
Reviewer 1

Reviewer’s comment No. 1 — [. . .] We therefore argued that “the expertise and time required
to perform quantum-chemical calculations for atmospherically relevant molecules should constitute
but a minor impediment to a wider adoption” (Wang et al., 2017). I am therefore very pleased
to see that with their work, Lumiaro et al. have now obliterated even this minor impediment.
While it would have been possible to make COSMOtherm-based predictions for datasets much
larger than the 3414 molecules in Wang et al. (2017) using “brute force” and high-performance
computing resources, Lumiaro et al. demonstrate convincingly that this can be achieved with much
less computational e↵ort using machine learning approaches.

The paper is very well written and, apart from some parts of the Methods section, easily accessible
to those who are not familiar with computational chemistry and machine learning approaches.

Authors’ reply: We thank the reviewer for their positive assessment of our work!

Reviewer’s comment No. 2 — The compounds to which the trained algorithm was applied
have very limited structural diversity (only normal decanes functionalized with up to six functional
groups of only three types). Why was this relatively simple dataset of molecules generated, instead
of using existing molecular datasets of atmospherically relevant species? For example, Valorso et
al. (2011) generated > 200,000 oxidation products of a-pinene, i.e. one of the monoterpenes judged
to be among “the most interesting molecules from a SOA-forming point of view” (line 307). A
recent study generated datasets of 200,000, 550,000 and 750,000 atmospheric oxidation products
of decane, toluene and a-pinene (Isaacman-VanWertz and Aumont, 2020).

Authors’ reply: At the time of our study, we were not aware of the existence, or the public
availability, of the datasets suggested by the reviewer. The purpose of our admittedly simple C10
dataset was not to comprehensively evaluate the performance of the algorithm (as that would in
any case required extensive further COSMOtherm calculations), but just to perform a relatively
simple “sanity check” of its predictions. We completely agree with the reviewer that the actual
structures of the molecules in our C10 set may not be atmospherically relevant, although functional
group composition certainly is.

We have now looked into the alpha-pinene dataset suggested here, but discovered that some alpha-
pinene oxidation products are already included in Wang et al’s dataset for which we trained our
machine learning model. Testing model predictions on the same molecule class it is trained on is not
good practice in ML model validation, so we did not extend our “sanity check” to these molecules.
We are now building a larger dataset with an active machine learning technique and additional
COSMOtherm calculations. The new dataset is based on compounds generated with the GECKO
algorithm. It will be substantially larger and atmospherically more relevant than the C10 dataset.
We hope to be able to report preliminary result on this work soon in a separate publication.

We clarified our motivation behind the choice of the validation dataset in the manuscript:

“While the functional group composition of our C10 dataset is atmospherically relevant, the par-
ticular molecules are not. The purpose of this dataset is to perform a relatively simple sanity check
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on the machine learning predictions, on a set of compounds structurally di↵erent from those in
the training dataset. We note that using e.g. more atmospherically relevant compounds such as
alpha-pinene oxidation products for this purpose might be counter-productive, since Wang et al.’s
dataset used for training contains several such compounds.”

Reviewer’s comment No. 3 — Can the authors explain in more detail how a machine-learning
model that is not fed with information on the conformations of a molecule is “capable of account-
ing for hydrogen-bonding interactions between functional groups” (line 366). Is this merely by
structural similarity with molecules within the training set that also have such capabilities?

Authors’ reply: We agree that this must be due to structural similarity in the training set. The
linear structures we generate in our work do of course not have hydrogen bonds. The hydrogen
bonds could therefore only be introduced by conformers. The SMILES string for all conformers of
a molecule is of course the same. So if there is something in a SMILES string that indicates to
the machine learning method that the structure prefers a conformer with hydrogen bonding and
representative structures are in the training set, this could indeed be learned. We have clarified
this in the manuscript:

“As we did not include conformational information of our C10 molecules in the machine-learning
predictions, this is most likely due to structural similarities between the C10 compounds, and
hydrogen-bonding molecules in the training dataset.”

Reviewer’s comment No. 4 — In this context, it is stated on line 380: “MBTR encoding
requires knowledge of the 3-dimensional molecular structure, which raises the issue of conformer
search”, but section 2.2.2. does not spell out how that issue was resolved in the current study?

Authors’ reply: To compute the MBTR and CM descriptors, we employed the openbabel
software to convert the SMILES strings provided in the Wang et al. dataset into 3-dimensional
molecular structures. Wang and collaborators must have themselves carried out a conformer search
with COSMOconf, since the COSMOtherm calculations they performed typically average over many
(up to 100) located conformers, but did not publish this data. Since values of KW/G, KWIOM/G
and PSat were computed by averaging over conformers, there is no single conformer that correlates
strongly with these values, so we decided to forgo the computationally costly conformer searches.
We have now clarified this point in the manuscript:

“To compute the MBTR and CM descriptors we employed the openbabel software to convert the
SMILES strings provided in the Wang et al. dataset into 3-dimensional molecular structures. We
did not perform any conformer search.”

Reviewer’s comment No. 5 — Can the author propose how in the future, the atmospheric
community will be able to obtain predictions for atmospherically relevant molecules, i.e. how a
trained machine learning algorithm or its predictions could be made available for use by others.
The authors still intend to improve this algorithm by extending the “training set to encompass
especially atmospheric autoxidation products” (line 388), i.e. may not yet want to make the
existing version accessible to others. However, it may be instructive to hear how this could look
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like eventually. Is it conceivable to create an easy-to-use software or webpage that is fed batches of
SMILES and generates KW/G, KWIOM/G and PSat as calculated by the algorithm? Or would
that take the form of a searchable database that has such algorithm-generated values stored for the
“104 - 107 di↵erent organic compounds” (line 60) of atmospheric interest?

