
Reviewer 1

Reviewer’s comment No. 1 — [. . .] We therefore argued that “the expertise and time required
to perform quantum-chemical calculations for atmospherically relevant molecules should constitute
but a minor impediment to a wider adoption” (Wang et al., 2017). I am therefore very pleased
to see that with their work, Lumiaro et al. have now obliterated even this minor impediment.
While it would have been possible to make COSMOtherm-based predictions for datasets much
larger than the 3414 molecules in Wang et al. (2017) using “brute force” and high-performance
computing resources, Lumiaro et al. demonstrate convincingly that this can be achieved with much
less computational e↵ort using machine learning approaches.

The paper is very well written and, apart from some parts of the Methods section, easily accessible
to those who are not familiar with computational chemistry and machine learning approaches.

Authors’ reply: We thank the reviewer for their positive assessment of our work!

Reviewer’s comment No. 2 — The compounds to which the trained algorithm was applied
have very limited structural diversity (only normal decanes functionalized with up to six functional
groups of only three types). Why was this relatively simple dataset of molecules generated, instead
of using existing molecular datasets of atmospherically relevant species? For example, Valorso et
al. (2011) generated > 200,000 oxidation products of a-pinene, i.e. one of the monoterpenes judged
to be among “the most interesting molecules from a SOA-forming point of view” (line 307). A
recent study generated datasets of 200,000, 550,000 and 750,000 atmospheric oxidation products
of decane, toluene and a-pinene (Isaacman-VanWertz and Aumont, 2020).

Authors’ reply: At the time of our study, we were not aware of the existence, or the public
availability, of the datasets suggested by the reviewer. The purpose of our admittedly simple C10
dataset was not to comprehensively evaluate the performance of the algorithm (as that would in
any case required extensive further COSMOtherm calculations), but just to perform a relatively
simple “sanity check” of its predictions. We completely agree with the reviewer that the actual
structures of the molecules in our C10 set may not be atmospherically relevant, although functional
group composition certainly is.

We have now looked into the alpha-pinene dataset suggested here, but discovered that some alpha-
pinene oxidation products are already included in Wang et al’s dataset for which we trained our
machine learning model. Testing model predictions on the same molecule class it is trained on is not
good practice in ML model validation, so we did not extend our “sanity check” to these molecules.
We are now building a larger dataset with an active machine learning technique and additional
COSMOtherm calculations. The new dataset is based on compounds generated with the GECKO
algorithm. It will be substantially larger and atmospherically more relevant than the C10 dataset.
We hope to be able to report preliminary result on this work soon in a separate publication.

We clarified our motivation behind the choice of the validation dataset in the manuscript:

“While the functional group composition of our C10 dataset is atmospherically relevant, the par-
ticular molecules are not. The purpose of this dataset is to perform a relatively simple sanity check
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on the machine learning predictions, on a set of compounds structurally di↵erent from those in
the training dataset. We note that using e.g. more atmospherically relevant compounds such as
alpha-pinene oxidation products for this purpose might be counter-productive, since Wang et al.’s
dataset used for training contains several such compounds.”

Reviewer’s comment No. 3 — Can the authors explain in more detail how a machine-learning
model that is not fed with information on the conformations of a molecule is “capable of account-
ing for hydrogen-bonding interactions between functional groups” (line 366). Is this merely by
structural similarity with molecules within the training set that also have such capabilities?

Authors’ reply: We agree that this must be due to structural similarity in the training set. The
linear structures we generate in our work do of course not have hydrogen bonds. The hydrogen
bonds could therefore only be introduced by conformers. The SMILES string for all conformers of
a molecule is of course the same. So if there is something in a SMILES string that indicates to
the machine learning method that the structure prefers a conformer with hydrogen bonding and
representative structures are in the training set, this could indeed be learned. We have clarified
this in the manuscript:

“As we did not include conformational information of our C10 molecules in the machine-learning
predictions, this is most likely due to structural similarities between the C10 compounds, and
hydrogen-bonding molecules in the training dataset.”

Reviewer’s comment No. 4 — In this context, it is stated on line 380: “MBTR encoding
requires knowledge of the 3-dimensional molecular structure, which raises the issue of conformer
search”, but section 2.2.2. does not spell out how that issue was resolved in the current study?

Authors’ reply: To compute the MBTR and CM descriptors, we employed the openbabel
software to convert the SMILES strings provided in the Wang et al. dataset into 3-dimensional
molecular structures. Wang and collaborators must have themselves carried out a conformer search
with COSMOconf, since the COSMOtherm calculations they performed typically average over many
(up to 100) located conformers, but did not publish this data. Since values of KW/G, KWIOM/G
and PSat were computed by averaging over conformers, there is no single conformer that correlates
strongly with these values, so we decided to forgo the computationally costly conformer searches.
We have now clarified this point in the manuscript:

“To compute the MBTR and CM descriptors we employed the openbabel software to convert the
SMILES strings provided in the Wang et al. dataset into 3-dimensional molecular structures. We
did not perform any conformer search.”

Reviewer’s comment No. 5 — Can the author propose how in the future, the atmospheric
community will be able to obtain predictions for atmospherically relevant molecules, i.e. how a
trained machine learning algorithm or its predictions could be made available for use by others.
The authors still intend to improve this algorithm by extending the “training set to encompass
especially atmospheric autoxidation products” (line 388), i.e. may not yet want to make the
existing version accessible to others. However, it may be instructive to hear how this could look
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like eventually. Is it conceivable to create an easy-to-use software or webpage that is fed batches of
SMILES and generates KW/G, KWIOM/G and PSat as calculated by the algorithm? Or would
that take the form of a searchable database that has such algorithm-generated values stored for the
“104 - 107 di↵erent organic compounds” (line 60) of atmospheric interest?

