribution of m/z 44 that is likely dominated by 455 

the CO2
+ ion, derived from decomposition of carboxylic acids (Duplissy et al., 2011)). We 456 

conducted these tests (with a different number of factors) independently for the different 457 

seasons (autumn 2013, winter, spring, summer, autumn 2014).  458 

We analysed the winter data first by constraining an HOA factor profile (Crippa et al., 2013) 459 

with a tight a-value of 0.05. The 3-factor solution (with one OOA factor, i.e., less oxidized 460 

OOA (LO-OOA) and more oxidized OOA (MO-OOA)) showed similarly good agreement of 461 

HOA and BBOA with the external tracers (NOx, eBC from traffic source (eBCtr), eBC from 462 

wood burning source (eBCwb)) as the 4-factor solution (with two OOA factors). However, the 463 

scaled residual of m/z 60 was reduced for the solution with two OOA factors. Moreover, the 464 

solution with one OOA factor was not sufficient to explain the variabilities of measured f44 vs 465 

f43 (excluding the primary organic aerosol (POA) factors). For 5- and 6-factor solutions, the 466 

BBOA and LO-OOA factors started to split. Eventually, we selected the 4-factor solution 467 

(HOA, BBOA, MO-OOA, LO-OOA) as the best representation of the winter data. 468 

After the bootstrap seasonal PMF runs of the winter data (details in Section 2 3.2.2 of the 469 

SISupplement), we extracted the HOA and BBOA profiles to use them as the reference factor 470 

profiles (Fig. S4) for the pre-tests of other seasons. For the spring, summer, and autumn seasons, 471 

3- to 6-factor PMF solutions were modelled separately for each season by constraining the 472 

HOA (a-value=0.1) and BBOA (a-value=0.3) profiles. For the 3-factor solution, we observed 473 

an OOA factor with some signals at m/z 58, 84, and 98 which we could not relate to a specific 474 
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source or process. Also, the scaled residuals of variables showed significant levels for these 475 

three ions. In addition, the time series and factor profile of 58-OA were so distinct that PMF 476 

could easily resolve it. When we increased the number of OA factors from 3 to 4, a factor 477 

dominated by m/z 58, 84, and 98 emerged, which we named local organic aerosol (LOA58-478 

OA). However, the OOA factor still showed slight signals at m/z 58, 84, and 98. An increase 479 

in the number of factors from 4 to 5 did not only result in a decrease in 
𝑄

𝑄𝑒𝑥𝑝
, but also in “clean” 480 

OOA factors without mixing with the LOA58-OA factor. A further increase in the number of 481 

factors did not change 
𝑄

𝑄𝑒𝑥𝑝
 substantially (< 1%), and the sixth factor was a mathematical split 482 

of the LOA58-OA factor with m/z 58 as the dominating variable. Thus, the 5-factor PMF model 483 

was chosen as the most appropriate for the spring, summer, and autumn 2014 to be able to 484 

isolate this instrumental artifact via PMF. Note that we did not add the LOA58-OA factor for 485 

the autumn season in 2013 since it appeared only after the filament exchange on 14 April, 2014. 486 

This LOA58-OA factor was included while running PMF because of the rapid drop of the 
𝑄

𝑄𝑒𝑥𝑝
 487 

from 4 to 5 factors in the PMF model, but the source of this factor will not be discussed in the 488 

manuscript.  489 

3.3 Full- year rolling PMF analysis 490 

Here we present the  optimized optimised time window size (14 days) (details of the time 491 

window optimization optimisation are given in Section 4 of the SISupplement and in Fig S10). 492 

In total, we considered 53.4% of the PMF runs (11087 out of 20750) with only 11 non-modelled 493 

data points. The results of the full-year PMF analysis of the 30-min resolved ACSM data are 494 

summarized summarised in Fig. 3Fig. 3. The relative contributions of the OA factors are in 495 

addition shown in Fig. 3Fig. 3b. The primary traffic traffic-related HOA had very little 496 

variation (seasonal averages between 8.1 and 10.1%) throughout the year (Fig. 4Fig. 4). In 497 

contrast, BBOA showed a distinct yearly cycle (8.3–27.4%) with a yearly averaged 498 
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contribution of 17.1%. It increased significantly (to 27.4%) in winter which is typical for 499 

Alpine valleys (Szidat et al., 2007). It means that biomass burning was the most important 500 

primary OA source during the cold season in Magadino. The eBCwb showed similar trends as 501 

the BBOA factor time series during the cold seasons (Fig. 3Fig. 3c). The contribution of 502 

LOA58-OA remained small before the filament was changed on 14 April, 2014, which is 503 

expected because we could not retrieve this factor in seasonal unconstrained PMF runs before 504 

April 2014.  505 

 506 

Fig. 3 Annual cycles of OA sourcescomponents: (a) absolute and (b) relative OA contributions 507 

plotted as 30-min resolved time series, (c) BC source apportionment. 508 
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 509 

 510 

Fig. 4 OA pie charts for the whole year and forfor the  different seasons.  511 

 512 

In this study, we retrieved two OOA factors, LO-OOA and MO-OOA. Total OOA (LO-513 

OOA+MO-OOA) contributed substantially to the total OA mass throughout the whole year, 514 

with an average contribution of 71.6% (Fig. 3Fig. 3b; Fig. 4Fig. 4). In general, the contribution 515 

of OOA to the total OA mass did not vary distinctly over the seasons, but reached a maximum 516 

of 90.1% on 12 June, 2014, the day with the highest daily average temperature (30.7 °C).  517 

In this work, we did made head-to-head comparisons between the bootstrap seasonalseasonal 518 

bootstrap solutions and the rolling PMF results (see Fig. A1Fig. A1, Fig. A2Fig. A2, Fig. 519 

A3Fig. A3, and Table A1Table A1 in the Appendix) in terms of mass concentrations, factor 520 

profiles, scaled residuals, and correlations between time series for each factor and 521 

corresponding external tracers. We found consistent factor profiles and mass concentrations 522 
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for the constrained factors (i.e., HOA, BBOA, and LOA58-OA), while OOA factors showed 523 

quite some differences in both mass concentrations and factor profiles. Rolling PMF provided 524 

slightly better correlations and smaller scaled residuals, t. Therefore, we consider rolling PMF 525 

results to be more environmentally reasonable than those of the seasonal PMF (more details in 526 

Appendix A). 527 

3.3.1 Optimized Optimised OA factors retrieved from a rolling PMF model 528 

The primary and secondary OA factors retrieved as an annual mean of all optimized optimised 529 

PMF solutions together with their diurnal cycles for all seasons are shown in Fig. 5Fig. 5. 530 

Seasonal variations of the OOA factor profiles are demonstrated in Fig. 7 and further discussed 531 

in more detail in Section 3.3.2. Note that the primary factors (HOA, BBOA, and LOA58-OA) 532 

were constrained, where the LOA58-OA profile was tightly constrained with an a-value of 0.05 533 

due to the uniqueness of its chemical profile. Therefore, only a small variation was allowed for 534 

LOA, while the HOA and BBOA model profiles varied more due to looser constraints (Fig. 535 

S8). HOA and BBOA have had averaged a-values of 0.207±0.036, and 0.195±0.050, 536 

respectively. In addition, they both had showed good agreement with previous studies (Crippa 537 

et al., 2014; Ng et al., 2011b). The probability distribution function (PDF) of applied a-values 538 

for selected PMF runs over vs time was also investigated (Fig. S8). Most selected runs chose 539 

a-values of 0.1–0.3 for HOA and BBOA. The OOA factors show larger variations in the 540 

chemical profiles because these two factors were not constrained due to the high variability of 541 

oxidation processes governing the secondary factors. 542 
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 543 

Fig. 5 Overview of the primary and secondary OA components sources in Magadino in 2013-544 

2014: (a) OA factor profiles and (b) seasonal diurnal cycles of HOA, BBOA, LOA, MO-OOA, 545 

and LO-OOA. The ambient temperature is shown on the LO-OOA diurnal plots, respectively. 546 

In (a) the error bar is the standard deviation; the black bars show the maximum and the 547 

minimum that the variable was allowed to be vary from the reference profiles. The average, 548 

