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Paul A. Makarl, Craig Stroud!, Ayodeji Akingunolal, Junhua Zhang!, Shuzhan Ren?, Philip Cheung?,
Qiong Zheng!

'Air Quality Modelling and Integration Section, Air Quality Research Division, Atmospheric Science and Technology
Directorate, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada

Correspondence to: Paul A. Makar (paul.makar@canada.ca)

Abstract. Theoretical models ofthe Earth’s atmosphere adhere to an underlying concept of flow driven by radiative transfer
and the nature ofthe surface over which the flow is taking place: heat from the sun and/or anthropogenic sources are the sole
sources of energy driving atmospheric constituent transport. However, another source of energy is prevalent in the human
environment at the very local scale — the transfer of kinetic energy from moving vehicles to the atmosphere. We show that
this source of energy, due to being co-located with combustion emissions, can influence their vertical distribution to the extent
of having a significant influence on lower troposphere pollutant concentrations throughout North America. The effect of
vehicle-induced turbulence on freshly emitted chemicals remains notable even when taking into account more complex urban
radiative transfer-driven turbulence theories at high resolution. We have designed a parameterization to account for the at-
source vertical transport of freshly emitted pollutants from mobile emissions resulting from vehicle-induced turbulence, in
analogy to sub-grid-scale parameterizations for plume rise emissions from large stacks. This parameterization allows vehicle-
induced turbulence to be represented at the scales inherent in 3D chemical transport models, allowing this process to be
represented over larger regions than is currently feasible with large eddy simulation models.is-impact-over large regions-to-be

epresented witho he need for the comp

Including this sub-grid-scale parameterization for the vertical transport of emitted pollutants due to vehicle-induced turbulence
into a 3D chemical transport model of the atmosphere reduces pre-existing North American nitrogen dioxide biases by a factor
of eight, and improves most model performance scores for nitrogen dioxide, particulate matter and ozone (for example,

reductions in root mean square errors of 20, 9 and 0.5 percent, respectively).

1 Introduction

A common and ongoing problem with theoretical descriptions of the Earth’s atmosphere is a dichotomy in the representation
of turbulent transport, between the turbulence estimated in weather forecast models, and the turbulence required for accurate
simulations in air-quality forecast models. Representations ofatmospheric turbulence used in weather forecast and climate
models have focused on parameterizations of “ sub-gridscale turbulence”; descriptions ofthe storage and release of energy
derived from incoming solar radiation and anthropogenic heat release, physical factors in the built-environment, and the
transfer of sensible and latent heat between the built environment and the atmosphere. T hese efforts adhere to an underlying
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concept of radiative-driven flow: heat transfer from the sun and/or anthropogenic sources being the source of energy behind
atmospheric motions. There has been considerable research focused on improving understanding radiative-driven flow in
urban areas (e.g. the advection and diffusion associated with buildings and street canyons (Mensink et al., 2014), urban hest
island radiative transfer theory (Mason et al., 2000), and in efforts to increase 3D model vertical and horizontal resolution in
order to better capture the physical environment (Leroyer et al, 2014). However, when these physical models of turbulence
are applied to problems involving the emissions, transport and chemistry of atmospheric pollutants, predicted surface
concentrations ofemitted pollutants may bebiased high, and concentrations aloft biased | ow, indicating the presence ofmissing
additional sources of atmospheric dispersion (Makar et al., 2014; Kim et al., 2015). Despite ongoing work to improve the
turbulenceschemes in meteorological models (Makar et al., 2014; Hu et al., 2013; Kleinetal.,2014), computational predidive
models of atmospheric pollution typically make use of a constant “floor” or “cut-off” in the thermal turbulent transfer
coefficients provided by weather forecast models, sometimes with higher values ofthis cutoff over urban compared to rurd
areas (Makar et al., 2014), in an attempt to compensate for apparent insufficient vertical mixing of chemical tracers. The
turbulent mixing in these physical descriptions, while capable of reproducing observed meteorological conditions, do not
explain lower concentration observations of emitted atmospheric pollutants.

Large stack sources of pollutants provide a useful analogy in investigating a potential the-cause of this discrepancy. Emissions
from these sources occur at high temperatures, lofting their emitted mass high into the atmosphere as a result of buoyancy
effects. However, the physical size of the stacks (< 10 m diameter) is much smaller than the grid cell size used in regiond
models (km to 10’s ofkm). In order to capture the rapid vertical redistribution of emissions from large stacks, sub-grid-scae
parameterizations are used, in which buoyancy calculations are performed to determine plume heights, which are then used to
determine the distribution of freshly emitted pollutants (Briggs, 1975; Briggs, 1984; Gordon et al., 2018; Akingunolaet al.,
2018). For large stack emissions, these parameterizations account for the effect of the addition of energy (the hot exhaust gas)
on the local distribution of pollutants, and are essential in estimating initial vertical distribution of those pollutants.

In this work, we investigate the potential for another type ofat-source energy to influence the vertical distribution of freshly
emitted pollutant concentrations: the addition of kinetic energy due to the displacement ofair during the passage of vehicles
on roadways. Roadway observations in the 1970°s showed that this transferred energy has a significant influence on the
transport of primary pollutants released from vehicle exhaust, with vehicle passage being associated with “a distinct bulge in
the high frequency range ofthe wind spectrum”, “corresponding to eddy sizes on the order ofa few metres” (Rao et al., 1979).
Thesamework found that the variationinthe concentration ofnon-reactivetracers could beattributed to wakes behind moving
vehicles. Subsequent theoretical development led to the creation of the roadway-scale models describing turbulence within a
few 10°s of metres around and above roadways, in turn used to estimate the very local-level impact of vehicles on emitted
pollutant concentrations (Eskridge and Catalano, 1987). These models showed that near-roadway concentrations of emitted
pollutants were highly dependent on vehicle speed, with over a factor of two reduction in emission-normalized pollutant
concentrations being associated with an increase in vehicle speed from 20 to 100 km/hr (Eskridge et al., 1991). With the
advent of portable, very high time resolution 3-D sonic anemometers, the turbulent kinetic energy ofindividual vehicles could
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be measured directly, either aboard an instrumented trailer towed behind a vehicle (Rao et al., 2002)11, or through

{Fon‘natted: Not Highlight

instrumentation mounted aboard a laboratory following other vehicles in traffic (Gordon et al., 2012; Miller et al., 2018).
However, the application ofthis information has been limited up to now to theoretical and computational models of the near-
roadway environment and large eddy simulation models with horizontal domains of a few kilometers in extent.

Regional air-quality models also have vertical resolution in the 10’s of metres near the surface, suggesting the potential fr
vehicle-induced turbulence (VIT) to influence turbulent mixing out of the lowest model layer(s). Here we demonstrate that
this sub-grid-scale vertical transport process, which due to its highly localized spatial nature (over roadways), has a
disproportionate impact on the vertical distribution and transport of freshly emitted chemical tracers. A comparable sub-grid-
scale process which has asimilar influence on pollutants are the emissions from large stacks noted above (Gordon ¢ al., 2018;
Akingunolaet al., 2018). Accurate estimation of pollutant concentrations from the latter sources must take into account the
at-source buoyancy and exit velocity of high-temperature exhaust to determine the vertical distribution of fresh emissions.
Similarly, our work focusses on determining the local lofting of pollutants from and due to moving vehicles, in order to
adequately represent the at-source vertical distribution of their emissions, on the larger scale.

The extent of the vertical influence of VIT varies depending on the configuration of vehicles on the roadway. From
observations taken from atrailer following an isolated passenger van (Rao et al., 2002), and large eddy simulation (LES) /
computational fluid dynamics (CFD) models of individual vehicles (Kim et al., 2011; Kim et al., 20162), the vertical distance
over which VIT can be distinguished from the background for isolated, individual vehicles (i.e. the mixing length) is on the
orderof 2.5t0 5.13 m. However, as we show in Methods and Results, for observations of ensembles of vehicles in traffic
(Gordon et al., 2012; Miller et al., 2018), and large eddy / computational fluid dynamics simulations of ensembles of vehides
(Kim et al., 2016a; Woodward et al., 2019; Zhang et al., 2017), the mixing lengths associated with VIT are larger, on the order
of 10’s of m, toas much as 41 m. The vertical extent of the impacts of alternating low and high areas of surface roughness
have been shown to create downwind internal boundary layers to even more significant heights in the atmosphere (eg 300m,
Bou-Zeid et al., 2004, their Figure 12), suggesting that impacts into the lower boundary layer due to the alternating roughness
elements (in our case, vehicles versus roadways) is not unreasonable. We also show in Methods that the impact of VIT within
the context of an air-quality model is via changes to the vertical gradient of the thermal turbulent transfer coefficients; the
gradient ofthesum ofthenatural turbulenceand VIT terms, allowsVIT toinfluence vertical mixing, even when model vertical
resolution isrelatively coarse.

