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Abstract. The anthropogenic emission of the sulfur dioxide (SO2) over China has significantly declined as the consequence 

of clean air actions. In this study, we have developed a new emission inversion system based on a Four-Dimensional Local 

Ensemble Transform Kalman Filter (4D-LETKF) and the Weather Research and Forecasting model coupled with Chemistry 

(WRF-Chem) to dynamically update the SO2 emission grid by grid over China by assimilating the ground-based hourly SO2 

observations. Sensitivity tests for the assimilation system have been conducted firstly to tune four system parameters: 20 

ensemble size, horizontal and temporal localization lengths, and perturbation size. Our results reveal that the same random 

perturbation factors used throughout the whole model grids with assimilating observations within about 180 km can 

efficiently optimize the SO2 emission, whereas the ensemble size has only little effect. The temporal localization by 

assimilating only the subsequent hourly observations can reveal the diurnal variation of the SO2 emission, which is better 

than that to update the the magnitude of SO2 emission every 12 hours by assimilating all the observations within the 12-hour 25 

window. The inverted SO2 emission over China in November 2016 has declined by an average of 49.4% since 2010, which 

is well in agreement with the “bottom-up” estimation of 48.0%. Larger reductions of SO2 emission are found over the priori 

higher source regions such as the Yangtze River Delta (YRD). The simulated SO2 surface mass concentrations using two 

distinguished chemical reaction mechanisms are both much more comparable to the observations with the newly inverted 

SO2 emission than those with the priori emission. These indicate that the newly developed emission inversion system can 30 
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efficiently update the SO2 emissions based on the routine surface SO2 observations. The reduced SO2 emission induces the 

sulfate and PM2.5 surface concentrations to decrease up to 10 𝜇𝑔	𝑚!"	over the center China. 

 

1 Introduction 

China and India are the top two emitters of the anthropogenic sulfur dioxide (SO2) in the world (Li et al., 2017a). SO2 is a 35 

toxic air pollutant and the precursor of sulfate aerosol, leading to the acidification of the atmosphere and the current heavy 

haze problem in China (Wang et al., 2016a;Huang et al., 2014;Yao et al., 2018). Sulfate aerosol can further perturb the 

radiative energy budget on Earth through directly scattering solar radiation (Goto et al., 2011) and hydrological cycle by 

aerosol-cloud interactions (Ramanathan et al., 2001;Sato et al., 2018;Rosenfeld et al., 2019). Sulfate coating on dust leads to 

a shorter lifetime of dust by increasing the deliquescence of the mixed dust, inducing a great impact on radiative properties 40 

and climate modelling (Zhang et al., 2003;Bauer et al., 2007;Fu et al., 2009;Wang et al., 2013;Qi et al., 2013;Penner, 2019). 

Hydrophilic polluted continental aerosols such as sulfate and mixed dust serve as cloud condensation nuclei (CCN) and thus 

have a substantial effect on cloud properties and the initiation of precipitation (Rosenfeld et al., 2008). The liquid and ice 

water paths of dust-contaminated clouds were found obviously smaller than those of dust-free conditions over Eastern Asia 

(Huang et al., 2006b;Huang et al., 2006a). Asian dust altering cloud microphysics and precipitation was revealed by 45 

observations and model simulations (Liu et al., 2020;Liu et al., 2019b;Liu et al., 2019a). This, in turn, plays a key role in the 

climate system. To mitigate climate change and control air quality, the emission control policies especially for SO2 

implemented by China since 2006 cover all the major source sectors and have become increasingly stringent over time 

(Zhang et al., 2012). Consequently, the decreasing trends of SO2 loading over China have been revealed by satellite 

observations, demonstrating SO2 emissions in China have declined by 75% during 2007-2016 (Wang et al., 2018;Li et al., 50 

2017a). The relative change rate of SO2 emission in China during 2010-2017 is also estimated as -62% by using the bottom-

up emission inventory (Zheng et al., 2018).  

The timely precise emission inventories such as SO2 are the primary inputs to models for air quality prediction and 

mitigation. All the atmospheric chemistry and aerosol models rely on their descriptions of the emissions virtually, which are 

mostly from the “bottom-up” emission inventories. The “bottom-up” emission inventories are compiled based on indirect 55 

information such as activity data and emission factors (Zhang et al., 2009;Kurokawa et al., 2013;Zheng et al., 2018). Due to 

the uncertainties of the activity rates and emission factors, large discrepancies of global and regional emissions are identified 

among different emission inventories (Li et al., 2018;Granier et al., 2011). It demonstrates that there is still no consensus on 

the best estimates for the emissions of atmospheric compounds. Moreover, the “bottom-up” anthropogenic emission 

inventories often lag several years behind the present and may quickly become outdated (Zheng et al., 2018), leaving the 60 

model without up-to-date emission inventories.  

The emission inversion approach can feed historical and near-real-time observations into the models, providing a top-down 

approach to estimate and timely update the primary emissions of air pollutants (Streets et al., 2013). Generally speaking, 

variational and ensemble data assimilation approaches are the two widely used methodologies to estimate the emission 
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fluxes of gases (such as NOx, CO, VOCs) (Tang et al., 2011;Qu et al., 2017;Wu et al., 2020;Miyazaki et al., 2012b;Cheng et 65 

al., 2010;Feng et al., 2020a) and/or aerosols (Dai et al., 2019a;Cohen and Wang, 2014;Peng et al., 2017;Yumimoto et al., 

2008). The NOx emission changes over China during the COVID-19 epidemic were inferred from surface NO2 observations 

based on ensemble data assimilation approach (Feng et al., 2020b). The emission reductions during the 2015 China Victory 

Day Parade were successfully detected with an ensemble data assimilation system (Chu et al., 2018). The SO2 emission 

inventories over China were updated on monthly or seasonal time scales assuming a linear relationship between SO2 70 

emissions and satellite observed SO2 column amounts (Koukouli et al., 2018;Lee et al., 2011), known as the mass balance 

approach (Martin, 2003), although the sulfur chemistry especially in polluted areas as well as by the interactions of clouds 

should be nonlinear (Goto et al., 2011;Liao et al., 2003). Fioletov et al. (2015) described a new mass balance approach to 

simultaneously estimate the SO2 lifetimes and emissions from large SO2 point sources using satellite measurements. Based 

on the variational data assimilation approach in the framework of the GEOS-Chem adjoint model, Wang et al. (2016b) 75 

developed a new sophisticated inverse modeling (IM) method to timely update monthly anthropogenic SO2 emissions by 

assimilating the Ozone Monitoring Instrument (OMI) SO2 satellite measurements. The nonlinear full sulfur chemistry and 

lifecycle in the atmosphere were accounted for the first time to conduct the top-down estimation of the anthropogenic SO2 

emissions from the GEOS-Chem adjoint model (Wang et al., 2016b). However, the great limitation to the application of 

variational data assimilation approach is the requirement of developing the complicated adjoint model (Henze et al., 2007 80 

Liang et al., 2020). The ensemble data assimilation approach requires neither linearization of the observation operator and 

nor an adjoint model, therefore it is much more easily implemented and flexible (Evensen, 2003). Additionally, the ensemble 

data assimilation and the variational data assimilation use the flow-dependent and pre-calculated model error covariances 

respectively (Descombes et al., 2015;Zang et al., 2016). Based on the Ensemble Square Root Filter (EnSRF) approach (Chen 

et al., 2019a), the recent SO2 emission changes from the year 2010 in China were successfully updated to improve the model 85 

forecast skill. An ensemble Kalman filter data assimilation system was developed to simultaneously optimize the chemical 

initial conditions and emissions including SO2 with multi-species chemical observations (Peng et al., 2018). The effects of 

meteorological assimilation on SO2 emission inversions were also studied recently (Peng et al., 2020).  

