
Reviewer 2

Reviewer's comment No. 1 — It was interesting to read this manuscript. The topic of the manuscript is the prediction of saturation vapor pressures and partitioning coefficients between the gas phase and an aqueous phase and an organic phase respectively relevant in atmospheric science. There is a lack of experimental data on such properties and given the overwhelming amount of different molecules in the atmosphere, reliable computational methods that can predict such properties for a large amount of molecules are valuable. In this work, the authors explore the use of a machine learning method to predict selected thermodynamic properties for a large number of molecules, which seems very promising and timely.

Authors' reply: We thank the reviewer for their interest in our work and their constructive feedback!

Reviewer's comment No. 2 — References: I do not find that there are enough references to the literature throughout the introduction. As an example statements like “They scatter and absorb solar radiation and form cloud droplets in the atmosphere, affect visibility and human health and are responsible for large uncertainties in the study of climate change.” and “Most aerosol particles are secondary organic aerosols” should be accompanied by one or more literature references. Likewise, in section 4 on prediction I miss examples and references for the statements for example on functionalization and fragmentation.

Authors' reply: We added more literature references to the revised manuscript as suggested: They scatter and absorb solar radiation and form cloud droplets in the atmosphere, affect visibility and human health and are responsible for large uncertainties in the study of climate change (IPCC 2013).

Most aerosol particles are secondary organic aerosols (SOAs) that are formed by oxidation of volatile organic compounds (VOCs), which are in turn emitted into the atmosphere for example from plants or traffic (Shrivastava et al. 2017).

Many of the most interesting molecules from a SOA-forming point of view, e.g. monoterpenes, have around 10 carbon (Zhang et al. 2018).

Atmospheric oxidation reaction mechanisms can be generally classified into two main types: fragmentation and functionalization (Kroll et al. 2009, Seinfeld et al. 2016).

With the following references:

IPCC 2013: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

Kroll et al. 2009: Kroll, J. H., Smith, J. D., Che, D. L., Kessler, S. H., Worsnop, D. R., and Wilson, K. R.: Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol, *Phys. Chem. Chem. Phys.*, 11, 8005–8014, 2009.

Shrivastava et al. 2017: Recent advances in understanding secondary organic aerosol: Implications for global climate forcing, *Rev. Geophys.*, 55, 509–559

Seinfeld et al. 2016: Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 3rd Edition, Wiley, 2016.

Zhang et al. 2018: Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States, *Proc. Natl. Acad. Sci. U.S.A.*, 115, 2038–2043, 2018

Reviewer's comment No. 3 — The thermodynamic basis – vapor pressures and partitioning coefficients: I expect several of the low volatile species will be solids at room temperature and likely exist in the subcooled liquid state in the atmosphere. There can be a large difference between the vapor pressure of the solid and that of the subcooled liquid. I assume the vapor pressures calculated are for the subcooled liquid state. This should be specified. Likewise, it should be better explained to the reader what the physical meaning of the partitioning coefficients is? Do they represent partitioning over a flat surface? It says they are infinite dilutions – does this mean the activity coefficients are one? What values are assumed for the activity coefficients? partitioning in the atmosphere depends on many things including particle size, amount of condensed material, accommodation coefficients – I suggest this is recognized and addressed.

Authors' reply: The vapor pressures are computed for the subcooled liquid state, and the partitioning coefficients correspond to flat surfaces. This has been clarified in the manuscript. Concerning these and several further issues raised by the reviewer related to the thermodynamic parameters discussed here, we would like to point out that no actual calculations on saturation vapor pressures, partitioning coefficients, etc were performed in this study. We have simply used machine learning tools to teach an algorithm to predict these parameters. All the actual thermodynamic data used in our study were taken directly from the Wang et al paper.

While the origin, quality and features of the data are of course all relevant issues, the purpose of our manuscript is to test which (if any) combinations of molecular descriptors and machine learning algorithms can be used to construct a sufficiently accurate and robust predictive model. This selection and validation of descriptors and algorithms is by no means a trivial task. While we aim to provide the reader with a general description of the underlying data, rather than just referring to Wang et al 2017 for all details, we believe that detailed derivations of each equation, or an extensive description of the exact details of all stages of a COSMOtherm calculation, are beyond the scope of this paper. Having said that, we would like to clarify that the definition of “partitioning coefficients” used here (or, to be more precise, in the COSMOtherm program as well as in the study of Wang et al) corresponds more to that used in conventional organic chemistry (for equilibrium partitioning of a solute between two bulk phases in contact with each other) than that used in atmospheric chemistry and physics. The reviewer is of course completely correct that predicting actual partitioning between a real aerosol particle and the gas phase requires the estimation of many additional thermodynamic as well as kinetic parameters, which are not considered here. A note on this has been added to the manuscript.