10th, and 90th percentiles for a-values of HOA are 0.195, 0.007 and 0.378, respectively. Also, 549 
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the average, 10th, and 90th percentiles for a-values of BBOA are 0.202, 0.025 and 0.379, 572 

respectively. 573 

 574 

Due to extensive residential wood combustion combined with winter inversions, the 575 

concentrations of BBOA and eBCwb were three times higher at night than at midday. As 576 

discussed above, during winter, all of the air pollutants, including all PMF factors peaked 577 

concurrently at 10–11 a.m. (local time) due to development delayed illumination of the valley 578 

site and slow wind speed near the groundof the mixed boundary layer (light blue markers in 579 

Fig. 2Fig. 2 for total PM1 and Fig. 5Fig. 5b). In summer, an additional local photochemical 580 

production led to an increasing MO-OOA mass during the day (red markers in Fig. 5Fig. 5b), 581 

similarly to the diurnal behaviour of sulphate to the sulphate diurnal behaviour (R2=0.63). A 582 

night-time increase and a daytime decrease of the LO-OOA mass during spring and summer 583 

apparently followed condensation and re-evaporation cycles of semi-volatile species, similar 584 

to the behaviour of ammonium nitrate. Additionally, nocturnal chemistry of NO3/N2O5 radicals 585 

could lead to the formation of HNO3 via N2O5 hydrolysis and of organic nitrates via oxidation 586 

of VOCs (Brown et al., 2004; Dentener and Crutzen, 1993), thus influencing the diurnal cycles 587 

of both particulate nitrate and LO-OOA (with R2 = 0.48 for spring and R2 = 0.36 for summer).  588 

In Fig. 6Fig. 6, we also present also presents the diurnal cycles of HOA, eBCtr and NOx with 589 

different patterns for weekdays and weekends. The hourly averages of HOA and eBCtr as well 590 

asnd the NOx mixing ratio peak during the morning and evening rush hours over the weekdays, 591 

while on the weekends there is only an evening pollution increase coinciding with the time 592 

when people come back from holidays or night-time leisure activities. 593 

Formatted: English (Canada)
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594 
Fig. 6 Diurnal cycles of HOA (grey symbols), black carbon apportioned to traffic emissions 595 

eBCtr (dashed lines) and NOx (dotted lines) for weekdays (a) and weekends (b). The shaded 596 

areas represent the interquartile range for HOA (1-hour averages) HOA. 597 

 598 

3.3.2 f44/f43 analysis of secondary OA factors 599 

While m/z 44 is mostly from the fragment of CO2
+, a fingerprint of oxygenated species, m/z 43 600 

can originate from C2H3O
+ (a fingerprint of semi-volatile species) or C3H7

+ (a fingerprint of 601 

the primary emissions of hydrocarbon-like species) (Canonaco et al., 2015; Chirico et al., 2010; 602 

Ng et al., 2010). Thus, f44 and f43 are often used to identify the oxidation state of the factors, 603 

which is important crucial to differentiate the MO-OOA and LO-OOA factors. Under the 604 

premise that the POA factors and the LOA58-OA factor are all well-resolved, it is important 605 

essential to investigate the relationship between the m/z 44 and m/z 43 signals in the OOA 606 

factors to determine whether or not one/two OOA factors are sufficient to explain the dataset. 607 

In addition, the shapes of the clouds yellow-red dots shown in an f44 vs f43 plot (Fig. 7Fig. 7) 608 

may also include some source-related information. Fig. 7Figure 7 depicts the relationship 609 

between f44 and f43 of the two modelled OOA factors for the different seasons. The yellow cloud 610 

of data points represents the measured f44 vs f43 after subtracting the m/z 44 and m/z 43 signals 611 

contributed by the primary HOA, BBOA and LOA58-OA factors (Eq. S11 and Eq. S12). They 612 

are colour coded by the total OA mass concentration (data points with OA mass concentration 613 

below 2 µg·m-3 are hidden). 614 
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 615 

Fig. 7 OOA f44 and f43 of OOA (after subtraction of signals contributed by the primary HOA, 616 

BBOA and 58-OA factors) for four different seasons. The small yellow/red cloud crosses of 617 

data points represents the f44 vs f43 by subtracting the f44 and f43 contributed from HOA, BBOA 618 

and 58-OA factors. They are colour-coded by the total OA mass concentration. The bigger size 619 

of circles, triangles, and squareshexagons represent the ratios between f44 and f43 intensities 620 

within the factor profiles of MO-OOA and LO-OOA in seasonal solutions, respectively. While 621 

tThe smaller size of circles , triangles, and squares are ratios between f44 and f43 intensities 622 

within the factor profiles of MO-OOA and LO-OOA from rolling PMF analysis, which are 623 

colour-coded by the date and time. The dashed lines representare the Sally’s triangle from (Ng 624 

et al., (2010)(Ng et al., (2011b) and depicts the region where OOA from several multiple PMF 625 

OOAanalyses fromduring the last decade resided in the f44 vs f43f44 vs f43 space. 626 

 627 

As shown in Fig. 7Fig. 7a, the data points in Sep–Oct (both in 2013 and 2014) were located 628 

on the right side of the triangle presented first by Ng et al. (2010), while the November (2013) 629 

data points were located within the triangle. In addition, the spring and summer data points 630 

(Fig. 7Fig. 7c and Fig. 7Fig. 7d) were all located rather on the right side of the triangle, but 631 

the winter points lied within the triangle (Fig. 7Fig. 7b). We made a similar plot but with 632 



30 

 

monthly resolution and different colour codes in Fig. S9. The data points located within the 633 

triangle correspond to the time with a lower temperature than those that are closer to the right 634 

side of the triangle (in Fig. S9). It This could be explained by the increased biogenic OOA 635 

emissions contributions when the temperature was higher, as biogenic OOA tends to be 636 

distributed along the right side of the triangle (Canonaco et al., 2015; Pfaffenberger et al., 2013). 637 

Also, when the temperature decreases, the increased biomass emissions make the OOA points 638 

to lie vertically within the triangle (Canonaco et al., 2015; Heringa et al., 2011), which is the 639 

case for the winter data (Fig. 7Fig. 7b).  640 

In July 2014, the rolling PMF LO-OOA moved towards the left side of the plot due to 641 

increasing influences from m/z 80, m/z 94 (C2H6S2
+), m/z 95, and m/z 96 (Fig. S7). Because the 642 

OA signal of m/z 80 is directly calculated from m/z 94 (Allan et al., 2004), we did not 643 

investigate the sources of m/z 80. A potential source of these distinct ions in JulyIn July, a 644 

potential source of these distinct ions is was some oxidation products of dimethyl disulphide, 645 

which shows signals at m/z 94, m/z 95, and m/z 96 (NIST Mass Spectrometry Data Center, 646 

2014). Dimethyl disulphide is widely used in pesticides. Considering that the sampling site is 647 

in the middle of a farmland, and the diurnal variation of m/z 94 appeared to have peaks peak 648 

during the daytime, we considered the LO-OOA in July to be highly affected by the agricultural 649 

activities. However, the static factor profiles of summer LO-OOA from the seasonal summer 650 

solution had much smaller intensities for m/z 80 and m/z 94 (Fig. S6S4), which enhanced the 651 

scaled residuals for these two variables in the seasonal solutions. 652 

In winter, LO-OOA (Fig. 9Fig. 9b) was highly affected by biomass burning emissions 653 

characterized characterised by the presence of m/z 60, 73 (Alfarra et al., 2007), and the  LO-654 

OOA position in the f44 vs f43 space moved towards the right toptop right direction in the plot 655 

due to the increasing biogenic influence as the temperature rose (Fig. 7Fig. 7b, Fig. S9) 656 

(Canonaco et al., 2015). 657 
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Fig. 7Figure 7 also highlights the advantages of rolling PMF over seasonal PMF due to its 658 

time-dependent source profiles. For all the seasons, both seasonal and rolling results show that 659 

the linear combinations of OOA factors could properly explain most of the measured OOA 660 

pointBoth seasonal and rolling results show that the linear combinations of OOA factors could 661 

adequately explain most of the measured OOA points for all the seasons. However, with the 662 

static OOA factors for seasonal PMF solutions, it remains difficult challenging to capture the 663 

variabilities of some measured data points, while. In contrast, the rolling PMF OOA factors are 664 

able tocan move correspondingly with the temporal changes of the clouds, which moves the 665 

factor profiles closer to reality and potentially decreases the scaled residuals significantly (Fig. 666 