Retrievals of SO2 from satellite-based spectrometers are often contaminated by factors such as interference between ozone 

and SO2, and there are significant regional differences between different satellite instruments (Fioletov et al., 2013). This 90 

subsequently induces the inconsistency of the inversed regional emissions by assimilating different satellite observations 

(Lee et al., 2011). Meanwhile, satellite observations are usually assimilated on the monthly time scale due to data availability. 

Compared with satellite observations, the surface SO2 observations have higher accuracy and temporal frequency. Therefore, 

the assimilation of intensive direct surface SO2 observations can provide more spatial-temporal characteristics of emission 

(Chen et al., 2019a). The China National Environmental Monitoring Centre (CNEMC) started to monitor hourly 95 

concentrations of PM2.5 (particulate matter with diameter ≤	2.5 micrometers), PM10, SO2, NO2, CO and O3 since 2012, and it 

had included 1436 monitoring sites from 369 cities by March 2017 (Wu et al., 2018). Those important direct intensive 

surface SO2 observations provide a new chance to estimate the more spatial-temporal characteristics of the SO2 emission in 
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China (Chen et al., 2019a). 

Due to the limited ensemble members, the Ensemble Kalman filter (EnKF) generally has a spurious long distance correlation 100 

problem (Houtekamer and Mitchell, 2001;Miyazaki et al., 2012a). Compared with the EnKF, the Local Ensemble Transform 

Kalman Filter (LETKF) can assimilate measurements simultaneously over different model grids in the parallel architecture 

(Miyoshi et al., 2007;Hunt et al., 2007). Generally speaking, the LETKF computational time is robust with increasing 

observations, while that of most other ensemble Kalman filter is essentially proportional to the number of observations 

(Miyoshi et al., 2007). Moreover, the global analysis is linear combinations of the ensemble members in different regions, 105 

which is not confined to the limited ensemble members and provides better results in many cases (Ott et al., 2004). A Four-

Dimensional LETKF (4D-LETKF) was recently developed to assimilate hourly aerosol optical properties observed by 

satellite, which can avoid frequent switching between the assimilation and the ensemble aerosol forecasting to significantly 

reduce computational load (Dai et al., 2019b). In current study, we implement a 4D-LETKF in the Weather Research and 

Forecasting model coupled with Chemistry (WRF-Chem). Our major objectives are to investigate whether 4D-LETKF 110 

together with the intensive CNEMC SO2 observations can be applied to quantitatively estimate the spatially resolved 

changes of SO2 emissions in China and how sensitive are the estimated SO2 emissions to the system parameters of the 4D-

LETKF. 

The reminder of the paper is organized as follows. In section 2, the methodology of our emission inversion system is 

described in detail. Sect. 3 presents our experimental designs and purposes. The emission inversion results and validations 115 

are provided in Sect. 4 before concluding in Sect. 5.  

 

2 Methodology 

In order to optimize the SO2 emissions in this study, we need to formally minimize a scalar cost function 𝐽 in a Bayesian 

framework (Hunt et al., 2007;Huneeus et al., 2012).  𝐽 can be formulated as the sum of the departures of a potential gridded 120 

SO2 emissions x and the corresponding simulated SO2 surface mass concentrations to the a priori SO2 emissions 𝑥# and the 

CNEMC observed surface SO2 concentrations 𝑦$: 

𝐽(𝑥) = 1 2⁄ (𝑥 − 𝑥#)%𝐵!&(𝑥 − 𝑥#) + 1 2⁄ (𝐻(𝑥) − 𝑦$)%𝑅!&(𝐻(𝑥) − 𝑦$)   (1) 

where 𝐻 is the observation operator that forward the SO2 emissions to the simulated CNEMC measurements; 𝐵 and 𝑅 are 

the covariance matrix of the error statistics of the a priori SO2 emissions and CNEMC observations.  125 

2.1 Forward model and observation operator  

The relationship between the emission and the surface concentration of short-lived reactive gas SO2 is mainly determined by 

the atmospheric chemical reactions, transport and deposition. The fully coupled “online” Weather Research and Forecasting 

model coupled with Chemistry (WRF-Chem) version 4.1.2 (Grell et al., 2005) is served as the forward model to relate the 

SO2 emissions to the simulated observations of surface mass concentration in current study, which can reflect the complex 130 

nonlinear relationship between atmospheric chemical concentrations and emissions. Our primary aim is to understand how 

sensitive are the estimated SO2 emissions to the parameters of the assimilation system, which requires huge computing 
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resources for sensitivity experiments as described later. Therefore, the model is configured with a domain covering most of 

China as shown in Fig. 1 with a relatively low horizontal resolution of 50 km and 32 vertical levels (Snyder et al., 2015). A 

state-of-the-art and highly nonlinear gas phase chemical mechanism named the second generation Regional Acid Deposition 135 

Model (RADM2) (Stockwell et al., 1990) coupled with the Goddard Global Ozone Chemistry Aerosol Radiation and 

Transport aerosol model (Chin et al., 2000;Chin et al., 2002) (i.e., chem_opt = 303) is adopted to simulate the atmospheric 

sulfur cycle. The RRTMG radiation scheme with prognostic aerosols is selected to consider the aerosol direct effect on 

atmospheric radiation and photolysis calculations (Iacono et al., 2008). The other main selected physics are identical to those 

of Dai et al. (2019a). The initial and lateral boundary meteorological conditions are from the NCEP Final (FNL) Analysis. 140 

To reduce the uncertainties associated with the meteorological fields and facilitate a more straightforward comparison of 

simulations and observations, the predicted wind (u, v), temperature (t), and specific humidity (q) by WRF dynamical core 

are also nudged to the NCEP FNL analysis every 6 hours (Dai et al., 2018). The meteorological fields in the Planetary 

Boundary layer (PBL) are not nudged. The WRF-Chem simulated surface gridded SO2 volume mixing ratios in the unit of 

parts per million (𝑝𝑝𝑚𝑣) are firstly converted to micrograms per cubic meter (𝜇𝑔/𝑚") for comparing to the observations 145 

(Chen et al., 2019a) and then linearly interpolated to the CNEMC site locations.  