Large eddy simulation (LES) / computational fluid dynamics (CFD) models have shown the importance of VIT towards

modifying local values of turbulent kinetic energy. as noted in the references above. However, these models require relatively

small grid cell sizes compared to regional chemistry models (cm to tens of metres) and time steps to allow forward time

stepping predictions of future meteorology and chemistry. These constraints in turn severely limit the size of the domain in

which they can be applied. and the processing time for simulations for these reduced domains can be very high. For example,

the FLUENT model was used by Kim et al (2016a) with an adaptive mesh with a minimum cell size of 1 cm, with a

100x20x20m domain, while Woodward et al (2019)’s implementation of FLUENT had a cell size of 50 cm, operating in a
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domain of 600,000 nodes (a volume of 75,000 cubic metres), and an adaptive timestep limited by a Courant number of 5. The
latter criteria implies a computation timestep of less than 0.09 s for a 100 km hr™* vehicle (or wind) speed. whilea1 cm grid

cell size implies a computation timestep of less than 1.8x10°° s timestep. Similarly. the LES model employed by Zhang et a

(2017) utilized alm x 2m x 1m cell size and a computation timestep 0f0.03s. Other LES models have larger horizonta

resolution, but are limited in horizontal domain extent relative to regional chemical transport models (example LES models

and a; 3.2x3.2 km domain); ~Ouwersloot et al. (2011), with a50m horizontal resolution and a 12.8km x 12.8 km domain;; Li
et al. (2016), with a 150m horizontal resolution and a 14.4km x 14.4km horizontal domain;: and Kim et al. (2016b), with a

66.6m horizontal resolution and a 6.4x6.4 km domain. In contrast, a 3D regional chemical transport model typically operates

over adomain with may be continental in extent (the simulations described here have a 10km and 2.5km horizontal resolutions

with 7680x6380 km and 1300x1050km domains, respectively). The limiting horizontal resolution for regional chemica

transport models is on the order ofkilometres, with a limiting vertical resolution on the order 0f10’s of metres, and timesteps
on the order of 1 minute. These limits for regional chemical transport models are a function ofthe need to provide chemica

forecasts over a relatively large region, within a reasonable amount of current supercomputer processing time (the chemical

calculations typically taking up the bulk of the processing time). LES models are capable of capturing VIT effects (Kim et al.
(2016a), Zhang et al., (2017), Woodward et al. (2019)), and their results have been used here in developing our
parameterization, but are constrained by current computer capacity from being applied for the larger scale domains required

in regional to continental-scale air pollution simulations. A “scale gap” exists between LES and regional chemical transport
models — for regional chemical transport models, parameterizations of the physical processes such as VIT, resolvable at the

high resolution of LES models, are therefore required. In return, these parameterizations allow the relative impact of the
parameterized processes on the larger domain sizes of regional chemical transport models to be determinedLarge-eddy

m ation omp ational fi aWakV/at-TaaNTals D)y maode nave shown tha imnartance o owards maocihana loca
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2 Methodology

2.1 Theoretical development

In contrast to the very local resolution “roadway” models used to examine the impact of vehicle motion on pollutant
concentration (Eskridge and Catalano, 1987; Eskridge et al., 1991), and computational fluid dynamics modelling of vehide
turbulence (Kim et al., 2011; Kim et al., 2016a; Woodward et al., 2019; Zhang et al., 2017), 3D models of atmospheric
pollution (Galmarini et al., 2015) have horizontal grid-cell sizes of a one to 10’s of km, and thus emissions and vertica
transport associated with roadways must be approached from the standpoint of sub-grid-scale parameterizations.
Measurements ofthe turbulent kinetic energy (TKE) associated with vehicles are usually available on a “per-vehicle” or “per-
vehicle within an ensemble” basis. These observations provide the average on-road TKE per vehicle passing a point per unit
time (Gordon et al., 2012; Miller et al., 2018) and/or the shape of the enhanced TKE cross-section in the plane perpendicular
to the vehicle’s motion (Rao et al., 2002). A sub-gridscale parameterization linking these scales is therefore necessary in
order to study the impacts of VIT on the vertical redistribution of freshly emitted pollutants, and hence on large-scale
atmospheric chemistry and transport. Sub-gridscale parameterizations are commonly used in atmospheric models of weather
forecasting to provide therates ofchange of processes which occur at scales smaller than themodel’s horizontal and/or verticd
resolution: cloud formation and buoyant plume rise from large stacks being acommon example for model grid cell sizes of
10km or more (Kain, 2004; Briggs, 1975; Briggs 1984; Gordon et al., 2018; Akingunolaet al., 2018).

Three separate problems must be addressed in the construction ofsuch a VIT parameterization for atmospheric chemic
transport models, specifically:

@) What is the relationship governing the decrease in VIT with increasing distance (height) from the vehicles?
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) How can observation data, in units of vehicles per unit time, be related to variables more commonly available for
regional chemical transport models?

3) How can VIT be incorporated into aregional model in amanner that only the emissions due to vehicles are affected,
given that the vehicle-induced turbulence will have the most significant impact on emissions from moving vehicles due to the
relatively low area fraction of roadway area within agiven grid cell?

We address each of these issues in the sub-sections that follow.

2.2 Changes in VIT with Height

Measurements of TKE behind a passenger van (Rao et al., 2002) typically show a smooth distribution, with TKE decreasing
both above and below the height ofthe upper trailing edge of the moving vehicle. Similar results have been seen from vey
high resolution computational fluid dynamics modelling ofthe flow around individual vehicles, though theshapeofthevehide
and the arrangement of vehicles on the roadway can have a strong influence on the location of the maximum and shape of the
vertical profile in TKE (Kim et al., 2011; Kim et al., 20162). We examined four datasets (the observations of Rao e al., 2002,
and the LES modelling of ; Kim et al., 2016a; Woodward et al., 2019; Zhang et al., 2017) to evaluate the extent to which a

Gaussian distribution may be used to represent the decrease in VIT with height above moving vehicles, as well as examining
the expected range of mixing lengths which may result from VIT. A Gaussian distribution of TKE with height is given by
equation (1), where I(z) is the time integrated added TKE value for vehicle type q with height z (m%™), hq is the height of the
vehicle, and A and o, are numerical constants:

q

1,(2) = Jz_z (1)

(-hg)®
w5

Equation (1) may be re-written as:

n(VZ 7l (2)) = In (?) (=) o

q 20§
Equation (2) shows that values of —(z— hq)zversus n(V27l,(2)), with the values of z taken from vertical profiles of I42)
in the literature, will yield aslope ofzig2 and an intercept of in (j—‘l) and the correlation coefficient for this relationship may
q q

be used to judge the accuracy ofthe use ofa Gaussian distribution to describe the decrease in TKE with height above moving
vehicles. The resulting relationships may also be used to describe the vertical mixing length, defined “as the diameter ofthe
masses of fluid moving as awhole in each individual case; or again, as the distance traversed by amass of this type before it
becomes blended in with neighbouring masses” (Prandtl, 1925; Bradshaw, 1974). Here we assume that this blending has
occurred at the height at which the Gaussian has dropped to 0.01 ofthe value at z=hq (i.e. the value of z at which VIT has

_(z—hq)z>
reached 1% of its maximum value (i.e. e< 2% ) =0.01).
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An example of the analysis used to construct Table 1 appears belew-{in Figure 1), fora CFD example for an ensemble of
vehicles, taken from the literature (Kim et al., 20163). In this figure, contours of TKE are shown as solid lines. TKE values
as a function ofheight at three locations behind the trucks were used to determine o, and hence estimate the length scale via
equations (1) and (2). A notable feature of this example is the substantial increase in length scale which occurs between the
initial vehicle (atransport truck) and subsequentdownwind vehicles (compareheight of T KE contours, and the resulting length
scales in Figure 1, between left and right sides ofthe figure). Increases in downwind turbulent length scales associated with

vehicles moving in close ensembles are acommon feature in the literature.

This analysis (see Table 1) shows that a Gaussian distribution accounts for much of the variability in TKE with height
(correlation coefficients 0f0.54 to0 0.99), and under realistic traffic conditions, the mixing lengths increase in size, and may be
considerably larger than those of isolated vehicles.