A3Fig. A3). Figure S9 also shows the movements of LO-OOA and MO-OOA factor profiles 667 

monthly, where LO-OOA moves towards the right direction as the temperature increases, 668 

except for the two light blue squares (June and July) in Fig. S9a. It is clear that temperature 669 

plays an important role for the positions of LO-OOA and MO-OOA in the f44 vs f43 space due 670 

to its influences on the OOA sources (biogenic or anthropogenic) as well as the atmospheric 671 

processes, which is consistent with previous studies in Zurich (Canonaco et al., 2015). 672 

3.3.3 Statistical and rotational uncertainties 673 

As suggested by Canonaco et al. (2021)Canonaco et al. (2020), combining the bootstrap 674 

resampling and the random a-value techniques together with the rolling mechanism, we 675 

calculated the standard deviation (σ) and the mean (µ) of the mass concentration for each data 676 

point from each OA factor in selected “good” PMF runs. We estimated the uncertainty of each 677 

OA factor using the slope of the linear fit of σ vs µ. (Fig. 8Fig. 8). Since the LOA58-OA factor 678 

was tightly constrained with an a-value of 0.05, it has had the smallest variability (4%). Overall, 679 

we found relatively smaller errors of HOA, BBOA, and MO-OOA  (i.e., 18%, 14%, and 19%, 680 

respectively) and an error of 25% for LO-OOA, which is comparable with the previous study 681 

(Canonaco et al., 2021). The errors for both the MO-OOA and the LO-OOA factor showed 682 
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some temperature dependence. However, this actually varied with time, and the errors did not 683 

significantly change when we separated divided the dataset into four different temperature 684 

groups. Still, data points with higher temperature tended to have larger error for the total OOA 685 

than with lower temperature (Fig. 8Fig. 8f). This is because more complex aging processes for 686 

OOA factors at high temperature (>20 °C) can cause more variability for the OOA factors. This 687 

was most likely due to the increase of biogenic emissions and the increasing photochemistry 688 

(high O3 and NO2 concentration) at high temperature (>20 °C), which caused the complexity 689 

of the OOA sources. 690 
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 691 

Fig. 8 Absolute statistical uncertainties of PMF for HOA, BBOA, L58-OA, LO-OOA, MO-692 

OOA and total OOA (LO-OOA+MO-OOA) for all data. The data points are colour-coded all 693 

data points by temperature. The PMF error (uncertainties) of selected PMF runs and rotational 694 

uncertainties isare estimated using the slope of the linear regression of standard deviation (σ) 695 

vs. the averaged mass concentration (µ) for each factor. 696 
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 697 

3.3.4 Online vs. offline 698 

The mass concentrations for HOA, BBOA, and total OOA were compared with corresponding 699 

off-line AMS results (Vlachou et al., 2018) (Fig. S11). Despite some disagreement during 700 

winter (BBOA and total OOA), BBOA showed a high correlation –with the offline results for 701 

both PM10 and PM2.5, with R2 of 0.83 and 0.84, respectively. The correlation for total OOA 702 

was somehow lower, with R2 of 0.31 and 0.46 for the offline results of PM10 and PM2.5 OOA, 703 

respectively. Fig. 9a shows that the rolling results had a higher OOA concentration during the 704 

winter season than the offline PM2.5/PM10 results, while the rolling results present a lower 705 

BBOA concentration during the winter season than the offline PM2.5/PM10 results (Fig. S11b). 706 

The enhanced OOA concentration for the rolling results during winter season compared to the 707 

offline SA results (Fig. 9a), as well as the differences between the rolling results and the offline 708 

PM2.5/PM10 results regarding BBOA are most likely due to the fact that theAs shown in Fig. 709 

9b,  LO-OOA in the rolling results was were heavily affected by biomass burning with apparent 710 

biomass trace ions (i.e., m/z 60 and 73Fig. 9b). The offline results apportioned this biomass 711 

burning- affected LO-OOA into BBOA, whereas the online ACSM measurements with a 712 

higher time resolution were capable to captureof capturing the fast oxidation process of 713 

biomass burning sources. In addition, the rolling PMF technique enabled the LO-OOA factor 714 

profile to adapt to the temporal viabilities of OA sources, so the relatively aged biomass 715 

burning OA fraction related sources was apportioned into LO-OOA during winter time by 716 

rolling PMF. Therefore, the offline AMS technique tended to underestimate OOA but 717 

overestimate BBOA in this study. The yellow line in Fig. 9Fig. 9a depicts the mass 718 

concentration of m/z 60 within LO-OOA, which clearly shows significant enhancements during 719 

winter, as well as a good agreement with the LO-OOA total OOA time series from the rolling 720 

results. Figure S11 shows that HOA did not correlate at all, which may be is expected because 721 
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HOA is typically not water water-soluble, and therefore has a very low recovery rate of 0.11 722 

for the offline AMS technique based on the previous study by Daellenbach et al. (2016).  723 

 724 

Fig. 9 (a) Time series of total oxygenated organic aerosol (LO-OOA+MO-OOA) from online 725 

and offline source apportionment solutions, together with f60 in LO-OOA for online solution, 726 

and levoglucosan in PM10 filters; (b) Averaged LO-OOA factor profile from the online solution 727 

during DJF (Dec, Jan, and Feb), when online total OOA is significantly higher than that of the 728 

offline solutions. 729 

 730 

4 Conclusions 731 

In this study, we conducted the first rolling PMF analysis on a 13-month ACSM data collected 732 

at a rural site of in Switzerland. With the help of the a short small rolling PMF time window 733 

together withand the random a-value and bootstrap resampling analysis, we obtained a time 734 
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dependent SA result with error estimations. Overall, we resolved a comprehensive 5-factor 735 

solution with HOA, BBOA, LOA58-OA, MO-OOA, and LO-OOA. The contribution of HOA 736 

was constant during the year (8.1–10.1%), while BBOA showed a clear seasonal variation (8.3–737 

27.4%), which peaked during winter (due to an increased residential heating source) and 738 

contributed least in summer. OOA was a dominant source throughout the year, with a 739 

contribution of 71.6% on a yearly average. However, the biomass burning source had a strong 740 

influence on LO-OOA formation in winter. Together with BBOA, they make residential 741 

heating a considerable source at Magadino during winter. Therefore, a mitigation of residential 742 

wood combustion should be considered for a reduction ofto reduce PM levels in Magadino and 743 

similar locations, especially in winter.  744 

This manuscript also provided a recommended criterion list (Table S1) as well asnd a novel 745 

way to define thresholds with minimum subjective judgements (student’s t-test), which could 746 

be a leading example for other SoFi Pro users to conduct rolling PMF. To ensure a good 747 

representation of the modelled POA factors and to validate the SA results, we also used the 748 

correlations between the PMF factor time series and external data. Both HOA and BBOA 749 

agreed well with the corresponding external tracers (NOx, eBCtr, and eBCwb) for the yearly 750 

cycles, except for summer. This is because the aethalometer model for eBC SA has higher 751 

uncertainties with smaller eBCwb mass concentrations. Also, NOx could originate from multiple 752 

sources in this season. Therefore, we used HOA vs. eBC and 𝐸𝑉60,𝐵𝐵𝑂𝐴 to justify these two 753 

factors in summer. The correlation of HOA vs eBC had an R2 of 0.28, with an 𝐸𝑉60,𝐵𝐵𝑂𝐴 of 754 

0.55 in summer. Moreover, the MO-OOA and LO-OOA factors were well correlated well with 755 

inorganic SO4 and NO3, respectively. The identified primary and secondary OA factor profiles 756 

were consistent with the OA factors previously found at a variety ofvarious urban, rural, and 757 

remote European locations.  758 
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This paper assessed the statistical and rotational uncertainties of the PMF solution by 759 

combining the bootstrap resampling technique and the random a-value approach. It shows 760 

relatively small errors for constrained factors compared with a previous study in Zurich 761 