“For technical details on the COSMOtherm calculations performed by Wang et al., we refer to the COSMOtherm documentation (Klamt and Eckert, 2000), (Klamt, 2011), and a recent study by (Hyttinen et al., 2020), where the conventions, definitions and notations used in COSMOtherm are connected to those more commonly employed in atmospheric physical chemistry. We note especially that the saturation vapor pressures computed by COSMOtherm correspond to the subcooled liquid state, and that the partitioning coefficients correspond to partitioning between two flat bulk surfaces in contact with each other. Actual partitioning between, e.g., aerosol particles and the gas phase will depend on further thermodynamic and kinetic parameters, which are not included here.”

Klamt, A. and Eckert, F.: COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids, *Fluid Phase Equilib.*, 172, 43 – 72, 2000.

Klamt, A.: The COSMO and COSMO-RS solvation models, *WIREs Comput. Mol. Sci.*, 1, 699–709, 2011.

Hyttinen, N., Elm, J., Malila, J., Calderón, S. M., and Prisle, N. L.: Thermodynamic properties of isoprene- and monoterpane-derived organosulfates estimated with COSMOtherm, *Atmos. Chem. Phys.*, 20, 5679–5696, 2020

Reviewer’s comment No. 4 — Where does the formula for calculation of saturation vapor pressure come from? Please give a derivation or a reference. The saturation vapor pressure is a property of the pure component – but here it seems to depend on the activity in a mixture and a partitioning coefficient? The equilibrium vapor pressure over a mixture depends on the activity?

Authors’ reply: The reviewer is of course correct that the saturation vapor pressure is a property of the pure compound, and does not depend on an activity or a partitioning coefficient. The equation on line 120 is simply a way to connect partitioning coefficients (as defined by COSMOtherm, and in a certain medium, water in this example) to saturation vapor pressures. The activity coefficient is present precisely because the partitioning coefficient depends on the activity (in that medium) while the saturation vapor pressure does not. This has now been clarified in the manuscript, and we have also rearranged the equation so that it is solved for the partitioning coefficient instead (thus illustrating that the partitioning coefficient depends on the saturation vapor pressure rather than vice versa). The exact details of how saturation vapor pressures are calculated by COSMOtherm are fairly complicated, and - as mentioned above - beyond the scope of this manuscript given that all the actual thermodynamic data are taken directly from Wang *et al.* However, we have added references to both the COSMOtherm documentation, and to a recent study by Hyttinen et al, where the COSMOtherm approach for calculating various thermodynamic parameters is expressed using terms and definitions more familiar to atmospheric physical chemists.

“This illustrates that unlike the saturation vapor pressure P_{sat} , which is a pure-compound property, the partitioning coefficient also depends on the activity of the molecule in the chosen liquid solvent, in this case water.”

“See (Hyttinen et al., 2020) for a discussion on the connection between different conventions and the notation used by COSMOtherm, and those commonly employed in atmospheric physical chemistry.”

Reviewer’s comment No. 5 — What is meant with the statement “Saturation vapor pressure

describes the interaction of a compound with itself" (page 2 line 29/30) ? and "partitioning coefficients (K) for the interaction of the compound with representative other species." I would say, that it is the activity coefficients that account for interactions between molecules in the condensed phase. In the gas phase – do the authors consider molecular interactions?

Authors' reply: Our formulation, especially the use of the verb "describes", may have been poor – we were simply trying to convey exactly what the reviewer stated in the previous comment, i.e. that the saturation vapor pressure is a pure-compound property, and depends only on how a compound interacts with itself (i.e. NOT on how it interacts with any other compounds). We agree that interactions with other compounds is described (or accounted for) by activity coefficients. In the conceptual framework used here, as illustrated for example by the equation on line 120 discussed above (with the added caveat that the saturation vapor pressure is indeed a pure-compound property), the partitioning coefficients depend on the activity coefficients. We have reformulated the text and added explicit mention of this to the manuscript. COSMOtherm does not consider intermolecular interactions in the gas phase. This is justified as the mean free path in atmospheric conditions is quite large. Intramolecular interactions such as H-bonds are accounted for (albeit sometimes inaccurately).

