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Abstract. Theoretical models of the Earth’s atmosphere ad-
here to an underlying concept of flow driven by radiative
transfer and the nature of the surface over which the flow
is taking place: heat from the sun and/or anthropogenic
sources are the sole sources of energy driving atmospheric5

constituent transport. However, another source of energy is
prevalent in the human environment at the very local scale
– the transfer of kinetic energy from moving vehicles to
the atmosphere. We show that this source of energy, due
to being co-located with combustion emissions, can influ-10

ence their vertical distribution to the extent of having a
significant influence on lower-troposphere pollutant concen-
trations throughout North America. The effect of vehicle-
induced turbulence on freshly emitted chemicals remains no-
table even when taking into account more complex urban15

radiative transfer-driven turbulence theories at high resolu-
tion. We have designed a parameterization to account for
the at-source vertical transport of freshly emitted pollutants
from mobile emissions resulting from vehicle-induced tur-
bulence, in analogy to sub-grid-scale parameterizations for20

plume rise emissions from large stacks. This parameteriza-
tion allows vehicle-induced turbulence to be represented at
the scales inherent in 3D chemical transport models, allow-
ing this process to be represented over larger regions than
is currently feasible with large eddy simulation models. In-25

cluding this sub-grid-scale parameterization for the vertical
transport of emitted pollutants due to vehicle-induced turbu-
lence in a 3D chemical transport model of the atmosphere
reduces pre-existing North American nitrogen dioxide biases
by a factor of 8 and improves most model performance scores30

for nitrogen dioxide, particulate matter, and ozone (for exam-
ple, reductions in root mean square errors of 20 %, 9 %, and
0.5 %, respectively).

1 Introduction

A common and ongoing problem with theoretical descrip- 35

tions of the Earth’s atmosphere is a dichotomy in the rep-
resentation of turbulent transport, between the turbulence
estimated in weather forecast models, and the turbulence
required for accurate simulations in air-quality forecast
models. Representations of atmospheric turbulence used in 40

weather forecast and climate models have focused on pa-
rameterizations of “sub-grid-scale turbulence”: descriptions
of the storage and release of energy derived from incom-
ing solar radiation and anthropogenic heat release, physical
factors in the built environment, and the transfer of sensi- 45

ble and latent heat between the built environment and the
atmosphere. These efforts adhere to an underlying concept
of radiatively driven flow: heat transfer from the sun and/or
anthropogenic sources being the source of energy behind at-
mospheric motions. There has been considerable research fo- 50

cused on improving the understanding of radiatively driven
flow in urban areas (e.g., the advection and diffusion associ-
ated with buildings and street canyons, Mensink et al., 2014;
urban heat island radiative transfer theory, Mason, 2000; ef-
forts to increase 3D model vertical and horizontal resolution 55

in order to better capture the physical environment, Leroyer
et al., 2014). However, when these physical models of tur-
bulence are applied to problems involving the emissions,
transport, and chemistry of atmospheric pollutants, predicted
surface concentrations of emitted pollutants may be biased 60

high and concentrations aloft biased low, indicating the pres-
ence of missing additional sources of atmospheric dispersion
(Makar et al., 2014; Kim et al., 2015). Despite ongoing work
to improve the turbulence schemes in meteorological mod-
els (Makar et al., 2014; Hu et al., 2013; Klein et al., 2014), 65

computational predictive models of atmospheric pollution
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2 P. A. Makar et al.: Vehicle-induced turbulence and atmospheric pollution

typically make use of a constant “floor” or “cut-off” in the
thermal turbulent transfer coefficients provided by weather
forecast models, sometimes with higher values of this cut-
off over urban compared to rural areas (Makar et al., 2014),
in an attempt to compensate for apparent insufficient verti-5

cal mixing of chemical tracers. The turbulent mixing in these
physical descriptions, while capable of reproducing observed
meteorological conditions, does not explain lower concentra-
tion observations of emitted atmospheric pollutants.

Large stack sources of pollutants provide a useful analogy10

in investigating a potential cause of this discrepancy. Emis-
sions from these sources occur at high temperatures, lofting
their emitted mass high into the atmosphere as a result of
buoyancy effects. However, the physical size of the stacks
(< 10 m diameter) is much smaller than the grid cell size15

used in regional models (kilometers to tens of kilometers). In
order to capture the rapid vertical redistribution of emissions
from large stacks, sub-grid-scale parameterizations are used,
in which buoyancy calculations are performed to determine
plume heights, which are then used to determine the distribu-20

tion of freshly emitted pollutants (Briggs, 1982, 1984; Gor-
don et al., 2018; Akingunola et al., 2018). For large stack
emissions, these parameterizations account for the effect of
the addition of energy (the hot exhaust gas) on the local dis-
tribution of pollutants and are essential in estimating initial25

vertical distribution of those pollutants.
In this work, we investigate the potential for another type

of at-source energy to influence the vertical distribution of
freshly emitted pollutant concentrations: the addition of ki-
netic energy due to the displacement of air during the passage30

of vehicles on roadways. Roadway observations in the 1970s
showed that this transferred energy has a significant influ-
ence on the transport of primary pollutants released from ve-
hicle exhaust, with vehicle passage being associated with “a
distinct bulge in the high frequency range of the wind spec-35

trum”, “corresponding to eddy sizes on the order of a few
metres” (Rao et al., 1979). The same work found that the
variation in the concentration of non-reactive tracers could
be attributed to wakes behind moving vehicles. Subsequent
theoretical development led to the creation of the roadway-40

scale models describing turbulence within a few tens of me-
ters around and above roadways, in turn used to estimate
the very local-level impact of vehicles on emitted pollu-
tant concentrations (Eskridge and Catalano, 1987). These
models showed that near-roadway concentrations of emit-45

ted pollutants were highly dependent on vehicle speed, with
over a factor of 2 reduction in emission-normalized pollu-
tant concentrations being associated with an increase in ve-
hicle speed from 20 to 100 kmh−1 (Eskridge et al., 1991).
With the advent of portable, very high time resolution 3D50

sonic anemometers, the turbulent kinetic energy of individ-
ual vehicles could be measured directly, either aboard an in-
strumented trailer towed behind a vehicle (Rao et al., 2002)
or through instrumentation mounted aboard a laboratory fol-
lowing other vehicles in traffic (Gordon et al., 2012; Miller55

et al., 2018). However, the application of this information
has been limited up to now to theoretical and computational
models of the near-roadway environment and large eddy sim-
ulation models with horizontal domains of a few kilometers
in extent. 60

Regional air-quality models also have vertical resolution
in the tens of meters near the surface, suggesting the poten-
tial for vehicle-induced turbulence (VIT) to influence turbu-
lent mixing out of the lowest model layer(s). Here we demon-
strate that this sub-grid-scale vertical transport process, due 65

to its highly localized spatial nature (over roadways), has a
disproportionate impact on the vertical distribution and trans-
port of freshly emitted chemical tracers. A comparable sub-
grid-scale process which has a similar influence on pollu-
tants are the emissions from large stacks noted above (Gor- 70

don et al., 2018; Akingunola et al., 2018). Accurate estima-
tion of pollutant concentrations from the latter sources must
take into account the at-source buoyancy and exit velocity of
high-temperature exhaust to determine the vertical distribu-
tion of fresh emissions. Similarly, our work focuses on deter- 75

mining the local lofting of pollutants from and due to moving
vehicles, in order to adequately represent the at-source verti-
cal distribution of their emissions, on the larger scale.

The extent of the vertical influence of VIT varies depend-
ing on the configuration of vehicles on the roadway. From ob- 80

servations taken from a trailer following an isolated passen-
ger van (Rao et al., 2002) and large eddy simulation (LES)
and other computational fluid dynamics (CFD) models of in-
dividual vehicles (Kim, 2011; Y. Kim et al., 2016), the ver-
tical distance over which VIT can be distinguished from the 85

background for isolated, individual vehicles (i.e., the mixing
length) is on the order of 2.5 to 5.13 m. However, as we show
in the Methodology and the Results sections, for observa-
tions of ensembles of vehicles in traffic (Gordon et al., 2012;
Miller et al., 2018) and large eddy and other computational 90

fluid dynamics simulations of ensembles of vehicles (Y. Kim
et al., 2016; Woodward et al., 2019; Zhang et al., 2017), the
mixing lengths associated with VIT are larger and on the or-
der of tens of meters, to as much as 41 m. The vertical ex-
tent of the impacts of alternating low and high areas of sur- 95

face roughness have been shown to create downwind internal
boundary layers to even more significant heights in the atmo-
sphere (e.g., 300 m, Bou-Zeid et al., 2004, their Fig. 12), sug-
gesting that impacts on the lower boundary layer due to the
alternating roughness elements (in our case, vehicles versus 100

roadways) is not unreasonable. We also show in the Method-
ology section that the impact of VIT within the context of
an air-quality model is via changes to the vertical gradient of
the thermal turbulent transfer coefficients; the gradient of the
sum of the natural turbulence and VIT terms allows VIT to 105

influence vertical mixing, even when model vertical resolu-
tion is relatively coarse.

LES and other CFD models have shown the importance
of VIT towards modifying local values of turbulent kinetic
energy, as noted in the references above. However, these 110
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models require relatively small grid cell sizes compared to
regional chemistry models (centimeters to tens of meters)
and time steps to allow forward time-stepping predictions
of future meteorology and chemistry. These constraints in
turn severely limit the size of the domain in which they5

can be applied, and the processing time for simulations for
these reduced domains can be very high. For example, the
FLUENT model was used by Y. Kim et al. (2016) with an
adaptive mesh with a minimum cell size of 1 cm, with a
100m×20m×20m domain, while Woodward et al.’s (2019)10

implementation of FLUENT had a cell size of 50 cm, oper-
ating in a domain of 600 000 nodes (a volume of 75 000 m3),
and an adaptive time step limited by a Courant number of 5.
The latter criterion implies a computation time step of less
than 0.09 s for a 100 kmh−1 vehicle (or wind) speed, while15

a 1 cm grid cell size implies a computation time step of less
than 1.8× 10−3 s time step. Similarly, the LES model em-
ployed by Zhang et al. (2017) utilized a 1m× 2m× 1m cell
size and a computation time step of 0.03 s. Other LES models
have larger horizontal resolution but are limited in horizontal20

domain extent relative to regional chemical transport mod-
els (example LES models incorporating gas-phase chemistry
include Vinuesa and Vilà-Guerau de Arellano (2005), with
a 50 m horizontal resolution and a 3.2km× 3.2km domain;
Ouwersloot et al. (2011), with a 50 m horizontal resolution25

and a 12.8km× 12.8km domain; Li et al. (2016), with a
150 m horizontal resolution and a 14.4km×14.4km horizon-
tal domain; and S. W. Kim et al. (2016), with a 66.6 m hori-
zontal resolution and a 6.4km×6.4km domain). In contrast,
a 3D regional chemical transport model typically operates30

over a domain with may be continental in extent (the sim-
ulations described here have a 10km× 10km and 2.5km×
2.5km horizontal resolutions with 7680km× 6380 km and
1300km×1050km domains, respectively). The limiting hor-
izontal resolution for regional chemical transport models is35

on the order of kilometers, with a limiting vertical resolution
on the order of tens of meters and time steps on the order
of 1 min. These limits for regional chemical transport mod-
els are a function of the need to provide chemical forecasts
over a relatively large region, within a reasonable amount of40

current supercomputer processing time (the chemical calcu-
lations typically taking up the bulk of the processing time).
LES models are capable of capturing VIT effects (Y. Kim et
al., 2016; Zhang et al., 2017; Woodward et al., 2019), and
their results have been used here in developing our param-45

eterization but are constrained by current computer capac-
ity from being applied for the larger-scale domains required
in regional- to continental-scale air pollution simulations. A
“scale gap” exists between LES and regional chemical trans-
port models – for regional chemical transport models, param-50

eterizations of the physical processes such as VIT, resolvable
at the high resolution of LES models, are therefore required.
In return, these parameterizations allow the relative impact
of the parameterized processes on the larger domain sizes of
regional chemical transport models to be determined.55

2 Methodology

2.1 Theoretical development

In contrast to the very local-resolution “roadway” models
used to examine the impact of vehicle motion on pollutant
concentration (Eskridge and Catalano, 1987; Eskridge et al., 60

1991) and computational fluid dynamics modeling of vehicle
turbulence (Kim, 2011; Y. Kim et al., 2016; Woodward et al.,
2019; Zhang et al., 2017), 3D models of atmospheric pollu-
tion (Galmarini et al., 2015) have horizontal grid cell sizes
of 1 km to tens of kilometers, and thus emissions and vertical 65

transport associated with roadways must be approached from
the standpoint of sub-grid-scale parameterizations. Measure-
ments of the turbulent kinetic energy (TKE) associated with
vehicles are usually available on a “per-vehicle” or “per ve-
hicle within an ensemble” basis. These observations provide 70

the average on-road TKE per vehicle passing a point per unit
time (Gordon et al., 2012; Miller et al., 2018) and/or the
shape of the enhanced TKE cross section in the plane per-
pendicular to the vehicle’s motion (Rao et al., 2002). A sub-
grid-scale parameterization linking these scales is therefore 75

necessary in order to study the impacts of VIT on the verti-
cal redistribution of freshly emitted pollutants and hence on
large-scale atmospheric chemistry and transport. Sub-grid-
scale parameterizations are commonly used in atmospheric
models of weather forecasting to provide the rates of change 80

in processes which occur at scales smaller than the model’s
horizontal and/or vertical resolution, cloud formation, and
buoyant plume rise from large stacks being a common exam-
ple for model grid cell sizes of 10 km or more (Kain, 2004;
Briggs, 1982, 1984; Gordon et al., 2018; Akingunola et al., 85

2018).
Three separate problems must be addressed in the con-

struction of such a VIT parameterization for atmospheric
chemical transport models, specifically the following:

1. What is the relationship governing the decrease in VIT 90

with increasing distance (height) from the vehicles?

2. How can observation data, in units of vehicles per unit
time, be related to variables more commonly available
for regional chemical transport models?