(Canonaco et al., 2021), and comparable errors for the OOA factors.  762 

We also presented a head-to-head comparison between seasonal PMF solutions and the rolling 763 

PMF solution. The POA factors showed good agreement between seasonal and rolling PMF 764 

solution, while the OOA factors exhibited greater differences. Overall, the rolling PMF 765 

retrieved a somewhat better solutionprovided slightly better agreements  in terms of agreement 766 

with external tracers, especially, but much better correlations between the OOA factors and 767 

corresponding inorganic salts. In addition, the rolling PMF results provided more a better 768 

representation of the measurementsrealistic results by adapting the temporal variations of OOA 769 

factors in the f44 vs f43 space, which also led to much smaller scaled residuals than for the 770 

seasonal PMF. Therefore, the rolling PMF is highly useful when the user wishes to better 771 

separate OOA factors (especially during cold seasons) and better represent the measurements. 772 

In addition, we will also recommend using the rolling PMF to facilitate the analysis of long-773 

term trends of OA sources with some prior knowledge of OA sources. However, it remains 774 

challenging to objectively define the transition point to an improved source apportionment for 775 

rolling PMF analysis when a different number of OA factors is necessary for different periods. 776 

UAn upcoming manuscript (Via et al., in prep.) will present more details of the comparison 777 

between rolling and seasonal results for multiple datasets. The time series of BBOA and total 778 

OOA agreed well with those from offline AMS AS SA results (Vlachou et al., 2018), except 779 

for winter when the fast oxidation processes of biomass burning emissions were not captured 780 

by the offline AMS techniqueoffline AMS technique did not capture the fast oxidation 781 

processes of biomass burning emissions.  782 
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Knowledge of diurnal, seasonal and annual changes in OA sources is essential for interpreting 783 

the yearly cycles of OA and defining mitigation strategies for air quality. With the help of more 784 

accurate and realistic OA sources together with an estimation of the statistical uncertainty of 785 

PMF, more constraints can be provided both for climate and air quality models. These 786 

improved results are therefore highly valuable for policy makers to solve aerosol-related 787 

environmental issues.  788 

  789 
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 790 

5 Appendix A: Comparison between seasonal and rolling PMF 791 

solutions 792 

The bootstrapped seasonal PMF solutions were compared with the full full-year rolling PMF 793 

results as follows. For each factor, the correlations with external data, the ion intensities in the 794 

factor profiles, and the mass concentrations retrieved from the two different source 795 

apportionment techniques were comparedThe correlations with external data, the ion 796 

intensities in the factor profiles and the mass concentrations retrieved from the two different 797 

source apportionment techniques were compared for each factor. The correlations of the factor 798 

time series with external data (i.e., NOx, eBCtr, eBCwb, eBCtotoal, SO4, NO3, and NH4) are 799 

presented in Table A1Table A1. The rolling results showed generallygenerally showed 800 

slightly better correlations between LO-OOA and NO3, MO-OOA and SO4, and total OOA 801 

with NH4 than the seasonal PMF results, which is consistent with the comparison results from 802 

Canonaco et al. (2021)Canonaco et al. (2020). A significant improvement was evident for LO-803 

OOA vs NO3 in spring (with R2 increasing from 0.02 to 0.48). Concerning the correlations of 804 

POA factors with external data, rolling results and seasonal showed similar results 805 

Table A1 Correlation coefficients (𝑅𝑝𝑒𝑎𝑟𝑠𝑜𝑛
2 ) between the factor contributions and expected 806 

tracers over the year and for individual meteorological seasons (p<0.05). 807 

Factor 
Yearly SON_2013 DJF MAM JJA SON_2014 

Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling 
HOA / NOx 0.37 0.35  0.52  0.5  0.46 0.47  0.34  0.36  0.15  0.15  0.44  0.42 

HOA / 
eBCtr 

0.34 0.33  0.29  0.35  0.41  0.42   0.39  0.31 N/A N/A  0.38  0.39 

HOA / eBC 0.55 0.51  0.79 0.77  0.77 0.73 0.5 0.41 0.29 0.28 0.5 0.47 

BBOA / 
eBCwb 

0.82 0.82  0.81  0.79  0.84  0.81  0.67  0.6 N/A N/A  0.3  0.27 

MO-OOA / 
SO4

2- 
0.58 0.49  0.49 0.61  0.52  0.49  0.62  0.66  0.63  0.57  0.43  0.46 

LO-OOA / 
NO3

- 
0.11 0.32  0.28 0.42  0.28  0.23  0.02  0.48  0.33  0.36  0.19  0.29 

OOA/ NH4
+ 0.46 0.44  0.52 0.55  0.34 0.26 0.73 0.75 0.48 0.47 0.57 0.59 

 808 
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As shown in Fig. A1Figure. A1 , which shows showed a good agreement for two techniques, 809 

except for MO-OOA and LO-OOA. In general, the slope of 1.09 for rolling total OOA vs 810 

seasonal OOA suggests a slight underestimation of the OOA contribution by the seasonal PMF 811 

solutions, while the slope (<1) for HOA and BBOA suggests that the seasonal PMF solutions 812 

overestimate HOA and BBOA. In addition, LOA58-OA shows the best agreement between the 813 

seasonal and rolling solutions, due to the tight constraint of LOA58-OA with an a-value of 814 

0.05.  815 

The LO-OOA and MO-OOA factors showed worse agreement than the POA factors for the 816 

whole dataset. They had good correlations in each meteorological season, however, with 817 

different slopes. For instance, seasonal PMF underestimated LO-OOA in spring and fall 2014, 818 

but both seasons showed a high correlation with rather narrow scattering. The underestimation 819 

of LO-OOA by seasonal PMF was compensated by the overestimation of MO-OOA for these 820 

two seasons, therefore, the summed OOA still showed a high correlation between rolling and 821 

seasonal PMF results. This is expected, as the rolling PMF allows the source profiles to adapt 822 

to temporal variations, while seasonal PMF only has static source profiles.  823 
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 824 

 825 

Fig. A1 Comparison of the mass concentrations resulting from rolling PMF and from the 826 

seasonal analysis for each factor (colour coded by date and time). 827 

 828 

The differences in the major variables of the OOA factors (i.e., m/z 44, 43, and 60) shifted the 829 

mass concentrations significantly. Therefore, we also compared the factor profiles for both 830 
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techniques (Fig. A2Fig. A2). For instance, LO-OOA during spring showed higher intensity at 831 

m/z 44 for the rolling PMF results than for the seasonal PMF results (Fig. A2Fig. A2), which 832 

caused the underestimation of LO-OOA for the seasonal PMF in spring. When we averaged 833 

the total OOA factor using mass-weighted MO-OOA and LO-OOA factors, rolling PMF 834 

yielded higher m/z 60 for all seasons. As a result, seasonal PMF slightly underestimated the 835 

summed OOA factors by around 9%, but slightly overestimated the POA factors by less than 836 

<6%. 837 

The profiles of the constrained factors (HOA, BBOA, LOA58-OA) from the rolling results 838 

show very high correlation with the seasonal results (Fig. A2Fig. A2), which suggests that the 839 

primary factors and the tightly constrained factor (LOA58-OA) were consistent with the static 840 

profiles from the seasonal PMF analysis. 841 
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 842 

 843 

Fig. A2 Profile comparisons between rolling results and seasonal results for each factor (log 844 

scale). 845 

 846 

We compared the scaled residuals from both source apportionment techniques (Fig. A3Fig. 847 

A3). The rolling PMF solution had smaller scaled residuals (narrower histogram and the centre 848 

was closer to 0) than that of the seasonal PMF solution, which is expected because rolling PMF 849 

had more flexibility to adapt to the temporal variabilities of the OA sources. 850 
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 851 

 852 

 853 

Fig. A3 Distribution of the scaled residuals over the whole year for the seasonal solution (a) 854 

and the rolling solution (b). 855 

 856 

SummarizingSummarising, HOA and BBOA were consistent for both rolling and seasonal 857 

PMF analysis in terms of the time series, correlations with external tracers, and factor profiles 858 

due to the consistency of their chemical factor profiles. In contrast, the MO-OOA and LO-859 