Two VIT mobile laboratory studies (Gordon et al., 2012; Miller et al., 2018) observed vehicle-per-second TKE for vehicles
movinginensembles along multilane roadways, aggregated by vehicle classes using the same methodology, to derive formulee
for the net TKE added by VIT at 4m and 2m (the height of the instrumentation used in these studies). \We combine these daa
here to determine the change in VIT with height. Setting E as the TKE added due to the vehicles, two formulae result:

E(4m) = 1.8 F.+ 2.2 E, + 20.4F, @
E(Q2m) = 2.4 F.+ 6.2 F, + 14.8F,

Where E(4m) and E(2m) are the TKE added driving within the ensemble at 4 and 2 m elevation from these two studies (m? s
%), and F,, Fy, and Fare the number of passenger cars, mid-sized (vans, flatbed pickup trucks, and SUVs) and large vehides
(10 to 18 wheel heavy-duty vehicles) travelling past a given point on the highway per second. The numerical coefficients are
the time integrated TKE values (1) at the two heights (m”s™). An alternative approach would be to make use of vehicle sped
datawithin each grid cell and parameterizations utilizing vehicle speed (Di Sabatino et al., 2003; Kastner-Klein et al., 2003)
to construct TKE additions due to the sub-grid-scale roadways. However, vehicle speed information is not currently readily
available on agridded hourly basis, while estimates of vehicle km travelled are available in gridded form due to their usein
emissions processing, and making the simple scaling assumption that the vehicles travel across one dimension ofagrid cell
allows us to generate the F, values required to estimate TKE. Note that vehicle speed is implicit in this methodology utilizing
VKT - higher speeds will result in a greater number of vehicle km travelled per unit time, and hence higher TKE values. As
in the above discussion, we assume a Gaussian distribution of the coefficients of the TKE equations of (3) with height for each
vehicle, where hy = 1.5m, 1.9m and 4.11m for cars, mid-sized vehicles and trucks, respectively, with each ofthe 2m and 4m
values of the coefficients of (3) being used to determine the corresponding values of A, and ¢ of equation (1), (i.e. ¢ = cmp).
Theresulting height-dependent formulae may be used to replace the coefficients of (3), leading to the following formula for
the net turbulent kinetic energy associated with the number of vehicles in transitalong a given stretch of roadway at agiven
time:
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Eyu(2) = 2_43FCe[—z.40n0‘2(z—1.5)2]
+ 15.58Fme[—1.18x10*1(z—19)2] @
+ 20.43F, e l-361x1072(z-411)7
Most 3-D chemical transport models make use of some variation of*“K-theory” diffusion to link turbulent kinetic energy to
mixing, with the vertical mixing of a transported variable c due to turbulence at heights z being related to the thermal turbulent
transfer coefficient K via:
dac a dac
5 =5 (K5) ©®)
Finite differences and tridiagonal matrix solvers are usually used to forward integrate equation (5). For example, the solver
used in the GEM-MACH model uses the following finite difference for the spatial derivatives (both spatial derivatives are

0(Ac?), the derivatives are carried out in, and the K values are transformed into, o = Picoordinates as K, where P is the
0

pressure, and Py is the surface pressure):

Cin+1_czn %(Ki+1+ki)(ci+1_ci )—%(Rﬁ-[?i_l)(&)

Ji+1-9i Ii—0i—1

At zri_%—ai_; (6)
Note in (6) that the prognostic values of K calculated by the weather forecast model are on the same vertical levels as
concentration; values of the additional component of K associated with VIT must therefore be calculated for model layers &
opposed to layer interfaces.
Kand E may be linked through the relationship of Prandtl, where | is a characteristic length scale:

K =04WE ©)
As was donefor Table 1, we have chosen this value on a per-vehicle basis as the vertical location at which the Gaussian
profiles derived above reach 0.01 (i.e. 1%) of their maximum value. Using each of the coefficient values of (3) at the two
heights, in conjunction with equation (1) treated as a two-variable in two unknowns (A, o4) problem we find values ofl, I,
and I, 0f13.56, 6.25, and 11.28 m, respectively. These values are based on observed traffic conditions, and fall well within
the range of mixing lengths provided for vehicle ensembles in Table 1, however, we note that they are a source of uncertainty,
with the percent uncertainties (Gordon et al., 2012) associated with the 4m values at +52%, +157%, and +12% for cars, mid-
sized vehicles and trucks, respectively. The relatively low values of I,,and high uncertainties in the corresponding mid-sized
vehicle per-vehicle estimates of TKE relative to the other vehicle types are likely the result of acombination of small sample
size (Gordon et al. (2012) noted the relative proportion of the three vehicle classes as 89.9% cars, 4.8% mid-sized, and 5.3%
trucks, respectively) and the variety of ensemble versus isolated vehicles sampled (noting the variation in Table 1 for vehides
within the smaller vehicle size classes). Additional observations of vehicle turbulence are clearly needed, particularly in the
region abovethelargest vehicles ontheroad (4.1m), using remote sensing techniques suchas Doppler lidar, in order to improve
mixing length estimates. However, the values used here are reasonable with respect to the available data, and while likely
overestimating the mixing length associated with isolated vehicles (Rao et al., 2002; Kim et al., 20162) likely underestimae
the mixing length of ensembles of vehicles (Kim et al., 2016a), particularly for ensembles moving within street canyons

8
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(Woodward etal., 2019; Zhang et al., 2017). The latter represent the some of the specific regions where vehicle emissions ae
likely to dominate.

We derive the following formula for the addition to the thermal turbulent transfer coefficient associated with vehicle passage
as afunction ofheight:

2.43 Fce[—2.40x10‘2(z—15)2]

+15.58F,, el-118x1071(z-19)?] ®)
+2043Fe [-361x102(z-4.11)2]

LeFet+ b P+ LeFe

Kyr(2) = 0.4 Fet+ F+ F

The use of (8) must be undertaken with care. Like most regional air-quality models, the vertical resolution of GEM-MACH
used here is relatively coarse (the first four model layer midpoints are located approximately 24.9, 99.8, 205.0, and 327.0 m
abovethesurface). Layer midpoint values must be representative ofthe layer resolution in order to describe the impact of
VIT on the layer. A simple linear interpolation between the peak values of Ky, and the first model interface will overestimae
the impact of VIT within the lowest model layer, while the use of (8) for the mid-point value alone will underestimate the
influence of VIT within the lowest part of the first model layer. The best representation ofa sub-grid-scale scalar quantity
within adiscrete model layer is its vertical average within that layer. Here, we calculate the vertically integrated average of
(8) within each model layer, to provide the best estimate of the impact of VIT, to within the vertical resolution of the model.

2.3 VIT and Model Vertical Resolution

The issue ofthe vertical extent of the impact of VIT is worth considering in the context of model layer thickness. Given tha
the vertical length scale ofadded VIT ison the order of 10’s of metres, as denoted in the studies quoted herein, it is reasonable
to question whether the added turbulence should be expected to have an impact on the dispersion of pollutants. This apparent
contradiction is easily resolved by noting, (1) that the turbulence due to VIT is added as an addition to the pre-existing
“meteorological” thermal turbulent transfer coefficient (with the net turbulence profile, not the VIT alone, determining its
impact on vertical mixing); and (2) that the impact ofthis net turbulence does not depend just on the magnitude of the net
coefficients of thermal turbulent transfer, but alsoon their vertical gradient. This second point can be illustrated by expanding

2 ac\ _ 0%c  dKpg Oc .
g( netg) =K +—"=—), and the aid of an example,

. R . . . . ac
the diffusion equation using the chain run of calculus (i.e. — = —
& 9 ( at net 5,2 ' 9z 8z

shown in Figure 2. Figure 2 displays examples of cases where the concentration gradient and natural thermal turbulent transfer
coefficient both decrease linearly with height (Figure 2(a, b)), and where the concentration gradient decreases with height while
the natural thermal turbulent transfer coefficients increase with height (Figure 2(c,d)). Theadded Ky, is shown as a blue
dashed line, and the net vertical thermal turbulent transfer is shown as a red line. Figure 2 (a) and Figure 2(c) depict these
curves at a high vertical resolution, while Figure 2(b) and Figure 2(d) depict them at a low (regional model) resolution. Note
that in the latter, the vehicle-induced addition to the net thermal turbulent transfer coefficient depicted in Figure 2(a,c) lies
entirely within the lowest model layer of Figure 2(b,d). In both Figure 2(a) and Figure 2(b), the impact of Ky, is to slow the
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build-up of near-surface concentrations. In both Figure 2(c) and Figure 2(d), the impact of Ky, is to more rapidly vent near-

surface concentrations further up into the atmosphere. That is, at both high and low resolution, Ky, affects near-surface

concentrations, due to the vertical gradient of a';—"e‘). Centered difference calculations for the low resolution case are shown
4

in Figure 2(b,d) to illustrate the point that gradientsin low vertical resolution net diffusivity result in reductions in lowest
model layer trapping, and increases in venting from this lowest layer. In both of these cases, the addition of vehicle turbulence
to the lowest model layer changes the gradient of the net thermal turbulent transfer coefficient, in turn leading to reducd
surface concentrations. The above example illustrates the manner in which VIT may have an impact even on relatively low
vertical model resolution.

