Supplementary material

Section 1. Off-line measurements methodology

 PM_1 samples were collected on 150 mm-diameter quartz fiber filters using Digitel automatic high volume (30 m³/h) samplers one every four days.

- 5 A complete chemical analysis of the collected PM₁ samples was carried out. A quarter of the filter was used for an acid digestion (HNO₃:HF:HClO₄), and the resulting solution was analyzed by means of Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for the major and trace elements concentration determination, respectively. A quarter of the filter was water extracted and the concentrations of NO₃⁻, SO₄²⁻, Cl⁻ were
- 10 determined by Ion Chromatography, and concentration of NH4⁺ by selective electrode. Organic (OC) and elemental carbon (EC) concentrations were determined by thermal-optical methods. SO4²⁻ concentrations in the present study were those calculated from S concentrations determined by ICP-AES, in agreement with all previous works by the research group.

PM₁ mass was reconstructed (PM₁ reconstructed) by the addition of all components and an estimation
of 25% to account for water.

Section 2 Supplementary tables and figures

01/10/2017 01/11/2017 01/12/2017 01/01/2018 01/02/201801/03/2018 01/04/2018 01/05/2018 01/06/2018 01/07/2018 01/08/2018 01/09/2018 01/09/2018 01/02/2018

20 Figure S 1.Data availability for periods A and B.

Table S 1. Output correlations of runs of different number of factors (n) per each season in periods A and B. Bold rows correspond to those selected output runs.

А	n	Q/Qexp	Anchor COA	Anchor HOA	Anch or BBOA	Anch or BBOA	HOA vs. BC	BBOA	LO-00	M0-00	OA meas. Vs OA model	
								vs.	A vs.	A vs.	D ²	Slong
								m/z60	NO₃ ⁻	SO ₄ ²⁻	n	Siope
	3	0.789 ± 0.009	03	03	-	0.56	0.63	-	0.44	0.04	0.943	1.023±0.011
May 2014	4	0.706 ± 0.008	05	01	-	0.60	0.67	-	0.37	0.21	0.962	0.996±0.008
	5	0.678 ± 0.011	02	05	01	0.61	0.65	0.28	0.47	0.10	0.965	1.029±0.008