Authors’ reply: Our “role model” here is the excellent and user-friendly UManSysProp webpage,
where a user can insert e.g. a SMILES string, and obtain (among other things) saturation vapor
pressure predictions computed using a variety of group contribution methods. We anticipate that
the user interface of our model will eventually be similar to that. Ideally, in addition to providing
predicted values for the di↵erent parameters, the results would also include an estimate of how
reliable the predictions are (based on how similar or di↵erent the user-input molecule is to those
included in the training dataset).

Reviewer’s comment No. 6 — Many atmospheric applications require knowledge of phase
partitioning at variable temperatures. COSMOtherm can also calculate the enthalpy of vaporiza-
tion and the internal energies of phase transfer between the gas phase and water or WIOM. It
would probably be advisable to eventually also train a machine learning algorithm to predict those
thermodynamic properties.

Authors’ reply: We agree completely. We also note, related to issues raised by the other
reviewers, that predictions of various activity coe�cients computable by COSMOtherm could also
be useful. We changed the manuscript accordingly:

“We also intend to extend the machine learning model to predict a larger set of parameters computed
by COSMOtherm, such as vaporization enthalpies, internal energies of phase transfer, and acivity
coe�cients in representative phases.”

Reviewer’s comment No. 7 — I find Figure 2 not particularly useful. While it could be
beneficial to have a representation of the machine learning workflow, it should look less generic
than what is depicted here. For example, “representations” make no appearance in that diagram,
but are obviously an important part of the process. Also, the training and testing of the machine
learning algorithm is presumably a key element of the workflow.

Authors’ reply: We changed the figure following the referee’s recommendation.

Data
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Figure 1: Schematic of our machine learning workflow: The raw input data is converted into
molecular representations (referred to as features in this figure). We then set up and train a
machine learning method. After evaluating its performance in step 5, we may adjust the features.
Once the machine learning model is calibrated and trained, we make predictions on new data.
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Reviewer’s comment No. 8 — Footnote on page 2: While it is indeed quite common to
estimate the KO/G by dividing KO/W by KG/W (e.g. Meylan and Howard, 2005) this is only
an approximation. Whereas the octanol phase in a KO/W measurement is saturated with water
and the aqueous phase is saturated with octanol, the solvents in a KW/G and KO/G measurement
are typically pure. This can lead to a failure of the thermodynamic triangle to correctly estimate
KO/G for hydrophobic substances (Beyer et al. 2002).

Authors’ reply: Thank you for the clarification! We have changed the footnote to: “The gas-
octanol partitioning coe�cient (KO/G) can then to good approximation be obtained from these by
division.”

Reviewer’s comment No. 9 — Line 96. The abbreviation KRR is used here for the first time,
but is only introduced on line 106.

Authors’ reply: We removed the first instance of KRR, since it was not required on line 96.

Reviewer’s comment No. 10 — Line 134: bromine not bromide

Authors’ reply: Fixed

Reviewer’s comment No. 11 — Line 146: The Pyzer-Knapp et al. reference is missing the
year “2015” (also in the reference list)

Authors’ reply: Added

Reviewer’s comment No. 12 — Line 154: What does it mean if a molecular representation is
“continuous”?

Authors’ reply: A molecular representation is continuous, if continuous changes in the molec-
ular structure translate into continuous changes in the representation. The many-body tensor
representation (MBTR) is a good example for a continuous representation, whereas the Coulomb
matrix (CM) is discontinuous. Both encode inverse distances. The MBTR does so by Gaussian
broadening each inverse distance between atom pairs and then summing up these Gaussians in
separate vectors for each atomic species pair. Small changes in the interatomic distances then lead
to small changes in the Gaussian peak positions. Conversely, the CM assigns one value to each
atom pair and collects those in a matrix whose rows and columns are sorted by their respective
norm. A small interatomic distance variation could then lead to an exchange of rows and columns,
which is not a continuous change of the representation.

Reviewer’s comment No. 13 — Line 320: Explain the meaning of “cheaper to evaluate”.

Authors’ reply: The MBTR descriptor has a large data structure (22,400 vector elements) and
was evaluated in several calculation stages. In contrast, TopFP is represented by a smaller data
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structure (8,192 vector elements) and required less computational time to evaluate, also because it
did not need the conversion to 3-dimensional structures. We have now clarified in the manuscript
that by ”cheaper” we refer to computational resources involved.

Reviewer’s comment No. 14 — Line 331-332: I find this sentence very confusing and I wonder
whether “or less” at the end of line 331 should be deleted.

Authors’ reply: The second ”or less” was a typo, which we removed in the revised version.
Thank you for spotting it!

Reviewer’s comment No. 15 — Line 336: “by almost a factor of 4000”.

Authors’ reply: “a” added as suggested

Reviewer’s comment No. 16 — Line 397 and 398: If “Zenodo, 2020” and “Gitlab, 2020” are
references, they are missing from the reference list. Wouldn’t it be better to provide complete links
to those datasets?

Authors’ reply: We have now updated these citations with full reference links, and DOIs where
appropriate.
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Reviewer 2

Reviewer’s comment No. 1 — It was interesting to read this manuscript. The topic of the
manuscript is the prediction of saturation vapor pressures and partitioning coe�cients between
the gas phase and an aqueous phase and an organic phase respectively relevant in atmospheric
science. There is a lack of experimental data on such properties and given the overwhelming
amount of di↵erent molecules in the atmosphere, reliable computational methods that can predict
such properties for a large amount of molecules are valuable. In this work, the authors explore the
use of a machine learning method to predict selected thermodynamic properties for a large number
of molecules, which seems very promising and timely.

Authors’ reply: We thank the reviewer for their interest in our work and their constructive
feedback!