2.4 Relating VIT to Available Gridded Data — Vehicle Km Travelled

Along individual roadways, the-equation (8) makes use of F., F,, and F, observations at points along roadways within a grid-
cell, hence deriving local estimates of VIT. This datais currently difficult to obtain for large-scale applications, and hence
we have turned to secondary sources of information to estimate these three terms. Vehicle Kilometer Travelled (VKT) is used
for estimating on-road vehicle emissions at jurisdiction level (e.g. county level for the US and province level for Canada) for
the national emissions inventoriesy:. Emissions processing systems used for air-quality models make use of spatial surrogates
to help determine the spatial allocation of the mass emitted from different types of vehicles on different roadways (Adelman
etal., 2017). The same set of surrogates is used for calculating VKT (km s™) for each grid cell of the model domain (varying
by hourofday and day ofweek, foreach ofthethree vehicle categories listed (see Figure 3), inturn providing diurnal variations
of VIT matching traffic flow. The data shown are derived from 2006 Canadian (Taylor, 2019) and 2011-based projected 2017
US VKT (EPA, 2017). Note that for the 10km grid cell size used here, values of F;, F, and F, may be derived by dividing
these numbers by 10. The largest contribution to total vehicle km travelled is by the “cars” class (Figure 3(a)) due to their
greater numbers (the originating study (Miller et al., 2018) found that 89.9% of vehicles measured were cars), followed by
trucks (Figure 3(c); 5.3% of vehicles measured), and mid-sized vehicles (Figure 3(b); 4.8% of vehicles measured).

These VKT datamay be linked to the above VIT formula (8), provided the distance each vehicle is travelling within that grid
cell is known. Here, we have made two additional assumptions. The first assumption is that each vehicle carries out a simple
transit ofthe cell — the distance travelled is the cell-size. While this may be a reasonable first-order approximation, we note
that it has limitations: for example, when the number of vehicles on the roads overwhelm the capacity of the roads (rush-hour
traffic jams) the distance travelled decreases. However, under these circumstances the VKT values will also decrease; the
impact of rush-hour conditions should to some extent be included within the VKT estimates available for emissions processing
systems. The second assumption is that the VKT contributions within a grid-cell are additive —i.e. that their numbers may be
added viathe“ F”terms in(86) (Gordonet al., 2012; Milleret al., 2018), an assumption found to beaccuratein CFD modelling
(Kim et al., 20163). Note that this assumption may resultin overestimates ofthe net TKE — a better methodology for future
work would be to collect and make use of statistics of vehicle density by roadway type within each grid-cell. However, we
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note that assuming that vehicles are evenly distributed over roadways in a grid cell would result in a net underestimate of the
TKE contributed over the larger roadways and main arteries of urban areas.

Example 10 AM EDT North American 10km resolution gridded vehicle-induced thermal turbulent transfer coefficient values
(KviT, equation 8) created using these assumptions, and an example vertical profile of Ky, for central Manhattan Island a
0.5m vertical resolution are shown in Figure 4. The resulting enhancements to “natural” K values at the vertical resolution of
the version of the GEM-MACH air-quality model, at 2.5km horizontal resolution, are shown in Figure S1 as dashed lines. The
enhancements are confined to the lowest model layer, as might be expected from the vertical resolution employed in this
version of GEM-MACH. Nevertheless, the values are sufficient to significantly change simulated vertical transport due to
modifications to the resolved gradient in thermal turbulent transfer coefficients, as discussed above. Both the magnitude and
gradient of K,y = K+Ky,r may contribute to the concentration changes: breaking the vertical diffusion equation down using

the chain rule, (5) may be rewritten
ac 2%c 0K dc

a Ko ©
Both terms on the right-hand-side of (9) may contribute to decreases in concentration c at the surface and increases in
concentrations aloft. Ifthe near-surface concentration profile (6¢/cz) is negative (concentrations decrease with height), then
increases in K will result in surface concentration decreases). Ifthis results in sufficient lofting that the concentration profile
maximizes above the ground (i.e. 600z becomes positive near the surface), then decreasing values of K with height (i.e
negative values of 0K/0z) will also result in a shift towards negative rates of change, through the second term in the right-hand-
side of (9). All six panels of Figure S1 show increased K values; i.e. increases in the first term in (9). All six panels dso

show a trend of 0K/0z becoming more negative (that is. near-surface positive slopes become less positive, negative slopes

become more negative), decreasing the magnitude of the second term in (9) in Figure S1 (b,c,d,f), and switching to a negaive

rate of changein Figure S1(a,e). Bothchanges in themagnitudeand gradientof K resulting from VIT contributeto the resulting
changes in surface concentration.

The thermal turbulent transfer coefficient values of Figure S1 may also be compared to the minima on “natural” K values
imposed in air pollution models in an attempt to account for missing subgrid-scale mixing (Makar et al., 2014; these are
typically on the order 0f0.1t0 2.0 m%™). Aside from Figure S1(a), the vertical profiles here would not be modified by these
lower limits. Wealso note that these VIT -induced changes in total thermal turbulent transfer coefficients only impact the
species emitted at the road-way level, as discussed below.

2.5 Construction of a Sub-Gridscale Parameterization for On-Road Vehicle-Induced Turbulence

We note that the portion ofthe area of a grid-cell which is roadway-covered will be relatively small for most air pollution
model resolutions, such as those considered here. For example, satellite imagery of the largest freeways show these to have
a width of less than 400m. Hence, the largest roads make up less than 1/5 ofthe total area ofa 2.5km grid-cell, and less than
1/20 ofa 10km grid cell). The largest impact of VIT isthus likely to be for the chemical species being emitted by the mobile
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sources, in terms of the grid-cell average concentration. Furthermore, the grid cell approach common to these models results
in horizontal numerical diffusion from the roadway scale to the grid cell scale: sub-grid-cell scale emissions are automaticaly
mixed across the extent ofthe grid cell. The key impact of VIT will thus be in the vertical dispersion of the pollutants emitted
from mobile sources. We must therefore devise anumerical means to ensure this additional source ofdiffusion is added to the
model, bearing these constraints in mind.

Two examples of similar sub-gridscale processes appear in the literature. The first example are the cloud convection
parameterizations used in numerical weather forecast models (Kain et al., 2004), wherein the formation and vertical transport
associated with convective clouds, are known to occur at smaller scales than the grid cell size employed in a numerical weather
prediction model, are treated using sub-gridscale parameterizations. In these parameterizations, cloud formation and transport
are calculated within the grid-cell on a statistical basis, using formulae linking the local processes to the resolvable scale of the
model. Thesecond exampleisfound in thetreatment ofemissions from large stacks within air-quality forecast models (Gordon
et al.,2018; Akingunolaet al.,2018). Thesesources usually havestack diameters on theorder less than 10m, and these sources
emit largeamounts ofpollutant mass at high temperatures and velocities. In order to represent these sources, the most common
approach is to calculate the height of the buoyant plume using the predicted ambient meteorology (vertical temperature profile,
etc.) as well as the stack parameters (exit velocity, exit temperature, stack diameter). The emitted mass during the model
timestep from the stack is then distributed over adefined vertical region within the gridcell in which the source resides. Note
that the mass is also automatically distributed immediately in the horizontal dimension within the grid cell — the key issue is
to ensure that the emitted mass is properly distributed in the vertical dimension. Our aim in the VIT parameterization that
follows is identical in intent to that of the existing major point source treatmentsin air-quality models: to redistribute the mass
emitted by vehicle sources in the vertical dimension, taking the very local physics influencing that vertical transport of fresh
emissions into account. We therefore focus on determining the at-source vertical transport ofemitted mass associated with
VIT.

We start with the formulae for the transport of chemical species by vertical diffusion:

=2 (k) +E, (10)
Where ¢; is the emitted chemical species, K represents the sum ofall forms of thermal turbulent transfer in the grid-cell, and
E; is the emissions source term for the species emitted at the surface (applied as a lower boundary condition on the diffusion
equation). Forgrid-cells containing roadways and hence mobileemissions, we split K into meteorological and vehicle-induced
components (Kyand Kyt respectively), and the emissions into those from mobile sources and those from all other sources

(Ei mon and E; oun, respectively):

aa_cti =%[(KT +err)2_zi] + B mob + Ei ot (11)
Theterms in (11) may be rearranged:
a0 = Gl g B} + [+ o) ] B = (5 5]} 1)
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Thefirst bracketed term in (12) describes the rate of change of the chemical due to its emission by non-mobile area sources
and vertical diffusion due to meteorological sources of turbulence within the grid-cell, but outside of the sub-grid-scae
roadway. The second term describes the rate of change ofthe vertical diffusion of the mobile-source-emitted pollutants over
thesub-grid-cell roadway, which experiences both meteorological and roadway turbulence, and thefinal term preventsdouble-
counting of the meteorological component in equation (11), which is equivalent to equation (12). Note that turbulent mixing
for non-emitted chemicals is determined by solving equation (5), and for chemicals which are not emitted from mobile on-
road sources, equation (10) is solved, with E; = E; o, Thisform of the diffusion equation (12) allows the net change in
concentration to be calculated from three successive calls of the diffusion solver, starting from the same initial concentration
field. Oneadvantage ofthis approach is that existing code modules for the solution of the vertical diffusion equation may be
used — rather than being used once, they areused threetimes, with different values for theinput coefficients ofthermal turbulent
transfer coefficient (K) and for the lower boundary conditions (E).differentvaluesfortheinputcoefficientsofthermal turbulent
transfercoefficient (i), Thesolution, onceasuitablemeans ofestimating Ky,risavailable, is thusrelatively easy to implement
in existing numerical air pollution model frameworks.