Authors’ reply: Our “role model” here is the excellent and user-friendly UManSysProp webpage,
where a user can insert e.g. a SMILES string, and obtain (among other things) saturation vapor
pressure predictions computed using a variety of group contribution methods. We anticipate that
the user interface of our model will eventually be similar to that. Ideally, in addition to providing
predicted values for the di↵erent parameters, the results would also include an estimate of how
reliable the predictions are (based on how similar or di↵erent the user-input molecule is to those
included in the training dataset).

Reviewer’s comment No. 6 — Many atmospheric applications require knowledge of phase
partitioning at variable temperatures. COSMOtherm can also calculate the enthalpy of vaporiza-
tion and the internal energies of phase transfer between the gas phase and water or WIOM. It
would probably be advisable to eventually also train a machine learning algorithm to predict those
thermodynamic properties.

Authors’ reply: We agree completely. We also note, related to issues raised by the other
reviewers, that predictions of various activity coe�cients computable by COSMOtherm could also
be useful. We changed the manuscript accordingly:

“We also intend to extend the machine learning model to predict a larger set of parameters computed
by COSMOtherm, such as vaporization enthalpies, internal energies of phase transfer, and acivity
coe�cients in representative phases.”

Reviewer’s comment No. 7 — I find Figure 2 not particularly useful. While it could be
beneficial to have a representation of the machine learning workflow, it should look less generic
than what is depicted here. For example, “representations” make no appearance in that diagram,
but are obviously an important part of the process. Also, the training and testing of the machine
learning algorithm is presumably a key element of the workflow.

Authors’ reply: We changed the figure following the referee’s recommendation.
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Figure 1: Schematic of our machine learning workflow: The raw input data is converted into
molecular representations (referred to as features in this figure). We then set up and train a
machine learning method. After evaluating its performance in step 5, we may adjust the features.
Once the machine learning model is calibrated and trained, we make predictions on new data.
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Reviewer’s comment No. 8 — Footnote on page 2: While it is indeed quite common to
estimate the KO/G by dividing KO/W by KG/W (e.g. Meylan and Howard, 2005) this is only
an approximation. Whereas the octanol phase in a KO/W measurement is saturated with water
and the aqueous phase is saturated with octanol, the solvents in a KW/G and KO/G measurement
are typically pure. This can lead to a failure of the thermodynamic triangle to correctly estimate
KO/G for hydrophobic substances (Beyer et al. 2002).

Authors’ reply: Thank you for the clarification! We have changed the footnote to: “The gas-
octanol partitioning coe�cient (KO/G) can then to good approximation be obtained from these by
division.”

Reviewer’s comment No. 9 — Line 96. The abbreviation KRR is used here for the first time,
but is only introduced on line 106.

Authors’ reply: We removed the first instance of KRR, since it was not required on line 96.

Reviewer’s comment No. 10 — Line 134: bromine not bromide

Authors’ reply: Fixed

Reviewer’s comment No. 11 — Line 146: The Pyzer-Knapp et al. reference is missing the
year “2015” (also in the reference list)

Authors’ reply: Added

Reviewer’s comment No. 12 — Line 154: What does it mean if a molecular representation is
“continuous”?

Authors’ reply: A molecular representation is continuous, if continuous changes in the molec-
ular structure translate into continuous changes in the representation. The many-body tensor
representation (MBTR) is a good example for a continuous representation, whereas the Coulomb
matrix (CM) is discontinuous. Both encode inverse distances. The MBTR does so by Gaussian
broadening each inverse distance between atom pairs and then summing up these Gaussians in
separate vectors for each atomic species pair. Small changes in the interatomic distances then lead
to small changes in the Gaussian peak positions. Conversely, the CM assigns one value to each
atom pair and collects those in a matrix whose rows and columns are sorted by their respective
norm. A small interatomic distance variation could then lead to an exchange of rows and columns,
which is not a continuous change of the representation.

Reviewer’s comment No. 13 — Line 320: Explain the meaning of “cheaper to evaluate”.

Authors’ reply: The MBTR descriptor has a large data structure (22,400 vector elements) and
was evaluated in several calculation stages. In contrast, TopFP is represented by a smaller data
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structure (8,192 vector elements) and required less computational time to evaluate, also because it
did not need the conversion to 3-dimensional structures. We have now clarified in the manuscript
that by ”cheaper” we refer to computational resources involved.

Reviewer’s comment No. 14 — Line 331-332: I find this sentence very confusing and I wonder
whether “or less” at the end of line 331 should be deleted.

Authors’ reply: The second ”or less” was a typo, which we removed in the revised version.
Thank you for spotting it!

Reviewer’s comment No. 15 — Line 336: “by almost a factor of 4000”.

Authors’ reply: “a” added as suggested

Reviewer’s comment No. 16 — Line 397 and 398: If “Zenodo, 2020” and “Gitlab, 2020” are
references, they are missing from the reference list. Wouldn’t it be better to provide complete links
to those datasets?

Authors’ reply: We have now updated these citations with full reference links, and DOIs where
appropriate.
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