3. How can VIT be incorporated into a regional model 95

in a manner that only the emissions due to vehicles
are affected, given that the vehicle-induced turbulence
will have the most significant impact on emissions from
moving vehicles due to the relatively low area fraction
of roadway area within a given grid cell? 100

We address each of these issues in the sub-sections that fol-
low.

2.2 Changes in VIT with height

Measurements of TKE behind a passenger van (Rao et al.,
2002) typically show a smooth distribution, with TKE de- 105
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creasing both above and below the height of the upper trail-
ing edge of the moving vehicle. Similar results have been
seen from very high-resolution computational fluid dynam-
ics modeling of the flow around individual vehicles, although
the shape of the vehicle and the arrangement of vehicles on5

the roadway can have a strong influence on the location of
the maximum and shape of the vertical profile in TKE (Kim,
2011; Y. Kim et al., 2016). We examined four data sets (the
observations of Rao et al., 2002, and the LES modeling of
Y. Kim et al., 2016; Woodward et al., 2019; Zhang et al.,10

2017) to evaluate the extent to which a Gaussian distribution
may be used to represent the decrease in VIT with height
above moving vehicles, as well as examining the expected
range of mixing lengths which may result from VIT. A Gaus-
sian distribution of TKE with height is given by Eq. (1),15

where Iq(z) is the time-integrated added TKE value for ve-
hicle type q with height z (m2 s−1), hq is the height of the
vehicle, and Aq and σq are numerical constants:

Iq (z)=
Aq√
2πσ 2

q

e

(
−
(z−hq )2

2σ2
q

)
. (1)

Equation (1) may be rewritten as20

ln
(√

2πIq(z)
)
= ln

(
Aq

σq

)
−

(
z−hq

)2
2σ 2
q

. (2)

Equation (2) shows that values of −(z−hq)2 versus
ln(
√

2πIq(z)), with the values of z taken from vertical pro-
files of Iq(z) in the literature, will yield a slope of 1

2σ 2
q

and

an intercept of ln(Aq
σq
), and the correlation coefficient for this25

relationship may be used to judge the accuracy of the use
of a Gaussian distribution to describe the decrease in TKE
with height above moving vehicles. The resulting relation-
ships may also be used to describe the vertical mixing length,
defined “as the diameter of the masses of fluid moving as a30

whole in each individual case; or again, as the distance tra-
versed by a mass of this type before it becomes blended in
with neighbouring masses” (Prandtl, 1925; Bradshaw, 1974).
Here we assume that this blending has occurred at the height
at which the Gaussian has dropped to 0.01 of the value at35

z= hq (i.e., the value of z at which VIT has reached 1 % of

its maximum value (i.e., e−(z−hq )
2/(2σ 2

q ) = 0.01).
An example of the analysis used to construct Table 1 ap-

pears in Fig. 1 for a CFD example for an ensemble of vehi-
cles, taken from the literature (Y. Kim et al., 2016). In this fig-40

ure, contours of TKE are shown as solid lines. TKE values as
a function of height at three locations behind the trucks were
used to determine σq and hence estimate the length scale via
Eqs. (1) and (2). A notable feature of this example is the sub-
stantial increase in length scale which occurs between the45

initial vehicle (a transport truck) and subsequent downwind
vehicles (compare the height of TKE contours, and the result-
ing length scales in Fig. 1, between the left and right sides of

Figure 1. Example of length scales associated with an ensemble of
vehicles (after Y. Kim et al., 2016; Fig. 14). TKE contours along
dashed lines were extracted and fit to Eqs. (1) and (2) for Table 1.
Note that the length scale of turbulence immediately behind the
leading vehicle, a large transport truck, is only 5.13 m, while the
length scale immediately behind the trailing vehicle in the ensem-
ble (an identical transport truck) is 14.73 m.

the figure). Increases in downwind turbulent length scales as-
sociated with vehicles moving in close ensembles are a com- 50

mon feature in the literature.
This analysis (see Table 1) shows that a Gaussian distribu-

tion accounts for much of the variability in TKE with height
(correlation coefficients of 0.54 to 0.99), and under realis-
tic traffic conditions, the mixing lengths increase in size and 55

may be considerably larger than those of isolated vehicles.
Two VIT mobile laboratory studies (Gordon et al., 2012;

Miller et al., 2018) observed vehicle-per-second TKE for ve-
hicles moving in ensembles along multilane roadways, ag-
gregated by vehicle classes using the same methodology, to 60

derive formulae for the net TKE added by VIT at 4 and 2 m
(the height of the instrumentation used in these studies). We
combine these data here to determine the change in VIT with
height. Setting E as the TKE added due to the vehicles, two
formulae result as follows: 65

E(4m)= 1.8Fc+ 2.2Fm+ 20.4Ft,

E(2m)= 2.4Fc+ 6.2Fm+ 14.8Ft, (3)

where E(4m) and E(2m) are the TKE added driving within
the ensemble at 4 and 2 m elevation from these two studies
(m2 s−2) and Fc, Fm, and Ft are the number of passenger cars
and mid-sized (vans, flatbed pickup trucks, and SUVs) and 70

large vehicles (10 to 18 wheel heavy-duty vehicles) traveling
past a given point on the highway per second. The numer-
ical coefficients are the time-integrated TKE values (Iq ) at
the two heights (m2 s−1). An alternative approach would be
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Table 1. Gaussian distribution fits of VIT TKE drop-off with height, from observation and CFD studies.

Study, case Slope Intercept R2 Mixing length

(z at e

(
−
(z−hq )2

2σ2
q

)
= 0.01), m

Isolated vehicles

Rao et al. (2002), cube van, 80.5 km h−1, hq = 2 m 2.2452 1.8534 0.9856 3.53
Rao et al. (2002), cube van, 48.3 km h−1, hq = 2 m 1.0230 1.4969 0.9709 4.22
Y. Kim et al. (2016), lead automobile, hq = 1.5 m 4.6431 3.9013 0.8845 2.50
Y. Kim et al. (2016), lead diesel cargo truck, hq = 4 m 3.6143 4.2223 0.9355 5.13

Vehicle ensembles

Y. Kim et al. (2016), automobile immediately following 0.073529 4.1144 0.9801 9.41
lead diesel cargo truck, hq = 1.5 m

Y. Kim et al. (2016), second automobile, following 0.47337 3.9275 1.00a 4.60
lead diesel cargo truck, hq = 1.5 m

Y. Kim et al. (2016) second diesel cargo truck, hq = 4 m 0.04070 4.7935 0.5424 14.64

Woodward et al. (2019) vehicle ensembleb, hq = 1.5 m, 0.01916 −1.2402 0.9135 17.01
parallel to flow, right lane

Woodward et al. (2019) vehicle ensembleb, hq = 1.5 m, 0.01155 −1.4532 0.7543 21.46
parallel to flow, left lane

Woodward et al. (2019) vehicle ensembleb, hq = 1.5 m, 0.012489 −1.4766 0.9667 20.70
transverse to flow, right lane

Woodward et al. (2019) vehicle ensembleb, hq = 1.5 m, 0.0098094 −1.7815 0.9536 23.16
transverse to flow, left lane

Zhang et al. (2017), VS1: hq = 1.6 m, vehicle speed= 9 kmh−1, 0.0029165 5.1706 0.6614 41.24
wind 11 kmh−1

Zhang et al. (2017), VS2: hq = 1.6 m, speed= 36 kmh−1, 0.005158 5.0964 0.8306 31.38
wind 11 kmh−1

Zhang et al. (2017), VS3: hq = 1.6 m, vehicle speed= 36 kmh−1, 0.007298 6.3394 0.9006 26.62
wind 36 kmh−1

Zhang et al. (2017), VS4: hq = 1.6 m, vehicle speed= 36 kmh−1, 0.005411 5.6387 0.9339 30.67
wind 36 kmh−1

Zhang et al. (2017), VS5: hq = 1.6 m, vehicle speed= 36 kmh−1, 0.003478 4.3150 0.8574 37.89
wind 54 kmh−1

a Note that only two contour lines were available for retrieving TKE and height values from this vehicle within Fig. 14 of Y. Kim et al. (2016); while the correlation coefficient is
formally unity, this is a two-point line.
b Woodward et al. (2019) Fig. 21 turbulent velocity components in the parallel and transverse directions were squared, and distances were scaled to give equivalent distances from
wind-tunnel to ambient environment.

to make use of vehicle speed data within each grid cell and
parameterizations utilizing vehicle speed (Di Sabatino et al.,
2003; Kastner-Klein et al., 2003) to construct TKE additions
due to the sub-grid-scale roadways. However, vehicle speed
information is not currently readily available on a gridded5

hourly basis, while estimates of vehicle kilometer traveled
are available in gridded form due to their use in emissions
processing, and making the simple scaling assumption that
the vehicles travel across one dimension of a grid cell allows

us to generate the Fc values required to estimate TKE. Note 10

that vehicle speed is implicit in this methodology utilizing
vehicle kilometer traveled (VKT) – higher speeds will result
in a greater number of vehicle kilometers traveled per unit
time and hence higher TKE values. As in the above discus-
sion, we assume a Gaussian distribution of the coefficients of 15

the TKE equations of Eq. (3) with height for each vehicle,
where hq = 1.5, 1.9, and 4.11 m for cars, mid-sized vehicles,
and trucks, respectively, with each of the 2 and 4 m values of
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the coefficients of Eq. (3) being used to determine the corre-
sponding values of Aq and σq of Eq. (1), (i.e., q = c, m, t).
The resulting height-dependent formulae may be used to re-
place the coefficients of Eq. (3), leading to the following for-
mula for the net turbulent kinetic energy associated with the5

number of vehicles in transit along a given stretch of roadway
at a given time:

Enet (z)= 2.43Fce
[
−2.40×10−2(z−1.5)2

]
+ 15.58Fme

[
−1.18×10−1(z−1.9)2

]
+ 20.43Fte

[
−3.61×10−2(z−4.11)2

]
. (4)

Most 3D chemical transport models make use of some varia-
tion in “K-theory” diffusion to link turbulent kinetic energy10

to mixing, with the vertical mixing of a transported variable
c due to turbulence at heights z being related to the thermal
turbulent transfer coefficient K via

∂c

∂t
=
∂

∂z

(
K
∂c

∂z

)
. (5)

Finite differences and tridiagonal matrix solvers are usually15

used to forward integrate Eq. (5). For example, the solver
used in the Global Environmental Multiscale – Modelling
Air-quality and CHemistry (GEM-MACH) model uses the
following finite difference for the spatial derivatives (both
spatial derivatives are O

(
1σ 2), the derivatives are carried20

out in, and the K values are transformed into, σ = P
P0

coor-

dinates as K̃ , where P is the pressure and P0 is the surface
pressure):

cn+1
i − cni

1t

=

1
2

(
K̃i+1+ K̃i

)(
ci+1−ci
σi+1−σi

)
−

1
2

(
K̃i + K̃i−1

)(
ci−ci−1
σi−σi−1

)
σ
i+ 1

2
− σ

i− 1
2

.

(6)

Note in Eq. (6) that the prognostic values of K calculated25

by the weather forecast model are on the same vertical levels
as concentration; values of the additional component of K
associated with VIT must therefore be calculated for model
layers as opposed to layer interfaces.
K andE may be linked through the relationship of Prandtl,30

where l is a characteristic length scale:

K = 0.4l
√
E. (7)

As was done for Table 1, we have chosen this value on a per-
vehicle basis as the vertical location at which the Gaussian
profiles derived above reach 0.01 (i.e., 1 %) of their maxi-35

mum value. Using each of the coefficient values of Eq. (3)
at the two heights, in conjunction with Eq. (1) treated as a
two variable in two unknowns (Aq , σq ) problem we find val-
ues of lc, lm, and lt of 13.56, 6.25, and 11.28 m, respectively.

These values are based on observed traffic conditions and fall 40

well within the range of mixing lengths provided for vehi-
cle ensembles in Table 1; however, we note that they are a
source of uncertainty, with the percent uncertainties (Gor-
don et al., 2012) associated with the 4 m values at ±52 %,
±157 %, and±12 % for cars, mid-sized vehicles, and trucks, 45

respectively. The relatively low values of lm and high uncer-
tainties in the corresponding mid-sized vehicle per-vehicle
estimates of TKE relative to the other vehicle types are likely
the result of a combination of small sample size (Gordon
et al., 2012, noted the relative proportion of the three ve- 50

hicle classes as 89.9 % cars, 4.8 % mid-sized vehicles, and
5.3 % trucks) and the variety of ensemble versus isolated ve-
hicles sampled (noting the variation in Table 1 for vehicles
within the smaller vehicle size classes). Additional observa-
tions of vehicle turbulence are clearly needed, particularly 55

in the region above the largest vehicles on the road (4.1 m),
using remote-sensing techniques such as Doppler lidar, in or-
der to improve mixing length estimates. However, the values
used here are reasonable with respect to the available data,
and while they likely overestimate the mixing length asso- 60

ciated with isolated vehicles (Rao et al., 2002; Y. Kim et al.,
2016), they likely underestimate the mixing length of ensem-
bles of vehicles (Y. Kim et al., 2016), particularly for ensem-
bles moving within street canyons (Woodward et al., 2019;
Zhang et al., 2017). The latter represent the some of the spe- 65

cific regions where vehicle emissions are likely to dominate.
We derive the following formula for the addition to the

thermal turbulent transfer coefficient associated with vehicle
passage as a function of height:

KVIT (z)= 0.4
lcFc+ lmFm+ ltFt

Fc+Fm+Ft

·

(
2.43Fce

[
−2.40×10−2(z−1.5)2

]

+ 15.58Fme
[
−1.18×10−1(z−1.9)2

]

+ 20.43Fte
[
−3.61×10−2(z−4.11)2

]) 1
2

. (8) 70

The use of Eq. (8) must be undertaken with care. Like most
regional air-quality models, the vertical resolution of GEM-
MACH used here is relatively coarse (the first four model
layer midpoints are located approximately 24.9, 99.8, 205.0,
and 327.0 m above the surface). Layer midpoint values must 75

be representative of the layer resolution in order to describe
the impact of VIT on the layer. A simple linear interpolation
between the peak values of KVIT and the first model inter-
face will overestimate the impact of VIT within the lowest
model layer, while the use of Eq. (8) for the midpoint value 80

alone will underestimate the influence of VIT within the low-
est part of the first model layer. The best representation of a
sub-grid-scale scalar quantity within a discrete model layer is
its vertical average within that layer. Here, we calculate the
vertically integrated average of Eq. (8) within each model 85
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layer, to provide the best estimate of the impact of VIT, to
within the vertical resolution of the model.