OOA factors were more scattered in terms of averaged factor profiles and mass concentration, 860 

which suggestsaveraged factor profiles and mass concentration, suggesting that seasonal PMF 861 
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analysis was not sufficient to capture these temporal variabilities of their oxidation processes. 862 

Also, rolling PMF showed smaller scaled residuals. Therefore, we conclude that the rolling 863 

PMF analysis provides more realistic results than the seasonal analysis. 864 

Data Availability 865 

The data are available upon request to the corresponding author.Data related to this manuscript 866 

are available at https://zenodo.org/record/5113896 (Chen et al., 2021). 867 

Competing interests 868 

Y. S., F. C., A. T. K., C. B. are working for Datalystica Ltd., the company that developed the 869 

SoFi Pro software. All authors declare no competing interests in any form for this work. 870 

The authors declare no competing interests in any form for this work. 871 

Author contributions 872 

G. C. analysed the ACSM and BC data, then performed the rolling source apportionment and 873 

wrote the manuscript. Y. S. wrote the preliminary manuscript and analysed preliminary results. 874 

G. C., Y. S., F. C., A. T., K. R. D., J. G. S., I. EI. H., U. B., and A. S. H. P. helped editing and 875 

reviewing the manuscript. Y. S, R. F. and P. G. helped to run the campaign. P. G., and C. H. 876 

provided external data to validate PMF solution. F.C. provided technique support for SoFi Pro. 877 

F.C., A. T., K. R. D., A. V., J. G. S., I. EI. H., U. B., and A. S. H. P. participated in discussions 878 

for this study.  879 

G. C. and Y. S. contributed equally for this manuscript. G. C. wrote the manuscript, illustrations 880 

as well as data treatments and processing. Y.S. wrote the preliminary manuscript and analysed 881 

preliminary results. R. F. and P. G. helped to run the campaign. P. G., and C. H. provided 882 

external data to validate PMF solution. F.C. provided technique support for SoFi Pro. F.C., A. 883 

https://zenodo.org/record/5113896


46 

 

T., K. R. D., A. V., J.G.S., I. EI. H., U. B., and A. S. H. P. participated discussions for this 884 

study.  885 

Acknowledgements 886 

The ACSM measurements were supported by the Swiss Federal Office for the Environment 887 

(FOEN). The leading role of the Environmental group of the Swiss Federal Laboratories for 888 

Materials and Testing (Empa) in supporting the measurements is very much appreciated. Y. S. 889 

acknowledges supports by the “Wiedereinsteigerinnen Program” at the Paul Scherrer Institute. 890 

This study was also supported by the cost action of Chemical On-Line cOmpoSition and Source 891 

Apportionment of fine aerosol (COLOSSAL, CA16109), a COST related project of the Swiss 892 

National Science Foundation, Source apportionment using long-term Aerosol Mass 893 

Spectrometry and Aethalometer Measurements (SAMSAM, IZCOZ0_177063), as well as the 894 

EU Horizon 2020 Framework Programme via the ERA-PLANET project SMURBS (grant 895 

agreement no. 689443). 896 

References  897 

Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., 898 

Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., 899 

Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., 900 

Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., 901 

Arnott, W. P., Molina, L. T., Sosa, G. and Jimenez, J. L.: Mexico City aerosol analysis during 902 

MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 903 

1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9(17), 904 

6633–6653, doi:10.5194/acp-9-6633-2009, 2009. 905 

Alfarra, M. R., Prevot, A. S. H., Szidat, S., Sandradewi, J., Weimer, S., Lanz, V. A., Schreiber, 906 



47 

 

D., Mohr, M. and Baltensperger, U.: Identification of the Mass Spectral Signature of Organic 907 

Aerosols from Wood Burning Emissions, Environ. Sci. Technol., 41(16), 5770–5777, 908 

doi:10.1021/es062289b, 2007. 909 

Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R. R., Jimenez, J. L., Middlebrook, 910 

A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T. and Worsnop, D. R.: A 911 

generalised method for the extraction of chemically resolved mass spectra from Aerodyne 912 

aerosol mass spectrometer data, J. Aerosol Sci., 35(7), 909–922, 913 

doi:10.1016/j.jaerosci.2004.02.007, 2004. 914 

Bressi, M., Cavalli, F., Belis, C. A., Putaud, J.-P. P., Fröhlich, R., Martins dos Santos, S., 915 

Petralia, E., Prévôt, A. S. H. H., Berico, M., Malaguti, A. and Canonaco, F.: Variations in the 916 

chemical composition of the submicron aerosol and in the sources of the organic fraction at a 917 

regional background site of the Po Valley (Italy), Atmos. Chem. Phys., 16(20), 12875–12896, 918 

doi:10.5194/acp-16-12875-2016, 2016. 919 

Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J., 920 

Lerner, B. M., Jakoubek, R., Middlebrook, A. M., DeGouw, J. A., Warneke, C., Goldan, P. D., 921 

Kuster, W. C., Angevine, W. M., Sueper, D. T., Quinn, P. K., Bates, T. S., Meagher, J. F., 922 

Fehsenfeld, F. C. and Ravishankara, A. R.: Nighttime removal of NO x in the summer marine 923 

boundary layer, Geophys. Res. Lett., 31(7), n/a-n/a, doi:10.1029/2004GL019412, 2004. 924 

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, 925 

T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., 926 

Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P. and Worsnop, D. R.: Chemical 927 

and microphysical characterization of ambient aerosols with the aerodyne aerosol mass 928 

spectrometer, Mass Spectrom. Rev., 26(2), 185–222, doi:10.1002/mas.20115, 2007. 929 



48 

 

Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U. and Prévôt, A. S. H. H.: SoFi, an 930 

IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the 931 

source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. 932 

Tech., 6(12), 3649–3661, doi:10.5194/amt-6-3649-2013, 2013. 933 

Canonaco, F., Slowik, J. G., Baltensperger, U. and Prévôt, A. S. H.: Seasonal differences in 934 

oxygenated organic aerosol composition: implications for emissions sources and factor 935 

analysis, Atmos. Chem. Phys., 15(12), 6993–7002, doi:10.5194/acp-15-6993-2015, 2015. 936 

Canonaco, F., Tobler, A., Chen, G., Sosedova, Y., Slowik, J. G. G., Bozzetti, C., Daellenbach, 937 

K. R., El Haddad, I., Crippa, M., Huang, R.-J., Furger, M., Baltensperger, U., Prévôt, A. S. H., 938 

Kaspar Rudolf Haddad, I. E. D., Crippa, M., Huang, R.-J., Furger, M., Baltensperger, U., 939 

Prevot, A. S. H., Daellenbach, Kaspar Rudolf Haddad, I. El, Crippa, M., Huang, R.-J., Furger, 940 

M., Baltensperger, U. and Prevot, A. S. H.: A new method for long-term source apportionment 941 

with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 942 

1 year of organic aerosol data, Atmos. Meas. Tech., 14(2), 923–943, doi:10.5194/amt-14-923-943 

2021, 2021. 944 

Chirico, R., DeCarlo, P. F., Heringa, M. F., Tritscher, T., Richter, R., Prévôt, A. S. H., Dommen, 945 

J., Weingartner, E., Wehrle, G., Gysel, M., Laborde, M. and Baltensperger, U.: Impact of 946 

aftertreatment devices on primary emissions and secondary organic aerosol formation potential 947 

from in-use diesel vehicles: results from smog chamber experiments, Atmos. Chem. Phys., 948 

10(23), 11545–11563, doi:10.5194/acp-10-11545-2010, 2010. 949 

Chow, J. C., Bachmann, J. D., Wierman, S. S. G., Mathai, C. V., Malm, W. C., White, W. H., 950 

Mueller, P. K., Kumar, N. and Watson, J. G.: Visibility: Science and Regulation, J. Air Waste 951 

Manage. Assoc., 52(9), 973–999, doi:10.1080/10473289.2002.10470844, 2002. 952 



49 

 

Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., 953 

Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., 954 

Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., 955 

Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H. and Baltensperger, U.: Wintertime aerosol 956 

chemical composition and source apportionment of the organic fraction in the metropolitan 957 

area of Paris, Atmos. Chem. Phys., 13(2), 961–981, doi:10.5194/acp-13-961-2013, 2013. 958 

Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., 959 

Ceburnis, D., Dall&amp;apos;Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., 960 