"These include the (liquid or solid) saturation vapour pressure, and various partitioning coefficients (K) in representative solvents such as water or octanol. The saturation vapor pressure is a pure-compound property, which essentially describes how efficiently a molecule interacts with other molecules of the same type. In contrast, partitioning coefficients depend on activity coefficients, which encompass the interaction of the compound with representative solvents."

Reviewer's comment No. 6 — Some sentences are unclear: eg. "For relatively simple organic compounds, efficient empirical parametrizations have been developed to predict their condensation-relevant properties. – the authors should help the reader here with more clear definitions - what is a "relatively simple organic compound" – and what are the exact condensation relevant properties and which efficient empirical parameterizations are the authors referring to here (references should be given) ?

Authors' reply: By relatively simple we mean relatively few functional groups, typically four or less. However, this quantification depends somewhat on the compound families, e.g. for peroxides the parametrisation datasets of the currently available approaches rarely contain data for compounds with even two functional groups. This has now been clarified. By condensation-relevant properties we here mean primarily saturation vapor pressures, as well as partitioning coefficients. This has also been clarified. The parametrizations we are referring to are listed in the next sentences (starting with "These include"). We give here in total 8 references to empirical parametrizations, plus one reference to a user-friendly interface. The connection between the beginning and end of the paragraph in question has been clarified by changing "These" to "Such parameterizations".

"For relatively simple organic compounds, typically with up to three or four functional groups, efficient empirical parametrizations have been developed to predict their condensation-relevant properties, for example saturation vapor pressures. Such parameterizations include..."

Reviewer's comment No. 7 — To help the reader I also suggest to restructure the manuscript a bit and define the coefficients that are modelled already in the introduction.

Authors' reply: The relevant coefficients are already defined in the first paragraph of the introduction:

“Typical partitioning coefficients in chemistry include ($K_{W/G}$) for the partitioning between the gas phase and pure water (i.e. an infinitely dilute solution of the compound), and ($K_{O/W}$) for the partitioning between octanol and water solutions. For organic aerosols, the partitioning coefficient between the gas phase and a model water-insoluble organic matter phase (WIOM; $K_{WIOM/G}$) is more appropriate than ($K_{O/G}$).”

Reviewer's comment No. 8 — How was vapor pressures obtained/calculated from COSMOtherm – this is unclear from the manuscript and should be specified.

Authors' reply: As described in response to previous questions, we added references to both the COSMOtherm documentation, which explains in detail how the vapor pressures are obtained, and to Hyttinen *et al.* who connect the COSMOtherm approach to concepts and definitions more familiar to atmospheric physical chemists. Since we have not performed any actual COSMOtherm calculations in this work, and since the derivations in question are multiple pages long (each), we have not reproduced them in this manuscript. On this topic, we refer the reviewer to the Wang *et al.* (2017) manuscript.

Reviewer's comment No. 9 — Could the authors reflect on why the MBTR method performs so much better than the other methods?

Authors' reply: We do address this point in the conclusion section of the manuscript:

“KRR is a relatively simple kernel-based machine-learning technique that is straightforward to implement and fast to train. Given model simplicity, the quality of learning depends strongly on information content of the molecular descriptor. More specifically, it hinges on how well each format encapsulates the structural features relevant to the atmospheric behaviour. The exhaustive approach of MBTR descriptor to documenting molecular features has led to very good predictive accuracy in machine learning of molecular properties (Stuke *et al.*, 2019; Langer *et al.*, 2020; Rossi and Cumby, 2020; Himanen *et al.*, 2020) and this work is no exception. The lightweight CM descriptor does not perform nearly as well, but these two representations from physical sciences provide us with an upper and lower limit on predictive accuracy.”

In short, the MBTR is a much larger descriptor than the Coulomb matrix or the ChemInformatics fingerprints. It not only captures the topology of an organic molecule, like the fingerprints, but also includes the additional information provided by inter-atomic distances and bond angles. Generally speaking, the more relevant information is encoded in the descriptor, the better the machine learning.

Reviewer's comment No. 10 — Accuracy and performance: It should be stated explicitly what the COSMOtherm accuracy is, both on the predicted saturation vapor pressures and on the partitioning coefficients.

Authors' reply: First, we note again that the purpose of our study was to test which combinations of molecular descriptors and machine learning algorithms produce accurate predictive

models for (e.g.) saturation vapor pressures of polyfunctional molecules. We only used COSMOtherm data because of the limited availability of relevant experimental data. The accuracy of the COSMOtherm data itself, while not irrelevant, is not particularly crucial for this study.