2.3 VIT and model vertical resolution

The issue of the vertical extent of the impact of VIT is worth
considering in the context of model layer thickness. Given5

that the vertical length scale of added VIT is on the order
of tens of meters, as denoted in the studies quoted herein,
it is reasonable to question whether the added turbulence
should be expected to have an impact on the dispersion of
pollutants. This apparent contradiction is easily resolved by10

noting (1) that the turbulence due to VIT is added as an
addition to the pre-existing “meteorological” thermal turbu-
lent transfer coefficient (with the net turbulence profile, not
the VIT alone, determining its impact on vertical mixing)
and (2) that the impact of this net turbulence does not de-15

pend just on the magnitude of the net coefficients of thermal
turbulent transfer, but also on their vertical gradient. This
second point can be illustrated by expanding the diffusion
equation using the chain run of calculus (i.e., (∂c)/(∂t)=
(∂)/(∂z)(Knet(∂c)/(∂z))=Knet(∂

2c)/(∂z2)+(∂Knet)/(∂z)·20

(∂c)/(∂z)) and the aid of an example, shown in Fig. 2. Fig-
ure 2 displays examples of cases where the concentration
gradient and natural thermal turbulent transfer coefficient
both decrease linearly with height (Fig. 2a and b) and where
the concentration gradient decreases with height while the25

natural thermal turbulent transfer coefficients increase with
height (Fig. 2c and d). The added KVIT is shown as a blue
dashed line, and the net vertical thermal turbulent transfer is
shown as a red line. Figure 2a and c depict these curves at a
high vertical resolution, while Fig. 2b and d depict them at30

a low (regional model) resolution. Note that in the latter, the
vehicle-induced addition to the net thermal turbulent transfer
coefficient depicted in Fig. 2a and c lies entirely within the
lowest model layer of Fig. 2b and d. In both Fig. 2a and b,
the impact of KVIT is to slow the build-up of near-surface35

concentrations. In both Fig. 2c and d, the impact of KVIT
is to more rapidly vent near-surface concentrations further
up into the atmosphere. That is, at both high and low reso-
lution, KVIT affects near-surface concentrations, due to the
vertical gradient of (∂Knet/∂z). Centered difference calcula-40

tions for the low-resolution case are shown in Fig. 2b and d
to illustrate the point that gradients in low vertical-resolution
net diffusivity result in reductions in the lowest model layer
trapping and increases in venting from this lowest layer. In
both of these cases, the addition of vehicle turbulence to the45

lowest model layer changes the gradient of the net thermal
turbulent transfer coefficient, in turn leading to reduced sur-
face concentrations. The above example illustrates the man-
ner in which VIT may have an impact even on relatively low
vertical model resolution.50

2.4 Relating VIT to available gridded data – vehicle
kilometer traveled

Along individual roadways, Eq. (8) makes use of Fc, Fm,
and Ft observations at points along roadways within a grid
cell, hence deriving local estimates of VIT. These data are 55

currently difficult to obtain for large-scale applications, and
hence we have turned to secondary sources of information
to estimate these three terms. VKT is used for estimating on-
road vehicle emissions at jurisdiction level (e.g., county level
for the US and province level for Canada) for national emis- 60

sions inventories. Emissions processing systems used for air-
quality models make use of spatial surrogates to help de-
termine the spatial allocation of the mass emitted from dif-
ferent types of vehicles on different roadways (Adelman et
al., 2017). The same set of surrogates is used for calculat- 65

ing VKT (kms−1) for each grid cell of the model domain
(varying by hour of day and day of week, for each of the
three vehicle categories listed (see Fig. 3), in turn provid-
ing diurnal variations in VIT matching traffic flow. The data
shown are derived from 2006 Canadian (TS1B. TaylorTS2 , 70

National Pollution Release Inventory, Environment and Cli-
mate Change Canada, personal communication, 2019) and
2011-based projected 2017 US VKT (EPA, 2017). Note that
for the 10 km grid cell size used here, values of Fc, Fm, and
Ft may be derived by dividing these numbers by 10. The 75

largest contribution to total vehicle kilometer traveled is by
the “cars” class (Fig. 3a) due to their greater numbers (the
originating study (Miller et al., 2018) found that 89.9 % of
vehicles measured were cars), followed by trucks (Fig. 3c;
5.3 % of vehicles measured) and mid-sized vehicles (Fig. 3b; 80

4.8 % of vehicles measured).
These VKT data may be linked to the above VIT formula

in Eq. (8), provided the distance each vehicle is traveling
within that grid cell is known. Here, we have made two addi-
tional assumptions. The first assumption is that each vehicle 85

carries out a simple transit of the cell – the distance traveled
is the cell size. While this may be a reasonable first-order
approximation, we note that it has limitations: for example,
when the number of vehicles on the roads overwhelm the ca-
pacity of the roads (rush-hour traffic jams), the distance trav- 90

eled decreases. However, under these circumstances the VKT
values will also decrease; the impact of rush-hour conditions
should to some extent be included within the VKT estimates
available for emissions processing systems. The second as-
sumption is that the VKT contributions within a grid cell are 95

additive – i.e., that their numbers may be added via the “F ”
terms in Eq. (8) (Gordon et al., 2012; Miller et al., 2018), an
assumption found to be accurate in CFD modeling (Y. Kim
et al., 2016). Note that this assumption may result in over-
estimates of the net TKE – a better methodology for future 100

work would be to collect and make use of statistics of vehicle
density by roadway type within each grid cell. However, we
note that assuming that vehicles are evenly distributed over
roadways in a grid cell would result in a net underestimate
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Figure 2. Illustration of the impact of VIT on the local vertical gradient of the thermal turbulent transfer coefficients, at high (a, c) and
low (b, d) resolution. Purple, green, dashed blue, and red lines illustrate the height variation in concentration, meteorological, or natural
coefficient of thermal turbulent transfer, VIT coefficient of thermal turbulent transfer, and net coefficient of thermal turbulent transfer, re-
spectively. (a, b) High- and low-resolution profiles and gradients, for the case where both concentration and meteorological thermal turbulent
transfer coefficients decrease with height. (c, d) High- and low-resolution profiles and gradients, for the case where concentration decreases
and meteorological thermal turbulent transfer coefficients increases with height.

of the TKE contributed over the larger roadways and main
arteries of urban areas.

An example of the gridded vehicle-induced thermal turbu-
lent transfer coefficient values (KVIT, Eq. 8) created using
these assumptions, at 10:00 EDT, for our North American5

10 km resolution domain, is shown in Fig. 4a. An an example
vertical profile of KVIT for central Manhattan Island at 0.5 m
vertical resolution is shown in Fig. 4b. The resulting enhance-
ments to “natural” K values at the vertical resolution of the
version of the GEM-MACH air-quality model at 2.5 km hor-10

izontal resolution are shown in Fig. S1 in the Supplement as
dashed lines. The enhancements are confined to the lowest
model layer, as might be expected from the vertical resolu-
tion employed in this version of GEM-MACH. Nevertheless,
the values are sufficient to significantly change simulated15

vertical transport due to modifications to the resolved gra-
dient in thermal turbulent transfer coefficients, as discussed
above. Both the magnitude and gradient of Knet =K+KVIT
may contribute to the concentration changes: breaking the
vertical diffusion equation down using the chain rule, Eq. (5) 20

may be rewritten as

∂c

∂t
=K

∂2c

∂z2 +
∂K

∂z

∂c

∂z
. (9)

Both terms on the right-hand-side of Eq. (9) may contribute
to decreases in concentration c at the surface and increases in
concentrations aloft. If the near-surface concentration profile 25

(∂c/∂z) is negative (concentrations decrease with height),
then increases in K will result in surface concentration de-
creases). If this results in sufficient lofting that the concen-
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Figure 3. Vehicle kilometer traveled per 10 km grid cell (kms−1)
for (a) cars, (b) mid-size vehicles, and (c) trucks, July 2015.

tration profile maximizes above the ground (i.e., (∂c)/(∂z)
becomes positive near the surface), then decreasing values of
K with height (i.e., negative values of (∂K)/(∂z)) will also
result in a shift towards negative rates of change, through the
second term in the right-hand-side of Eq. (9). All six panels5

of Fig. S1 show increased Kvalues, i.e., increases in the first
term in Eq. (9). All six panels also show a trend of (∂K)/(∂z)
becoming more negative (that is, near-surface positive slopes
become less positive and negative slopes become more nega-
tive), decreasing the magnitude of the second term in Eq. (9)10

in Fig. S1b–d and f and switching to a negative rate of change
in Fig. S1a and e. Both changes in the magnitude and gra-
dient of K resulting from VIT contribute to the resulting
changes in surface concentration.

The thermal turbulent transfer coefficient values of Fig. S115

may also be compared to the minima on natural K values
imposed in air pollution models in an attempt to account
for missing subgrid-scale mixing (Makar et al., 2014; these

are typically on the order of 0.1 to 2.0 m2 s−1). Aside from
Fig. S1a, the vertical profiles here would not be modified 20

by these lower limits. We also note that these VIT-induced
changes in total thermal turbulent transfer coefficients only
impact the species emitted at the roadway level, as discussed
below.

2.5 Construction of a sub-grid-scale parameterization 25

for on-road vehicle-induced turbulence

We note that the portion of the area of a grid cell which is
roadway-covered will be relatively small for most air pol-
lution model resolutions, such as those considered here. For
example, satellite imagery of the largest freeways show these 30

to have a width of less than 400 m. Hence, the largest roads
make up less than 1/5 of the total area of a 2.5 km grid cell,
and less than 1/20 of a 10 km grid cell). The largest impact
of VIT is thus likely to be for the chemical species being
emitted by the mobile sources, in terms of the grid cell aver- 35

age concentration. Furthermore, the grid cell approach com-
mon to these models results in horizontal numerical diffusion
from the roadway scale to the grid cell scale: sub-grid-cell-
scale emissions are automatically mixed across the extent of
the grid cell. The key impact of VIT will thus be in the verti- 40

cal dispersion of the pollutants emitted from mobile sources.
We must therefore devise a numerical means to ensure this
additional source of diffusion is added to the model, bearing
these constraints in mind.

Two examples of similar sub-grid-scale processes appear 45

in the literature. The first example is the cloud convection
parameterizations used in numerical weather forecast mod-
els (Kain, 2004), wherein the formation and vertical transport
associated with convective clouds, known to occur at smaller
scales than the grid cell size employed in a numerical weather 50

prediction model, are treated using sub-grid-scale parame-
terizations. In these parameterizations, cloud formation and
transport are calculated within the grid cell on a statistical
basis, using formulae linking the local processes to the re-
solvable scale of the model. The second example is found 55

in the treatment of emissions from large stacks within air-
quality forecast models (Gordon et al., 2018; Akingunola et
al., 2018). These sources usually have stack diameters on the
order less than 10 m, and these sources emit large amounts of
pollutant mass at high temperatures and velocities. In order 60

to represent these sources, the most common approach is to
calculate the height of the buoyant plume using the predicted
ambient meteorology (vertical temperature profile, etc.) as
well as the stack parameters (exit velocity, exit temperature,
stack diameter). The emitted mass during the model time step 65

from the stack is then distributed over a defined vertical re-
gion within the grid cell in which the source resides. Note
that the mass is also automatically distributed immediately in
the horizontal dimension within the grid cell – the key issue
is to ensure that the emitted mass is properly distributed in 70

the vertical dimension. Our aim in the VIT parameterization
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Figure 4. (a) Example estimated thermal turbulent transfer coefficients from VIT at 2 m elevation during a weekday at 10:00 in July (m2 s−1),
using the VKT data of Fig. 3. (b) Vertical profile of VIT thermal turbulent transfer coefficients at 1 m resolution in central Manhattan Island
and individual values for the TKE associated with cars, mid-sized vehicles, and trucks considered separately, generated using Eq. (8). Note
that the profiles of (b) would be added to the ambient thermal diffusivity coefficients (see Sect. 2.5 and Eq. 12).

that follows is identical in intent to that of the existing major
point source treatments in air-quality models: to redistribute
the mass emitted by vehicle sources in the vertical dimen-
sion, taking the very local physics influencing that vertical
transport of fresh emissions into account. We therefore fo-5

cus on determining the at-source vertical transport of emitted
mass associated with VIT.

We start with the formulae for the transport of chemical
species by vertical diffusion:

∂ci

∂t
=
∂

∂z

(
K
∂ci

∂z

)
+Ei, (10)10

where ci is the emitted chemical species, K represents the
sum of all forms of thermal turbulent transfer in the grid cell,
and Ei is the emissions source term for the species emit-
ted at the surface (applied as a lower boundary condition on
the diffusion equation). For grid cells containing roadways15

and hence mobile emissions, we split K into meteorologi-
cal and vehicle-induced components (KT and KVIT, respec-
tively) and the emissions into those from mobile sources and
those from all other sources (Ei,mob and Ei,oth, respectively):

∂ci

∂t
=

∂

∂z

[
(KT+KVIT)

∂ci

∂z

]
+Ei,mob+Ei,oth. (11)20

The terms in Eq. (11) may be rearranged:

∂ci

∂t
=

{
∂

∂z

[
KT

∂ci

∂z

]
+Ei,oth

}
+

{
∂

∂z

[
(KT+KVIT)

∂ci

∂z

]
+Ei,mob

}
−

{
∂

∂z

[
KT

∂ci

∂z

]}
. (12)

The first bracketed term in Eq. (12) describes the rate of
change of the chemical’s concentration due to its emission

by non-mobile area sources and vertical diffusion due to me- 25

teorological sources of turbulence within the grid cell but
outside of the sub-grid-scale roadway. The second term de-
scribes the rate of change in the vertical diffusion of the
mobile-source-emitted pollutants over the sub-grid cell road-
way, which experiences both meteorological and roadway 30

turbulence, and the final term prevents double-counting of
the meteorological component in Eq. (11), which is equiva-
lent to Eq. (12). Note that turbulent mixing for non-emitted
chemicals is determined by solving Eq. (5), and for chem-
icals which are not emitted from mobile on-road sources, 35

Eq. (10) is solved with Ei = Ei,oth. This form of the diffu-
sion Eq. (12) allows the net change in concentration to be
calculated from three successive calls of the diffusion solver,
starting from the same initial concentration field. One advan-
tage of this approach is that existing code modules for the so- 40

lution of the vertical diffusion equation may be used – rather
than being used once, they are used three times, with dif-
ferent values for the input coefficients of thermal turbulent
transfer coefficient (K) and for the lower boundary condi-
tions (E). The solution, once a suitable means of estimating 45

KVIT is available, is thus relatively easy to implement in ex-
isting numerical air pollution model frameworks.