Freney, E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, 961 

A., Kortelainen, A.-M. M., Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., 962 

O&amp;apos;Dowd, C., Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., 963 

Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., Prévôt, A. S. H. H., 964 

Dall’Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz, 965 

L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, A.-M. M., 966 

Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O’Dowd, C., Ovadnevaite, 967 

J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., 968 

Worsnop, D. R., Baltensperger, U. and Prévôt, A. S. H. H.: Organic aerosol components 969 

derived from 25 AMS data sets across Europe using a consistent ME-2 based source 970 

apportionment approach, Atmos. Chem. Phys., 14(12), 6159–6176, doi:10.5194/acp-14-6159-971 

2014, 2014. 972 

Cubison, M. J. J., Ortega, A. M. M., Hayes, P. L. L., Farmer, D. K. K., Day, D., Lechner, M. 973 

J. J., Brune, W. H. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., 974 

Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, 975 

A. J., Wisthaler, A. and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass 976 

burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11(23), 12049–12064, 977 



50 

 

doi:www.atmos-chem-phys.net/11/12049/2011/, 2011. 978 

Daellenbach, K. R., Bozzetti, C., Křepelová, A., Canonaco, F., Wolf, R., Zotter, P., Fermo, P., 979 

Crippa, M., Slowik, J. G., Sosedova, Y., Zhang, Y., Huang, R.-J. J., Poulain, L., Szidat, S., 980 

Baltensperger, U., El Haddad, I. and Prévôt, A. S. H. H.: Characterization and source 981 

apportionment of organic aerosol using offline aerosol mass spectrometry, Atmos. Meas. Tech., 982 

9(1), 23–39, doi:10.5194/amt-9-23-2016, 2016. 983 

Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou, A., Stefenelli, G., 984 

Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M., Favez, O., Albinet, A., 985 

Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.-L. and 986 

Prévôt, A. S. H.: Sources of particulate-matter air pollution and its oxidative potential in Europe, 987 

Nature, 587(7834), 414–419, doi:10.1038/s41586-020-2902-8, 2020. 988 

DeCarlo, P. F., Dunlea, E. J., Kimmel, J. R., Aiken, A. C., Sueper, D., Crounse, J., Wennberg, 989 

P. O., Emmons, L., Shinozuka, Y., Clarke, A., Zhou, J., Tomlinson, J., Collins, D. R., Knapp, 990 

D., Weinheimer, A. J., Montzka, D. D., Campos, T. and Jimenez, J. L.: Fast airborne aerosol 991 

size and chemistry measurements above Mexico City and Central Mexico during the 992 

MILAGRO campaign, Atmos. Chem. Phys., 8(14), 4027–4048, doi:10.5194/acp-8-4027-2008, 993 

2008. 994 

Dentener, F. J. and Crutzen, P. J.: Reaction of N 2 O 5 on tropospheric aerosols: Impact on the 995 

global distributions of NO x , O 3 , and OH, J. Geophys. Res. Atmos., 98(D4), 7149–7163, 996 

doi:10.1029/92JD02979, 1993. 997 

Dockery, D. W. and Pope, C. A.: Acute Respiratory Effects of Particulate Air Pollution, Annu. 998 

Rev. Public Health, 15(1), 107–132, doi:10.1146/annurev.pu.15.050194.000543, 1994. 999 

Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A., Barmpadimos, I., Prevot, 1000 



51 

 

A. S. H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna, 1001 

M. R., Worsnop, D. R., Collins, D. R., Tomlinson, J. and Baltensperger, U.: Relating 1002 

hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys., 1003 

11(3), 1155–1165, doi:10.5194/acp-11-1155-2011, 2011. 1004 

Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7(1), 1–26 [online] 1005 

Available from: https://www.jstor.org/stable/2958830, 1979. 1006 

Fröhlich, R., Cubison, M. J., Slowik, J. G., Bukowiecki, N., Prévôt, A. S. H. H., Baltensperger, 1007 

U., Schneider, J., Kimmel, J. R., Gonin, M., Rohner, U., Worsnop, D. R. and Jayne, J. T.: The 1008 

ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection, Atmos. 1009 

Meas. Tech., 6(11), 3225–3241, doi:10.5194/amt-6-3225-2013, 2013. 1010 

Fröhlich, R., Crenn, V., Setyan, A., Belis, C. A., Canonaco, F., Favez, O., Riffault, V., Slowik, 1011 

J. G., Aas, W., Aijälä, M., Alastuey, A., Artiñano, B., Bonnaire, N., Bozzetti, C., Bressi, M., 1012 

Carbone, C., Coz, E., Croteau, P. L., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., 1013 

Heikkinen, L., Herrmann, H., Jayne, J. T., Lunder, C. R., Minguillón, M. C., Močnik, G., 1014 

O’Dowd, C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-1015 

Estève, R., Wiedensohler, A., Baltensperger, U., Sciare, J., Prévôt, A. S. H., 1016 

O&amp;apos;Dowd, C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., 1017 

Sarda-Estève, R., Wiedensohler, A., Baltensperger, U., Sciare, J., Prévôt, A. S. H., O’Dowd, 1018 

C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Estève, R., 1019 

Wiedensohler, A., Baltensperger, U., Sciare, J. and Prévôt, A. S. H.: ACTRIS ACSM 1020 

intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 1021 

15 individual, co-located aerosol mass spectrometers, Atmos. Meas. Tech., 8(6), 2555–2576, 1022 

doi:10.5194/amt-8-2555-2015, 2015. 1023 

Heringa, M. F., DeCarlo, P. F., Chirico, R., Tritscher, T., Dommen, J., Weingartner, E., Richter, 1024 



52 

 

R., Wehrle, G., Prévôt, A. S. H. and Baltensperger, U.: Investigations of primary and secondary 1025 

particulate matter of different wood combustion appliances with a high-resolution time-of-1026 

flight aerosol mass spectrometer, Atmos. Chem. Phys., 11(12), 5945–5957, doi:10.5194/acp-1027 

11-5945-2011, 2011. 1028 

Hildebrandt, L., Kostenidou, E., Lanz, V. A., Prevot, A. S. H. H., Baltensperger, U., 1029 

Mihalopoulos, N., Laaksonen, A., Donahue, N. M. and Pandis, S. N.: Sources and atmospheric 1030 

processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer 1031 

factor analysis, Atmos. Chem. Phys., 11(23), 12499–12515, doi:10.5194/acp-11-12499-2011, 1032 

2011. 1033 

Horvath, H.: Atmospheric light absorption—A review, Atmos. Environ. Part A. Gen. Top., 1034 

27(3), 293–317, doi:10.1016/0960-1686(93)90104-7, 1993. 1035 

IPCC: Clouds and Aerosols, in Climate Change 2013 - The Physical Science Basis, edited by 1036 

Intergovernmental Panel on Climate Change, pp. 571–658, Cambridge University Press, 1037 

Cambridge., 2014. 1038 

Jacobson, M. C., Hansson, H.-C., Noone, K. J. and Charlson, R. J.: Organic atmospheric 1039 

aerosols: Review and state of the science, Rev. Geophys., 38(2), 267–294, 1040 

doi:10.1029/1998RG000045, 2000. 1041 

Jacobson, M. Z.: Global direct radiative forcing due to multicomponent anthropogenic and 1042 

natural aerosols, J. Geophys. Res. Atmos., 106(D2), 1551–1568, doi:10.1029/2000JD900514, 1043 

2001. 1044 

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H. H., Zhang, Q., Kroll, J. 1045 

H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. 1046 

M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., 1047 



53 

 

Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, 1048 

P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., 1049 

Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, 1050 

J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, 1051 

R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, 1052 

K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., 1053 

Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., Worsnop, D. R., Dunlea, J., 1054 

Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, 1055 

J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, 1056 

R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, 1057 

K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., 1058 

Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., Worsnop, D. R., Dunlea, E. 1059 

J., Huffman, J. A., et al.: Evolution of organic aerosols in the atmosphere, Science (80-. )., 1060 

326(5959), 1525–1529, doi:10.1126/science.1180353, 2009. 1061 

Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C. and Prévôt, A. S. 1062 

H.: Source apportionment of submicron organic aerosols at an urban site by factor analytical 1063 

modelling of aerosol mass spectra, Atmos. Chem. Phys., 7(6), 1503–1522, doi:10.5194/acp-7-1064 