Reviewer’s comment No. 2 — References: I do not find that there are enough references
to the literature throughout the introduction. As an example statements like “They scatter and
absorb solar radiation and form cloud droplets in the atmosphere, a↵ect visibility and human
health and are responsible for large uncertainties in the study of climate change.” and “Most
aerosol particles are secondary organic aerosols” should be accompanied by one or more literature
references. Likewise, in section 4 on prediction I miss examples and references for the statements
for example on functionalization and fragmentation.

Authors’ reply: We added more literature references to the revised manuscript as suggested:

They scatter and absorb solar radiation and form cloud droplets in the atmosphere, a↵ect visibility
and human health and are responsible for large uncertainties in the study of climate change (IPCC
2013).

Most aerosol particles are secondary organic aerosols (SOAs) that are formed by oxidation of volatile
organic compounds (VOCs), which are in turn emitted into the atmosphere for example from plants
or tra�c (Shrivastava et al. 2017).

Many of the most interesting molecules from a SOA-forming point of view, e.g. monoterpenes, have
around 10 carbon (Zhang et al. 2018).

Atmospheric oxidation reaction mechanisms can be generally classified into two main types: frag-
mentation and functionalization (Kroll et al. 2009, Seinfeld et al. 2016).

With the following references:

IPCC 2013: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Work-
ing Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V.
Bex and P.M. Midgley (eds.), Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 1535 pp.
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Kroll et al. 2009: Kroll, J. H., Smith, J. D., Che, D. L., Kessler, S. H., Worsnop, D. R., and
Wilson, K. R.: Measurement of fragmentation and functionalizationpathways in the heterogeneous
oxidation of oxidized organic aerosol, Phys. Chem. Chem. Phys., 11, 8005–8014, 2009.

Shrivastava et al. 2017: Recent advances in understanding secondary organic aerosol: Implications
for global climate forcing, Rev. Geophys., 55, 509–559

Seinfeld et al. 2016: Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 3rd Edition, Wiley, 2016.

Zhang et al. 2018: Monoterpenes are the largest source of summertime organic aerosol in the
southeastern United States, Proc. Natl. Acad. Sci. U.S.A., 115, 2038–2043, 2018

Reviewer’s comment No. 3 — The thermodynamic basis – vapor pressures and partitioning
coe�cients: I expect several of the low volatile species will be solids at room temperature and likely
exist in the subcooled liquid state in the atmosphere. There can be a large di↵erence between
the vapor pressure of the solid and that of the subcooled liquid. I assume the vapor pressures
calculated are for the subcooled liquid state. This should be specified. Likewise, it should be better
explained to the reader what the physical meaning of the partitioning coe�cients is? Do they
represent partitioning over a flat surface? It says they are infinite dilutions – does this mean the
activity coe�cients are one? What values are assumed for the activity coe�cients? partitioning
in the atmosphere depends on many things including particle size, amount of condensed material,
accommodation coe�cients – I suggest this is recognized and addressed.

Authors’ reply: The vapor pressures are computed for the subcooled liquid state, and the
partitioning coe�cients correspond to flat surfaces. This has been clarified in the manuscript.
Concerning these and several further issues raised by the reviewer related to the thermodynamic
parameters discussed here, we would like to point out that no actual calculations on saturation vapor
pressures, partitioning coe�cients, etc were performed in this study. We have simply used machine
learning tools to teach an algorithm to predict these parameters. All the actual thermodynamic
data used in our study were taken directly from the Wang et al paper.

While the origin, quality and features of the data are of course all relevant issues, the purpose
of our manuscript is to test which (if any) combinations of molecular descriptors and machine
learning algorithms can be used to construct a su�ciently accurate and robust predictive model.
This selection and validation of descriptors and algorithms is by no means a trivial task. While
we aim to provide the reader with a general description of the underlying data, rather than just
referring to Wang et al 2017 for all details, we believe that detailed derivations of each equation, or
an extensive description of the exact details of all stages of a COSMOtherm calculation, are beyond
the scope of this paper. Having said that, we would like to clarify that the definition of “partitioning
coe�cients” used here (or, to be more precise, in the COSMOtherm program as well as in the study
of Wang et al) corresponds more to that used in conventional organic chemistry (for equilibrium
partitioning of a solute between two bulk phases in contact with each other) than that used in
atmospheric chemistry and physics. The reviewer is of course completely correct that predicting
actual partitioning between a real aerosol particle and the gas phase requires the estimation of
many additional thermodynamic as well as kinetic parameters, which are not considered here. A
note on this has been added to the manuscript.
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“For technical details on the COSMOtherm calculations performed by Wang et al., we refer to the
COSMOtherm documentation (Klamt and Eckert, 2000), (Klamt, 2011), and a recent study by
(Hyttinen et al.,2020), where the conventions, definitions and notations used in COSMOtherm are
connected to those more commonly employed in atmospheric physical chemistry. We note especially
that the saturation vapor pressures computed by COSMOtherm correspond to the subcooled liquid
state, and that the partitioning coe�cients correspond to partitioning between two flat bulk surfaces
in contact with each other. Actual partitioning between, e.g., aerosol particles and the gas phase
will depend on further thermodynamic and kinetic parameters, which are not included here.”

Klamt, A. and Eckert, F.: COSMO-RS: a novel and e�cient method for the a priori prediction of
thermophysical data of liquids, Fluid Phase Equilib., 172, 43 – 72, 2000.

Klamt, A.: The COSMO and COSMO-RS solvation models, WIREs Comput. Mol. Sci., 1, 699–709,
2011.