2.6 Comparison of energy densities: VIT, solar, and
urban perturbations in sensible and latent heat

The relative contribution of TKE from VIT towards energy 50

density can be compared to the daytime solar maximum en-
ergy input to illustrate why VKT has relatively little impact
during daylight hours, particularly in the summer. The max-
imum TKE from VIT can be determined easily from Fig. 3
and the use of our formulae; Fig. 3a shows vehicle kilometer 55

traveled values ranging from a maximum of 308 in the high-
est density 10 km grid cell in North America (New York City)
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down through 4 orders of magnitude in background grid cells
with few vehicles. A typical urban value would be 30.8 VKT:
this gives an Fc value from our formulae of 3.08 vehicles s−1

for a 10 km grid cell size. Assuming that the vehicles are
all cars, from our formulae we have a corresponding total5

TKE added at the point crossed by the vehicles, at height
z= hcars = 1.5 m, of 7.48 m2 s−2. We can combine this and
the Fc value along with the area and volume of a lane of
a roadway to estimate the energy density (EVIT) on dimen-
sional grounds:10

EVIT =

[
(TKE)(air density)(lane volume)Fc

(lane area)

]
. (13)

Assuming each vehicle has a length of 4.5 m, width of 2.0 m,
height of 1.5 m, a lane length of 10 km, and an air density
of 1.225 kgm−3, one arrives at 84.8 kgs−3 and values rang-
ing from a North American grid maximum of 848 kgs−3 to15

a background value 4 orders of magnitude smaller (8.48×
10−2 kgs−3). These energy densities may be compared to the
typical solar energy density reaching the surface at midlati-
tudes of 1300 Wm−2, or in SI units, 1300 kgs−3, and the typ-
ical range of perturbations in latent and sensible heat fluxes20

associated with the use of a more complex urban radiative
transfer scheme (the town energy balance module; Mason,
2000) in our 2.5 km grid cell size simulations (typical diur-
nal ranges in the perturbations associated with versus with-
out the use of the town energy balance (TEB): latent, −20025

to+3 Wm−2; sensible,−100 to+100 Wm−2, respectively).
That is, under most daylight conditions, the energy densities
associated with VIT will be relatively small compared to the
solar energy density at midday, with a typical urban value
of 6.5 % and a range from 65 % in the cell with the high-30

est VKT values down to 0.0065 % in background conditions
where the vehicle numbers are relatively small. Urban traffic
however may contribute similar energy levels as the changes
in net latent and sensible heat fluxes associated with the use
of an urban canopy radiative transfer model. We also note35

that at night, during the low sun angle conditions of early
dawn and late evening and during the lower sun angles of
winter, the relative importance of VIT to solar radiative in-
put will be larger. Consequently, the impact of VIT will be
higher at night and in the early morning rush hours and at40

other times when the sun is down or sun angles are low, as is
demonstrated below.

2.7 GEM-MACH simulations

A research version of the Global Environmental Multiscale
– Modelling Air-quality and CHemistry (GEM-MACH) nu-45

merical air-quality model, based on version 2.0.3 of the
GEM-MACH platform, was used for the simulations car-
ried out here (Makar et al., 2017; Moran et al., 2010, 2018;
Chen et al., 2020). GEM-MACH is a comprehensive 3D de-
terministic predictive numerical transport model, with pro-50

cess modules for gas and aqueous phase chemistry, inor-

ganic particle thermodynamics, secondary organic aerosol
formation, vertical diffusion (in which area sources such
as vehicle emissions are treated as lower boundary condi-
tions on the vertical diffusion equation), advective trans- 55

port, and particle microphysics and deposition. The model
makes use of a sectional approach for the aerosol size dis-
tribution, here employing 12 aerosol bins. The version used
here also follows the “fully coupled” paradigm – the aerosols
formed in the model’s chemical modules in turn may modify 60

the model’s meteorology via the direct and indirect effects
(Makar et al., 2015a, b, 2017). The meteorological model
forming the basis of the simulations carried out here is ver-
sion 4.9.8 of the Global Environmental Multiscale weather
forecast model (Cote et al., 1998a, b; Caron et al., 2015; 65

Milbrandt et al., 2016). Emissions for the simulations con-
ducted here were created from the most recent available in-
ventories at the time the simulations were carried out – the
2015 Canadian area and point source emissions inventory,
2013 Canadian transportation (on-road and off-road) emis- 70

sions inventory, and 2011-based projected 2017 US emis-
sions inventory. As noted above, the model simulations were
carried out on two separate model domains shown in Fig. 5:
a 10 km horizontal grid cell size North American domain
(768× 638 grid cells; 7680× 6380 km) and a 2.5 km hori- 75

zontal grid cell size Pan Am Games domain (520× 420 grid
cells; 1300km× 1050km). For the 10 km domain, simula-
tions were for the month of July 2016, while for the higher-
resolution model, month-long summer (July 2015) and win-
ter (January 2016) simulations were carried out with and 80

without the VIT parameterization. These periods were based
on the availability of emissions data, previous model simu-
lations for the same time periods appearing in the literature
(Makar et al., 2017; Stroud et al., 2020), and the timing of a
prior field study (Stroud et al., 2020). 85

2.8 VIT as a sub-grid-scale phenomena

It should be noted that the VIT enhancements to turbulent
exchange coefficients are used to determine the vertical dis-
tribution of freshly emitted pollutants at each model time
step – they are not applied for all species within a model 90

grid cell. Similar sub-grid-scale approaches are used for the
vertical redistribution of mass from large stack sources of
pollutants, where buoyancy calculations are applied to de-
termine the rise and vertical distribution of pollutants from
large industrial sources. Both stacks and roadways are treated 95

as sub-grid-scale sources of pollutants which are influenced
by very local sources of energy (stacks: high emission tem-
peratures and exit velocities; roadways: vehicle-induced tur-
bulence) resulting in an enhanced vertical redistribution of
newly emitted chemical species. In both cases, the vertical 100

transport results from an interplay between the energy as-
sociated with the emission process (stacks: high temperature
emissions with the ambient vertical temperature profile; VIT:
kinetic energy imparted to the atmosphere in which emis-
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Figure 5. GEM-MACH test domains: (a) 10 km grid cell size North
American domain; (b) 2.5 km grid cell size Pan Am domain.

sions have been injected with the ambient turbulent kinetic
energy). This interaction precludes a treatment solely from
the standpoint of model input emissions, since the extent
of the mixing will depend on the local atmospheric condi-
tions as well as the energy added due to the manner in which5

the emissions occur. Both processes have been addressed by
large eddy simulation modeling on a very local scale, but pa-
rameterizations are required in both cases for regional-scale
simulations. In both cases, the parameterized vertical redis-
tribution of pollutants is applied to freshly emitted species10

– the horizontal spatial extent of the emitting region is suf-
ficiently small that although present, the enhanced mixing
will have a minor effect on the redistribution of pre-existing
chemicals and on other atmospheric constituents affected by
vertical transport. VIT in the context of regional chemical15

transport models is thus best treated as a sub-grid-scale phe-
nomenon applied to fresh emissions, in direct analogy to the
approach taken for large stack emissions.

3 Results

3.1 VIT height dependence as a Gaussian distribution20

In the Methodology section, we describe the potential for the
use of a Gaussian distribution to describe the fall-off in TKE
with height above vehicles. Using the equations presented
there, we have analyzed VIT studies appearing in the litera-
ture, determining the decrease in TKE as a function of height25

from published figures and then fitting these data to a Gaus-
sian distribution to the height above ground. The result of
this analysis for several data sets is shown in Table 1, gener-
ated by extracting vehicle centerline TKE values from con-

tour plots of published data, and is subdivided into isolated 30

vehicle and vehicle ensemble studies and cases.
The inferred mixing length shows a marked variation be-

tween that of isolated vehicles or the lead vehicle in an en-
semble and that of other vehicles appearing further back in
the ensemble. Both directly observed and CFD modeled val- 35

ues of the inferred mixing length for isolated vehicles or the
lead vehicles of an ensemble vary from 2.5 to 5.13 m. For
subsequent vehicles in an ensemble, the mixing lengths in-
crease to range from 4.6 to 41 m. The difference in mixing
length between the lead vehicle in an ensemble and subse- 40

quent identical vehicles appearing later in the ensemble also
increases. For example note that diesel truck mixing lengths
inferred from the CFD modeling examining different vehi-
cle configurations (Y. Kim et al., 2016) increase from 5.13
to 14.64 m, and the mixing lengths for automobiles increase 45

from 2.50 (isolated automobile) to 4.6 (automobile two ve-
hicles back from a lead diesel truck) to 9.41 m (automo-
bile immediately behind a leading diesel truck). The mixing
length associated with VIT may also be significantly influ-
enced by the ambient wind and local built environment – the 50

mixing length associated with the component of TKE due to
VIT within street canyons (Woodward et al., 2019; Zhang et
al., 2017) ranges from 2/3 to greater than the street canyon
height, with maximum mixing lengths of 41 m. It is impor-
tant to note that these mixing lengths are driven by the ve- 55

hicle passage within the canyon; they result from the addi-
tional TKE added due to the presence of vehicles in the CFD
simulations. The above data show that a Gaussian distribu-
tion provides a reasonable description of the decrease in TKE
from vehicles with height, and, under realistic traffic condi- 60

tions, the mixing lengths increase in size and are consider-
ably larger than those of isolated vehicles and are compara-
ble to or greater than the near-surface vertical discretization
of air-quality models.

The length scales associated with VIT range from 2.50 m 65

in the case of isolated vehicles (Y. Kim et al., 2016), through
∼ 10 m for vehicles moving in ensembles (Woodward et al.,
2019; Zhang et al., 2017) up to 41 m, with the larger values
being typical for urban street canyons. The latter describe the
specific regions in which VIT is expected to have the greatest 70

impact, given the high vehicle density within the urban core.
However, our parameterization makes use of length scales
derived from observations on open (non-street canyon) free-
ways (Gordon et al. 2012; Miller et al., 2018) and thus may
underestimate the length scales in the urban core. The impact 75

of multiple vehicles traveling in an ensemble on open road-
ways was specifically depicted in the open roadway simula-
tions of Y. Kim et al. (2016) reproduced in Fig. 1, where the
vertical extent of turbulent mixing was shown to grow with
increasing number of vehicles traveling in an ensemble. Fur- 80

thermore, as was discussed and demonstrated in the Method-
ology section using the diffusivity equation, the length scale
of the turbulence need not be greater than the model lowest
layer resolution in order to capture the impacts of VIT on
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mixing, being due in part to the gradient in turbulence with
height.

3.2 Model domains and evaluation data

Our 3D air-quality model (GEM-MACH) and our VIT pa-
rameterization, including its diurnal variation, are described5

in the Methodology section. Two air-quality model grid cell
size and domain configurations were used for our simula-
tions. The first employs a 10 km grid cell size with a North
American domain and is used for the current operational
GEM-MACH air-quality forecast (Moran et al., 2010, 2018;10

Fig. 5a). The second was a 2.5 km grid cell resolution do-
main focused on the region between southern Ontario, Que-
bec, and the northeastern USA (Joe et al., 2018; Ren et al.,
2020; Stroud et al., 2020; Fig. 5b).

The impact of VIT was determined through paired model15

simulations, with and without the VIT parameterization,
evaluated against the surface monitoring network data. The
latter include hourly model output for ozone (O3), nitrogen
dioxide (NO2), and particulate matter with diameters less
than 2.5 µm (PM2.5), across North America and in our high-20

resolution eastern North America domain, evaluated at obser-
vation station locations with data from the AirNow network
(AirNow, 2020).TS3 . Observation station locations used in
simulation evaluation for these species are shown in Fig. 6
for the two model configurations. The juxtaposition of ob-25

servation stations with urban populations (where the highest
vehicle density may be found) may be seen by comparing
Fig. 6 with Fig. S2.

3.3 Continental 10 km grid cell size domain evaluation

Simulations were carried out for the month of July 2016 for30

the 10 km grid cell size North American domain. Model per-
formance metrics used to here are described in Table S1 in
the Supplement and provided for the 10 km resolution “VIT”
and “No VIT” simulations relative to the hourly observation
data for PM2.5, NO2, and O3 in Table 2. These three chem-35

icals were chosen due to their well-known link to human-
health impacts of air pollution (Steib et al., 2008; Abelsohn
and Steib, 2011).