	3	1.858±0.017	0.1	0.5	-	0.77	0.41	-	0.27	0.12	0.954	1.039±0.004
Jun-Aug	4	1.712±0.004	0.1	0.5	-	0.76	0.37	-	0.25	0.18	0.959	1.035±0.004
2014	5	1.572±0.017	0.2	0.5	-	0.74	0.34	-	0.23	0.16	0.964	1.025±0.003
	3	3.188±0.017	0.1	0.5	-	0.66	0.68	-	035	0.07	0.951	0.9545±0.00 41
Sep-Oct	4	2.929±0.008	0.1	0.3	-	0.35	0.68	-	0.35	0.08	0.963	0.968 ±0.003
Jun-Aug 2014 Sep-Oct 2014 2014- 2015 Apr-May 2015 B Sep-Oct 2017 Nov- Mar 2017- 2018 Apr- May	5	2.763±0.031	0.1	0.5	0.5	0.64	0.68	0.4	0.32	0.09	0.967	0.991±0.004
Nov-Mar	3	9.435±0.054	03	05	-	0.68	0.68	-	0.65	0.3	0.972	1.019±0.002
2014-	4	9.207 ± 0.034	0.1	0.5	0.2	0.59	0.68	0.60	0.31	0.35	0.976	1.021±0.002
2015	5	8.677 ± 0.074	0.3	0.5	0.1	0.73	0.67	0.60	020	0.37	0.976	1.020±0.002
	3	4.329±0.087	0.5	0.5	-	0.74	0.45	-	0.40	0.26	0.952	1.023±0.004
Apr-May	4	4.101±0.045	0.3	0.5	-	0.70	0.43		0.39	0.17	0.956	1.025±0.004
2015	5	3.703±0.054	0.1	0.5	0.3	0.88	0.5	0.4	0.26	0.26	0.959	1.032±0.004
	Nb.		Anchor	Anchor	Anchor	COA vs.	НОА	BBOA	LO-00	M0-00	OA mea	s. Vs. OA app.
В	Fact ors	Q/Qexp	COA	HOA	BBOA	m/z55	vs. BC	vs. m/z60	A vs. NO₃⁻	A vs. SO4 ²⁻	R ²	Slope
Son Oct	3	1.81±0.001	0.1	0.5	-	0.83	0.51	-	0.60	0.15	0.96	0.999x +0.14
2017	4	1.053 ± 0.012	0.1	0.5	-	0.80	0.52	-	0.59	0.33	0.96	1.007x+0.09
2017	5	0.977 ± 0.006	0.1	0.3	0.5	0.61	0.65	0.28	0.53	0.18	0.96	0.96x+0.098
Nov-	4	0.873±0.003	0.3	0.5	0.2	0.68	0.78	0.87	0.80	0.46	0.97	1.013x+0.07
Mar 2017-	5	0.808±0.004	0.2	0.5	0.1	0.72	0.61	0.91	0.32	0.47	0.97	1.010x+0.03 2
2018	6	0.765±0.002	0.3	0.5	0.3	0.70	0.78	0.91	0.41	0.47	0.97	1.011x+0.12 5
Apr-	3	1.076±0.000	0.1	0.5	-	0.78	0.65	-	0.51	0.18	0.97	0.983x+0.20
May	4	0.893±0.006	0.4	0.5	-	0.76	0.57	-	0.42	0.32	0.97	0.898x+0.13
2018	5	0.778±0.006	0.3	0.2	0.3	0.69	0.56	0.57	0.42	0.31	0.97	1.002x+0.08
	3	0.957±0.013	0.5	0.5	-	0.69	0.31	-	0.04	0.05	0.97	0.996x+0.15
2018	4	0.869 ± 0.008	0.5	0.5	-	0.76	0.44	-	0.1	0.08	0.96	0.997x+0.14
2018	5	0.809 ± 0.00	0.5	0.4	-	0.76	0.47	-	0.14	0.07	0.96	1.122x+0.15
Sep-Oct	3	1.273±0.000	0.5	0.5	-	0.73	0.74	-	0.25	0.27	0.95	11.024x+0.0 3
Sep-Oct 2018	3 4	1.273±0.000 1.493±0.008	0.5 0.3	0.5 0.5	-	0.73 0.74	0.74 0.74	-	0.25 0.23	0.27 0.21	0.95	11.024x+0.0 3 1.024x-0.02

25 (a)

(b)

Figure S 2. Scaled residuals (a) time series (b) mass spectra for 3, 4, 5 factors in period A and for n-1, n and n+1 factors in Period B being n the number of factors of the chosen solution.

Figure S 3. Seasonal profiles of subperiods of periods A and B by chronological order.

45 Table S2. Correlations of factors mass spectra with external anchor mass spectra (a), and factors time series with external markers (b).

	(a)	Crippa	et al., 201	3, *Ng et a	al., 2010	0 Mohr et al., 2012				
		COA	HOA	BBOA*	OOA	COA	HOA	BBOA	SV-OOA	LV-OOA
Α	COA	0.96	0.87	0.74	0.35	0.92	0.76	0.76	0.71	0.19