2.6 Comparison of energy densities: VIT, Solar, and Urban Perturbations in Sensible and Latent Heat

The relative contribution of TKE from VIT towards energy density can be compared to the daytime solar maximum energy
input to illustrate why VKT has relatively little impact during daylight hours, particularly in the summer. The maximum TKE
from VIT can be determined easily from Figure 3 and the use of our formulae; Figure 3(a) shows vehicle km travelled vaues
ranging from a maximum of 308 in the highest density 10km grid cell in North America (New York City) down through four
orders of magnitude in background grid cells with few vehicles. A typical urban value would be 30.8 VKT: thisgives an F,
value from our formulae of 3.08 vehicles s™ for a 10km grid cell size. Assuming that the vehicles are all cars, from our
formulae we have a corresponding total TKE added at the point crossed by the vehicles, at height z=h.,=1.5 m, 0f 7.48 m? s
2. We can combine thisand the F value along with the area and volume of a lane of a roadway to estimate the energy density
(Evi7) on dimensional grounds:

_ [(TKE)(air density) (lane voume)FC]
r=

E,
Assuming each vehicle has a length of4.5 m, width 0f2.0 m, height of1.5m, alane length of 10 km, and an air density of

(lane area) (13)
1.225kgm?, onearrives at 84.8 kg s, and values ranging from aNorth American grid maximum of848 kgs ™ toabackground
value four orders of magnitude smaller (8.48x107 kg s®). These energy densities may be compared to the typical solar energy
density reaching the surface at mid-latitudes of 1300 W m, or in Sl units, 1300 kg 5%, and the typical range of perturbations
in latent and sensible heat fluxes associated with the use of a more complex urban radiative transfer scheme (the Town Enegy
Balance module; Mason, 2000) in our 2.5km grid cell size simulations (typical diurnal ranges in the perturbations associated
with/without use of TEB: latent: -200 to +3 W m?; sensible: -100 to +100 W m respectively). That is, under most daylight
conditions, the energy densities associated with VIT will be relatively small compared to the solar energy density at midday,
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with a typical urban value of 6.5%, and range from 65% in the cell with the highest VKT values down to 0.0065% in
background conditions where the vehicle numbers are relatively small. Urban traffic however may contribute similar energy
levels as the changes in net latent and sensible heat fluxes associated with the use ofan urban canopy radiative transfer model.
We also note that at night, during the low sun angle conditions of early dawn late evening, and during the lower sun angles of
winter, the relative importance of VIT to solar radiative input will be larger. Consequently, the impact of VIT will be higher
at nightand in the early morning rush hours, and at other times when the sun is down or sun angles are low, as is demonstrated

below.

2.7 GEM-MACH simulations

A research version ofthe Global Environmental Multiscale — Modelling Air-quality and CHemistry (GEM-MACH) numerica
air quality model, based on version 2.0.3 of the GEM-MACH platform, was used for the simulations carried out here (Makar
et al., 2017; Moran et al., 2010; Moran et al., 2018; Chen et al., 2020). GEM-MACH is acomprehensive 3D deterministic
predictive numerical transport model, with process modules for gas and aqueous phase chemistry, inorganic particle
thermodynamics, secondary organic aerosol formation, vertical diffusion (in which area sources such as vehicle emissions ae
treated as lower boundary conditions on the vertical diffusion equation), advective transport, and particle microphysics and
deposition. The model makes use ofa sectional approach for the aerosol size distribution, here employing 12 aerosol bins.
The version used here also follows the “fully coupled” paradigm — the aerosols formed in the model’s chemical modules in
turn may modify the model’s meteorology via the direct and indirect effects (Makar et al., 2015a,b; Makar et al., 2017). The
meteorological model forming the basis of the simulations carried out here is version 4.9.8 of the Global Environmenta
Multiscale weather forecast model (Cote et al., 1998a,b; Caron et al., 2015; Milbrandt et al., 2016). Emissions for the
simulations conducted here were created from the most recent available inventories at the time the simulations were carried
out — the 2015 Canadian area and point source emissions inventory, 2013 Canadian transportation (onroad and offroad)
emissions inventory, and 2011-based projected 2017 US emissions inventory. As noted above, the model simulations were
carried out on two separate model domains shown in Figure 5; a 10 km horizontal grid cell size North American domain
(768x638 grid cells; 7680x6380 km), and a 2.5km horizontal grid cell size PanAm Games domain_(520x420 grid cells;
1300x1050 km). For the 10km domain, simulations were for the month of July, 2016, while for the higher resolution modd,
month-long summer (July 2015) and winter (January 2016) simulations were carried out, with and without the VIT

parameterization. These periods were based on the availability ofemissions data, previous model simulations for the same
time periods appearing in the literature (Makar et al., 2017; Stroud et al., 2020), and the timing ofa prior field study (Stroud
et al., 2020).

2.8 VIT as a Sub-grid-scale Phenomena

It should be noted that the VIT enhancements to turbulent exchange coefficients are used to determine the vertical distribution
of freshly emitted pollutants at each model time step — they are not applied for all species withinamodel grid cell. Similar
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sub-grid-scale approaches are used for the vertical redistribution of mass from large stack sources of pollutants, where
buoyancy calculations are applied to determine the rise and vertical distribution of pollutants from large industrial sources.
Both stacks and roadways are treated as sub-grid-scale sources of pollutants which are influenced by very local sources of
energy (stacks: high emission temperatures and exit velocities; roadways: vehicleinduced turbulence) resulting inan enhanced
vertical redistribution ofnewly emitted chemical species. In both cases, thevertical transport results from an interplay between
the energy associated with the emission process (stacks: high temperature emissions with the ambient vertical temperature
profile; VIT: Kinetic energy imparted to the atmosphere in which emissions have been injected with the ambient turbulent
kineticenergy). This interaction precludes a treatment solely from the standpoint of model input emissions, since the extent
of the mixing will depend on the local atmospheric conditions as well as the energy added due to the manner in which the
emissions occur. Both processes could-be-have been addressed by large eddy simulation modelling on a very local scale, but
parameterizations are required in both cases for regional scale simulations. In both cases, the parameterized vertica
redistribution of pollutants is applied to freshly emitted species — the horizontal spatial extent of the emitting region is
sufficiently small that although present, the enhanced mixing will have aminor effect on the redistribution of pre-existing
chemicals and on other atmospheric constituents affected by vertical transport. VIT in the context of regional chemic
transport models is thus best treated as asub-grid-scale phenomenaapplied to fresh emissions, indirect analogy to the approach
taken for large stack emissions.

3 Results
3.1 VIT Height Dependence as a Gaussian Distribution

Under Methods, we describe the potential for the use of a Gaussian distribution to describe the fall-off in T KE with height
above vehicles. Using the equations presented there, we have analyzed VIT studies appearing in the literature, determining
the decrease in TKE as a function ofheight from published figures, then fitting these data to a Gaussian distribution to the
height above ground. The result ofthis analysis for several data sets is shown in Table 1, generated by extracting vehide
centerline TKE values from contour plots of published data, and is subdivided into isolated vehicle and vehicle ensemble
studies and cases.