The addition of VIT improved the scores for most per-
formance metrics (bold-face print in Table 2). For NO2,40

the addition of VIT improved all scores with the exception
of the correlation coefficient, which was degraded in the
third digit. All PM2.5 scores improved, with the exception
of the mean bias, which became more negative by 0.5 µgm−3

across North America. All ozone scores improved, the excep-45

tions being the correlation coefficient (which was the same
for both simulations or improved in the third digit depend-
ing on the domain or country) and the ozone mean bias for
the USA (which increased by +0.18 ppbv). Some of the im-
provements were substantial, when considered in a relative50

sense: this was most noticeable for the NO2 scores, with the

North American mean bias for NO2 improving by a factor of
8.4, the mean gross error and index of agreement by 19 %,
the root mean square error by 25 %, and the FAC2 score by
6 %. Relative improvements for PM2.5 across North America 55

were more modest (ranging from 0.3 % for FAC2 to 14 %
for the correlation coefficient). The corresponding relative
changes for O3 ranged from a 22 % reduction in the mean
bias magnitude to a fraction of a percent improvement for
FAC2, mean gross error, root mean square error, and index 60

of agreement. Overall, the model performance for the conti-
nental 10 km domain July 2016 simulations improved across
different metrics, indicating that the increased vertical turbu-
lent mixing resulting from the incorporation of VIT results
in a more accurate representation of atmospheric mixing and 65

chemistry.
Following the above comparison using all available sur-

face monitoring network data (Table 2), we carried out a fur-
ther evaluation where the stations were selected based on hu-
man population within grid cells (Fig. S2a), with only those 70

stations in which the population exceeded 800 km−2 used for
analysis. The results of this evaluation are shown in Table S2,
which may be compared to Table 2 to show the relative in-
fluence of VIT on high-population areas. We note that the
magnitude of the improvement in model performance as- 75

sociated with VIT has increased for many statistics when
high-population (i.e., high vehicle traffic) areas are exam-
ined separately in this manner; for example the incremen-
tal improvement in North American NO2 mean bias changes
from 1.053 ppbv for all stations versus 1.782 for popula- 80

tion > 800 km−2 stations, and the incremental improvement
in PM2.5 MGE for North America changes from 0.249 to
0.665 µgm−3 (both numbers are differences between No VIT
and VIT values in Tables 2 and S2 in each case). The num-
ber of model performance improvements with the use of VIT 85

has increased when grid cells with populations greater than
800 km−2 are evaluated (62 out of 72 metrics improved with
the use of VIT in Table 2, while 66 out of 72 metrics im-
proved for stations corresponding to grid cells with popu-
lations greater than 800 km−2). Most of these additional im- 90

provements were associated with better ozone prediction per-
formance in urban regions.

The timing and spatial distribution of the differences in
the 29 d mean values of NO2, PM2.5, and O3 at 10:00 and
22:00 UTC (06:00 and 18:00 EDT) are shown in Fig. 7. NO2 95

and PM2.5 have decreased in the urban areas and along the
major road networks in the early morning (Fig. 7a and c),
while the ozone (Fig. 7e) increases in the urban areas and
along the roadways, with a minor increase in the surrounding
countryside. The VIT effect occurs at night and in the early 100

morning: the average differences are minimal by 18:00 EDT
(Fig. 7b, d, and f). This diurnal cycle of the average impact
of VIT is expected: at night and during the early morning
the radiative-transfer-driven atmosphere is relatively stable,
natural background turbulence is low in magnitude, and the 105

relative contribution of VIT is therefore large. The reverse
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Figure 6. AIRNOWCE1 hourly observation station locations for ozone (a, b), nitrogen dioxide (c, d), and particulate matter with diameters
less than 2.5 µm (e, f). (a, c, e) Stations used for the 10 km grid cell size domain evaluation. (b, d, f) Stations used for the 2.5 km grid cell
size domain evaluation (all stations located within central box).

is true during the later morning to late afternoon, as the so-
lar radiative balance causes near-surface turbulence to rise
several orders of magnitude relative to nighttime values, and
the relative contribution of VIT at those times becomes min-
imal. The strongest contribution of VIT thus occurs under5

more stable atmospheric conditions: at night and in the early
morning.

The significance of the differences between VIT and no-
VIT simulations was estimated using 90 % confidence levels,
expressed here as confidence ratios. The difference between10

the mean values of the two simulations (MVIT, MNoVIT) be-
comes significant at a confidence level c if the regions de-
fined by MVIT± z

∗ σVIT√
N

and MNoVIT± z
∗ σNoVIT√

N
do not over-

lap (whereN is the number of grid point values averaged, the
σ values are the standard deviations of the means, and z∗ is15

the value of the
√
c percentile point for the fractional confi-

dence interval c of the normal distribution, where z∗ = 1.645
at c = 0.90). Grid cell values where the mean values differ at

or above the 90 % confidence level are thus defined as the
confidence ratio: 20

CR=
|MVIT−MNoVIT|
z∗
√
N
(σVIT+ σNoVIT)

, (14)

where, when z∗ = 1.645 and the other terms are as described
above, a CR value greater than unity defines the difference
between the model simulations at that grid point as being sig-
nificantly different at greater than the 90 % confidence level. 25

The mean values at each grid point and their standard de-
viations may thus be used to determine the confidence ra-
tio at each grid point – these values for each of the mean
differences of Fig. 7 are shown in Fig. 8, where the color
scaling in Fig. 8 and other confidence ratio figures which fol- 30

low use red colors to indicate differences which are signifi-
cant at greater than 90 % confidence. Grid point differences
which exceed the 90 % confidence level requirement to pro-
gressively higher degrees are shown as progressively darker
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Table 2. Model performance for NO2, PM2.5, and O3 in the 10 km grid cell size North American domain. No VIT refers to simulations
without vehicle-induced turbulence, and VIT refers to the simulation incorporating vehicle-induced turbulence. Bold-face print identifies the
better score, italics the worse score, and regular font indicates similar performance between the two simulations for each metric and chemical
species compared.

Species Evaluation metric North America Canada USA

No VIT VIT No VIT VIT No VIT VIT

NO2 (ppbv) FAC2 0.449 0.474 0.437 0.464 0.461 0.484
MB 1.195 0.142 1.553 0.716 0.860 −0.396
MGE 4.226 3.542 3.679 3.057 4.738 3.996
NMGE 0.832 0.698 0.911 0.757 0.783 0.661
r 0.515 0.511 0.520 0.518 0.507 0.506
RMSE 7.089 5.665 6.058 4.764 7.934 6.396
COE −0.083 0.092 −0.238 −0.029 −0.017 0.142
IOA 0.459 0.546 0.381 0.486 0.492 0.571

PM2.5 (µgm−3) FAC2 0.451 0.453 0.402 0.412 0.466 0.465
MB −2.116 −2.619 −0.032 −0.669 −2.688 −3.154
MGE 4.982 4.733 4.733 4.237 5.043 4.864
NMGE 0.672 0.638 0.879 0.787 0.632 0.610
r 0.185 0.211 0.147 0.163 0.217 0.241
RMSE 7.933 7.300 8.870 7.323 7.628 7.271
COE −0.203 −0.143 −0.431 −0.281 −0.188 −0.146
IOA 0.399 0.429 0.285 0.360 0.406 0.427

O3 (ppbv) FAC2 0.819 0.823 0.760 0.767 0.830 0.833
MB −0.097 0.080 −3.652 −3.498 0.503 0.684
MGE 10.050 10.009 8.111 8.023 10.379 10.346
NMGE 0.325 0.323 0.343 0.339 0.322 0.321
r 0.707 0.707 0.703 0.705 0.694 0.694
RMSE 13.095 13.035 10.357 10.242 13.511 13.458
COE 0.239 0.242 0.144 0.153 0.229 0.232
IOA 0.619 0.621 0.572 0.577 0.615 0.616

FAC2: number of model values within a factor of 2 of observations; MB: mean bias; MGE: mean gross error; NMGE: normalized mean
gross error; r: Pearson correlation coefficient; RMSE: root mean square error; COE: coefficient of error; IOA: index Of agreement.
Formulae defining all terms appear in the Supplement, Table S1 TS4 .

red colors, while differences falling progressively further be-
low the 90 % confidence level requirement are shown as pro-
gressively lighter blue colors in these figures.

From Fig. 8, it can be seen that the continental-scale model
means for the VIT versus No VIT simulations for surface5

NO2, surface PM2.5, and surface O3 at night differ at 90 %
confidence over much of the domain for NO2 and PM2.5,
and in urban core areas for O3. The spatial extent of 90 %
confidence is much greater under the stable conditions of
night (Fig. 8a, c, and e) than the less stable conditions of10

daytime (Fig. 8b, d, and f), as would be expected from the
relative magnitude of KT versus KVIT during the day and
night. While the nighttime influence of VIT on NO2 extends
over much of the continent, for O3, the impact is primarily
within the cities, where the increased mixing of NOx results15

in higher nighttime O3 concentrations due to decreased NOx
titration.

The all-domain model performance metrics of Table 2
were also calculated for each measurement station, and the

appropriate differences in the metrics or their absolute val- 20

ues were used to determine location-specific impacts of the
VIT parameterization for NO2, PM2.5, and O3 (Figs. 9, S3,
and S4). Differences in the values of the metrics between the
two simulations are shown, with the sign of the differences
arranged so that red (blue) colors indicate better performance 25

for the VIT (No VIT) simulations, respectively, red indicat-
ing better scores for the VIT simulation. The color scales in
these figures are arranged to include 3 orders of magnitude
between the lowest and highest difference scores and zero
and to encompass the maximum value of the differences ob- 30

served across all stations. The values vary between metrics
and the chemical species, with the largest changes occurring
for NO2, followed by PM2.5, and the smallest changes for
O3, relative to typical concentrations of these species, and
in accordance with Table 2. NO2 performance improvements 35

with the VIT simulation (red colors) occur across most sta-
tions for the FAC2, MGE, RMSE, COACE2 , and IOA scores
(Fig. 9a, c, e, f, and g), while r and |MB| scores are more
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Figure 7. Difference in 29 d average NO2, PM2.5, and O3, July
2016 continental 10 km domain simulations (VIT simulation–No
VIT simulation). Averages are paired at (a, c, e) 10:00 UTC and
(b, d, f) 22:00 UTC according to species: (a, b) 1NO2 (ppbv);
(c, d) 1PM2.5 (µgm−3); (e, f) 1O3 (ppbv).

Figure 8. The 90 % confidence ratio values (see Eq. 14) for the 29 d
NO2, PM2.5, and O3 July 2016 continental 10 km domain simula-
tions. Panels arranged as in Fig. 7: (a, c, e) 10:00 UTC, (b, d, f)
22:00 UTC; (a, b) NO2, (c, d) PM2.5, (e, f) O3. Values> 1.0 indi-
cate that the simulations differ at greater than 90 % confidence.

variable, with some stations having better performance for
the No VIT simulation. PM2.5 performance improvements
are more mixed, with large improvements for correlation co-

efficient (Fig. S3d) and IOA (Fig. S3g, a mild but overall
positive effect of VIT for MGE, RMSE, and COE (Fig. S3c, 5

e, and f), and more stations showing a degradation of perfor-
mance for FAC2 and |MB|, echoing the net effect for these
last two metrics seen in Table 2. O3 performance shows a
strong regional variation (Fig. S4): most scores improve with
the use of the VIT parameterization in the western and north- 10

eastern parts of the continent and degrade in the southeastern
USA. The degradation in the southeast (e.g., increases in O3
concentrations in a region which already experiences a pos-
itive O3 bias) are associated with the transport of urban O3
precursors into forested areas in the region, with additional 15

O3 production occurring there. These effects may be re-
moved through the introduction of an additional parameteri-
zation for the reduced turbulence and shading within forested
canopies (Makar et al., 2017; Fig. S5), with the combined pa-
rameterizations resulting in improvements in both NO2 and 20

O3 performance. While the use of VIT degrades O3 perfor-
mance in this region, this degradation is thus very small rel-
ative to the large improvements noted with the canopy ef-
fect (see Makar et al., 2017; Fig. S5 and its associated dis-
cussion). Another significant feature is the improvement (red 25

colors) in most O3 station scores in urban regions (Fig. S4).
These improved scores largely result from increases in ozone
in the early morning hours (Fig. 7e), where VIT has resulted
in increased vertical mixing and reducing surface level NOx
and hence NOx titration of ozone, and also from mixing 30

higher ozone levels aloft down into the lowest model layer.
Overall, the impact of the VIT parameterization was to

improve North American simulation accuracy, across mul-
tiple statistical metrics, with the most significant improve-
ments in the model performance for simulated NO2. Spa- 35

tially, model performance was generally greatest in urban re-
gions and western and northeastern North America, although
this depends on the chemical species and the performance
metric chosen.

3.4 Eastern North America 2.5 km grid cell size 40

domain evaluation

With the use of a smaller grid cell size (i.e., “higher resolu-
tion”), meteorological models and on-line air-quality models
such as GEM-MACH have the option of employing theo-
retical approaches which better simulate the more complex 45

radiative transfer and physical environment-induced turbu-
lence of urban areas. Urban heat islands are known to have a
significant effect on turbulence, for example (Mason, 2000;
Makar et al., 2006). In these simulations, we make use of
the TEB (Mason, 2000; Leroyer et al., 2014; Lemonsu et al., 50

2010), a single-layer urban canopy module which solves the
equations for urban atmosphere’s surface and energy budgets
for a variety of urban elements (roads, walls, roofs) and then
aggregates the results for the net urban canopy. Such param-
eterizations are inappropriate for use in larger grid cell size 55

models due to the latter’s inability to resolve individual sur-
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Figure 9. Change in model NO2 performance at 358 North American surface monitoring sites, July 2016 (ppbv). Red colors indicate stations
where the addition of the VIT parameterization improved model performance; blue colors indicate stations where the addition of the VIT
parameterization degraded model performance. (a) 1FAC2VIT–No VIT; (b) 1|MB|No VIT–VIT; (c) 1MGENo VIT–VIT; (d) 1rVIT–No VIT;
(e) 1RMSENo VIT–VIT; (f) 1COEVIT–No VIT; (g) 1IOAVIT–No VIT.

face types and spatial gradients at the city scale. An impor-
tant consideration in determining the relative importance of
vehicle-induced turbulence is whether improvements in per-
formance still occur, when these other sources of turbulent
kinetic energy are included explicitly. We address this issue5

in our 2.5 km grid cell size modeling by employing the TEB

parameterization for both VIT and No VIT simulations and
evaluating both simulations against surface monitoring net-
work observations as before. Both summer and winter sim-
ulations were carried out on the blue domain of Fig. 5b, 10

and the same performance metrics were calculated as for the
larger North American simulations (Table 3).
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Table 3. Model performance for NO2, PM2.5, and O3 in the 2.5 km grid cell size Pan Am domain. No VIT refers to simulations without
vehicle-induced turbulence, and VIT refers to the simulation incorporating vehicle-induced turbulence. Bold-face print identifies the better
score, italics the worse score, and regular font indicates similar performance between the two simulations for each metric and chemical
species compared.