	НОА	0.77	0.96	0.62	0.34	0.71	0.93	0.62	0.61	0.14
	BBOA	0.25	0.13	0.67	0.36	0.38	0.08	0.35	0.34	0.27
	LO-OOA	0.13	0.06	0.31	0.95	0.27	0.03	0.28	0.66	0.97
	MO-00A	0.10	0.05	0.25	0.93	0.22	0.02	0.24	' .65	0.95
	COA	0.98	0.71	0.66	0.27	0.86	0.58	0.66	0.65	0.16
	HOA	0.79	0.99	0.61	0.19	0.73	0.94	0.65	0.55	0.10
В	BBOA	0.62	0.50	0.99	0.40	0.77	0.40	0.72	0.65	0.33
	LO-00A	0.39	0.25	0.70	0.79	0.64	0.16	0.66	0.75	0.72
	M0-00A	0.07	0.02	0.03	0.89	0.17	0.05	0.16	0.56	0.94

(b)	Period A	Apr- May 2015	Jun- Aug 2014	Sep - Oct 2014	Nov- Mar 2014- 2015	Period B	Ap- May 2018	Jun- Aug 2018	Sep- Oct 2018	Nov- Mar 2017- 2018
COA vs. m/z 55	0.58	0.69	0.76	0.35	0.63	0.71	0.76	0.76	0.74	0.72
COA vs. HOA	0.20	0.32	0.24	0.02	0.26	0.31	0.32	0.32	0.28	0.33
HOA vs. BC	0.62	0.42	0.40	0.70	0.63	0.68	0.57	0.57	0.74	0.68
HOA vs. NO	0.44	0.36	0.16	0.53	0.42	0.63	0.41	0.41	0.68	0.76
HOA vs. NO ₂	0.49	0.33	0.39	0.51	0.49	0.55	0.51	0.51	0.70	0.75
HOA vs. NO _x	0.44	0.40	0.29	0.45	0.44	0.65	0.51	0.51	0.70	0.75
LO- OOA vs. m/z 43	0.51	0.48	0.25	0.60	-	0.41	0.86	0.86	0.84	0.66
LO- OOA vs. NO3 ⁻	0.29	0.39	0.74	0.34	-	0.60	0.40	0.68	0.75	0.58
MO- OOA vs. m/z 44	0.60	0.40	0.68	0.75	0.58	0.69	0.84	0.84	0.96	0.96

MO-O OA vs. SO4 ²⁻	0.02	0.09	0.13	0.03	0.03	0.10	0.32	0.32	0.31	0.47
BBOA vs. m/z 60	0.60	-	-	-	0.60	0.91	-	-	-	0.91
BBOA vs. m/z 73	0.55	-	-	-	0.55	0.61	-	-	-	0.61

Table S 3. Comparison between i. total PM_1 from the sum of ACSM components (NR-PM₁) and BC concentrations and co-located measurements of PM_1 from OPC, SMPS and quartz-fiber filters and ii. ACSM species concentration vs. 24-h samples concentrations. Fit parameters correspond to least orthogonal distance regression method.

55

(i)		А			В			
у	x	R ²	Slope	Intercept	R ²	Slope	Intercept	
NR-PM ₁ +BC	OPC	0.71	0.989 ± 0.007	0.98 ± 0.07	0.76	1.285 ± 0.006	-2.31 ± 0.07	
NR-PM ₁ +BC	SMPS (Mass)	0.61	1.001 ± 0.006	0.37 ± 0.07	0.72	1.177 ± 0.006	-0.47± 0.05	
NR-PM ₁ +BC	PM ₁ reconstructed	0.75	1.40 ± 0.09	-1.1 ± 0.8	0.63	1.70 ± 0.17	-3.4 ± 1.3	

(ii)		А			В			
у	x	R ²	Slope	Intercept	R ²	Slope	Intercept	
SO ₄ ²⁻ ACSM	SO ₄ ²⁻ offline	0.89	1.24±0.05	-0.31±0.10	0.93	1.32±0.06	-0.19±0.09	
NO ₃ ⁻ ACSM	NO₃- offline.	0.84	1.9±0.1	-0.12±0.09	0.86	1.72±0.10	0.35±0.12	
NH4 ⁺ ACSM	NH4 offline	0.86	1.72±0.08	-0.26±0.07	0.85	1.98±0.13	-0.05±0.09	
OA ACSM	OC offline	0.73	2.69±0.17	-0.9±0.4	0.86	2.96 ± 0.19	-1.5± 0.4	

Table S 4. Mean and standard deviation for variables under study in periods A and B.