The inferred mixing length shows a marked variation between that of isolated vehicles or the lead vehicle in an ensemble, and
that of other vehicles appearing further back in the ensemble. Both directly observed and CFD modelled values of the inferred
mixing length for isolated vehicles or the lead vehicles ofan ensemble vary from 2.5t05.13 m. For subsequent vehicles in
an ensemble, the mixing lengths increase to range from 4.6 to 41m. The difference in mixing length between the lead vehide
in an ensemble, and subsequent identical vehicles appearing later in the ensemble also increases. For example note that diesel
truck mixing lengths inferred from the CFD modelling examining different vehicle configurations (Kim et al., 20162) increase
from 5.13 to 14.64 m, and the mixing lengths for automobiles increase from 2.50 m (isolated automobile), to 4.6m (automobile
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two vehicles back from alead diesel truck), to 9.41 m (automobile immediately behind a leading diesel truck).  The mixing
length associated with VIT may also be significantly influenced by the ambient wind and local built environment —the mixing
length associated with the component of TKE due to VIT within street canyons (Woodward et al., 2019; Zhang ¢ al., 2017)
ranges from 2/3 to greater than the street canyon height, with maximum mixing lengths of41m. It is important to note tha
these mixing lengths are driven by the vehicle passage within the canyon; they result from the additional TKE added
with/without vehicles in the CFD simulations. The above data show that a Gaussian distribution provides a reasonable
description ofthedecrease of TKE from vehicles withheight, and, under realistictraffic conditions, themixing lengths increase
in size, and are be considerably larger than those of isolated vehicles, and are comparable to or greater than the near-surface
vertical discretization ofair quality models.

The length scales associated with VIT range from 2.50 m in the case of isolated vehicles (Kim et al., 20163), through ~10 m
for vehicles moving in ensembles (Woodward et al., 2019; Zhang et al., 2017) up to 41 m, with the larger values being typicl
for urban street canyons. The latter describe the specific regions VIT is expected to have the greatest impact, given the high
vehicle density within the urban core. However, our parameterization makes use of length scales derived from observations
on open (non-street canyon) freeways (Gordon et al. 2012; Miller et al., 2018), and thus may underestimate the length scales
in the urban core. The impact of multiple vehicles travelling in an ensemble on open roadways was specifically depicted in
the open roadway simulations of Kim et al. (20162) reproduced in Methods{Figure 1), where the vertical extent of turbulent
mixing was shown to grow with increasing number of vehicles travelling in an ensemble. Furthermore, as was discussed and
demonstrated in Methods using the diffusivity equation, the length scale of the turbulence need not be greater than the model
lowest layer resolution in order to capture the impacts of VIT on mixing, being due in part to the gradient in turbulence with
height.

3.2 Model Domains and Evaluation Data

Our 3D air-quality model (GEM-MACH) and our VIT parameterization, including its diurnal variation, are described under
Methods. Two air-quality model grid cell size and domain configurations were used for our simulations — the first employs a
10km grid cell size with a North American domain, and is used for the current operational GEM-MACH air-quality forecast
(Moran et al., 2010; Moran et al., 2018; Figure 5(a)). The second was a 2.5km grid-cell resolution domain focused on the
region between southern Ontario, Quebec and northeastern USA (Joe et al., 2018; Ren et al., 2020; Stroud et al., 2020; Figure
5(b)).

The impact of VIT was determined through paired model simulations, with and without the VIT parameterization, evaluaed
against surface monitoring network data. The latter include hourly model output for ozone (O3), nitrogen dioxide (NO,), and
particulate matter with diameters less than 2.5 pm (PM2.5), across North Americaand in our high resolution eastern North
Americadomain, evaluated at observation station locations with data from the AirNow network (AirNow, 2020). Observation
station locations used in simulation evaluation for these species are shown in Figure 6, for the two model configurations. The
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juxtaposition of observation stations with urban populations (where the highest vehicle density may be found) may be sen by
comparing Figure 6 with Figure S2.

3.3 Continental 10km Grid Cell Sizz Domain Evaluation

Simulations were carried out for the month of July, 2016 for the 10km grid cell size North American domain. Modéel

performance metrics used to here {see-Methods)-are described in Table S1, and provided for the 10 km resolution “VIT” and
“No VIT” simulations relative to the hourly observation data for PM2.5, NO,, and O3 in Table 2. These three chemicals were
chosen due to their well-known link to human health impacts of air pollution (Steib et al., 2008; Abelsohn et al., 2011).

The addition of VIT improved the scores for most performance metrics (bold-face print in Table 2). For NO,, the addition of
VIT improved all scores with the exception of the correlation coefficient, which was degraded in the third digit. All PM2.5
scores improved, with the exception of the mean bias, which became more negative by 0.5 ug m™ across North America All
ozone scores improved, the exceptions being the correlation coefficient (which was the same for both simulations, or improved
in the 3rd digit depending on the domain or country), and the ozone mean bias for the USA (which increased by +0.18 ppbv).

Some of the improvements were substantial, when considered in arelative sense: this was most noticeable for the NO, scores,
with the North American Mean Bias for NO, improving by a factor of 8.4, the mean gross error and index of agreement by
19%, the root mean square error by 25%, and the FAC2 score by 6%. Relative improvements for PM2.5across North America
were more modest (ranging from 0.3% for FAC2 to 14% for the correlation coefficient. The corresponding relative changes
for O;ranged from a22% reduction in the mean bias magnitude to a fraction ofa percent improvement for FAC2, mean gross
error, root mean square error, and index of agreement. Overall, the model performance for the Continental 10km domain July
2016 simulations improved across different metrics, indicating that the increased vertical turbulent mixing resulting from the
incorporation of VIT results in a more accurate representation of atmospheric mixing and chemistry.

Following the above comparison using all available surface monitoring network data (Table 2), we carried out a further

evaluation wherethestations were selected based on human population withingrid cells (Figure S2(a)). with only those stations

in which the population exceeded 800 kny used for analysis. The results of this evaluation are shown in Table S2, which may _....{ Formatted:

Superscript

be compared to Table 2 to show the relative influence of VIT on high population areas. We note that the magnitude ofthe

improvement in model performance associated with VIT has increased for many statistics when high population (i.e high

vehicle traffic) areas are examined separately in this manner; for example the incremental improvement in North American

NO, mean bias changes from 1.053 ppbv for all stations versus 1.782 for population > 800 km* stations, and the incrementd {_Formatted: Subscript

improvement in PM2.5 MGE for North America changes from 0.249 to 0.665 g m® (both numbers are differences between ( Formatted: superscript
No VIT and VIT values in Tebles 2 and S2in each case. The number of model performance improvements with theuse of ~~_Formatted: Superscript
VIT has increased when grid cells with populations greater than 800 km are evaluated (62 out 0f 72 metrics improved with ...{ Formatted: Superscript

the use of VIT in Table 2, while 66 out of 72 metrics improved for stations corresponding to grid cells with populations greater

than 800 km™®). Most of these additional improvements were associated with better ozone prediction performance in utban [ Formatted:

Superscript

regions.
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Thetiming and spatial distribution ofthe differences in the 29 day mean values 0f NO,, PM2.5and O; at 10 and 22 LFUTC Formatted

(6 AM and 6 PM EDT) are shown in Figure 7. NO, and PM2.5 have decreased in the urban areas and along the major road Formatted
networks in the early morning (Figure 7 (a,ck)), while the ozone (Figure 7(ec)) increases in the urban areas and along the m
roadways, with aminor increase in the surrounding countryside. The VIT effect occurs at nightand in the early moming: the Formatted
average differences are minimal by 6 PM EDT (Figure 7 (b,d,f)). This diurnal cycle of the average impact of VIT is expected: ( ::::i::
at night and during the early morning the radiative-transfer driven atmosphere is relatively stable, natural background [ Formatted
turbulence is low in magnitude, and the relative contribution of VIT is therefore large. The reverse is true during the later ( Formatted
morning to late afternoon, as the solar radiative balance causes near-surface turbulence to rise several orders of magnitude __.l Formatted

relative to nighttime values, and the relative contribution of VIT at those times becomes minimal. The strongest contribution

of VIT thus occurs under more stable atmospheric conditions: at night and in the early morning.