2.2 SO2 observations and uncertainties of CNEMC 

The quality-assured and controlled measurements of hourly SO2 surface mass concentration from the CNEMC, which is 

partly purposefully built for assimilation (Wu et al., 2018), are used to minimize the cost function 𝐽. There are a total of 1424 

sites in November 2016, and those sites span most of central and eastern China and primarily locate in urban and suburban 150 

areas (Peng et al., 2017). Due to unresolved emission variations between urban and suburban, model may have large 

representativeness errors. To overcome the spatial scale gaps and to produce more representative observations, the super-

observation is adopted to average all observations located within a model grid cell (Miyazaki et al., 2012a). Altogether 463 

of 7221 model grid cells are covered by the super-observations (Fig. 1). The locations of the super-observations are assumed 

as the locations of the covered model grid cells. To independently verify the assimilation results, we further randomly 155 

eliminate the super-observations located in 155 of the 463 grid cells to be assimilated. In other words, the assimilated and 

independent verification observation sites are randomly decided. The observation error covariance matrix 𝑅 is assumed 

diagonal, in other word, the observational error covariance is assumed uncorrelated. The observation error of CNEMC is 

calculated as same as Chen et al. (2019a), which contains both the measurement and representativeness errors. In the 

assimilation data quality control process, SO2 observation leading to absolute innovation exceeding three times of the prior 160 

total spread is considered as an outlier and discarded. The innovation is calculated as observation minus the model simulated 

ensemble mean observation determined from the first guess filed, and the prior total spread is the square root of the sum of 

the background ensemble variance and the observational error variance (Chen et al., 2019a;Rubin et al., 2016).  

2.3 4D-LETKF  

The 4D-LETKF assimilation approach generalizes a flow-dependent 𝐵 from ensemble simulation and finds the minimum of 165 

the cost function 𝐽 as following five formulas (Cheng et al., 2019): 
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									𝑥̅' = 𝑥̅# + 𝑋#𝑤:'                                                    (2) 

									𝑤:' = 𝑃<'(𝑌#)%𝑅!&𝑓(𝑟)(𝑦$ − 𝑦@#)                         (3) 

									𝑃<' = [(𝑘 − 1)𝐼/𝜌 + (𝑌#)%𝑅!&𝑓(𝑟)𝑌#]!&             (4) 

										𝑋' = 𝑋#𝑊'                                                           (5) 170 

											𝑊' = [(𝑘 − 1)𝑃<']&/)                                           (6) 

where 𝑥̅# and 𝑥̅' represent the ensemble mean of the first guess (a priori) and analysis (a posteriori) SO2 emissions in this 

study; the ensemble perturbation matrix 𝑋 is calculated as 𝑥(𝑖) − 𝑥̅, {𝑖 = 1, 2, … , 𝑘}	, which 𝑘 represents the ensemble size; 

the matrix 𝑤:' is the Kalman gain, which specifies the increment between the first guess and the analysis;  the vector 𝑦@# 

represents the first guess SO2 surface concentrations averaged over the ensemble members; the matrix 𝑌# is calculated as 175 

𝑦#(𝑖) − 𝑦@#, {𝑖 = 1, 2, … , 𝑘}; 	𝐼 represents the identity matrix. The ensemble analyses are calculated as the sum of the 𝑥̅' and 

each of the columns of 𝑋', which is serving as part of a priori emission information for the next analysis as described later. 

The multiplicative inflation factor 𝜌 is used to avoid the filter divergence, which is fixed at 1.1 to inflate the analysis 

covariance as same as our previous studies (Dai et al., 2019b; Cheng et al., 2019). In our implementation of the 4D-LETKF, 

the temporal and spatial localizations are achieved by multiplying the 𝑅!& by a factor 𝑓(𝑟) as described in section 3, which 180 

makes the effect of an observation on the analysis decays smoothly to zero as the time and physical distance of the 

observation from the analysis grid point increases (Hunt et al., 2007).  

As shown in Fig. 2, each assimilation cycle with 4D-LETKF includes two steps: a first guess and a state analysis. In our 

implementation, the first guess is the WRF-Chem ensemble forecasting for 12 hours with hourly model output. The state 

analysis optimizes the SO2 emissions in the past 12 hours. The advantages of 4D-LETKF used here are threefold: (1) each 185 

member of the ensemble WRF-Chem simulations is continuously integrated for 12 hours, therefore, this avoids frequent 

switching between the ensemble WRF-Chem forecasts and the assimilation (Peng et al., 2017;Chen et al., 2019a); (2) the 

asynchronous observations can be assimilated to the optimize the current state (Hunt et al., 2007;Dai et al., 2019b); (3) the 

assimilation window time of 12 hours could avoid filter convergence and divergence by finite ensemble samples, since more 

frequent assimilation forces the experiments more closer, inducing the underestimation of the model spread and 190 

overconfidence in the first guess state estimate (Schutgens et al., 2010;Miyazaki et al., 2012a;Hunt et al., 2007).  

2.4 State variable and forecast model for emission  

In this study, the state variable to be optimized is the SO2 emission. A forecast model for emission is required to propagate 

observation information and determine the first guest for the next assimilation cycle (Miyazaki et al., 2012a). We adopt the 

same forecast model for SO2 emission proposed by Chen et al. (2019a). The forecast model for SO2 emission weights 75% 195 

and 25% toward the SO2 emission ensemble 𝐸*!
' 	from the previous analysis and the static initial prior ensemble 𝐸*+	as 

following formula: 

𝐸*!"#
# = 0.75 ×𝑀𝐸*!

' 𝑀% + 0.25 × 𝐸*+                      (7) 

where M is the identity matrix. The optimized SO2 emission ensemble 𝐸*!
' 	has SO2 emissions at 12 hourly timeslots, which 
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are used to calculate the first guess SO2 emission ensemble 𝐸*!"#
#  in sequence for the next assimilation cycle. The SO2 200 

emission inversion depends on the forecast model, therefore, sensitivity experiments for various different emission forecasts 

are conducted to tune the assimilation system as given in Table 1. The detail settings of the sensitivity experiments will be 

described in next section. As shown in Figs. S1 and S2 in the Supplement, the temporal and spatial distributions of the 

ensemble spread of the forecast emissions 𝐸*!"#
# are significantly sensitive to the assimilation system parameters. The initial 

prior ensemble of SO2 emission is generated by perturbing the freely public available MIX Asian inventory 𝑆 for November 205 

2010 (Li et al., 2017b). For example, the SO2 emission for ensemble member 𝑖 at a given location (𝑥, 𝑦)	is calculated as 

𝑓,(𝑥, 𝑦)𝑆(𝑥, 𝑦) (Rubin et al., 2016), and the perturbation 𝑓,(𝑥, 𝑦), {𝑖 = 1, 2, … , 𝑘}	, follows a lognormal distribution in the 𝑘-

dimensional space. The mean and the variance of the perturbations 𝑓(𝑥, 𝑦)	are equal to 1 and the MIX SO2 uncertainty (i.e., 

35%) (Li et al., 2017b). The horizontal perfect correlated and random uncorrelated perturbations are both created to generate 

the initial prior ensemble 𝐸*+  and the associated first guess SO2 emission ensemble 𝐸*!"#
# as described later. The spatial 210 

distribution of the ensemble spread of the 𝐸*+ with either horizontal perfect correlated or random uncorrelated perturbations 

has the similar pattern as the MIX Asian inventory 𝑆, which is generally equal to 35% multiplying 𝑆. In MIX inventory, 

anthropogenic emissions are aggregated into five sectors: power, industry, residential, transportation, and agriculture. 