		Per	iod A	Per	riod B
Variables	Units	Average	Standard Deviation	Average	Standard Deviation

Meteorological parameters	Temperature	°C	18.2	5.7	18.4	6.8
	Relative Humidity	%	70.7	15.3	70.2	14.8
	Pressure	hPa	1006.5	7.3	1005.5	7.32
	Sun Radiation	W∙m-²	180.0	266.0	178.9	268.5
	Wind Speed	m∙s⁻¹	2.0	1.4	2.0	1.5
	Wind Direction	o	170.0	102.0	200.4	104.8
Gas-phase pollutants	O3	µg∙m⁻³	52.4	28.0	47.6	23.8
	со	µg∙m-³	0.3	0.2	0.3	0.3
	SO2	µg∙m-³	2.0	1.7	1.7	1.4
	NO	µg∙m-³	8.3	19.2	8.5	1.2
	NO2	µg∙m-³	32.3	24.8	30.6	21.3
NR-PM1 ACSM Species	OA	µg∙m-³	4.2	2.8	4.0	2.8
	SO4 ²⁻	µg∙m-³	1.9	1.5	1.5	1.2
	NO3 ⁻	µg∙m-³	1.3	1.7	1.4	1.9
	NH4 ⁺	µg∙m-³	1.1	0.9	1.0	0.8
	Cŀ	µg∙m-³	0.05	0.08	0.06	0.08
МААР	ВС	µg∙m⁻³	1.7	1.6	1.4	1.4
ACSM + MAAP	PM1	µg∙m⁻³	10.1	6.7	9.6	6.6
OPC	PM ₁	µg∙m⁻³	8.3	5.4	9.1	5.0
SMPS	PM ₁	µg∙m⁻³	9.8	7.0	8.5	5.3
Filters	PM ₁	µg∙m⁻³	8.0	4.2	7.1	3.0

Figure S 4. Time series for NR-PM₁ species and BC concentrations in periods A (top) and B (bottom).

Figure S 5. Time series of co-located gases measurements for period A (top) and B (bottom).

Figure S 6. Time series and diel patterns of meteorological variables for periods A (top) and B (bottom).

Figure S 7. Residual scaled distributions of PMF OA source distribution using ME-2 approach for periods A and B. Parameters of both distributions (mean, standard deviation, skewness coefficient and kurtosis coefficient) are listed.

80 Figure S 8. Diel patterns of apportioned factors. Boxplots represent median and interquartile range and whiskers show maximum and minimum values. Factors are in this order COA, HOA, BBOA, LO-OOA and MO-OOA and left column corresponds to period A and right one to B.

85

Figure S 9. Mean diel seasonal pattern of available traffic intensity from data from period A and B to 2018 at 400m away from site for period A (a) and B (b).

90 Figure S 10. Seasonal scatterplot of f44 and f43 arranged colored by OA concentrations. Top and bottom graphs correspond to period A and B respectively. Dashed lines correspond to the triangle plot (Ng et al., 2010).

(a)

(b)

100 Figure S 11. Heatmap of Temperature vs. NOx for summer (JJA) and winter (DJF) and LO-OOA and MO-OOA respectively for period A (a) and B (b). Figure S 12. Ozone (O₃) diel cycle for seasons in period A (top) and period B (bottom) at Palau Reial (PR) and Montseny (MSY).

105 Figure S 12. Ozone diel cycle for seasons in period A (top) and period B (bottom) at Palau Reial (PR) and Montseny (MSY).

115 Figure S 13. Relative frequency of occurrence of episodes sorted by month, mean concentrations per each factor grouped by episodes and relative concentrations of NR-PM1 components grouped by episodes from left to right and for period A (top) and B (bottom).