Hyttinen, N., Elm, J., Malila, J., Calderón, S. M., and Prisle, N. L.: Thermodynamic properties of
isoprene- and monoterpene-derived515organosulfates estimated with COSMOtherm, Atmos. Chem.
Phys., 20, 5679–5696, 2020

Reviewer’s comment No. 4 — Where does the formula for calculation of saturation vapor
pressure come from? Please give a derivation or a reference. The saturation vapor pressure is a
property of the pure component – but here it seems to depend on the activity in a mixture and a
partitioning coe�cient? The equilibrium vapor pressure over a mixture depends on the activity?

Authors’ reply: The reviewer is of course correct that the saturation vapor pressure is a property
of the pure compound, and does not depend on an activity or a partitioning coe�cient. The equation
on line 120 is simply a way to connect partitioning coe�cients (as defined by COSMOtherm, and
in a certain medium, water in this example) to saturation vapor pressures. The activity coe�cient
is present precisely because the partitioning coe�cient depends on the activity (in that medium)
while the saturation vapor pressure does not. This has now been clarified in the manuscript, and we
have also rearranged the equation so that it is solved for the partitioning coe�cient instead (thus
illustrating that the partitioning coe�cient depends on the saturation vapor pressure rather than
vice versa). The exact details of how saturation vapor pressures are calculated by COSMOtherm
are fairly complicated, and - as mentioned above - beyond the scope of this manuscript given that
all the actual thermodynamic data are taken directly from Wang et al. However, we have added
references to both the COSMOtherm documentation, and to a recent study by Hyttinen et al,
where the COSMOtherm approach for calculating various thermodynamic parameters is expressed
using terms and definitions more familiar to atmospheric physical chemists.

”This illustrates that unlike the saturation vapor pressure Psat, which is a pure-compound property,
the partitioning coe�cient also depends on the activity of the molecule in the chosen liquid solvent,
in this case water.”

“See (Hyttinen et al., 2020) for a discussion on the connection between di↵erent conventions and
the notation used by COSMOTherm, and those commonly employed in atmospheric physical chem-
istry.”

Reviewer’s comment No. 5 — What is meant with the statement “Saturation vapor pressure
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describes the interaction of a compound with itself” (page 2 line 29/30) ? and “partitioning
coe�cients (K) for the interaction of the compound with representative other species.” I would say,
that it is the activity coe�cients that account for interactions between molecules in the condensed
phase. In the gas phase – do the authors consider molecular interactions?

Authors’ reply: Our formulation, especially the use of the verb ”describes”, may have been
poor – we were simply trying to convey exactly what the reviewer stated in the previous comment,
i.e. that the saturation vapor pressure is a pure-compound property, and depends only on how a
compound interacts with itself (i.e. NOT on how it interacts with any other compounds). We agree
that interactions with other compounds is described (or accounted for) by activity coe�cients. In
the conceptual framework used here, as illustrated for example by the equation on line 120 dis-
cussed above (with the added caveat that the saturation vapor pressure is indeed a pure-compound
property), the partitioning coe�cients depend on the activity coe�cients. We have reformulated
the text and added explicit mention of this to the manuscript. COSMOtherm does not consider
intermolecular interactions in the gas phase. This is justified as the mean free path in atmospheric
conditions is quite large. Intramolecular interactions such as H-bonds are accounted for (albeit
sometimes inaccurately).

“These include the (liquid or solid) saturation vapour pressure, and various partitioning coe�cients
(K) in representative solvents such as water or octanol. The saturation vapor pressure is a pure-
compound property, which essentially describes how e�ciently a molecule interacts with other
molecules of the same type. In contrast, partitioning coe�cients depend on activity coe�cients,
which encompass the interaction of the compound with representative solvents.”

Reviewer’s comment No. 6 — Some sentences are unclear: eg. “For relatively simple organic
compounds, e�cient empirical parametrizations have been developed to predict their condensation-
relevant properties. “ – the authors should help the reader here with more clear definitions - what is
a “relatively simple organic compound” – and what are the exact condensation relevant properties
and which e�cient empirical parameterizations are the authors referring to here (references should
be given) ?

Authors’ reply: By relatively simple we mean relatively few functional groups, typically four or
less. However, this quantification depends somewhat on the compound families, e.g. for peroxides
the parametrisation datasets of the currently available approaches rarely contain data for com-
pounds with even two functional groups. This has now been clarified. By condensation-relevant
properties we here mean primarily saturation vapor pressures, as well as partitioning coe�cients.
This has also been clarified. The parametrizations we are referring to are listed in the next sentences
(starting with ”These include”). We give here in total 8 references to empirical parametrizations,
plus one reference to a user-friendly interface. The connection between the beginning and end of
the paragraph in question has been clarified by changing “These” to “Such parametrizations”.

“For relatively simple organic compounds, typically with up to three or four functional groups,
e�cient empirical parametrizations have been developed to predict their condensation-relevant
properties, for example saturation vapor pressures. Such parameterizations include...”

Reviewer’s comment No. 7 — To help the reader I also suggest to restructure the manuscript
a bit and define the coe�cients that are modelled already in the introduction.
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Authors’ reply: The relevant coe�cients are already defined in the first paragraph of the
introduction:

“Typical partitioning coe�cients in chemistry include (KW/G) for the partitioning between the gas
phase and pure water (i.e. an infinitely dilute solution of the compound), and (KO/W) for the
partitioning between octanol and water solutions. For organic aerosols, the partitioning coe�cient
between the gas phase and a model water-insoluble organic matter phase (WIOM; KWIOM/G) is
more appropriate than (KO/G).”

Reviewer’s comment No. 8 — How was vapor pressures obtained/calculated from COSMOth-
erm – this is unclear from the manuscript and should be specified.

Authors’ reply: As described in response to previous questions, we added references to both
the COSMOtherm documentation, which explains in detail how the vapor pressures are obtained,
and to Hyttinen et al. who connect the COSMOtherm approach to concepts and definitions more
familiar to atmospheric physical chemists. Since we have not performed any actual COSMOtherm
calculations in this work, and since the derivations in question are multiple pages long (each), we
have not reproduced them in this manuscript. On this topic, we refer the reviewer to the Wang et
al. (2017) manuscript.