The significance of the differences between VIT and no-VIT simulations was estimated using 90% confidence levels,

expressed here as gonfidence ratios.

at aconfidence level cifthe regionsdefined by M, + z* 4% = and My oy + 2" —7 INoviT ~do not overlao (where N is the number ( Formatted

{ Formatted

of gridpoint values averaged, the q values are the standard deviations of the means, and,z* is the value ofthe v/¢ percentile

Formatted

point for the fractional confidence interval, g ofthe normal distribution, where,z%=1.645 at,¢=0.90. Grid cell values where the

Formatted

mean values differ at or above the 90% confidence level are thus defined as theconfidence ratio: { Formatted
CR = M;_l_ (14) { Formatted
R Flovirtononr) | { Formatted

Where, when z* =1.645, and the other terms are as described above, a CR value greater than unity defines the difference { Formatted

between the model simulationsat that gridpoint as being significantly different at thus-differat-greater than the 90% confidence { Formatted

level. The mean values at each gridpoint and their standard deviations may thus be used to determine the confidence levelrdio Formatted

Formatted

at each gridpoint —these values for each of the mean differences of Figure 7 are shown in Figure 8, where the colour scaling

in Figure 8 and other confidence ratio Figures which follow use with-red colours to indicateting differences which are 4:—F°"“a“ed
significant at greater than 90% confidence. Gridpoint differences which exceed the 90% confidence level requirement to ( :::::::
progressively higher degrees are shown as progressively darker red colours, while differences falling progressively further ( Formatted
below the 90% confidence level requirement are shown as progressively lighter blue colours, in these Figures. Fhe-regionover " Formatted

[ Formatted

From Figure 8. it can be seen that the,continental scale model means for the VIT versus No VIT simulations for surface NO,, Formatted

surface PM2.5 and surface O, at night differ at, 90% confidence, over much of the domain for NOQ, and PM2.5, and in urban Formatted

core areas for Og. ,The spatial extent of 90% confidence is much greater under the stable conditions of night (Figure 8 (a,¢.€)) '[mew

| Formatted

than the less stable conditions of daytime (Figure 8(b.d.f)), as would be expected from the relative magnitude of (v ttod
| Formatte

Kunduring the day and night. _While the nighttime influence of VIT on NO, extends over much of the contingnt, for O, the ) { Formatted

“( Formatted
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impact is primarily within the cities, where the increased mixing of NOX results in higher nighttime Oz concentrations due to

decreased,NOX titration,

The all-domain model performance metrics of Table 2 were also calculated for each measurement station, and the appropriae

differences inthemetricsortheirabsolute values were used to determine location-specificimpacts ofthe VIT parameterization
for NO,, PM2.5and O; (Figures 98, S3and S4). Differences in the values of the metrics between the two simulations are
shown, with the sign ofthe differences arranged so that red/blue colours indicate better performance for the VIT/No VIT
simulations respectively, red indicating better scores for the VIT simulation. The colour scales in these Figures are arranged
to include 3 orders of magnitude between lowest and highest difference scores and zero, and to encompass the maximum value
of the differences observed at across all stations. The values vary between metrics and the chemical species, with the largest
changes occurring for NO,, followed by PM2.5 and the smallest changes for Os, relative to typical concentrations ofthese
species, and in accord with Table 2. NO, performance improvements with the VIT simulation (red colours) occur across most
stations for the FAC2, MGE, RMSE, COA and I0A scores (Figure 9 &(a,c,e,f,g)), while r and |MB] scores are more variable,
with some stations having better performance for the No VIT simulation. PM2.5 performance improvements are more mixed,
with large improvements for correlation coefficient (Figure S3(d)) and 10A (Figure S3(g), amild but overall positive effect of
VIT for MGE, RMSE and COE (Figure S3(c,e,f)), and more stations showing a degradation of performance for FAC2 and
|MB|, echoing the net effect for these last two metrics seen in Table2. O;performance shows a strong regional variaion
(Figure S4): most scores improve with the use of the VIT parameterization in the western and north-eastern parts of the
continent, and degrade in the south-eastern USA. The degradation in the south-eastern (e.g. increases in O3 concentrations in
a region which already experiences a positive O3 bias) are associated with the transport of urban O; precursors into forested
areas in the region, with additional O; production occurring there. T hese effects may be removed through the introducion of
an additional parameterization for the reduced turbulence and shading within forested canopies (Makar et al., 2017; Figure
S5), with the combined parameterizations resulting in improvements in both NO, and O; performance. While the use of VIT
degrades O; performance in this region, this degradation is thus very small relative to the large improvements noted with the
canopy effect (see Makar et al., 2017; Figure S5 and itsassociated discussion inthe S.1.). Another significant feature is the
improvement (red colours) in most Os station scores in urban regions (Figure S4). These improved scores largely result fom
increases in ozone in the early moming hours (Figure 7(e)), where VIT has resulted in increased vertical mixing, redudng
surface level NO, and hence NO, titration of ozone, and also by mixing higher ozone levels aloft down into the lowest model
layer.

Overall, the impact of the VIT parameterization was to improve North American simulation accuracy, across multiple
statistical metrics, with the most significant improvementsin the model performance for simulated NO,. Spatially, mode
performance was generally greatest in urban regions and western and northeastern North America, though this depends on the
chemical species and the performance metric chosen.
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3.7 Eastern North America 2.5km Grid Cell Sizz Domain Evaluation

With the use ofa smaller grid cell size (i.e. “higher resolution”), meteorological models and on-line air-quality models such
as GEM-MACH have the option of employing theoretical approaches which better simulate the more complex radiative
transfer and physical environment-induced turbulence ofurban areas. Urban heat islands areknownto haveasignificant effect
on turbulence, for example (Mason, 2000; Makar et al., 2006). In these simulations, we make use of the Town Energy Balance
(TEB; Mason, 2000; Leroyer et al., 2014; Lemonsu et al., 2005), a single-layer urban canopy module which solves the
equations for urban atmosphere’s surface and energy budgets for a variety of urban elements (roads, walls, roofs), then
aggregates the results for the net urban canopy. Such parameterizations are inappropriate for use in larger grid cell size models
dueto thelatter’s inability to resolve individual surfacetypes and spatial gradients at thecity scale. An importantconsideration
in determining the relative importance of vehicle-induced turbulence is whether improvements in performance still occur,
when these other sources of turbulent kinetic energy are included explicitly. We address this issue in our 2.5km grid cell siz
modelling by employing the TEB parameterization, for both VIT and No VIT simulations, evaluating both simulations against
surface monitoring network observations as before. Both summer and winter simulations were carried out on the blue domain
of Figure 5(b), and the same performance metrics were calculated as for the larger North American simulations (Table 3).

A similar pattern of performance improvement can be seen between 10km and 2.5km grid cell size sizeddomains, compaing

Tables 2 and 3, with improvements due to the use of VIT predominating in both summer and winter: despite the addition of a
more explicit urban radiative balance approach, better scores were achieved with the addition ofthe VIT parameterization.
Note that comparisons between the 2.5km and 10km simulations for similar emissions inputs appear elsewhere in the literature
(Stroud et al., 2020). The number of improved scores increases from summer to winter. Stable atmospheric conditions and
low meteorological turbulence levels are more common in winter than summer, during both day and night, and the impac of
the additional source of turbulence is thus proportionally stronger in the winter season. The VIT effects at the urban scale are
the strongest for NO, and PM2.5, and less noticeable for simulated O, similar to the North American domain simulation. The
largest improvements for the three species and across seasons occur for winter PM2.5, with the improved performance taking
place in the first or second digit of the given metric. Metric differences for NO, aside from mean bias occur in the second to
third digit in the winter, with summer differences occurring in the first to 2nd digit. Changes to O, are relatively minor, with
some improvements and degradation in performance in the 3rd digits across the different metrics.

UTUT C-hour average differences between the two 2.5km grid-cell size simulations, for the three species evaluated for the
summer and winter simulations, appear in Figures (S6, S87), and Figures (109, 120) respectively. The summer differences in
surface concentration (Figure S6) are the largest at 6 AM local time (10UFUTC; first column of panels), and have largely
decreased to near zero by 6 PM (22 UTFUTC; last column). Corresponding concentration vertical distribution differences
along a cross-section linking the major cities show the early morning depletion (increase) of NO,, PM2.5 (Os) are coupled to
increases (decreases) aloft (Figure S77, first column of panels). NO, and PM2.5 reductions extend to altitudes of up to 2km
with the increase in radiative-driven turbulence during the day, while the change in NOx/\VVOC regime aloft leads to increases
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in lower Troposphere O; (Figure S77, second column). Daytime mixing increases lead to a reduction in the effect by night#ll
(Figure S7%, third column). VIT -enhanced transport of NO, from urban to rural areas can also be seen (Figure S6, center
column/first column; note increases in NO, on the periphery ofthe urban areas, pink to red colours). This additional NO,
added to NO,-limited regions leads to low-level (mostly sub-ppbv) increases in daytime O; at L0AM which persist through to
6P M. Over the Great Lakes, the change in vertical transport on land, coupled with daytime lake breeze circulation (Makar e
al., 2010; Joe et al., 2018; Stroud et al., 2020) results in a decrease in daytime NO, and PM2.5 over the Lakes and
corresponding late-afternoon O3 increases (Figure S6, blue colours in centre column of panels over the lakes for NO, and
PM2.5, red colours in the final panel of the sequence for O;). The changes in the near-roadway environment thus have larger
regional effects, changing the pathway and reaction chemistry of transported chemicals on aregional scale.

The stronger impact of VIT under winter conditionsis illustrated in Figures 8-10 and 110; NO, decreases (Figures 109, 110
(a,b,c)) persist throughout the day, though to a lower degree by 6 PM (contrast Figures S6,S77 (a,b,c) to Figures 109,11
0O(a,b,c)). The vertical influence of VIT reaches an altitude of approximately 2 km in the winter (1 km in the summer); contrast
Figure S77and Figure 110. The absence of winter biogenic hydrocarbon production during the day has likely limited the
daytimeincreasein O;to thecities (compare Figure S6(h) withFigure 109(h)). Thelargeeffect of VIT along major roadways
can beseen in both Figures S6 and Figure 910, particularly in the 6AM column of panels (a,d,g) in both figures, with the
greatest reductions aside from urban regions occurring along major roadways (e.g. Chicago to Detroit area).