However, only the combined total emission is used in the model and updated in the analysis. It aims to decrease the degree 

of freedom in the analysis (Miyazaki et al., 2012a). Ten chemical species including both gaseous and aerosol species are 215 

included in MIX inventory (Li et al., 2017b). The original monthly MIX anthropogenic emissions with a horizontal 

resolution of 0.25°×0.25° are remapped to the model resolution of 50 km. The residential, transportation, and agriculture 

emissions are allocated in the lowest model layer, whereas the power and industry emissions are allocated in the lowest 

seven model layers with the vertical profiles of the emission factors from the Model Inter-Comparison Study for Asia 

(MICS-Asia) phase III (Chen et al., 2019b). An improved speciation framework for mapping Asian anthropogenic emissions 220 

of non-methane volatile organic compounds (NMVOC) to multiple chemical mechanisms (Li et al., 2014), is adopted to 

prepare the initial hourly anthropogenic emissions every 12 hours with two separated emission files (i.e., io_style_emissions 

= 2). We do not apply any diurnal variation for the MIX emissions. Therefore, the initial priori emissions are identical 

throughout the 24 hours. The emissions of aerosol species for WRF-Chem are prepared according to the study of Peng et al. 

(2017). Notably, only the SO2 emission is perturbed and optimized by CNEMC SO2 observations in this study. 225 

The chemical initial conditions (i.e., atmospheric SO2 concentrations) for the next forward simulation of the WRF-Chem 

ensemble are also needed to be updated with the optimal emission ensemble from the previous analysis (Peng et al., 

2015;Peters et al., 2005), and this is achieved by recalculation of the WRF-Chem ensemble with the optimized emissions 

(Fig. 2). In other word, the WRF-Chem ensemble is performed twice in one assimilation cycle. Theoretically, the 

uncertainties of the forecast SO2 concentrations by recalculation of the WRF-Chem ensemble are dependent on the 230 

optimized emissions. Lower uncertainties of the initial SO2 conditions for the next assimilation cycle should be found with 

higher accurate optimized SO2 emissions, which in turn makes the SO2 emission inversion more reasonable. Sensitivity 
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experiments for the SO2 emission inversions as described in next section are performed to choose the best assimilation 

system parameters.  

 235 

3 Experimental design 

The effectiveness of 4D-LETKF is highly dependent on having sufficient spread in the ensemble members in order for the 

observations to impact the first guess (Rubin et al., 2016;Dai et al., 2019b;Hunt et al., 2007). The ensembles represent the 

uncertainty in the model first guess, therefore, the method for generating the ensemble is an important consideration for an 

optimal “top-down” emission inversion. Meanwhile, 4D-LETKF allows a flexible choice of observations to be assimilated 240 

for a specific grid point through horizontal, vertical, and temporal observation localizations (Miyoshi et al., 2007;Dai et al., 

2019b;Cheng et al., 2019). The observation localization gradually reduces the effect of an observation as the increasing 

departure from the analysis grid. In this study, the horizontal localization factor is calculated as the Gaussian function 

(Miyoshi et al., 2007): 

		𝑓(𝑟) = exp(−𝑟) 2𝜎)⁄ ) (8) 

where 𝜎 is the localization length and 𝑟 is defined as the physical distance between the observation and the analysis grid,  245 

and we force the localization factor to zero at 3.65 times the localization length (Zhao et al., 2015). In other word, we ignore 

observations beyond the cutoff distance. The tuneable horizontal and temporal localization lengths are defined in the 

physical distance (km) and time (hour), respectively. The vertical localization is not applied for the SO2 emission inversion 

in this study, in other word, we trust the vertical profiles of the emission factors from the Model Inter-Comparison Study for 

Asia (MICS-Asia) phase III (Chen et al., 2019b).  250 

A correct choice of the assimilation system parameters such as the ensemble size and correlation length is important to 

improve the data assimilation performance (Miyazaki et al., 2012b). A series of sensitivity experiments are performed to 

tune the assimilation system as listed in Table 1. A control experiment assuming the same emissions in November 2016 as in 

November 2010 (i.e., the standard MIX emissions) is conducted as the deterministic simulation to assess the influence of 

data assimilation. Considering the GOCART aerosol scheme uses a simple representation of the aerosol chemistry for 255 

reducing the computational load, we also conduct another deterministic simulation using a more sophisticated aerosol 

chemical scheme named Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) coupled with the “lumped-

structure” Carbon Bond Mechanism (CBMZ) (Zaveri et al., 2008) (i.e., chem_opt = 9) to investigate the effects of different 

chemistry and aerosol schemes on SO2 oxidation. The data assimilation experiments are divided into three groups. In the first 

group, same random perturbation factor throughout the whole domain emission grids including vertical and temporal spaces 260 

per member is applied to the MIX SO2 emission to generate 10 ensemble members for the WRF-Chem ensemble forward 

simulation. The spatial correlation coefficients among the initial prior ensemble of SO2 emissions over every two model 

grids are equal to one, and this makes the spatial correlations among the grids points of the forecast emissions are also equal 
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to one. The same random perturbation factor generates a perfect correlation of emission in both the spatial and temporal 

spaces, however, this should not be seen as overly restrictive (Schutgens et al., 2010). Firstly, the “bottom-up” SO2 emission 265 

inventories are to a large extent based on the used activity rates and emission factors (Li et al., 2018). Therefore, with the 

same random perturbation factors we effectively create an ensemble of inventories derived with different activity rates and 

emission factors. Secondly, the same emission standards for SO2 emission mitigation are implemented in China (Zheng et al., 

2018), and this induces the SO2 reductions should be correlated at a certain extent in both spatial and temporal spaces. 

Thirdly, the analysis is conducted locally in 4D-LETKF, and the analysis at two grids separated by a distance over about 7.3 270 

times the localization length is mostly independent (Schutgens et al., 2010). In this group, the strongest temporal localization 

is applied to assimilate only the observations within 1 hour of the local patch center. In other word, the hourly SO2 emission 

is optimized using only the CNEMC SO2 observation within the subsequent one hour, making the inverted SO2 emission 

variable hour by hour. The difference of the experiments in this group is only the horizontal localization length, which is 

assumed as 10km, 30km, 50km, and 100km respectively. The purpose of the experiments in this group is to investigate the 275 

effects of horizontal localization length on SO2 emission inversion. Based on the results in the first group as described latter 

in Section 4, the second group of experiments by fixing the horizontal localization length of 50km are subsequently 

performed with 10, 20, 40 ensemble members to investigate the effects of ensemble size on SO2 assimilation. In this group, 

we remove the temporal localization to investigate the effects of temporal localization on the SO2 emission inversion. In 

other word, the hourly SO2 emission is optimized using all the CNEMC SO2 observations within the 12 hours assimilation 280 

window, making the inverted SO2 emission constant within every 12 hours. In the third group, the experiments are 

performed as same as those of the second group except that the ensembles are generated by independently perturbing the 

emission in horizontal space but dependently in vertical and temporal spaces. Those last two groups of experiments are used 

to investigate the effects of the ensemble size and perturbation factor on SO2 emission inversion. The sensitivity data 

assimilation experiments are all performed for 10 days over the period of 00:00 UTC 8 November to 00:00 UTC 18 285 