Reviewer’s comment No. 9 — Could the authors reflect on why the MBTR method performs
so much better than the other methods?

Authors’ reply: We do address this point in the conclusion section of the manuscript:

“KRR is a relatively simple kernel-based machine-learning technique that is straightforward to
implement and fast to train. Given model simplicity, the quality of learning depends strongly
on information content of the molecular descriptor. More specifically, it hinges on how well each
format encapsulates the structural features relevant to the atmospheric behaviour. The exhaustive
approach of MBTR descriptor to documenting molecular features has led to very good predictive
accuracy inmachine learning of molecular properties (Stuke et al., 2019; Langer et al., 2020; Rossi
and Cumby, 2020; Himanen et al., 2020) and this work is no exception. The lightweight CM
descriptor does not perform nearly as well, but these two representations from physical sciences
provide us with an upper and lower limit on predictive accuracy.”

In short, the MBTR is a much larger descriptor than the Coulomb matrix or the ChemInformatics
fingerprints. It not only captures the topology of an organic molecule, like the fingerprints, but
also includes the additional information provided by inter-atomic distances and bond angles. Gen-
erally speaking, the more relevant information is encoded in the descriptor, the better the machine
learning.

Reviewer’s comment No. 10 — Accuracy and performance: It should be stated explicitly
what the COSMOtherm accuracy is, both on the predicted saturation vapor pressures and on the
partitioning coe�cients.

Authors’ reply: First, we note again that the purpose of our study was to test which com-
binations of molecular descriptors and machine learning algorithms produce accurate predictive
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models for (e.g.) saturation vapor pressures of polyfunctional molecules. We only used COSMOth-
erm data because of the limited availability of relevant experimental data. The accuracy of the
COSMOtherm data itself, while not irrelevant, is not particularly crucial for this study.

Having said this, we certainly agree that it would be extremely desirable to know the COSMOtherm
accuracy for a given polyfunctional molecule. Sadly, reliably estimating this accuracy is extremely
challenging, primarily due to the lack of measured saturation vapor pressures for extremely low-
volatility polyfunctional compounds, as also mentioned by the reviewer in the first paragraph
of their comment. Lack of experimental data, on the other hand, is one of the main reasons why
COSMOtherm calculations are useful. We note that this is a general problem with applied quantum
chemistry: the methods are scientifically the most useful for computing values which cannot (yet)
be measured, but this same lack of measurements precludes an accurate assessment of error margins
for the actual calculation of interest.

The COSMOtherm documentation and literature give some accuracy guidelines, for example Eck-
ert and Klamt (2002; see manuscript for reference) report that the maximum deviation for the
saturation vapor pressure predicted for the 310 compounds included in the original COSMOtherm
parametrization dataset is a factor of 3.7. In principle, the parameters of COSMOtherm should
be element-specific, not compound-specific, but in practice this does not really hold for the H-
bonding parameters, as alluded to also by reviewer number 3. Our own calculations for complex
atmospherically relevant polyfunctional molecules (see e.g. Kurtén et al., 2018) indicate that the
error margins are likely to be considerably larger than this factor of 3.7. For complex polyfunc-
tional molecules, especially ones capable of forming intra-molecular hydrogen bonds, we further
find that the accuracy of the values depend on the details of the conformational sampling. As a
very rough estimate, based on direct comparisons to the very limited number of available exper-
iments on relevant compounds (Kurtén et al 2018, Krieger et al 2018), the error margin of the
computed saturation vapor pressures are probably around an order of magnitude for moderately
complex (2-3 functional groups) molecules, possibly increasing by as much as a factor of 5 per each
potential intra-molecular hydrogen bond. A similar error margin was used in very a recent study
by Hyttinen et al (J. Phys. Chem. A 2021, in press, https://doi.org/10.1021/acs.jpca.0c11328).
The error margins of the partitioning coe�cients are likely somewhat smaller, as argued by Wania
et al (2014). This has now been noted in the manuscript as requested.

“While the maximum deviation for the saturation vapor pressure predicted for the 310 compounds
included in the original COSMOtherm parametrization dataset is only a factor of 3.7 (Eckert and
Klamt, 2000), the error margins increase rapidly especially with the number of intramolecular
hydrogen bonds. In a very recent study, Hyttinen et al. estimated that the uncertainty of the
COSMOtherm saturation vapor pressure and partitioning coe�cient predictions increases by a
factor of 5 for each additional intra-molecular hydrogen bond (Hyttinen 2021).”

Hyttinen, N., Wolf, M., Rissanen, M. P., Ehn, M., Peräkylä, O., Kurtén, T., and Prisle, N. L.: Gas-
to-Particle Partitioning of Cyclohexene-and ↵-Pinene-Derived Highly Oxygenated Dimers Evalu-
ated Using COSMOtherm, J. Phys. Chem. A (2021), in press.

Reviewer’s comment No. 11 — Page 7 line 158 – what is “good performance” ?

Authors’ reply: We removed the statement, since it was not necessary in the “representation
section”.
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Reviewer’s comment No. 12 — Imiss a short description of which parent VOCs were considered
for the basis set used.

Authors’ reply: We are not completely sure what the reviewer means with this statement.
As noted above, we have not computed any new thermodynamic parameters in this study. We
use data from Wang et al., who in turn used the approx. 3400 molecules included in the MCM
dataset at the time of their study. The parent VOCs for the MCM dataset can be seen e.g.
here (http://mcm.leeds.ac.uk/MCM/roots.htt, and include most of the atmospherically relevant
small alkanes (methane, ethane, propane etc), alcohols, aldehydes, alkenes, ketones and aromatics,
as well as chloro- and hydrochlorocabons, esters, ethers, and a few representative larger VOCs
such as three monoterpenes and one sesquiterpene. Some inorganics (by definition not VOCs) are
also included. A brief description of the MCM dataset is now included in the manuscript. If the
reviewer is referring to our C10 dataset, used solely for a preliminary “sanity check” as discussed
below and in the reply to reviewer 1, then the “parent VOC” is simply n-decane.