1503-2007, 2007. 1065 

Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., Szidat, S., Wehrli, 1066 

M. N., Wacker, L., Weimer, S., Caseiro, A., Puxbaum, H. and Prevot, A. S. H.: Source 1067 

Attribution of Submicron Organic Aerosols during Wintertime Inversions by Advanced Factor 1068 

Analysis of Aerosol Mass Spectra, Environ. Sci. Technol., 42(1), 214–220, 1069 

doi:10.1021/es0707207, 2008. 1070 

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. and Pozzer, A.: The contribution of 1071 



54 

 

outdoor air pollution sources to premature mortality on a global scale, Nature, 525(7569), 367–1072 

371, doi:10.1038/nature15371, 2015. 1073 

Matthew, B. M., Middlebrook, A. M. and Onasch, T. B.: Collection Efficiencies in an 1074 

Aerodyne Aerosol Mass Spectrometer as a Function of Particle Phase for Laboratory Generated 1075 

Aerosols, Aerosol Sci. Technol., 42(11), 884–898, doi:10.1080/02786820802356797, 2008. 1076 

Mauderly, J. L. and Chow, J. C.: Health Effects of Organic Aerosols, Inhal. Toxicol., 20(3), 1077 

257–288, doi:10.1080/08958370701866008, 2008. 1078 

Meteotest: Data Report Switzerland 2007 – 2016, Bern, Switzerland., 2017. 1079 

Minguillón, M. C., Ripoll, A., Pérez, N., Prévôt, A. S. H. H., Canonaco, F., Querol, X. and 1080 

Alastuey, A.: Chemical characterization of submicron regional background aerosols in the 1081 

western Mediterranean using an Aerosol Chemical Speciation Monitor, Atmos. Chem. Phys., 1082 

15(11), 6379–6391, doi:10.5194/acp-15-6379-2015, 2015. 1083 

Mohr, C., Decarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C., 1084 

Alastuey, A., Querol, X., Seco, R., Crippa, M., Zimmermann, R., Baltensperger, U., Barcelona, 1085 

D., Munchen, H. Z. and Mass, J.: Wintertime aerosol chemical composition and source 1086 

apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 1087 

12(4), 1649–1665, doi:10.5194/acp-13-961-2013, 2012. 1088 

Monn, C.: Exposure assessment of air pollutants: a review on spatial heterogeneity and 1089 

indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone, 1090 

Atmos. Environ., 35(1), 1–32, doi:10.1016/S1352-2310(00)00330-7, 2001. 1091 

Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M., Middlebrook, A. 1092 

M., Peltier, R. E., Sullivan, A., Thomson, D. S. and Weber, R. J.: Single-particle mass 1093 

spectrometry of tropospheric aerosol particles, J. Geophys. Res. Atmos., 111(D23), n/a-n/a, 1094 



55 

 

doi:10.1029/2006JD007340, 2006. 1095 

Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., 1096 

Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., 1097 

Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H. H., Dinar, E., Rudich, Y. and 1098 

Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from 1099 

Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10(10), 4625–4641, doi:10.5194/acp-10-1100 

4625-2010, 2010. 1101 

Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., 1102 

Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L. and Jayne, J. T.: An Aerosol Chemical 1103 

Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass 1104 

Concentrations of Ambient Aerosol, Aerosol Sci. Technol., 45(7), 780–794, 1105 

doi:10.1080/02786826.2011.560211, 2011a. 1106 

Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M. and Worsnop, D. R.: 1107 

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol 1108 

Mass Spectrometer Data, Environ. Sci. Technol., 45(3), 910–916, doi:10.1021/es102951k, 1109 

2011b. 1110 

NIST Mass Spectrometry Data Center: Disulfide, dimethyl, SRD 69. [online] Available from: 1111 

https://webbook.nist.gov/cgi/cbook.cgi?ID=C624920&Mask=200#Refs (Accessed 6 August 1112 

2020), 2014. 1113 

Paatero, P.: The Multilinear Engine—A Table-Driven, Least Squares Program for Solving 1114 

Multilinear Problems, Including the n -Way Parallel Factor Analysis Model, J. Comput. Graph. 1115 

Stat., 8(4), 854–888, doi:10.1080/10618600.1999.10474853, 1999. 1116 

Paatero, P. and Hopke, P. K.: Discarding or downweighting high-noise variables in factor 1117 



56 

 

analytic models, Anal. Chim. Acta, 490(1–2), 277–289, doi:10.1016/S0003-2670(02)01643-4, 1118 

2003. 1119 

Paatero, P., Eberly, S., Brown, S. G. and Norris, G. A.: Methods for estimating uncertainty in 1120 

factor analytic solutions, Atmos. Meas. Tech., 7(3), 781–797, doi:10.5194/amt-7-781-2014, 1121 

2014. 1122 

Parworth, C., Fast, J., Mei, F., Shippert, T., Sivaraman, C., Tilp, A., Watson, T. and Zhang, Q.: 1123 

Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains 1124 

(SGP) using an Aerosol Chemical Speciation Monitor (ACSM), Atmos. Environ., 106, 43–55, 1125 

doi:10.1016/j.atmosenv.2015.01.060, 2015. 1126 

Petit, J.-E. E., Favez, O., Sciare, J., Canonaco, F., Croteau, P., Močnik, G., Jayne, J., Worsnop, 1127 

D. and Leoz-Garziandia, E.: Submicron aerosol source apportionment of wintertime pollution 1128 

in Paris, France by double positive matrix factorization (PMF2) using an aerosol chemical 1129 

speciation monitor (ACSM) and a multi-wavelength Aethalometer, Atmos. Chem. Phys., 1130 

14(24), 13773–13787, doi:10.5194/acp-14-13773-2014, 2014. 1131 

Pfaffenberger, L., Barmet, P., Slowik, J. G., Praplan, A. P., Dommen, J., Prévôt, A. S. H. and 1132 

Baltensperger, U.: The link between organic aerosol mass loading and degree of oxygenation: 1133 

an α-pinene photooxidation study, Atmos. Chem. Phys., 13(13), 6493–6506, doi:10.5194/acp-1134 

13-6493-2013, 2013. 1135 

Pope, C. A. and Dockery, D. W.: Health Effects of Fine Particulate Air Pollution: Lines that 1136 

Connect, J. Air Waste Manage. Assoc., 56(6), 709–742, 1137 

doi:10.1080/10473289.2006.10464485, 2006. 1138 

Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, 1139 

Q., Sikka, D. R. and Wild, M.: Atmospheric brown clouds: Impacts on South Asian climate 1140 



57 

 

and hydrological cycle, Proc. Natl. Acad. Sci., 102(15), 5326–5333, 1141 

doi:10.1073/pnas.0500656102, 2005. 1142 

Reyes-Villegas, E., Green, D. C., Priestman, M., Canonaco, F., Coe, H., Prévôt, A. S. H. H. 1143 

and Allan, J. D.: Organic aerosol source apportionment in London 2013 with ME-2: Exploring 1144 

the solution space with annual and seasonal analysis, Atmos. Chem. Phys., 16(24), 15545–1145 

15559, doi:10.5194/acp-16-15545-2016, 2016. 1146 

Ripoll, A., Minguillón, M. C., Pey, J., Jimenez, J. L., Day, D. A., Sosedova, Y., Canonaco, F., 1147 

Prévôt, A. S. H., Querol, X. and Alastuey, A.: Long-term real-time chemical characterization 1148 

of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.), Atmos. Chem. Phys., 1149 

15(6), 2935–2951, doi:10.5194/acp-15-2935-2015, 2015. 1150 

von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, 1151 

A., Morgan, W. T., Paasonen, P., Righi, M., Sindelarova, K. and Sutton, M. A.: Chemistry and 1152 

the Linkages between Air Quality and Climate Change, Chem. Rev., 115(10), 3856–3897, 1153 

doi:10.1021/acs.chemrev.5b00089, 2015. 1154 

Schurman, M. I., Lee, T., Sun, Y., Schichtel, B. A., Kreidenweis, S. M. and Collett Jr., J. L.: 1155 