Having said this, we certainly agree that it would be extremely desirable to know the COSMOtherm accuracy for a given polyfunctional molecule. Sadly, reliably estimating this accuracy is extremely challenging, primarily due to the lack of measured saturation vapor pressures for extremely low-volatility polyfunctional compounds, as also mentioned by the reviewer in the first paragraph of their comment. Lack of experimental data, on the other hand, is one of the main reasons why COSMOtherm calculations are useful. We note that this is a general problem with applied quantum chemistry: the methods are scientifically the most useful for computing values which cannot (yet) be measured, but this same lack of measurements precludes an accurate assessment of error margins for the actual calculation of interest.

The COSMOtherm documentation and literature give some accuracy guidelines, for example Eckert and Klamt (2002; see manuscript for reference) report that the maximum deviation for the saturation vapor pressure predicted for the 310 compounds included in the original COSMOtherm parametrization dataset is a factor of 3.7. In principle, the parameters of COSMOtherm should be element-specific, not compound-specific, but in practice this does not really hold for the H-bonding parameters, as alluded to also by reviewer number 3. Our own calculations for complex atmospherically relevant polyfunctional molecules (see e.g. Kurtén et al., 2018) indicate that the error margins are likely to be considerably larger than this factor of 3.7. For complex polyfunctional molecules, especially ones capable of forming intra-molecular hydrogen bonds, we further find that the accuracy of the values depend on the details of the conformational sampling. As a very rough estimate, based on direct comparisons to the very limited number of available experiments on relevant compounds (Kurtén et al 2018, Krieger et al 2018), the error margin of the computed saturation vapor pressures are probably around an order of magnitude for moderately complex (2-3 functional groups) molecules, possibly increasing by as much as a factor of 5 per each potential intra-molecular hydrogen bond. A similar error margin was used in very a recent study by Hyttinen et al (J. Phys. Chem. A 2021, in press, <https://doi.org/10.1021/acs.jpca.0c11328>). The error margins of the partitioning coefficients are likely somewhat smaller, as argued by Wania et al (2014). This has now been noted in the manuscript as requested.

“While the maximum deviation for the saturation vapor pressure predicted for the 310 compounds included in the original COSMOtherm parametrization dataset is only a factor of 3.7 (Eckert and Klamt, 2000), the error margins increase rapidly especially with the number of intramolecular hydrogen bonds. In a very recent study, Hyttinen *et al.* estimated that the uncertainty of the COSMOtherm saturation vapor pressure and partitioning coefficient predictions increases by a factor of 5 for each additional intra-molecular hydrogen bond (Hyttinen 2021).”

Hyttinen, N., Wolf, M., Rissanen, M. P., Ehn, M., Peräkylä, O., Kurtén, T., and Prisle, N. L.: Gas-to-Particle Partitioning of Cyclohexene-and α -Pinene-Derived Highly Oxygenated Dimers Evaluated Using COSMOtherm, J. Phys. Chem. A (2021), in press.

Reviewer’s comment No. 11 — Page 7 line 158 – what is “good performance” ?

Authors’ reply: We removed the statement, since it was not necessary in the “representation section”.

Reviewer's comment No. 12 — I miss a short description of which parent VOCs were considered for the basis set used.

Authors' reply: We are not completely sure what the reviewer means with this statement. As noted above, we have not computed any new thermodynamic parameters in this study. We use data from Wang et al., who in turn used the approx. 3400 molecules included in the MCM dataset at the time of their study. The parent VOCs for the MCM dataset can be seen e.g. here (<http://mcm.leeds.ac.uk/MCM/roots.htm>), and include most of the atmospherically relevant small alkanes (methane, ethane, propane etc), alcohols, aldehydes, alkenes, ketones and aromatics, as well as chloro- and hydrochlorocabons, esters, ethers, and a few representative larger VOCs such as three monoterpenes and one sesquiterpene. Some inorganics (by definition not VOCs) are also included. A brief description of the MCM dataset is now included in the manuscript. If the reviewer is referring to our C10 dataset, used solely for a preliminary “sanity check” as discussed below and in the reply to reviewer 1, then the “parent VOC” is simply n-decane.

We revised the manuscript as follows:

“The parent VOCs for the MCM dataset include most of the atmospherically relevant small alkanes (methane, ethane, propane etc), alcohols, aldehydes, alkenes, ketones and aromatics, as well as chloro- and hydrochlorocabons, esters, ethers, and a few representative larger VOCs such as three monoterpenes and one sesquiterpene. Some inorganics are also included.”