Species Evaluation metric Pan Am domain July Pan Am domain January

No VIT VIT No VIT VIT

NO2 (ppbv) FAC2 0.584 0.593 0.714 0.711
MB 1.005 0.386 0.852 −0.328
MGE 4.137 3.866 5.166 5.146
NMGE 0.670 0.626 0.457 0.455
r 0.560 0.543 0.736 0.693
RMSE 6.909 6.373 7.917 7.892
COE 0.059 0.121 0.348 0.350
IOA 0.530 0.560 0.674 0.675

PM2.5 (µgm−3) FAC2 0.573 0.569 0.563 0.592
MB −2.669 −3.055 3.930 2.362
MGE 5.813 5.729 8.315 7.012
NMGE 0.537 0.529 0.865 0.729
r 0.338 0.346 0.163 0.170
RMSE 8.972 8.791 24.875 23.194
COE −0.077 −0.061 −0.463 −0.234
IOA 0.462 0.467 0.269 0.383

O3 (ppbv) FAC2 0.831 0.832 0.852 0.854
MB 4.138 4.213 1.652 1.731
MGE 10.640 10.648 6.433 6.427
NMGE 0.333 0.333 0.259 0.259
r 0.709 0.709 0.688 0.687
RMSE 13.826 13.838 8.440 8.427
COE 0.146 0.146 0.190 0.191
IOA 0.573 0.573 0.595 0.596

A similar pattern of performance improvement can be seen
between 10 and 2.5 km grid cell size domains, comparing Ta-
bles 2 and 3, with improvements due to the use of VIT pre-
dominating in both summer and winter: despite the addition
of a more explicit urban radiative balance approach, better5

scores were achieved with the addition of the VIT parame-
terization. Note that comparisons between the 2.5 and 10 km
simulations for similar emissions inputs appear elsewhere in
the literature (Stroud et al., 2020). The number of improved
scores increases from summer to winter. Stable atmospheric10

conditions and low meteorological turbulence levels are more
common in winter than summer, during both day and night,
and the impact of the additional source of turbulence is thus
proportionally stronger in the winter season. The VIT effects
at the urban scale are the strongest for NO2 and PM2.5 and15

less noticeable for simulated O3, similar to the North Amer-
ican domain simulation. The largest improvements for the
three species and across seasons occur for winter PM2.5, with
the improved performance taking place in the first or sec-
ond digit of the given metric. Metric differences for NO220

aside from mean bias occur in the second to third digit in
the winter, with summer differences occurring in the first to

second digit. Changes to O3 are relatively minor, with some
improvements and degradation in performance in the third
digits across the different metrics. 25

UTC hour average differences between the two 2.5 km
grid cell size simulations, for the three species evaluated for
the summer and winter simulations, appear in Figs. S6 and
S8 and 10 and 12, respectively. The summer differences in
surface concentration (Fig. S6) are the largest at 06:00 local 30

time (10:00 UTC; first column of panels) and have largely
decreased to near zero by 18:00 (22:00 UTC; last column).
Corresponding concentration vertical distribution differences
along a cross section linking the major cities show the early
morning depletion (increase) of NO2; PM2.5 (O3) is coupled 35

to increases (decreases) aloft (Fig. S7, first column of pan-
els). NO2 and PM2.5 reductions extend to altitudes of up to
2 km with the increase in radiatively driven turbulence dur-
ing the day, while the change in NOx to volatile organic
compound (VOC) ratio regime aloft leads to increases in 40

lower-troposphere O3 (Fig. S7, second column). Daytime
mixing increases lead to a reduction in the effect by nightfall
(Fig. S7, third column). VIT-enhanced transport of NO2 from
urban to rural areas can also be seen (Fig. S6, first row, com-
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Figure 10. Difference in 30 d average surface NO2, PM2.5, and O3, January 2016, in the Pan Am 2.5 km grid cell size domain simulation.
Averages are paired at 10:00, 14:00, and 22:00 UTC according to species; (a–c): 1NO2; (ppbv) (d–f) 1PM2.5 (µgm−3); (g–i) 1O3 (ppbv).
Red line in (a) indicates the position of the vertical cross section shown in Fig. 11.

pare panels a, b, c; note increases in NO2 on the periphery
of the urban areas, pink to red colors). This additional NOx
added to NOx-limited regions leads to low-level (mostly sub-
ppbv) increases in daytime O3 at 10:00 which persist through
to 18:00. Over the Great Lakes, the change in vertical trans-5

port on land, coupled with daytime lake breeze circulation
(Makar et al., 2010; Joe et al., 2018; Stroud et al., 2020), re-
sults in a decrease in daytime NO2 and PM2.5 over the lakes
and corresponding late-afternoon O3 increases (Fig. S6, blue
colors in center column of panels over the lakes for NO210

and PM2.5, red colors in the final panel of the sequence for
O3). The changes in the near-roadway environment thus have
larger regional effects, changing the pathway and reaction
chemistry of transported chemicals on a regional scale.

The stronger impact of VIT under winter conditions is il-15

lustrated in Figs. 10 and 11; NO2 decreases (Figs. 10 and
11a–c) persist throughout the day, although to a lower degree
by 18:00 (contrast Figs. S6 and S7a–c to Figs. 10 and 11a–c).

The vertical influence of VIT reaches an altitude of approx-
imately 2 km in the winter (1 km in the summer); contrast 20

Figs. S7 and 11. The absence of winter biogenic hydrocar-
bon production during the day has likely limited the daytime
increase in O3 to the cities (compare Fig. S6h with Fig. 10h).
The large effect of VIT along major roadways can be seen
in both Figs. S6 and 10, particularly in the 06:00 column of 25

panels a, d, and g in both figures, with the greatest reductions
aside from urban regions occurring along major roadways
(e.g., Chicago to Detroit area).

The spatial extent of the region where the wintertime mean
values for the Pan Am domain differ at greater than 90 % 30

confidence are shown in Figs. 12 and 13 for the model’s
surface concentrations and the corresponding vertical cross
section, respectively. The corresponding summertime differ-
ences for this domain are shown in Figs. S8 and S9. For the
wintertime Pan Am domain simulations, surface NO2 and 35

PM2.5 > 90 % confidence ratio regions are similar to those
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Figure 11. Vertical cross sections of concentration differences between major eastern North American cities, January 2016; panels arranged
as in Fig. 10. Vertical coordinate: unitless hybrid, the top of the scale is approximately 2 km. Units:1NO2,1O3 – ppbv;1PM2.5 – µgm−3.

of the continental 10 km domain and can be seen to extend
into the late morning hours (14:00 UTC; 10:00 local time;
Fig. 12b and e). The mean values of NO2 and to a lesser ex-
tent PM2.5 also differ at greater than 90 % confidence later in
the day in the urban core regions (Fig. 12c and f). In contrast5

to the continental-scale results (Fig. 8) the influence of VIT
on surface O3 approaches but remains below the 90 % con-
fidence level at 14:00 UTC in the urban regions (Fig. 12h)
and remains below 90 % confidence at the other times shown.
The vertical influence of wintertime VIT results in mean val-10

ues differing at greater than 90 % confidence up to ∼ 700 m
altitude for NO2 and PM2.5, and the above-ground O3 mean
values differ at greater than 90 % confidence for regions be-
tween 25 and 200 m altitude over specific large urban areas
(e.g., New York City at 14:00 UTC, Fig. 13h). Regions of15

greater than 90 % confidence in the vertical at 22:00 UTC
for NO2 and PM2.5 are confined to the urban core regions
near the surface (Fig. 13c and f). For the summertime high-
resolution Pan Am domain simulations, differences at greater
than 90 % confidence occur for surface NO2 and PM2.5 at20

night and in the early morning (Figs. S8 and S9a and d) and
persist until the later morning over parts of the Great Lakes
(Fig. S8b and e) and isolated locations over cities (Fig. S9b

and e). Differences in the mean ozone aloft occur at night
at greater than 90 % confidence over the largest cities (e.g., 25

New York, Fig. S9a).
Taken together, Figs. 8, 12, 13, S8, and S9 show that the

incorporation of VIT into the model results in mean values
which are statistically different at greater than 90 % confi-
dence (red areas, for these figures) for NO2 and PM2.5 over 30

large regions and to a lesser degree for O3 over urban areas,
with a greater influence at night, in the early morning, and
under the more stable conditions of winter compared to sum-
mer.

Differences in station-specific performance scores for the 35

two simulations for the 2.5 km grid cell size domain, con-
structed as for the 10 km domain, are shown in Figs. S10–S12
(summer) and S13–S15 (winter) for NO2, PM2.5, and O3.

The summer scores (Figs. S10–S12) show the most signifi-
cant improvements in the urban areas across all performance 40

metrics, with the largest relative magnitude differences for
NO2 and PM2.5 and lower magnitude changes for O3. As for
the North American simulations, O3 performance improve-
ments occur in the cities, due to increased vertical mixing,
and O3 scores in rural regions have degraded but may be 45

improved with the use of a forest canopy parameterization,
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Figure 12. The 90 % confidence ratio values (see Eq. 14) for the 30 d average surface NO2, PM2.5, and O3, January 2016, in the Pan Am
2.5 km grid cell size domain simulation. Panels arranged as in Fig. 10: (10:00, 14:00, and 22:00 UTC) according to species: (a–c) NO2;
(d–f) PM2.5; (g–i) O3 (ppbv). Green line in (a) indicates the position of the vertical cross section shown in Fig. 13. Values> 1.0 (red colors)
indicate that the simulations differ at greater than 90 % confidence.

as discussed further in the Supplement (Figs. S5 and related
text, S12, and S15). The overall impact of the incorporation
of the VIT parameterization is clearly a positive one, partic-
ularly in urban areas: VIT has been shown to have a signif-
icant impact on summertime urban and suburban-scale pho-5

tochemistry.
The metrics of the winter 2.5 km station-specific evalua-

tion for NO2 (Fig. S13) show both local improvements and
degradation in performance, depending on location. Winter-
time PM2.5 performance improves substantially across most10

metrics and most locations (Fig. S14). Wintertime ozone per-
formance is variable, although improvements can be seen for
most metrics within the largest urban areas (Fig. S15).

4 Discussion and conclusions

Our work implies that the turbulence associated with vehi- 15

cle motion is capable of having a significant effect on the
concentrations of key pollutants in the lower atmosphere, us-
ing a parameterization which allows these effects to be in-
corporated at the relatively coarse horizontal resolutions of
regional chemical transport models. Incorporating that effect 20

into both continental-scale and higher-resolution regional-
/urban-scale air implementations of a pollution model re-
sulted in an overall improvement in model performance,
across several different performance metrics. The improve-
ment at higher resolution (when the TEB urban parameteri- 25

zation was included in the model setup) implies that the mix-
ing associated with urban radiative transfer and roughness
is not sufficient to account for the observed pollutant con-
centrations; the effect of VIT is robust despite differences
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Figure 13. Vertical cross sections of 90 % confidence ratio values (see Eq. 14) between major eastern North American cities, January 2016;
panels arranged as in Fig. 10. Values> 1.0 (red colors) indicate that the simulations differ at greater than 90 % confidence.

in radiative transfer schemes and across different horizontal
resolutions.

However, we also acknowledge several limitations of our
VIT formulation and have recommendations for future work
which would allow it to be improved and the uncertainties in5

our analysis reduced.
First, we have assumed that single-vehicle-induced turbu-

lence accounts for all of the turbulent kinetic energy con-
tributed by vehicles (Gordon et al., 2012; Miller et al., 2018).
The passage of multiple vehicles also induces a “wake flow”10

in their direction of motion. While this effect has been rec-
ognized in very high-resolution roadway-scale models (Es-
kridge and Catalano, 1987; Eskridge et al., 1991), the break-
down of opposing wake flows into turbulence (arising from
two-way traffic and/or multiple lanes of traffic traveling at15

different speeds) has not been examined, to the best of
our knowledge. However, these wake flows are of suffi-
ciently high energy that their residual power is being har-
nessed via vertical-turbine wind power generation systems in
both Turkey (Devecitech, 2020) and Scotland (Shell, 2020).20

The single-vehicle additive parameterization we have created
here may thus underestimate the net turbulent effect of vehi-
cle passage. At the same time, our assumption that individual

VIT within a grid cell is simply additive may also be incor-
rect, resulting in overestimates of that portion of the net VIT. 25

With the advent of Doppler lidar systems with sufficient time
resolution to capture turbulence, we advocate for and are
currently embarking on new observation studies employing
these systems in scan mode across highways, to fully char-
acterize all vehicle-induced contributions to turbulence as a 30

function of the number and type of vehicles crossing below
a lidar scan path perpendicular to the highway.

Second, our assumption that each vehicle’s pathway
crosses the grid cell is a considerable source of uncertainty.
There we are limited by the lack of availability of simultane- 35

ous vehicle speed and number data. However, recent devel-
opments in satellite-based radar technology have been shown
to provide accurate estimates of the speed of individual vehi-
cles along major highways (Meyer et al., 2006; Bethke et al.,
2006), and binning and collection of these data may improve 40

the linkage between the more commonly available vehicle-
kilometer-traveled data and VIT beyond that used here. Other
sources of gridded vehicle and/or road density data (World
Bank, 2018) should also be explored.

Third, one consideration for our parameterization is the is- 45

sue of “traffic jams”; a large number of vehicles being present
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on the road without much motion in such conditions. How-
ever, we note that in this case, the number of vehicles cross-
ing a point in space will drop – that is, if the underlying traf-
fic data (vehicle kilometer traveled) are of sufficient quality
that traffic jams are included, the existing parameterization5

should adequately handle these effects. Both our second and
this third consideration argue for the creation of more accu-
rate vehicle travel data for use in air-quality models.