Investigating types and sources of organic aerosol in Rocky Mountain National Park using 1156 

aerosol mass spectrometry, Atmos. Chem. Phys., 15(2), 737–752, doi:10.5194/acp-15-737-1157 

2015, 2015. 1158 

Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R. and Fahey, D. W.: Black carbon 1159 

aerosol size in snow, Sci. Rep., 3, 1–5, doi:10.1038/srep01356, 2013. 1160 

Sug Park, E., Henry, R. C. and Spiegelman, C. H.: Estimating the number of factors to include 1161 

in a high-dimensional multivariate bilinear model, Commun. Stat. - Simul. Comput., 29(3), 1162 

723–746, doi:10.1080/03610910008813637, 2000. 1163 



58 

 

Szidat, S., Prévôt, A. S. H., Sandradewi, J., Alfarra, M. R., Synal, H.-A., Wacker, L. and 1164 

Baltensperger, U.: Dominant impact of residential wood burning on particulate matter in 1165 

Alpine valleys during winter, Geophys. Res. Lett., 34(5), doi:10.1029/2006GL028325, 2007. 1166 

The Swiss Federal Council: Ordinance of 16 December 1985 on Air Pollution Control (OAPC). 1167 

[online] Available from: https://www.admin.ch/opc/en/classified-1168 

compilation/19850321/index.html#app7 (Accessed 10 September 2019), 2018. 1169 

Tobler, A., Bhattu, D., Canonaco, F., Lalchandani, V., Shukla, A., Thamban, N. M., Mishra, 1170 

S., Srivastava, A. K., Bisht, D. S., Tiwari, S., Singh, S., Močnik, G., Baltensperger, U., Tripathi, 1171 

S. N., Slowik, J. G. and Prévôt, A. S. H.: Chemical characterization of PM2.5 and source 1172 

apportionment of organic aerosol in New Delhi, India, Sci. Total Environ., 745, 140924, 1173 

doi:10.1016/j.scitotenv.2020.140924, 2020. 1174 

Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R. and Jimenez, J. L.: 1175 

Interpretation of organic components from Positive Matrix Factorization of aerosol mass 1176 

spectrometric data, Atmos. Chem. Phys., 9(9), 2891–2918, doi:10.5194/acp-9-2891-2009, 1177 

2009. 1178 

Via, M. et al.: Comparison between rolling and seasonal PMF techniques for organic aerosol 1179 

source apportionment [Unpublished manuscript]., 2021. 1180 

Vlachou, A., Daellenbach, K. R., Bozzetti, C., Chazeau, B., Salazar, G. A., Szidat, S., Jaffrezo, 1181 

J.-L., Hueglin, C., Baltensperger, U., Haddad, I. El and Prévôt, A. S. H.: Advanced source 1182 

apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-1183 

segregated measurements over a nearly 2-year period, Atmos. Chem. Phys., 18(9), 6187–6206, 1184 

doi:10.5194/acp-18-6187-2018, 2018. 1185 

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., 1186 



59 

 

Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, 1187 

P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., 1188 

Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, 1189 

K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., 1190 

Zhang, Y. M. and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic 1191 

aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. 1192 

Lett., 34(13), n/a-n/a, doi:10.1029/2007GL029979, 2007. 1193 

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R. and 1194 

Sun, Y.: Understanding atmospheric organic aerosols via factor analysis of aerosol mass 1195 

spectrometry: a review, Anal. Bioanal. Chem., 401(10), 3045–3067, doi:10.1007/s00216-011-1196 

5355-y, 2011. 1197 

Zhang, Y., Favez, O., Petit, J.-E., Canonaco, F., Truong, F., Bonnaire, N., Crenn, V., Amodeo, 1198 

T., Prévôt, A. S. H., Sciare, J., Gros, V. and Albinet, A.: Six-year source apportionment of 1199 

submicron organic aerosols from near-continuous highly time-resolved measurements at 1200 

SIRTA (Paris area, France), Atmos. Chem. Phys., 19(23), 14755–14776, doi:10.5194/acp-19-1201 

14755-2019, 2019. 1202 

Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., 1203 

Baltensperger, U., Szidat, S., Prévôt, A. S. H. H., Mocnik, G., Hüglin, C., Baltensperger, U., 1204 

Szidat, S., Prévôt, A. S. H. H., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S. and Prévôt, 1205 

A. S. H. H.: Evaluation of the absorption Ångström exponents for traffic and wood burning in 1206 

the Aethalometer-based source apportionment using radiocarbon measurements of ambient 1207 

aerosol, Atmos. Chem. Phys., 17(6), 4229–4249, doi:10.5194/acp-17-4229-2017, 2017. 1208 

 1209 



60 

 

 1210 

Fig. 1 Chemical composition of PM1 in Magadino 2013-2014 – daily (a), seasonal (b) and 1211 

annual (c) averages. The labels indicate the non-refractory organics (Org), sulphate (SO4), 1212 

nitrate (NO3), ammonium (NH4) and chloride (Cl) ions measured by ACSM, and the black 1213 

carbon (BC) measured by light absorption. 1214 

 1215 

Fig. 2 Seasonal diurnal cycles of PM1 constituents calculated as an hourly average for ACSM 1216 

organic and inorganic species (sulphate, nitrate, ammonium, and chloride) and black carbon 1217 
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 1218 

Fig. 3 Annual cycle of OA sources: (a) absolute and (b) relative OA contributions plotted as 1219 

30-min resolved time series, (c) BC source apportionment. 1220 
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 1221 

Fig. 4 OA pie charts for the whole year and for different seasons.  1222 
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 1223 

Fig. 5 Overview of the primary and secondary OA sources in Magadino in 2013-2014: (a) OA 1224 

factor profiles and (b) seasonal diurnal cycles of HOA, BBOA, LOA, MO-OOA, and LO-1225 

OOA. The ambient temperature is shown on the LO-OOA diurnal plots, respectively. In (a) the 1226 

error bar is the standard deviation; the black bars show the maximum and the minimum that 1227 

the variable allowed to be vary from the reference profiles. The average, 10th and 90th 1228 

percentiles for a-values of HOA are, 0.195, 0.007 and 0.378, respectively. Also, the average, 1229 

10th and 90th percentiles for a-values of BBOA are 0.202, 0.025 and 0.379, respectively. 1230 
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 1231 

Fig. 6 Diurnal cycles of HOA (grey symbols), black carbon apportioned to traffic emissions 1232 

eBCtr (dashed lines) and NOx (dotted lines) for weekdays (a) and weekends (b). The shaded 1233 

areas represent interquartile range for 1-hour average HOA. 1234 

 1235 

Fig. 7 OOA f44 and f43 for four different seasons. The yellow cloud of data points represents the 1236 

f44 vs f43 by subtracting the f44 and f43 contributed from HOA, BBOA and LOA factors. They 1237 

are color coded by the total OA mass concentration. The circles, triangles, and squares 1238 
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represent the ratio between f44 and f43 intensities within the factor profiles of MO-OOA and LO-1239 

OOA, respectively. While the smaller size of circles, triangles, and squares are from rolling 1240 

PMF analysis, which are color coded by the date and time. The dash line are the Sally’s triangle 1241 

from (Ng et al., 2011) and depicts the region where several PMF OOA from the last decade 1242 

resided in the f44 vs f43 space. 1243 
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 1244 

Fig. 8 Absolute statistical uncertainties of PMF for HOA, BBOA, LOA, LO-OOA, MO-OOA 1245 

and total OOA (LO-OOA+MO-OOA) for all data. The data points colour-coded all data points 1246 
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by temperature. The PMF error (uncertainties) of selected PMF runs and rotational 1247 

uncertainties is estimated using the slope of the linear regression of standard deviation (σ) vs. 1248 

the averaged mass concentration (µ) for each factor. 1249 

 1250 

 1251 

Fig. 9 (a) Time series of total oxygenated organic aerosol (LO-OOA+MO-OOA) from online 1252 

and offline source apportionment solutions, together with f60 in LO-OOA for online solution, 1253 

and levoglucosan in PM10 filter; (b) Averaged LO-OOA factor profile from online solution 1254 

during DJF (Dec, Jan, and Feb), when online total OOA is significantly higher than that of 1255 

offline solutions. 1256 
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