November 2016.  The global model MOZART-4/GEOS-5 provides the initial and lateral boundary conditions used in this 

study (https://www.acom.ucar.edu/wrf-chem/mozart.shtml, last access: 10 August 2020). Since we don’t know the 

uncertainties of the global model MOZART-4/GEOS-5, the initial and lateral boundary chemical fields are not perturbed in 

this study. The first three days are used as the spin-up of the data assimilation system, and the subsequent simulation results 

for one week are analysed in the next section. Based on the sensitivity tests of the SO2 emission inversion system, the 290 

experiment H50kmT1hE10Ps, which generally performing better than other experiments, is extended to 00:00 UTC on 1 

December 2016. This provides a longer period of 20 days to further validate the assimilation system. We also perform a 

recalculation experiment with the sophisticated CBMZ/MOSAIC scheme and the updated SO2 emissions to verify the new 

SO2 emission and the associated effects of SO2 emission reduction.  

 295 

4 Results 

4.1 Sensitivity of the inverted SO2 emission to the assimilation parameters  
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The spatial distribution of the MIX SO2 emission in November 2010 at the model lowest layer is shown in Figure 3a, which 

is serving as the base of the initial priori SO2 emission for our experiments in November 2016. The hotspots of the 

anthropogenic SO2 emission are apparently found over the economically developed areas such as the North China Plain 300 

(NCP), the Yangtze River Delta (YRD), and the Peral River Delta (PRD). The Multi-resolution Emission Inventory for 

China (MEIC, http://www.meicmodel.org, last access: 15 February 2021) developed by Tsinghua University can provide the 

updated SO2 emission in November 2016 (Fig. 3b), which is used as the independent “bottom-up” SO2 emission to validate 

our inverted SO2 emission. It is apparent that significant negative changes of SO2 emission are found over the priori higher 

source regions such as the NCP, YRD, and PRD between the year of 2010 and 2016, which are in agreement with the 305 

changes of the column SO2 concentrations observed by satellite (Wang et al., 2018). As the consequence of clean air actions 

(Zheng et al., 2018), the SO2 emissions over most areas of China show systematic decline from the year 2010 to 2016 

(Figure 4a). Can we reveal the reductions of the SO2 emission by assimilating the CNEMC observed surface SO2 

concentration?  

As shown in Figs. 3c-f and Figs. 4b-e, both spatial distribution and magnitude of the inverted SO2 emission in November 310 

2016 firstly become closer to the independent MEIC ones but get worse subsequently as increasing the horizontal 

localization length of the assimilation system. The inverted SO2 emissions of each assimilation experiment are obtained by 

averaging the ones over the ensemble members. The spatial distributions of the mean differences of the MIX and inverted 

SO2 emissions minus the MEIC ones are shown in Fig. S3 in the Supplement, and the spatial distributions of the mean ratios 

between the inverted SO2 emissions and the MIX ones are shown in Fig. S4 in the Supplement. The time series of the hourly 315 

SO2 emissions averaged over China of the initial MIX prior, the forecast and the analysis of the assimilation experiment 

H50kmT1hE10Ps from 00:00 UTC 8 November to 23:00 UTC 17 November 2016 are also shown in Fig. S5 in the 

Supplement, which illustrates the adjustment of SO2 emissions with data assimilation. The experiment with the smallest 

horizontal localization length (i.e., 10 km) only optimizes the SO2 emission over the specific grids where there are 

observations to be assimilated. In such a case, the significant reductions of the SO2 emission over the grids with no 320 

observation sites are unable to be revealed, such as Shandong province in the NCP. With a larger localization length, an 

observation can constrain the emissions in more grids surrounding the observation and the observation error more gently 

increases as the distance from the observation location increased (Hunt et al., 2007). It is obvious that the systemic SO2 

emission reductions especially over the Shandong province are detected by enlarging the horizontal localization length. 

However, the perfect correlations of the emission perturbations over the domains with too large horizontal localization 325 

length cause spurious error covariance, inducing the more local emission changes undetectable. This is demonstrated as the 

inverted SO2 emissions with a localization length of 100 km tend to lower than the independent MEIC ones with a mean bias 

of -0.44 𝑚𝑜𝑙	𝑘𝑚!)ℎ𝑟!&. Generally speaking, the inverted SO2 emissions with horizontal localization length of 50 km are 

best in agreement with the MEIC ones with a mean bias of -0.15 𝑚𝑜𝑙	𝑘𝑚!)ℎ!& and Root Mean Square Error (RMSE) of 

5.34	𝑚𝑜𝑙	𝑘𝑚!)ℎ𝑟!&.  330 
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With horizontal localization length of 50 km, the spatial distribution of the inverted SO2 emission by removing the temporal 

localization is shown in Fig. 3g. It is clearly found that the inverted SO2 emissions over the Shandong Province, YRD and 

PRD without temporal localization are lower than those with temporal localization, inducing larger negative bias and RMSE 

(Fig. 4f). It demonstrates that it is important to reveal the diurnal variations of the SO2 emission (Wang et al., 2010). The 

experiment with temporal localization can reveal the hourly variation of the SO2 emission by assimilating only the 335 

subsequent hourly observations, whereas the experiment without temporal localization only adjust the magnitude of SO2 

emission every 12 hours by assimilating all the observations within the 12-hour window.  

As shown in Figs. 3g-i and Figs. 4f-h, there are no significant differences of the horizontal distribution and magnitude of the 

inverted SO2 emission between 10, 20 and 40 ensemble members. This indicates that the ensemble size has little effect on 

the SO2 emission inversion when randomly correlated perturbing the emissions. The ensemble forecast with 10 members 340 

seems feasible to reveal the SO2 reductions in China, although the inverted emissions have not converged properly. This in 

turn significantly reduces the required computational resources and time for the forward calculation of the ensemble model, 

making the dynamical update of air pollutant emissions affordable when assimilating near-real-time observations.  