Last, we note that the ambient concentrations of pollutants
such as NO2, O3, and PM2.5 are influenced by a host of fac-10

tors included in other parameterizations of air-quality models
and in the quality of the available emissions data. However,
we have shown here that improvements in the forecast qual-
ity of three different species with human-health impacts may
be achieved through the same process improvement. An ex-15

amination of all of the other possible sources of error in air-
quality models is beyond the scope of this work. This work
is not intended to be taken as a review or critique of existing
boundary layer parameterizations within meteorological or
regional air-quality models. There has been excellent work in20

recent years on improving these parameterizations, and there
are several reviews discussing this topic in the literature (e.g.,
Edwards et al., 2020). Rather, we focus here on an ancillary
problem specific to regional air-quality models: whether the
turbulent kinetic energy associated with vehicle motion could25

account for sufficient sub-grid-scale vertical mixing to influ-
ence the concentrations of fresh surface-emitted pollutants at
and above roadways and further downwind, that is, on the
extent to which the at-source vertical transport of fresh pol-
lutants from the mobile sector needs to take into account lo-30

cal sources of energy for transport at the point of emission
(whether in large stacks – Gordon et al., 2018, Akingunola et
al., 2018 – or over roadways, as examined here).

Despite the uncertainties identified above, our analysis has
shown the following:35

1. The drop-off of VIT with height above moving vehi-
cles is well-represented by a Gaussian distribution, from
multiple measurement and computational fluid dynam-
ics modeling studies.

2. The mixing lengths inferred from these studies ranges40

from 2.50 m (for individual isolated cars) through ∼
10 m (vehicle ensembles) to 41 m (vehicle ensembles in
a street canyon environment). We also note that the gra-
dient in the net thermal turbulent transfer coefficients
drives concentration changes due to VIT. The expecta-45

tion that VIT is capable of vertical transport out of the
lowest layers of a regional model is therefore a reason-
able one.

3. The magnitude of the localized energy input from VIT,
while smaller than the input of solar energy during day-50

light hours, is equivalent in magnitude to the energy
perturbations resulting from the use of a state-of-the-art
urban radiative balance model (TEB; see Methodology

section). That is, locally, VIT has sufficient energy to be
equivalent to the impact of an improved urban radiative 55

transfer scheme – underlining its importance for vertical
transport of pollutants.

4. The impact of VIT depends on both local traffic con-
ditions and the background meteorological conditions,
with the maximum effect occurring when turbulence 60

in the ambient atmosphere is relatively weak (night
through early morning) and traffic levels are relatively
high (morning rush hour).

5. The use of the VIT parameterization has been demon-
strated to result in decreases in air-quality model error 65

across three different key pollutants, with the most strik-
ing results for mean biases, without resorting to the use
of imposed minima in the thermal turbulent exchange
coefficients frequently used in air-quality models. These
differences occur at greater than 90 % confidence over 70

much of the model domains for NO2 and PM2.5 and in
urban core regions for O3 at 10 km resolution as well as
up to hundreds of meters above the surface.

6. VIT has a significant impact on the rapid vertical dis-
tribution of freshly emitted pollutants on the very lo- 75

calized scale of roadways where the enhanced mixing
occurs, in analogy to the rapid vertical transport used
in parameterizations of plume rise from large stacks.
Its impact on mixing of pre-existing meteorological and
chemical variables on the grid cell scale is expected to 80

be small.

Based on these findings, we conclude that VIT has a signif-
icant impact on pollutant transport and dispersion out of the
lowest layer of the atmosphere and recommend its inclusion
in regional air-quality models. Further improvements to the 85

parameterizations found herein would result from additional
observations of TKE using Doppler lidar techniques of vehi-
cle ensembles under realistic driving conditions.

Data availability. The data sets used here for model evaluation are
available from the publicly accessible websites of the AQS net- 90

work at https://www.epa.gov/aqs (last access: 21 July 2021, US
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Author contributions. PAM was responsible for the theoretical de-
velopment of the VIT parameterization, initial coding, study design,
and writing of paper drafts. CS, SR, and PC provided assistance
with Pan Am domain simulations and analysis. AA was responsi- 100

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–26, 2021

https://www.epa.gov/aqs
http://maps-cartes.ec.gc.ca/ rnspa-naps/data.aspx
http://maps-cartes.ec.gc.ca/ rnspa-naps/data.aspx
http://maps-cartes.ec.gc.ca/ rnspa-naps/data.aspx
https://doi.org/10.5194/acp-21-1-2021-supplement


24 P. A. Makar et al.: Vehicle-induced turbulence and atmospheric pollution

ble for final code versions and assistance with North American do-
main simulations and analysis. JZ and QZ provided emissions pro-
cessing assistance and the generation of vehicle-kilometer-traveled
fields for both North American and Pan Am domains. CS, AA, and
JZ also provided comments and advice on subsequent paper drafts5

and responses to reviewers.CE3

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and10

institutional affiliations.

Acknowledgements. The authors would like to acknowledge the
contract assistance of Elisa Boutzis under the direction of Junhua
Zhang in the generation of VKT gridded fields.

Review statement. This paper was edited by Ronald Cohen and re-15

viewed by two anonymous referees.

References

Abelsohn, A. and Steib, D. M.: Health effects of outdoor air pol-
lution: approach to counseling patients using the Air Quality
Health Index, Can. Fam. Physician, 57, 881–887, 2011.20

Adelman, Z., Baek, B. H., Brandmeyer, J., Seppanen, C., Naess,
B., and Yang, D.: Spatial Surrogate Development for 2014
Emissions Modeling Platforms, 2017 International Emissions
Inventory Conference, 14–18 August, Baltimore, MD, USA,
available at: https://www.epa.gov/sites/production/files/2017-11/25

documents/surrogate_developement.pdf (last access: 21 July
2021), 2017.

Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S.-M.,
Gordon, M., Moran, M. D., and Zheng, Q.: A chemical trans-
port model study of plume-rise and particle size distribution for30

the Athabasca oil sands, Atmos. Chem. Phys., 18, 8667–8688,
https://doi.org/10.5194/acp-18-8667-2018, 2018.

AirNow: https://www.airnow.gov/, last access: 21 February
2020. TS5

Bethke, K.-H., Baumgartner, S., Gabele, M., Hounam, D., Kempt-35

ner, E., Klement, E., Krieger, G., and Erxleben, R.: Air- and
spaceborne monitoring of road traffic using SAR moving tar-
get indication – Project TRAMRAD, ISPRS J. Photogramm., 61,
243–259, 2006.

Bou-Zeid, E., Meneveau, C., and Parlange, M. B.: Large-40

eddy simulation of neutral atmospheric boundary layer flow
over heterogeneous surfaces: Blending height and effec-
tive surface roughness, Water Resour. Res., 40, W02505,
https://doi.org/10.1029/2003WR002475, 2004.

Bradshaw, P.: Possible origin of Prandt’s mixing-length theory, Na-45

ture, 249, 135–136, https://doi.org/10.1038/249135b0, 1974.

Briggs, G. A.: Plume Rise Predictions, Chapter 3, in: Lectures
on Air Pollution and Environmental Impact Analysis, edited
by: Huagen, D. A., American Meteorological Society, Boston,
MA, USA, 59–111, https://doi.org/10.1007/978-1-935704-23-2, 50

1982.
Briggs, G. A.: Plume rise and buoyancy effects, atmospheric

sciences and power production, in: DOE/TIC-27601
(DE84005177), edited by: Randerson, D., TN. Technical
Information Center, US Dept. of Energy, Oak Ridge, USA, 55

327–366, 1984.
Caron, J-F., Milewski, T., Buehner, M., Fillion, L., Reszka,

M., Macpherson, S., and St-James, J.: Implementation of de-
terministic weather forecasting systems based on ensemble-
variational data assimilation at Environment Canada. Part II: 60

The regional system, Mon. Weather Rev., 143, 2560–2580,
https://doi.org/10.1175/MWR-D-14-00353.1, 2015.

Chen, J. and GEM-MACH development team: GEM-MACH at-
mospheric chemistry module for the GEM numerical weather
pre-diction model, Environment and Climate Change Canada, 65

Zenodo, https://doi.org/10.5281/zenodo.2579386 (last access: 3
March 2020), 2019.

Cote, J. C., Desmarais, J.-G., Gravel, G., Methot, A., and Patoine,
A.: The operational CMC- MRB Global Environmental Multi-
scale (GEM) Model. Part II: results, Mon. Weather Rev., 126, 70

1397–1418, 1998a.
Cote, J. C., Gravel, S., Methot, A., Patoine, A., Roch, M., and Stan-

iforth, A.: The operational CMC-MRB Global Environmental
Multiscale (GEM) Model. Part I: design considerations and for-
mulation, Mon. Weather Rev., 126, 1373–1395, 1998b. 75

Devecitech: Devecitech: Tech of the future, available at: https:
//devecitech.com/?page_id=5, last access: 21 February 2020.

Di Sabatino, S., Kastner-Klein, P., Berkowicz, R., Britter, R. E., and
Fedorovich, E.: The modeling of turbulence from traffic in urban
dispersion models – Part I: Theoretical considerations, Environ. 80

Fluid Mech., 3, 129–143, 2003.
Edwards, J. M., Meljaars, A. C. M., Holtslag, A. A. M., and Lock,

A. P.: Representation of boundary-layer processes in numeri-
cal weather prediction and climate models, Bound.-Lay. Mete-
orol., 177, 511–539, https://doi.org/10.007/s10546-020-00530-z, 85

2020.
EPA: Data from US EPA, available at: ftp://newftp.epa.gov/air/

emismod/2011/v3platform/2017emissions/2017ek_cb6v2_v6_
11g_inputs_onroad.zip (last access: 3 March 2020), 2017.

Eskridge, R. E. and Catalano, J. A.: ROADWAY – a numerical 90

model for predicting air pollutants near highways, Users Guide,
US EPA, 134 pp., available at: https://nepis.epa.gov/Exe/ZyPDF.
cgi/20015RHA.PDF?Dockey=20015RHA.PDF (last access: 25
February 2020), 1987.

Eskridge, R. E., Petersen, W. B., and Rao, S. T.: Turbulent 95

diffusion behind vehicles: effect of traffic speed on pollu-
tant concentrations, JAPCA J. Air Waste Ma., 41, 312–317,
https://doi.org/10.1080/10473289.1991.10466848, 1991.

Galmarini, S., Hogrefe, C., Brunner, D., Makar, P. A., Baklanov, A.:
Preface, Atmos. Environ., 115, 340–344, 2015. 100

Gordon, M., Staebler, R. M., Liggio, J., Makar, P. A., Li, S.-M.,
Wentzell, J., Lu, G., Lee, P., and Brook, J. R.: Measurements
of enhanced turbulent mixing near highways, J. Appl. Meteorol.
Clim., 51, 1618–1632, 2012.

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Atmos. Chem. Phys., 21, 1–26, 2021 https://doi.org/10.5194/acp-21-1-2021

https://www.epa.gov/sites/production/files/2017-11/documents/surrogate_developement.pdf
https://www.epa.gov/sites/production/files/2017-11/documents/surrogate_developement.pdf
https://www.epa.gov/sites/production/files/2017-11/documents/surrogate_developement.pdf
https://doi.org/10.5194/acp-18-8667-2018
https://www.airnow.gov/
https://doi.org/10.1029/2003WR002475
https://doi.org/10.1038/249135b0
https://doi.org/10.1007/978-1-935704-23-2
https://doi.org/10.1175/MWR-D-14-00353.1
https://doi.org/10.5281/zenodo.2579386
https://devecitech.com/?page_id=5
https://devecitech.com/?page_id=5
https://devecitech.com/?page_id=5
https://doi.org/10.007/s10546-020-00530-z
ftp://newftp.epa.gov/air/emismod/2011/v3platform/2017emissions/2017ek_cb6v2_v6_11g_inputs_onroad.zip
ftp://newftp.epa.gov/air/emismod/2011/v3platform/2017emissions/2017ek_cb6v2_v6_11g_inputs_onroad.zip
ftp://newftp.epa.gov/air/emismod/2011/v3platform/2017emissions/2017ek_cb6v2_v6_11g_inputs_onroad.zip
ftp://newftp.epa.gov/air/emismod/2011/v3platform/2017emissions/2017ek_cb6v2_v6_11g_inputs_onroad.zip
ftp://newftp.epa.gov/air/emismod/2011/v3platform/2017emissions/2017ek_cb6v2_v6_11g_inputs_onroad.zip
https://nepis.epa.gov/Exe/ZyPDF.cgi/20015RHA.PDF?Dockey=20015RHA.PDF
https://nepis.epa.gov/Exe/ZyPDF.cgi/20015RHA.PDF?Dockey=20015RHA.PDF
https://nepis.epa.gov/Exe/ZyPDF.cgi/20015RHA.PDF?Dockey=20015RHA.PDF
https://doi.org/10.1080/10473289.1991.10466848


P. A. Makar et al.: Vehicle-induced turbulence and atmospheric pollution 25

Gordon, M., Makar, P. A., Staebler, R. M., Zhang, J.,
Akingunola, A., Gong, W., and Li, S.-M.: A comparison of
plume rise algorithms to stack plume measurements in the
Athabasca oil sands, Atmos. Chem. Phys., 18, 14695–14714,
https://doi.org/10.5194/acp-18-14695-2018, 2018.5

Hu, X.-M., Klein, P. M., and Xue, M.: Evaluation of the up-
dated YSU Planetary Boundary Layer Scheme within WRF for
Wind Resource and Air Quality Assessments, J. Geophys. Res.-
Atmos., 118, 10490–10505, https://doi.org/10.1002/jgrd.50823,
2013.10

Joe, P., Belair, S., Ber Nier, N. B., Bouchet, V., Brook, J. R., Brunet,
D., Burrows, W., Charland, J.-P., Dehghan, A., Driedger, N.,
Duhamie, C., Evans, G., Filion, A.-B., Frenette, R., DeGrand-
pre, J., Gultepe, I., Henderson, D., Herdt, A., Hilker, N., Huang,
L., Hung, E., Isaac, G., Jeong, C.-H., Johnston, D., Klassen, J.,15

Leroyer, S., Lin, H., MacDonald, M., MacPhee, J., Mariani, Z.,
Munoz, T., Ried, J., Robichaud, A., Rochon, Y., Shairsing, K.,
Sills, D., Spacek, L., Stroud, C., Su, Y., Taylor, N., Vanos, J.,
Voogt, J., Wang, J. M., Wiechers, T., Wren, S., Yang, H., and
Yip, T.: The Environment Canada Pan and ParaPan American20

science showcase project, B. Am. Meteorol. Soc., 99, 921–953,
https://doi.org/10.1175/BAMS-D-16-0162.1, 2018.

