Supplementary information for...

Impact of northern hemisphere mid-latitude anthropogenic SO₂ emissions on local and remote tropospheric oxidants

Daniel M. Westervelt^{1,2}, Arlene M. Fiore^{1,3}, Colleen B. Baublitz^{1,3}, Gustavo Correa¹

¹Lamont-Doherty Earth Observatory, Columbia University. Palisades, New York, USA

²NASA Goddard Institute for Space Studies, New York, New York, USA

³Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, USA

Correspondence to: Daniel M. Westervelt (danielmw@ldeo.columbia.edu)

Figure S1: Boreal summer (JJA) mean percent change in sulfate concentration between a control simulation and a perturbation simulation in which anthropogenic SO2 emissions are removed over a certain region: (a,b) US, (c,d) Europe, and (e,f) China. Hatching denotes statistical significance according to a Student's t-test at the 95% confidence level.

Figure S2: As in Figure S1 but for boreal autumn (SON).

Figure S3: As in Figure S1 but for boreal winter (DJF).

Figure S4: Boreal summer (JJA) mean percent change in OH (left column) and HO₂ (right column) between a control simulation and a perturbation simulation in which anthropogenic SO₂ emissions are removed over a certain region: (a,b) US, (c,d) Europe, and (e,f) China. Hatching denotes statistical significance according to a Student's t-test at the 95% confidence level.

Figure S5: As in Figure S4 but for boreal autumn (SON).

Figure S6: As in Figure S4 but for boreal winter (DJF).

Figure S7: Boreal summer (JJA) mean percent change in NO_x between a control simulation and a perturbation simulation in which anthropogenic SO₂ emissions are removed over a certain region: (a) US, (b) Europe, and (c) China. Hatching denotes statistical significance according to a Student's t-test at the 95% confidence level.

Figure S8: As in Figure S7 but for boreal autumn (SON).

Figure S9: As in Figure S7 but for boreal winter (DJF).

Fig. S10. Change in MAM O_3 production (left column) and loss (right column) for each of the SO_2 emission perturbation simulations (rows). Units are in ppbv day⁻¹. Hatching denotes statistical significance according to a Student's t-test at the 95% confidence level.

Fig. S11: Change in MAM O₃ production (left column) and loss (right column) for each of the SO₂ emission perturbation simulations (rows). Units are in ppbv day⁻¹. Hatching denotes statistical significance according to a Student's t-test at the 95% confidence level.

Fig. S12. Change in O_3 advective (left column) and convective (right column) tendency for each of the SO_2 emission perturbation simulations (rows). Units are in ppbv day⁻¹. Hatching denotes statistical significance according to a Student's t-test at the 95% confidence level.

Figure S13: Boreal summer (JJA) mean percent change in O_3 between a control simulation and a perturbation simulation in which anthropogenic SO_2 emissions are removed over a certain region: (a) US, (b) Europe, and (c) China. Hatching denotes statistical significance according to a Student's t-test at the 95% confidence level.

Figure S14: As in Figure S13 but for boreal autumn (SON).

Figure S15: As in Figure S13 but for boreal winter (DJF).