The inverted SO2 emission with horizontal random uncorrelated perturbations gets closer to the independent MEIC one as 

increasing the size of the ensemble member (Figs. 3j-l and Figs. 4i-k). However, the performances of the horizontal 345 

distribution and magnitude of the inverted SO2 emission using 40 ensemble members with horizontal random uncorrelated 

perturbations are even obviously worse than those using 10 ensemble members with horizontal correlated perturbations. It 

demonstrates that the independent emission perturbations over each model grid tend to underestimate the model spread due 

to the current limited ensemble members and the cancellation of neighbouring cells (Pagowski and Grell, 2012;Schutgens et 

al., 2010).  350 

The mean bias and RMSE of SO2 emission over China by using the MIX SO2 emission in November 2010 for that in 

November 2016 are 2.70 and 9.78 𝑚𝑜𝑙	𝑘𝑚!)ℎ!&, respectively (Fig. 4a). For the inverted SO2 emission by data assimilation, 

the bias and RMSE reduction rates (Miyazaki et al., 2012b) are estimated as follows,  
2.70 − |𝐵-.|

2.70 × 100.																																												(9) 

9.78 − |𝑅𝑀𝑆𝐸-.|
9.78 × 100.																																		(10) 355 

where  𝐵-. and 𝑅𝑀𝑆𝐸-. are the mean bias and RMSE between the inverted SO2 emission and the MEIC SO2 emission in 

November 2016. As shown in Fig. 5, it is obviously found that (1) the inverted SO2 emission in every assimilation 

experiment can both reduce the bias and RMSE; (2) the randomly correlated perturbation factor is superior to the randomly 

uncorrelated perturbation factor in reducing the bias and RMSE, and it is generally unaffected by the ensemble size; (3) the 

experiment H50kmT1hE10Ps shows the best performance in both reducing the bias and RMSE, decreasing the bias and 360 

RMSE by 94.5% and 45.4% respectively.  
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4.2 Sensitivity of the surface SO2 concentration to the emission  

Figures 6 and 7 show the horizontal distributions of the biases and RMSEs between the surface SO2 concentrations simulated 

in various experiments and the CNEMC observed ones over both the assimilated and independent sites. The SO2 365 

concentrations in each assimilation experiment are obtained by averaging the ones over the WRF-Chem ensemble 

recalculations with the optimized emissions. The spatial distributions of the mean SO2 concentrations simulated with the 

original MIX emissions and the updates of the simulated SO2 concentrations with the inverted SO2 emissions are shown in 

Fig. S6 in the Supplement. The spatial distribution of the mean differences of the SO2 concentrations simulated in the FR and 

FR_CM experiments are also shown in Fig. S6 in the Supplement. It is apparent that significant RMSEs and positive biases 370 

are found over the priori SO2 emission hotspot regions such as the NCP, YRD, and PRD in both the two free run 

experiments, whereas slight RMSEs and negative biases are both found over northwestern China. Furthermore, the 

horizontal distributions of both the biases and RMSEs of the two free run experiments are generally similar. As given in 

Table 2, the relative differences of the RMSEs in the FR and FR_CM experiments are both less than 1% over the assimilated 

and independent sites, although the mean biases in the FR_CM experiment tend to both slightly smaller than those in the FR 375 

experiment. Those demonstrate that the biases and RMSEs between the simulated and observed surface SO2 concentrations 

are not induced by the uncertainties of the different chemical reaction mechanisms but due to the uncertainties of the used 

SO2 emissions. The simulated ensemble mean surface SO2 concentrations by recalculating the WRF-Chem with the inverted 

SO2 emissions in all assimilation experiments show more comparable to the observations, and the performances of the 

simulated SO2 surface concentrations are clearly affected by the inputs of the different inverted SO2 emissions due to 380 

assimilation system parameters. This indicates that the uncertainties of the different chemical reaction mechanisms in 

simulating SO2 concentrations are much smaller than those of the SO2 emissions. In the first group of data assimilation 

experiments, the largest biases and RMSEs of the simulated and observed SO2 surface concentrations over both the 

assimilated and independent sites are found in the H10kmT1hE10Ps experiment. This indicates that the SO2 emission 

changes exist grid correlations and the SO2 emission inversions over only the grids with available assimilated sites are not 385 

sufficient to reveal the real SO2 emission changes in the grids without observation sites. In addition, largest biases and 

RMSEs over both the assimilated and independent sites are still found in the third group of data assimilation experiments, 

although the biases and RMSEs are decreasing as the increasement of the ensemble members. This further illustrates there 

are correlations of the grided SO2 emission changes and the random perfect correlated emission perturbation factors over the 

model grids are superior to the random uncorrelated emission perturbations for current emission inversions. The latter is 390 

probably due to the current limited ensemble members for reducing the computational resources. However, the 

sophisticatedly random uncorrelated emission perturbations should have better performances with large or unlimited 

ensemble members. Similar to the inverted emissions, the experiments in the second group show the ensemble size has little 

effects on the biases and RMSEs of the SO2 surface concentrations over both the assimilated and independent sites when the 

ensemble members are generated by perturbing the emissions perfect correlated over the domain grids. The reductions of the 395 

biases of the SO2 surface concentrations in both the assimilated and independent sites are benefitted from the temporal 



13 
 

localization, although the RMSEs are slightly increased. It is interesting that the smallest RMSE of the SO2 surface 

concentrations over the independent sites is also found in the H50kmT1hE10Ps experiment with value of 36.20, which the 

inverted SO2 emissions are also best in agreement to the independent MEIC ones. This further indicates the assimilation 

system parameters used in this experiment are suitable for the SO2 emission inversion, decreasing the biases of SO2 surface 400 

concentrations over assimilated and independent sites by 87.2% and 88.9% respectively. The underestimation of the surface 

SO2 concentration with the original MIX emission over northwestern China such as the Gansu province is potentially 

attributable to the increasing SO2 emissions due to energy industry expansion and relocation over northwestern China (Ling 

et al., 2017). The SO2 emissions and surface concentrations over the Gansu province are increased to reduce the negative 

biases in the assimilation experiments as shown in Figs. S4 and S6 in the Supplement, indicating our emission inversion 405 

system also works well when the prior emissions are underestimated. However, the simulated surface SO2 concentrations 

with the inverted emissions are still underestimated over the Gansu province. The reason for the underestimation is twofold: 

(1) there are limited observations to be assimilated over northwestern China because the observation sites are sparse; (2) the 

initial priori MIX SO2 emission over northwestern China is small and underestimated, inducing the model uncertainty is 

small relative to the observation one. This translates to a reduced impact of the observation on the priori emission. 410 

Figure 8 illustrates the frequency distributions of the deviations of the simulated SO2 surface concentrations in various 

experiments minus the observed ones. It is expected that the distributions of the SO2 surface concentrations deviations for the 

two free run experiments in China and the three subregions are all positively biased due to the known overestimation of the 

SO2 emissions. The distributions of the SO2 surface concentration deviations with the updated SO2 emissions in all the data 

assimilation experiments show reduced biases over both the assimilated and independent sites. However, the distributions of 415 

the deviations with the updated SO2 emissions in the third group of experiments and the H10kmT1hE10Ps experiment are 

still positively biased, whereas slightly negative biased are found in the second group of experiments and the 

H100kmT1hE10Ps experiment. The distributions of the SO2 concentration deviations with the updated SO2 emissions in the 

H50kmT1hE10Ps experiment, as expected, shows the best performance with a peak closer to 0 in both the assimilated and 

independent sites.  420 

 

4.3 SO2 reduction in China and associated effects 

Based on the aforementioned sensitivity tests of the SO2 emission inversion system, the experiment H50kmT1hE10Ps is 

extended to 00:00 UTC on 1 December 2016. This provides a longer period for 20 days to estimate the reduction of the SO2 

emission over China in November over the period 2010-2016. The Bottom-up and Top-down estimations of the SO2 425 

emission reduction from 2010 to 2016 are calculated by comparing the MEIC and inverted SO2 emissions by data 

assimilation in November 2016 to the MIX SO2 emission in November 2010. As shown in Figure 9, the Top-down 

estimation of the SO2 emission reduction over China is 49.4%, which is well agreement with the Bottom-up estimation of 