We revised the manuscript as follows:

“The parent VOCs for the MCM dataset include most of the atmospherically relevant small alkanes
(methane, ethane, propane etc), alcohols, aldehydes, alkenes, ketones and aromatics, as well as
chloro- and hydrochlorocabons, esters, ethers, and a few representative larger VOCs such as three
monoterpenes and one sesquiterpene. Some inorganics are also included.”

Reviewer’s comment No. 13 — Regarding the prediction section. As the authors write
monoterpenes are relevant molecules and as I understand the choice of 10 carbon atoms is based on
monoterpenes. The choice of a linear alkane chain is motivated by simplicity – but is it relevant in
the atmosphere from monoterpene oxidation? Are all the molecules studied in the master chemical
mechanism? – I would have expected at least some molecules with a ring structure included.

Authors’ reply: Please see our reply to reviewer 1 concerning this same topic. The purpose of
the C10 dataset was simply to perform a basic “sanity check” of our machine-learing set-up. We
purposefully chose a rather simplistic set of structures with no direct atmospheric relevance. This
very feature on the other hand means that the molecules are quite di↵erent from those included
in the Wang et al dataset, making our test more robust. We are in the process of performing new
COSMOtherm calculations, and associated machine learning (building on the testing and validation
performed here), on a much larger, more complex, and also more atmospherically relevant dataset.

Reviewer’s comment No. 14 — The authors several times discuss formation of particles and
– is there a reference for some thought of threshold vapor pressure value ? For example Page 2 line
50 a threshold value of 10-12 Pa for nucleation is given.

Authors’ reply: The exact threshold of course depends on the conditions, including both the
temperature, the formation mechanism and formation rate of the molecule in question, and the
concentration of pre-existing large particles. In the typical volatility classification scheme used in
atmospheric chemistry and physics (VOC - SVOC - LVOC and so on), the threshold for “e↵ectively
non-volatile” has gradually crept down over the past decades, with new categories being added: first
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ELVOC, (with E standing for “extreme”) and now ULVOC (with U standing for “Ultra”). Again,
precise threshold values for these definitions also vary somewhat between sources (and are anyway
usually defined in terms of saturation mass concentrations rather than vapor pressures). The 10-12
kPa value (note, kPA not Pa) quoted on page 2 represents a fairly safe threshold for participation
in early growth - for actual nucleation even lower volatilities would typically be needed. This has
now been clarified further in the manuscript, and a reference has been added:

“If the saturation vapour pressure of an organic compound is lower than approx. 10-12 kPa, then
it could condense irreversibly onto preexisting nanometer-sized cluster (Bianchi et al., 2019).”

Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J.
D., Wennberg, P. O., Mentel, T. F., Wildt, J.,Junninen, H., Jokinen, T., Kulmala, M., Worsnop,
D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic
Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to
Atmospheric Aerosol, Chem. Rev., 119, 3472–3509, 2019

Reviewer’s comment No. 15 — In the abstract it says” The resulting saturation vapor pressure
and partitioning coe�cient distributions were physico-chemically reasonable, and the volatility pre-
dictions for the most highly oxidized compounds were in qualitative agreement with experimentally
inferred volatilities of atmospheric oxidation products with similar elemental composition.”

I do not see justification for this in the manuscript. I miss examples (optimally for all the com-
pounds) where the authors give the experimental vapor pressure, the vapor pressure obtained from
a state of the art group contribution method, the COSMOtherm vapor pressure and the vapor
pressure obtained using the machine learning code and discuss di↵erences and similarities. For the
lowest vapor pressures experimental data are not available. The authors should give the range of
vapor pressures where the model can be compared with experimental data. It is not clear what is
meant with elemental composition – normally the molecular formula or even structural formula is
needed to predict a vapor pressure?

Authors’ reply: As noted by the reviewer, there is a great lack of experimental data on
volatilites of anything but the simplest atmospherically relevant compounds. In particular, there are
to our knowledge NO direct experimental measurements of the volatilities of ANY highly oxidised
C10 compounds, such as the monoterpene autoxidation products referred to in our discussion.
Further, as noted above, we have not performed any new COSMOtherm calculations in our paper,
so COSMOtherm predictions for the C10 dataset are not available either. The three-way comparison
requested by the reviewer is thus impossible. A comparison between the machine learning algorithm
and the COSMOtherm predictions for the molecules calculated by Wang et al, is on the other hand
very relevant, and included in the discussion.

We agree that to reliably predict a saturation vapour pressure of any particular single compound,
the molecular and/or structural formula is usually needed. However, for more complex compounds
such as monoterpene autoxidation products, this information is generally not available - only the
elemental composition can be extracted from mass spectrometric measurements. The “inferred
volatilities” discussed here are basically fits of the volatilities inferred from the measured conden-
sation behaviour to the measured elemental compositions. While imperfect, this approach is fairly
common in the literature. The point we wish to make here is that the predictions for our most
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highly oxidized C10 compounds are in qualitative agreement with the predictions of such empirical
fits. We have reformulated the paragraph in question to avoid giving a misleading sense of accuracy.

“The resulting saturation vapor pressure and partitioning coe�cient distributions were physico-
chemically reasonable, for example, in terms of the average e↵ects of the addition of single functional
groups. The volatility predictions for the most highly oxidized compounds were in qualitative
agreement with experimentally inferred volatilities of, for example, alpha-pinene oxidation products
with as-yet unknown structures, but similar elemental composition.”