Reviewer's comment No. 13 — Regarding the prediction section. As the authors write monoterpenes are relevant molecules and as I understand the choice of 10 carbon atoms is based on monoterpenes. The choice of a linear alkane chain is motivated by simplicity – but is it relevant in the atmosphere from monoterpene oxidation? Are all the molecules studied in the master chemical mechanism? – I would have expected at least some molecules with a ring structure included.

Authors' reply: Please see our reply to reviewer 1 concerning this same topic. The purpose of the C10 dataset was simply to perform a basic “sanity check” of our machine-learning set-up. We purposefully chose a rather simplistic set of structures with no direct atmospheric relevance. This very feature on the other hand means that the molecules are quite different from those included in the Wang et al dataset, making our test more robust. We are in the process of performing new COSMOtherm calculations, and associated machine learning (building on the testing and validation performed here), on a much larger, more complex, and also more atmospherically relevant dataset.

Reviewer's comment No. 14 — The authors several times discuss formation of particles and – is there a reference for some thought of threshold vapor pressure value ? For example Page 2 line 50 a threshold value of 10-12 Pa for nucleation is given.

Authors' reply: The exact threshold of course depends on the conditions, including both the temperature, the formation mechanism and formation rate of the molecule in question, and the concentration of pre-existing large particles. In the typical volatility classification scheme used in atmospheric chemistry and physics (VOC - SVOC - LVOC and so on), the threshold for “effectively non-volatile” has gradually crept down over the past decades, with new categories being added: first

ELVOC, (with E standing for “extreme”) and now ULVOC (with U standing for “Ultra”). Again, precise threshold values for these definitions also vary somewhat between sources (and are anyway usually defined in terms of saturation mass concentrations rather than vapor pressures). The 10-12 kPa value (note, kPa not Pa) quoted on page 2 represents a fairly safe threshold for participation in early growth - for actual nucleation even lower volatilities would typically be needed. This has now been clarified further in the manuscript, and a reference has been added:

“If the saturation vapour pressure of an organic compound is lower than approx. 10-12 kPa, then it could condense irreversibly onto preexisting nanometer-sized cluster (Bianchi et al., 2019).”

Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, *Chem. Rev.*, 119, 3472–3509, 2019

Reviewer’s comment No. 15 — In the abstract it says” The resulting saturation vapor pressure and partitioning coefficient distributions were physico-chemically reasonable, and the volatility predictions for the most highly oxidized compounds were in qualitative agreement with experimentally inferred volatilities of atmospheric oxidation products with similar elemental composition.”

I do not see justification for this in the manuscript. I miss examples (optimally for all the compounds) where the authors give the experimental vapor pressure, the vapor pressure obtained from a state of the art group contribution method, the COSMOtherm vapor pressure and the vapor pressure obtained using the machine learning code and discuss differences and similarities. For the lowest vapor pressures experimental data are not available. The authors should give the range of vapor pressures where the model can be compared with experimental data. It is not clear what is meant with elemental composition – normally the molecular formula or even structural formula is needed to predict a vapor pressure?

Authors’ reply: As noted by the reviewer, there is a great lack of experimental data on volatilities of anything but the simplest atmospherically relevant compounds. In particular, there are to our knowledge NO direct experimental measurements of the volatilities of ANY highly oxidised C10 compounds, such as the monoterpene autoxidation products referred to in our discussion. Further, as noted above, we have not performed any new COSMOtherm calculations in our paper, so COSMOtherm predictions for the C10 dataset are not available either. The three-way comparison requested by the reviewer is thus impossible. A comparison between the machine learning algorithm and the COSMOtherm predictions for the molecules calculated by Wang et al, is on the other hand very relevant, and included in the discussion.

We agree that to reliably predict a saturation vapour pressure of any particular single compound, the molecular and/or structural formula is usually needed. However, for more complex compounds such as monoterpene autoxidation products, this information is generally not available - only the elemental composition can be extracted from mass spectrometric measurements. The “inferred volatilities” discussed here are basically fits of the volatilities inferred from the measured condensation behaviour to the measured elemental compositions. While imperfect, this approach is fairly common in the literature. The point we wish to make here is that the predictions for our most

highly oxidized C10 compounds are in qualitative agreement with the predictions of such empirical fits. We have reformulated the paragraph in question to avoid giving a misleading sense of accuracy.