48.0%. In addition, larger SO2 emission reductions over the three subregions estimated by the Bottom-up approach are 

correctly revealed by the emission inversion system. The Top-down and Bottom-up estimations of the SO2 emission 430 
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reduction over NCP are generally comparable with values of 56.0% and 52.4% respectively. The largest SO2 emission 

reductions both with the Top-down and Bottom-up approaches are found over the YRD region with values of 73.1% and 

61.8% respectively. The SO2 emission reduction by Top-down approach are 10% higher than that by the Bottom-up 

approach over the PRD region. To validate the inverted SO2 emissions and explore the possible reasons of the overestimation 

of SO2 emission reduction over the YRD and PRD by Top-down approach, the time series of the simulated SO2 surface 435 

concentrations in various experiments and the observed ones are shown in Figure 10. The simulated SO2 surface 

concentrations especially over the YRD subregion in the two free run experiments show significant positive biases over all 

the period, revealing the drawback of the prescribed SO2 emissions in November 2016 as same as that in November 2010. 

The simulated SO2 surface concentrations with the inverted SO2 emissions using both the RADM2/GOCART and 

CBMZ/MOSAIC chemical reaction mechanisms are much closer to the observations in both the assimilated and independent 440 

sites over all the period. It demonstrates the WRF-Chem/4D-LETKF emission inversion system can continuously and 

dynamically update the SO2 emissions by assimilating the newly available observations as shown Fig. S5 in the Supplement. 

The SO2 surface concentrations simulated by the FR_CM experiment are sometime lower than those in the FR experiment 

especially over the YRD and PRD subregions, indicating the overestimations of the SO2 emission reduction by the Top-

down approach over the YRD and PRD are probability due to the simple aerosol chemistry schemes used in 445 

RADM2/GOCART (Chin et al., 2000). This is proved as the simulated SO2 surface concentrations in YRD with the 

RADM2/GOCART scheme and the inverted SO2 emissions over the period 18-22 November 2016 are generally comparable 

to the observed ones, whereas the simulated SO2 surface concentrations with the sophisticated CBMZ/MOSAIC scheme and 

the inverted SO2 emissions are lower than the observed ones. The simulated SO2 surface concentrations at all sites with the 

inverted emission in both the FR_CM and assimilation recalculation are generally underestimated. This is due to the inverted 450 

emission is sufficient to reduce the overestimations of SO2 concentration over the priori SO2 emission hotspot regions but 

insufficient to eliminate the underestimations over northwestern China. 

Based on the inverted SO2 emissions from 11 November to 1 December 2016, the daily and diurnal variations of the SO2 

emission reductions over China and the NCP subregion are estimated as shown in Figs. 11a and b respectively, and the 

diurnal variations of the inverted SO2 emissions over China and the NCP subregion are also shown in Fig. 11c. Generally 455 

speaking, the daily variation of the SO2 emission reduction over China is not so significant. Larger SO2 emission reductions 

over the period 17 to 19 November in the NCP induced by the first orange alert for heavy winter air pollution in 2016 are 

clearly detected by the inverted emissions (Shi et al., 2019). Lower SO2 emission reductions over China and NCP from 21 to 

22 November are probably contaminated by the strong cold wind from the northwestern direction, inducing the lowest SO2 

concentrations and underestimating the associated ensemble spread. The latter induces the inverted emission to be 460 

overconfident in the background emission (Hunt et al., 2007). Since the emissions are constant over time in the priori MIX 

inventory, the diurnal variations of the SO2 emission reduction over China and NCP both reveal higher emission reductions 

in the nighttime, inducing the SO2 emissions in the nighttime are lower than those in the daytime (Fig. 11c). This is generally 

reasonable as less human and economic activities  happen in the nighttime (Chen et al., 2019b).  
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Figure 12 shows the spatial distributions of the averaged surface concentrations of the sulfate, ammonium, nitrate, and PM2.5 465 

over 11 November to 1 December 2016 simulated with the CBMZ/MOSAIC mechanism and the original MIX emissions, 

and the absolute and relative changes of the associated aerosol surface concentrations with the newly inverted emissions by 

data assimilation. It is found that the SO2 emission reductions induce the sulfate surface concentrations reduced up to 10 

𝜇𝑔/𝑚"	(50%)	over the center China, and this is due to the sulfate aerosols are dominated by the productions in-cloud 

oxidations (Chin et al., 2000;Goto et al., 2015) and more cloud are found over the center China (Li et al., 2015;Ma et al., 470 

2014).  The nitrate surface concentrations are found slightly increased in the center China as the reductions of sulfate 

aerosols, and this is due to the emissions of the nitrate precursors (i.e., NO and NO2) are not updated in this study and 

NH4NO3 is formed only in sulfate-poor aerosols (Zaveri et al., 2008;Chen et al., 2016). The synergy effects of sulfate-nitrate-

ammonium induce slightly reductions of ammonium surface concentrations, decreasing the PM2.5 surface concentrations 

about 10 𝜇𝑔	𝑚!"	(10%)	over the center China.  475 

 

5 Conclusions 

The timely precise emission inventories are crucial to air quality prediction and mitigation. To dynamically update the 

emissions of air pollutants, we have developed a new emission inversion system based on the 4D-LETKF and the fully 

coupled model named WRF-Chem. Our emission inversion system considers the complex nonlinear relationship between 480 

atmospheric chemical concentrations and emissions by ensemble forecasting with perturbed emissions. The emission 

inversion system is examined to update the outdated MIX SO2 emissions in November 2010 by assimilating the quality-

assured and controlled observations of SO2 surface concentration from the CNEMC in November 2016. The inverted SO2 

emissions over China by data assimilation for November 2016 are validated with the independent MEIC emissions in 

November 2016.   485 

Sensitivity tests for the emission inversion system demonstrate that the assumption of the covariance error matrix of the a 

priori SO2 emissions has the largest effect on the inverted emissions. The random perfectly correlated emission perturbations 

throughout the whole model grids with horizontal localization length of 50 km can best reproduce the independent MEIC 

SO2 emissions, decreasing the MIX emission bias and RMSE by 94.5% and 45.4% respectively. The independent emission 

perturbations over each model grid tend to underestimate the model spread due to the current limited ensemble members and 490 

the cancellation of neighbouring cells. With the random perfectly correlated emission perturbations, the ensemble size has 

only little effect on the inverted SO2 emissions and the ensemble forecast with 10 members seems feasible to reveal the SO2 

reductions in China. The temporal localization by assimilating only the subsequent hourly observations can reveal the 

diurnal variation of the SO2 emission, which is better than that to update the magnitude of SO2 emission every 12 hours by 

assimilating all the observations within the 12-hour window. 495 

The known overestimates of the prescribed SO2 emissions in November 2016 as same as that in November 2010 are 

successfully detected as the simulated SO2 surface concentrations especially over the SO2 emission hotspot subregions with 

two distinguished chemical reaction mechanisms are both significantly positive biased. The simulated SO2 surface 