Kain, J. S.: The Kain–Fritsch convective parameterization: an up-
date, J. Appl. Meteorol., 43, 170–181, 2004.

Kastner-Klein, P., Fedorovich, E., Ketzel, M., Berkowicz, R., and25

Britter, R.: The modelling of turbulence from traffic in urban
dispersion models – Part II: Evaluation against laboratory and
fullscale concentration measurements in street canyons, Environ.
Fluid Mech., 3, 145–172, 2003.

Kim, S.-W., Barth, M. C., and Trainer, M., Impact of turbulent mix-30

ing on isoprene chemistry, Geophys. Res. Lett., 43, 7701–7708,
2016.

Kim, Y.: Quantification of vehicle-induced turbulence on roadways
using computational fluid dynamics simulation, M.Sc. Thesis,
Department of Chemical Engineering and Applied Chemistry,35

University of Toronto, Toronto, Ontario, Canada, 93 pp., 2011.
Kim, Y., Sartelet, K., Raut, J-C., and Chazette, P.: Influence of an

urban canopy model and PBL schemes on vertical mixing for air
quality modeling over Greater Paris, Atmos. Environ., 107, 289–
306, 2015.40

Kim, Y., Huang, L., Gong, S., Jia, C. Q.: A new approach to quan-
tifying vehicle induced turbulence for complex traffic scenarios,
Can. J. Chem. Eng., 24, 71–78, 2016.

Klein, P. M., Hu, X.-M., and Xue, M.: Impacts of mixing processes
in the nocturnal atmospheric boundary layer on urban ozone con-45

centrations, Bound.-Lay. Meteorol., 150, 107–130, 2014.
Lemonsu, A., Belair, S., Mailhot, J., and Leroyer, S.: Evaluation of

the Town Energy Balance model in cold and snowy conditions
during the Montreal urban snow experiment, 2005, J. Appl. Me-
teorol. Clim., 49, 346–362, 2010.50

Leroyer, S., Belair, S., Husain, S. Z., and Mailhot, J.: Subkilome-
ter numerical weather prediction in an urban coastal area: a case
study over the Vancouver metropolitan area, J. Appl. Meteorol.
Clim., 53, 1433–1453, 2014.

Li, Y., Barth, M. C., Chen, G., Patton, E. G., Kim, S.-W., Wisthaler,55

A., Mikoviny, T., Fried, A., Clark, R., and Steiner, A. L.:
Large-eddy simulation of biogenic VOC chemistry during the
DISCOVER-AQ 2011 campaign, J. Geophys. Res.-Atmos., 121,
8083–8105, 2016.

Makar, P. A., Gravel, S., Chirkov, V., Strawbridge, K. B., 60

Froude, F., Arnold, J., and Brook, J.: Heat flux, urban prop-
erties, and regional weather, Atmos. Environ., 40, 2750–2766,
https://doi.org/10.1016/j.atmosenv.2005.11.061, 2006.

Makar, P. A., Zhang, J., Gong, W., Stroud, C., Sills, D., Hayden,
K. L., Brook, J., Levy, I., Mihele, C., Moran, M. D., Tarasick, 65

D. W., He, H., and Plummer, D.: Mass tracking for chemical
analysis: the causes of ozone formation in southern Ontario dur-
ing BAQS-Met 2007, Atmos. Chem. Phys., 10, 11151–11173,
https://doi.org/10.5194/acp-10-11151-2010, 2010.

Makar, P. A., Nissen, R., Teakles, A., Zhang, J., Zheng, Q., Moran, 70

M. D., Yau, H., and diCenzo, C.: Turbulent transport, emissions
and the role of compensating errors in chemical transport models,
Geosci. Model Dev., 7, 1001–1024, https://doi.org/10.5194/gmd-
7-1001-2014, 2014.

Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, 75

R., Milbrandt, J., Im, U., Balzarini, A., Baro, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, H., Honzak, L., Hou,
A., Jimenz-Guerrero, P., Langer, M., Moran, M. D., Pabla, B.,
Perez, J. L., Pirovano, G., San Jose, R., Tuccella, P., Werhahn,
J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution 80

and weather, part 2: Effects on chemistry, Atmos. Environ., 115,
499–526, 2015a.

Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci,
G., Zabkar, R., Im, U., Balzarini, A., Baro, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, H., Honzak, L., Hou, 85

A., Jimenz-Guerrero, P., Langer, M., Moran, M. D., Pabla, B.,
Perez, J. L., Pirovano, G., San Jose, R., Tuccella, P., Werhahn,
J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution
and weather, part 1: Effects on weather, Atmos. Environ., 115,
442–469, 2015b. 90

Makar, P. A., Staebler, R. M., Akingunola, A., Zhang, J.,
McLinden, C., Kharol, S. K., Pabla, B., Cheung, P., and
Zheng, Q.: The effects of forest canopy shading and turbu-
lence on boundary layer ozone, Nat. Commun., 8, 15243,
https://doi.org/10.1038/ncomms15243, 2017. 95

Mason, V.: A physically-based scheme for the urban energy bal-
ance in atmospheric models, Bound.-Lay. Meteorol., 94, 357–
397, 2000.

Mensink, C., Lefebre, F., Janssen, L., and Cornelis, J.: A compari-
son of three street canyon models with measurements at an urban 100

station in Antwerp, Belgium, Environ. Modell. Softw., 21, 514–
516, 2014.

Meyer, F., Hinz, S., Laika, A., Weihing, D., and Bamler, R.: Perfor-
mance analysis of the TerraSAR-X Traffic monitoring concept,
ISPRS J. Photogramm., 61, 225–242, 2006. 105

Milbrandt, J. A., Bélair, S., Faucher, M., Vallée, M., Carrera, M.
L., and Glazer, A.: The pan-Canadian High Resolution (2.5 km)
Deterministic Prediction System, Weather Forecast., 31, 1791–
1816, 2016.

Miller, S. J., Gordon, M., Staebler, R. M., and Taylor, P. A.: A study 110

of the spatial variation of vehicle-induced turbulence on high-
ways using measurements from a mobile platform, Bound.-Lay.
Meteorol., 171, 1–29, https://doi.org/10.1007/s10546-018-0416-
9, 2018.

Moran M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A., Gong, 115

W., Landry, H., Gravel, S., Gong, S., Crevier, L.-P., Kallaur,
A., and Sassi, M.: Particulate-matter forecasting with GEM-
MACH15, a new Canadian air-quality forecast model, in: Air

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–26, 2021

https://doi.org/10.5194/acp-18-14695-2018
https://doi.org/10.1002/jgrd.50823
https://doi.org/10.1175/BAMS-D-16-0162.1
https://doi.org/10.1016/j.atmosenv.2005.11.061
https://doi.org/10.5194/acp-10-11151-2010
https://doi.org/10.5194/gmd-7-1001-2014
https://doi.org/10.5194/gmd-7-1001-2014
https://doi.org/10.5194/gmd-7-1001-2014
https://doi.org/10.1038/ncomms15243
https://doi.org/10.1007/s10546-018-0416-9
https://doi.org/10.1007/s10546-018-0416-9
https://doi.org/10.1007/s10546-018-0416-9


26 P. A. Makar et al.: Vehicle-induced turbulence and atmospheric pollution

Pollution Modelling and Its Application XX, edited by: Steyn,
D. G. and Rao, S. T., Springer, Dordrecht, 289–292, 2010.

Moran, M. D., Lupu, A., Zhang, J., Savic-Jovcic, V., and Gravel,
S.: A comprehensive performance evaluation of the next genera-
tion of the Canadian operational regional air quality deterministic5

prediction system, Springer Proceedings in Complexity, Cham,
Switzerland, Cham, Switzerland, 75–81, 2018.

Ouwersloot, H. G., Vilà-Guerau de Arellano, J., van Heerwaarden,
C. C., Ganzeveld, L. N., Krol, M. C., and Lelieveld, J.: On the
segregation of chemical species in a clear boundary layer over10

heterogeneous land surfaces, Atmos. Chem. Phys., 11, 10681–
10704, https://doi.org/10.5194/acp-11-10681-2011, 2011.

Prandtl, L.Z., Bericht über Untersuchungen zur ausge-
bildeten Turbulenz, J. Appl. Math. Mech., 5, 136–139,
https://doi.org/10.1002/zamm.19250050212, 1925.15

Rao, K. S., Gunter, R. L., White, J. R., and Hosker, R. P.: Turbulence
and dispersion modeling near highways, Atmos. Environ., 36,
4337–4346, 2002.

Rao, S. T., Sedefian, L., and Czapksi, U. H.: Characteristics of
turbulence and dispersion of pollutants near major highways, J.20

Appl. Meteorol., 18, 286–293, 1979.
Ren, S., Stroud, C., Belair, S., Leroyer, S., Moran, M., Zhang, J.,

Akingunola, A., and Makar, P.: Impact of Urban Land Use and
Anthropogenic Heat on Air Quality in Urban Environments, in:
Air Pollution Modeling and its Application XXVI, ITM 2018,25

edited by: Mensink, C., Gong, W., and Hakami, A., Springer Pro-
ceedings in Complexity, Springer, Cham, Switzerland, 153–158,
https://doi.org/10.1007/978-3-030-22055-6_24, 2020.

Shell: Winds of Change: Turbine Turns Traffic Into En-
ergy, available at: https://www.shell.com/inside-energy/30

turbine-turns-traffic-into-energy.html, last access: 21 February
2020.

Stieb, D. M., Burnett, R. T., Smith-Doiron, M., Brion, O., Hwashin,
H. S., and Economou, V.: A new multipollutant, no-threshold air
quality health index based on short-term associations observed35

in daily time-series analyses, JAPCA J. Air Waste Ma., 58, 435–
450, 2008.

Stroud, C., Ren, S., Zhang, J., Moran, M., Akingunola, A., Makar,
P. A., Munoz-Alpizar, R., Leroyer, S., Bélair, S., Sills, D.,
and Brook, J. R.: Chemical analysis of surface-level ozone ex-40

ceedances during the 2015 pan American games, Atmosphere,
11, 572, https://doi.org/10.3390/atmos11060572, 2020.

Woodward, H., Stettler, M., Pavlidis, D., Aristodemou, E.,
ApSimon, H., and Pain, C.: A large eddy simulation
of the dispersion of traffic emissions by moving vehi-45

cles at an intersection, Atmos. Environ., 215, 116891,
https://doi.org/10.1016/j.atmosenv.2019.116891, 2019.

World Bank: GRIP (Global Roads Inventory Dataset) – 2018: Road
Density, available at: https://datacatalog.worldbank.org/dataset/
grip-global-roads-inventory-dataset-2018-road-density (last ac-50

cess: 21 February 2020), 2018.
Vinuesa, J.-F. and Vilà-Guerau de Arellano, J.: Introducing effective

reaction rates to account for inefficient mixing of the convective
boundary layer, Atmos. Environ., 39, 445–461, 2005.

Zhang, Y., Gu, Z., and Yu, C. W.: Large eddy simulation of vehi-55

cle induced turbulence in an urban street canyon with a new dy-
namically vehicle-tracking scheme, Aerosol Air Qual. Res., 17,
865–874, https://doi.org/10.4209/aaqr.2016.05.0204, 2017.

Atmos. Chem. Phys., 21, 1–26, 2021 https://doi.org/10.5194/acp-21-1-2021

https://doi.org/10.5194/acp-11-10681-2011
https://doi.org/10.1002/zamm.19250050212
https://doi.org/10.1007/978-3-030-22055-6_24
https://www.shell.com/inside-energy/turbine-turns-traffic-into-energy.html
https://www.shell.com/inside-energy/turbine-turns-traffic-into-energy.html
https://www.shell.com/inside-energy/turbine-turns-traffic-into-energy.html
https://doi.org/10.3390/atmos11060572
https://doi.org/10.1016/j.atmosenv.2019.116891
https://datacatalog.worldbank.org/dataset/grip-global-roads-inventory-dataset-2018-road-density
https://datacatalog.worldbank.org/dataset/grip-global-roads-inventory-dataset-2018-road-density
https://datacatalog.worldbank.org/dataset/grip-global-roads-inventory-dataset-2018-road-density
https://doi.org/10.4209/aaqr.2016.05.0204


Remarks from the language copy-editor

CE1 We have to ask the handling editor for approval regarding the changes throughout the paper relating to AirNow. This
would require an explanation on your part as to why the changes are necessary. Can we use the explanation that you
have provided in your comments for this purpose? If not, please provide an explanation that can be forwarded to the
editor. Thanks!

CE2 This is not defined in your responses. Should it be COE?
CE3 New text inserted with minor edits.

Remarks from the typesetter

TS1 I apologise for the mistake. Personal communication should not be included in the reference list.
TS2 Please provide the full name.
TS3 This change that relates to AirNow has to be approved by the handling editor.
TS4 Do you mean in "in the Supplement and Table S1" or "in Table S1 in the Supplement"?
TS5 This change that relates to AirNow has to be approved by the handling editor.


	Abstract
	Introduction
	Methodology
	Theoretical development
	Changes in VIT with height
	VIT and model vertical resolution
	Relating VIT to available gridded data – vehicle kilometer traveled
	Construction of a sub-grid-scale parameterization for on-road vehicle-induced turbulence
	Comparison of energy densities: VIT, solar, and urban perturbations in sensible and latent heat
	GEM-MACH simulations
	VIT as a sub-grid-scale phenomena

	Results
	VIT height dependence as a Gaussian distribution
	Model domains and evaluation data
	Continental 10km grid cell size domain evaluation
	Eastern North America 2.5km grid cell size domain evaluation

	Discussion and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