“The resulting saturation vapor pressure and partitioning coefficient distributions were physico-chemically reasonable, for example, in terms of the average effects of the addition of single functional groups. The volatility predictions for the most highly oxidized compounds were in qualitative agreement with experimentally inferred volatilities of, for example, alpha-pinene oxidation products with as-yet unknown structures, but similar elemental composition.”

Reviewer’s comment No. 16 — Page 2 line 3: Several experimental techniques are capable of measuring saturation vapor pressures of 10-5 Pa. It would be appropriate to cite literature providing experimental vapor pressures. What is the definition of non-volatile that the authors use?

Authors’ reply: By “non-volatile” we mean at least “ELVOC”, if not “ULVOC”, i.e., a molecule that does not appreciably evaporate even from a nanometer-sized particle. The threshold for this is many orders of magnitude lower than 10-5 Pa. We have added reference to a review of saturation vapor pressure measurement techniques.

“See e.g. (Bilde 2015) for a review of experimental saturation vapor pressure measurement techniques relevant to atmospheric science.”

M. Bilde et al., Saturation Vapor Pressures and Transition Enthalpies of Low Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. *Chem. Rev.* 2015, 115, 4115-4156.

Reviewer’s comment No. 17 — Page 3 line 63: “Here, we take a different approach compared to previous parametrization studies, and consider a data-science perspective (Himanen et al., 2019). Instead of assuming chemical or physical relations, we let the data speak for itself.” - what is meant with letting the data speak for itself?

Authors’ reply: Our machine learning approach produces a data-driven model. Unlike the parameterizations that are discussed in the introduction and in a previous reviewer question, we do not use chemical or physical insight to derive an analytical expression for our model, whose few parameters are then determined by fitting. In contrast, our model has a free form (the kernel expansion). The number of expansion coefficients grows with the amount of available training data and the model changes with the data. It adapts to the training data in ways a rigid parameterization cannot.

Reviewer’s comment No. 18 — Figure 9 b: what is on the y-axis - is it a percentage? or an absolute number?

Authors’ reply: Figure 9 b is a histogram and it shows the number of molecules that have a certain saturation vapor pressure. The y-axis is labeled correctly. We capped the y-axis at 100 to make the green and orange histograms (for molecules containing 7 or 8 O atoms) visible. As Figure

7 c shows, the total number of molecules in each bin of the C10 set is much higher (going up to ~ 2000). If the y-axis went up to 2000, the orange and green subsets could not be seen.

Reviewer's comment No. 19 — Page 16: “This result demonstrates that unlike the simplest group-contribution models (which would invariably predict that the lowest-volatility compounds in our C10 dataset should be the tetrahydroxydicarboxylic acids), both the original COSMOtherm predictions, and the machine-learning model based on them, are capable of accounting for hydrogen-bonding interactions between functional groups.”

I am not sure this statement is quite fair – to my knowledge state of the art group contribution methods (e.g. those on the UMAN Sysprop webpage) include interactions – which simple group contribution methods are the authors referring to and are such simple methods being used in atmospheric simulations?

Authors' reply: We feel that our statement and that of the reviewer do not contradict each other. *Some* state-of-the-art group contribution methods indeed do include cross-terms for interactions. However, the *simplest* ones, such as SIMPOL, do not. We have clarified this by adding mention of SIMPOL to the sentence. SIMPOL is actually used quite extensively e.g. in studies of autoxidation products, as the very lack of cross-terms makes it more robust for very large and complex molecules, though at the expense of accuracy for compounds of medium complexity. As shown e.g. in Kurtén et al (2016), some of the more sophisticated models included in the UManSysprop website, most notably the “Nannoolal” family of approaches, may fail catastrophically when applied to certain molecules containing multiple peroxide groups. In their defence, it should be noted that the methods were never even designed to work for such compounds, and indeed some of the source literature explicitly warns against doing so. We hope that the type of approach presented and piloted in this manuscript will be able to provide the robustness of SIMPOL, combined with the greater and more molecule-specific accuracy analogous to the more sophisticated models, for a very much larger set of compounds.

“This result demonstrates that unlike the simplest group-contribution models such as SIMPOL . . .”

Kurtén, T., Tiusanen, K., Roldin, P., Rissanen, M. P., Boy, M., Ehn, M. and Donahue, N. M. α -pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. *Journal of Physical Chemistry A*, Vol. 120, 2569-2582, 2016.