16 
 

concentrations with the inverted SO2 emissions in all assimilation experiments show more comparable to the observations, 

and the performances of the simulated SO2 surface concentrations are clearly affected by the inputs of the different inverted 500 

SO2 emissions due to assimilation system parameters. This indicates that the uncertainties of the different chemical reaction 

mechanisms in simulating SO2 concentrations are much smaller than those of the SO2 emissions. The smallest RMSE of the 

simulated and observed SO2 surface concentrations over the independent verification sites is also found in the experiment 

that the inverted SO2 emissions are best in agreement to the independent MEIC ones, decreasing the biases of SO2 surface 

concentrations by 88.9%.  505 

The SO2 emission reduction over China in November over the period 2010 to 2016 is estimated as 49.4% by assimilating the 

observations of surface SO2 concentrations, which is well agreement with the Bottom-up estimation of 48.0%. In addition, 

larger SO2 emission reductions over the NCP, YRD and PRD estimated by the Bottom-up approach are correctly revealed by 

the emission inversion system. Largest SO2 emission reductions both with the Top-down and Bottom-up approaches are 

found over the YRD region with values of 73.1% and 61.8% respectively, and the simple parameterizations of the aerosol 510 

chemistry in the GOCART scheme may induce the overestimates of the SO2 emission reductions about 10 percent. The SO2 

emission reductions induce the sulfate and PM2.5 surface concentrations to decrease up 10 𝜇𝑔	𝑚!"	over the center China. 
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Figures 

 
Figure 1. WRF-Chem model computational domain with the topography. The locations of the assimilated and independent 

verification observation sites of the China National Environmental Monitoring Centre (CNEMC) are shown as the black 

circles and red squares, respectively. The three magenta boxes mark the North China Plain (NCP), the Yangtze River delta 790 

(YRD) and the Peral River delta (PRD) subregions where relatively dense observation sites are available. 
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Figure 2. Flowchart of the WRF-Chem/4D-LETKF SO2 emission inversion system by assimilating the SO2 observations.  
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Figure 3. Spatial distributions of the MIX SO2 emission in November 2010 (a) and the MEIC SO2 emission in November 795 

2016 (b) at the model lowest layer. Spatial distributions of the inverted SO2 emissions in November 2016 in various data 

assimilation experiments (c-l).  
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Figure 4. Comparisons of the MIX SO2 emissions in November 2010 (a) and the inverted SO2 emission in November 2016 in 

various data assimilation experiments (b-k) to the MEIC SO2 emissions in November 2016.  800 
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Figure 5. Reductions of the bias and Root Mean Square Error (RMSE) between the inverted SO2 emissions in various data 

assimilation experiments and the MEIC ones referring to those between the MIX and MEIC SO2 emissions.  
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Figure 6. Spatial distributions of the mean biases between the simulated surface SO2 concentrations in various experiments 805 

and the CNEMC observed ones over both the assimilated and independent sites. The locations of the assimilated and 

independent verification observation sites of the CNEMC are shown as the circles and squares, respectively. 
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Figure 7. Same as Figure 6 but for the RMSEs. 
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 810 
Figure 8. Frequency distributions of the deviations of the simulated SO2 surface concentrations in various experiments minus 

the observed ones. 
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Figure 9. SO2 emission reductions in November over the period 2010 to 2016 in China and the three subregions estimated by 

the Bottom-up and Tow-down approaches.  815 
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Figure 10. Time series of the simulated SO2 surface concentrations in various experiments and the CNEMC observations.  
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Figure 11. Daily (a) and diurnal (b) variations of the SO2 emission reductions over China and the NCP subregion based on 

the inverted emissions. Diurnal variations of the inverted SO2 emissions over China and the NCP subregion (c).  820 
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Figure 12. Spatial distributions of the averaged surface concentrations of the sulfate, ammonium, nitrate and PM2.5 over 11 

November to 1 December 2016 simulated with the CBMZ/MOSAIC mechanism and the MIX emissions in November 2010, 

and the absolute and relative changes of the associated aerosol surface concentrations with the updated emissions by data 

assimilation. 825 
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Tables 

Table 1. Experimental design in this study. 

Experiments Design and purpose of the simulation 

Control 

experiments 

FR Free run using RADM2/GOCART (FR) and CBMZ/MOSAIC (FR_CM) 

mechanisms with the MIX emission inventory in November 2010 to 

investigate the effects of different chemistry and aerosol schemes on SO2 

simulations and provide a reference to evaluate the effects of data 

assimilation 

FR_CM 

Data 

assimilation 

experiments 

H10kmT1hE10Ps 

H30kmT1hE10Ps 

H50kmT1hE10Ps 

H100kmT1hE10Ps 

Same random perturbation factors throughout the whole domain emission 

grids and 12 hours to generate 10 ensembles with assimilated 

observations within 1h. Experiments with horizontal localization length of 

10km, 30km, 50km, and 100km respectively are performed to investigate 

the effects of horizontal localization length on SO2 emission inversion.  

H50kmT12hE10Ps 

H50kmT12hE20Ps 

H50kmT12hE40Ps 

Same random perturbation factors throughout the whole domain emission 

grids and 12 hours to generate 10, 20, 40 ensembles with assimilated 

observations within 12 h and horizontal localization length of 50km based 

on above tests. Experiments in this group are performed to investigate the 

effects of ensemble size on SO2 emission inversion.  

H50kmT12hE10Pi 

H50kmT12hE20Pi 

H50kmT12hE40Pi 

Horizontal independent random perturbation factors in each emission grid 

but same throughout 12 hours to generate 10, 20, 40 ensembles with 

assimilated observations within 12 h and horizontal localization length of 

50km. Experiments in this group together with above group are performed 

to investigate the effects of ensemble size and perturbation factors on SO2 

emission inversion.  

Recalculation 

experiment 

CBMZ/MOSAIC with 

posterior emission 

Deterministic simulation with sophisticated CBMZ/MOSAIC scheme is 

recalculated with the updated SO2 emission to verify the updated SO2 

emissions with an independent mechanism and the associated effects of 

SO2 emission reduction.  
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Table 2. The mean biases and Root Mean Square Errors (RMSEs) of the simulated SO2 surface concentrations in various 

experiments and the CNEMC observed ones over all assimilated and independent sites.  

Experiments 
Sanity Check Independent Validation 

B RMSE B RMSE 

FR 44.03 106.04 34.72 78.03 

FR_CM 36.49 106.69 27.01 77.45 

H10kmT1hE10Ps 12.01 50.89 21.83 59.84 

H30kmT1hE10Ps -4.06 38.20 -0.34 38.57 

H50kmT1hE10Ps -5.65 38.63 -3.84 36.18 

H100kmT1hE10Ps -7.36 39.66 -5.76 36.20 

H50kmT12hE10Ps -9.75 37.36 -7.45 34.59 

H50kmT12hE20Ps -8.80 37.54 -6.20 35.27 

H50kmT12hE40Ps -8.75 37.55 -6.15 35.28 

H50kmT12hE10Pi 20.42 75.96 21.62 65.75 

H50kmT12hE20Pi 17.38 68.60 20.03 60.90 

H50kmT12hE40Pi 13.93 60.12 18.05 57.06 

 