Reviewer’s comment No. 16 — Page 2 line 3: Several experimental techniques are capable
of measuring saturation vapor pressures of 10-5 Pa. It would be appropriate to cite literature
providing experimental vapor pressures. What is the definition of non-volatile that the authors
use?

Authors’ reply: By “non-volatile” we mean at least “ELVOC”, if not “ULVOC”, i.e., a molecule
that does not appreciably evaporate even from a nanometer-sized particle. The threshold for this is
many orders of magnitude lower than 10-5 Pa. We have added reference to a review of saturation
vapor pressure measurement techniques.

”See e.g. (Bilde 2015) for a review of experimental saturation vapor pressure measurement tech-
niques relevant to atmospheric science.”

M. Bilde et al., Saturation Vapor Pressures and Transition Enthalpies of Low Volatility Organic
Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chem. Rev.
2015, 115, 4115-4156.

Reviewer’s comment No. 17 — Page 3 line 63: “Here, we take a di↵erent approach compared
to previous parametrization studies, and consider a data-science perspective (Himanen et al., 2019).
Instead of assuming chemical or physical relations, we let the data speak for itself.” - what is meant
with letting the data speak for itself?

Authors’ reply: Our machine learning approach produces a data-driven model. Unlike the
parameterizations that are discussed in the introduction and in a previous reviewer question, we
do not use chemical or physical insight to derive an analytical expression for our model, whose
few parameters are then determined by fitting. In contrast, our model has a free form (the kernel
expansion). The number of expansion coe�cients grows with the amount of available training data
and the model changes with the data. It adapts to the training data in ways a rigid parameterization
cannot.

Reviewer’s comment No. 18 — Figure 9 b: what is on the y-axis - is it a percentage? or an
absolute number?

Authors’ reply: Figure 9 b is a histogram and it shows the number of molecules that have a
certain saturation vapor pressure. The y-axis is labeled correctly. We capped the y-axis at 100 to
make the green and orange histograms (for molecules containing 7 or 8 O atoms) visible. As Figure
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7 c shows, the total number of molecules in each bin of the C10 set is much higher (going up to
⇠2000). If the y-axis went up to 2000, the orange and gree subsets could not be seen.

Reviewer’s comment No. 19 — Page 16: “This result demonstrates that unlike the simplest
group-contribution models (which would invariably predict that the lowest-volatility compounds in
our C10 dataset should be the tetrahydroxydicarboxylic acids), both the original COSMOtherm
predictions, and the machine-learning model based on them, are capable of accounting for hydrogen-
bonding interactions between functional groups.”

I am not sure this statement is quite fair – to my knowledge state of the art group contribution
methods (e.g. those on the UMAN Sysprop webpage) include interactions – which simple group
contribution methods are the authors referring to and are such simple methods being used in
atmospheric simulations?

Authors’ reply: We feel that our statement and that of the reviewer do not contradict each other.
Some state-of-the-art group contribution methods indeed do include cross-terms for interactions.
However, the simplest ones, such as SIMPOL, do not. We have clarified this by adding mention of
SIMPOL to the sentence. SIMPOL is actually used quite extensively e.g. in studies of autoxidation
products, as the very lack of cross-terms makes it more robust for very large and complex molecules,
though at the expense of accuracy for compounds of medium complexity. As shown e.g. in Kurtén
et al (2016), some of the more sophisticated models included in the UManSysprop website, most
notably the “Nannoolal” family of approaches, may fail catastrophically when applied to certain
molecules containing multiple peroxide groups. In their defence, it should be noted that the methods
were never even designed to work for such compounds, and indeed some of the source literature
explicitly warns against doing so. We hope that the type of approach presented and piloted in this
manuscript will be able to provide the robustness of SIMPOL, combined with the greater and more
molecule-specific accuracy analogous to the more sophisticated models, for a very much larger set
of compounds.

”This result demonstrates that unlike the simplest group-contribution models such as SIMPOL . . .”

Kurtén, T., Tiusanen, K., Roldin, P., Rissanen, M. P., Boy, M., Ehn, M. and Donahue, N. M. ↵-
pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite
High O:C Ratios. Journal of Physical Chemistry A, Vol. 120, 2569-2582, 2016.
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Reviewer 3

Reviewer’s comment No. 1 — The authors utilize machine learning to predict saturation vapor
pressure and two equilibrium-partitioning coe�cients for gas-particle partitioning. For training and
validating the machine learning model they use a dataset obtained by COSMOtherm calculations
of theses observables for atmospheric oxidation product molecules.

The paper is well written, the topic timely and of great interest for the readers of ACP and I
recommend publishing but ask the authors to take the following comments and suggestions into
account.

I have one very general concern, which does not relate to the machine learning approach presented
here, but to the underlying COSMOtherm data set. The authors write (e.g. line 49 page 2)
that the COSMOtherm predictions have an order of magnitude accuracy. However, for a number
of compounds at low saturation vapor pressures there have been studies comparing experimental
saturation vapor pressures with COSMOtherm predictions and finding much larger deviations (e.g.
Bannan et al., 2017, Krieger et al. 2018). It should be pointed out that the COSMOtherm model
has been “calibrated” with a parametrization dataset of known compounds, which are potentially
biased to high saturation vapor pressures (Klamt et al. 1998). Therefore, the accuracy of the
underlying reference data may be only several orders of magnitude for low saturation vapor pressure
components.

Authors’ reply: We completely agree. By “order of magnitude” we meant “at best order
of magnitude”, to contrast with the factor of 3.7 quoted in the COSMOtherm documentation.
Fortunately, proper consideration and selection of conformers, as well as improvements to the H-
bonding treatment in newer versions of COSMOtherm, are slowly decreasing the disagreement
between the saturation vapor pressure predictions and the limited number of experimental data
points for atmospherically relevant low-volatility polyfunctionals. As noted in our reply to reviewer
2, our current best estimate, based on direct comparisons to the very limited number of available
experiments on relevant compounds (see e.g. Kurtén et al 2018, Krieger et al 2018), is that the error
margin of the computed saturation vapor pressures are probably around an order of magnitude for
moderately complex (2-3 functional groups) molecules, possibly increasing by as much as a factor
of 5 per intra-molecular hydrogen bond. This has now been noted in the manuscript as discussed
above.

Reviewer’s comment No. 2 — For gas-particle partitioning, the saturation vapor pressure range
from about 10-11 kPa to about 10-3 kPa is relevant (e.g. Valorso et al. 2011, or the discussion
starting in the last paragraph of page 2). However, Fig. 3c shows that there are hardly any
molecules in the dataset below 10-8 kPa. Actually about half of the dataset contains compounds,
which will be entirely in the gas phase under atmospheric conditions. Does this pose a problem?

Authors’ reply: Yes, this poses a serious problem for predicting volatilities of large and complex
molecules, and because of it, this study should be considered a proof-of-concept pilot for finding
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appropriate combinations of descriptors and machine learning algorithms. We are in the process
of performing additional COSMOtherm calculations and the corresponding machine learning on a
substantially larger and much more complex set of compounds generated by the GECKO algorithm.
We hope to be able to report preliminary result on this work relatively soon. Plans for future
directions have been added to the conclusions - section of the manuscript.

Reviewer’s comment No. 3 — Related: the last paragraph on page 6 states that Wang’s
dataset is rather small for machine learning but internally consistent. I intuitively understand that
this helps the machine-learning model to succeed in predicting well. However, the authors write that
Sanders’s dataset for 17350 Henry’s law constant are not internally consistent (as Wang’s dataset).
But what if the Sander’s data are the correct ones? What if the real world is more complex than
what is predicted by COSMOtherm? Would the machine learning approaches fail because it there
are no easy “rules” the machine-learning algorithm can pick out of the dataset? Would the output
of a model trained with these data just produce random partitioning coe�cients within the range
of the data set? These questions are probably impossible to answer without doing the experiment.
It would have been very interesting to see how the machine-learning model perform on the dataset
of Sander, but this is clearly beyond the work presented here.

Authors’ reply: By Sanders’s dataset “not being internally consistent” we mean primarily
the fact that this (impressively large) set often contains multiple entries for the same compound
(corresponding to e.g. di↵erent experimental studies, often with di↵erent methods), and the actual
values can vary widely. For example for many polyols, Henry’s law constants in the dataset vary by
6 orders of magnitude or more. This result can obviously not be correct, as a particular compound
must have precisely one Henry’s law constant at one temperature. This has been clarified in the
manuscript. The other type of “internal inconsistency” (or complexity) presumably referred to by
the reviewer would be e.g. strong non-additivity of the e↵ects of various functional groups, and/or
cases where very small di↵erences in structures lead to very large di↵erences in properties. We agree
that the real world contains examples of this type of inconsistency or complexity, though typically
the most extreme cases tend to be for chemical reactivity rather than physical molecular properties.
Certainly such complexity also makes it more challenging to define rules for predicting properties
based on structures (i.e. structure-activity or structure-property relationships). COSMOtherm is
able to account for some, but probably not all, of these cases, as evidenced from the discussion on
the e↵ects of intra-molecular H-bonds also in the references cited by the reviewer. We agree that
experimental methods capable of probing volatilities of very complex molecules will be needed to
definitively answer the question.

On a final note, uncertainties in the data, e.g. experimental noise, can easily be taken into account
in probabilistic machine learning models. We are working on such probabilistic models and will
report their results in a future publication. It has to be emphasized, however, that even a noisy
dataset has to be internally consistent. If Henry’s law constants di↵er by 6 orders of magnitude for
a certain compound, the dataset needs to be refined.

“For example, the Sander dataset contains several molecules with multiple entries for the same
property, sometimes spanning many orders of magnitude.”

Reviewer’s comment No. 4 — I find section 2.2.4 rather brief. For me – being not familiar
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with the topic – it is not possible to follow despite Fig. 4d. May be extent a bit?

Authors’ reply: We improved the description as follows:

“TopFP first extracts all topological paths of a certain lengths. The paths start from one atom in
a molecule and travel along bonds until k bond lengths have been traversed as illustrated in Fig.
4d. The path depicted in the figure would be OCCO. The list of patterns produced is exhaustive:
Every pattern in the molecule, up to the pathlength limit, is generated. Each pattern then serves
as a seed to a pseudo-random number generator (it is “hashed”), the output of which is a set of bits
(typically 4 or 5 bits per pattern). The set of bits is added (with a logical OR) to the fingerprint.
The length of the bitvector, maximum and minimum possible path lengths kmax and kmin and the
length of one hash can be optimized. ”

Reviewer’s comment No. 5 — Discussion on page 16: Related to my comments above, without
experimental vapor pressures for the C10 compounds being available, this discussion is interesting,
but there may be surprises if experimental vapor pressures become available. I feel the authors
should clearly state that the COMOtherm predictions are not validated in this pressure regime at
all.

Authors’ reply: We agree, and this has now been stated explicitly.

“However, we caution that COSMOtherm predictions have not yet been properly validated against
experiments for this pressure regime. As discussed above, we can hope for order-of-magnitude
accuracy at best.”

Reviewer’s comment No. 6 — Technical comment: Page 12, line 292: Figure 5 should be Fig.
3, correct?

Authors’ reply: Many thanks to the reviewer for catching this issue, we have now corrected it
on page 12.
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