Thespatial extent oftheregionwherethe wintertime mean values for the PanAm domain differ at greater than 90% confidence

are shown in Figures 12 and 13 for the model’s surface concentrations and the corresponding vertical cross-section,

respectively. The corresponding summertime differences for this domain are shown in Figures S8 and S9. For the wintertime

PanAm domain simulations, surface NO, and PM2.5 > 90% confidence ratio regions are similar to those ofthe continentd _...{ Formatted: Subscript
10km domain, and can be seen to extend into the late morning hours (14 UFUTC:; 10 AM local time; Figure 12(b.e)). The
mean values of NG, and to a lesser extent PIM2.5 also differ at greater than 90% confidence later in the day inthe urban core ...{ Formatted: Subscript
regions (Figure 12(c.f). In contrast to the continental scale results (Figure 8) the influence of VIT on surface Og approaches ....--{ Formatted: Subscript
but remains below the 90% confidence level at 14 UFUTC in the urban regions (Figure 12(h)), and remains below 90%
confidence at the other times shown. The vertical influence of wintertime VIT results in mean values differing at greater than
90% confidence up to ~700m altitude for NO; and PM2.5, and the above-ground Q, mean values differ at greater than 90% . { Formatted: Subscript
confidencefor regions between 25 and 200m altitude over specific large urban areas (e.g. New York City at 14 UTUTC, Figure ” “( Formatted: Subscript
13(h)). Regions of greater than 90% confidence in the vertical at 22 YFUTC for NQ, and PM2.5 are confined to the urban .....—{ Formatted: Subscript
core regions near the surface (Figure 13(c.f)). For the summertime high resolution PanAm domain simulations, differences at
greater than 90% confidence occur for surface NQ, and PM2.5 at night and early morning (Figures $8,S9 (a,d)) and persist _....-{ Formatted: Subscript

until later morning over parts of the Great Lakes (Figure S8(b.e)). and isolated locations over cities (Figure S9(b,e)).

Differences in the mean ozone aloft occur at night at greater than 90% confidence occur over the largest cities (e.g. New York,

Eigure S9(a)).
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Taken together, Figures 8, 12, 13, S8 and S9 show that the incorporation of VIT into the model results in mean values which
are statistically different at greater than the 90% confidencedevel (red areas, for these Figures). for NQ, and PM2.5 over lage

regions, and to alesser degree for Og over urban areas, with agreater influence at night, in the early morning, and under the

{ Formatted: Subscript

{ Formatted: Subscript

more stable conditions of winter compared to summer.

Differences in station-specific performance scores for the two simulations for the 2.5km grid-cell size domain, constructed &
for the 10km domain, are shown in Figures S108, S119, and S120 (summer) and Figures S131, S142 and S153 (winter) for
NO,, PM2.5 and O, respectively.

Thesummerscores (Figs. S108, S119, S121) show the mostsignificant improvements inthe urban areas across all performance
metrics, with the largest relative magnitude differences for NO, and PM2.5, and lower magnitude changes for O;. As for the
North American simulations, O; performance improvements occur in thecities, dueto increased vertical mixing, and, O scores
in rural regions have degraded, but may be improved with the use of a forest canopy parameterization, as discussed further in
the SI (Figure S10-S13-85S5 and related text,, S12, and S15). The overall impact of the incorporation of the VIT
parameterization is clearly a positive one, particularly inurban areas: VIT has been shown to have asignificant impat on

summertime urban and suburban scale photochemistry.

The metrics of the winter 2.5km station-specific evaluation for NO, (Figure S11513) show both local improvements and
degradation in performance, depending on location. Wintertime PM2.5 performance improves substantially across most
metrics and most locations (Figure S142). Wintertime ozone performance is variable, though improvements can be seen for
most metrics within the largest urban areas (Figure S153).

4 Discussion and Conclusions

Our work implies that the turbulence associated with vehicle motion is capable of having a significant effect on the
concentrations of key pollutants in the lower atmosphere, using a parameterization which allows these effects to be

incorporated at the relatively coarse horizontal resolutions of regional chemical transport models. Incorporating that effect

into both continental-scale and higher resolution regional/urban scale air implementations of a pollution model resulted in an
overall improvement in model performance, across several different performance metrics. The improvement at higher
resolution (when the TEB urban parameterization was included in the model setup) implies that the mixing associated with
urban radiative transfer and roughness is not sufficient to account for the observed pollutant concentrations; the effect of VIT
is robust despite differences in radiative transfer schemes and across different horizontal resolutions.

However, we also acknowledge several limitations of our VIT formulation and have recommendations for future work which
would allow it to be improved and the uncertainties in our analysis reduced.

First, we have assumed that single-vehicle induced turbulence accounts for all ofthe turbulent kinetic energy contributed by
vehicles (Gordon et al., 2012; Miller et al., 2018). The passage of multiple vehicles also induces a “ wake flow” in their
direction of motion. While this effect has been recognized in very high resolution roadway -scale models (Eskridge and
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Catalano, 1987; Eskridge et al., 1991), the breakdown of opposing wake flows into turbulence (arising from two-way traffic
and/or multiple lanes oftraffic travelling at different speeds) has not been examined, to the best of our knowledge. However,
these wake flows are of sufficiently high energy that their residual power is being harnessed via vertical -turbine wind power
generation systems in both Turkey (Devecitech, 2020) and Scotland (Shell, 2020). The single-vehicle additive
parameterization we have created here may thus underestimate the net turbulent effect of vehicle passage. At the same time,
our assumption that individual VIT within agrid cell is simply additive may also be incorrect, resulting in overestimates of
that portion of the net VIT. With the advent of Doppler LIDAR systems with sufficient time resolution to capture turbulence,
we advocate for and are currently embarking on new observation studies employing these systems in scan mode across
highways, to fully characterize all vehicle-induced contributions to turbulence as a function of the number and type of vehides
crossing below a LIDAR scan path perpendicular to the highway.

Second, our assumption that each vehicle’s pathway crosses the grid cell is a considerable source ofuncertainty. There we are
limited by the lack of availability of simultaneous vehicle speed and number data. However, recent developments in satellite-
based radar technology have been shown to provide accurate estimates of the speed of individual vehicles along major
highways (Meyer et al., 2006; Bethke et al., 2006), and binning and collection of these data may improve the linkage betwen
the more commonly available vehicle-km-travelled dataand VIT beyond that used here. Other sources of gridded vehide
and/or road density data (World Bank, 2018) should also be explored.

Third, one consideration for our parameterization is the issue of “traffic jams”; a large number of vehicles being present on the
road without much motion in such conditions. However, we note that in this case, the number of vehicles crossing a point in
space will drop — that is, if the underlying traffic data (vehicle-km-travelled) is of sufficient quality that traffic jams are
included, the existing parameterization should adequately handle these effects. Both our second and this third consideration
argue for the creation of more accurate vehicle travel data for use in air-quality models.

Last, we note that the ambient concentrations of pollutants such as NO,, O; and PM2.5 are influenced by a host of factors
included in other parameterizations ofair-quality models, and in the quality of the available emissions data. However, we
have shown here that improvements in the forecast quality of three different species with human -health impacts may be
achieved through the same process improvement. An examination ofall ofthe other possible sources of error in air-quality
models is beyond the scope of this,work. . Thiswork is not intended to,be taken as areview or critigue of existing boundary
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layer parameterizations within meteorological or regional air-quality models. There has been excellent work in recent years

on improving these parameterizations, and there are several reviews discussing this topic in the literature (e.q. Edwards et d.

2020). Rather, wefocushere on an ancillary problem specific to regional air-quality models: whether the turbulent kingtic .-

energy associated with vehicle motion could account for sufficient sub-grid-scale vertical mixing to influence the

concentrations of fresh surface-emitted pollutants, at and above roadways, and further downwingd\We-also-emphasize-that-the
i i i i isti ical-boundanylayerturbulence-models. Rather-thatThat is, on the
extent to which the at-source vertical transport offresh pollutants from the mobile sector needs to take into account loc
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737 sources ofenergy for transport at the point of emission (whether in large stacks (Gordon et al., 2018; Akingunola ¢ al., 2018)
738 orover roadways (as examined here)).

739 Despite the uncertainties identified above, our analysis has shown:

740 (1) The drop-offof VIT with height above moving vehicles is well-represented by a Gaussian distribution, from multiple
741 measurement and computational fluid dynamics modelling studies.

742 (2) The mixing lengths inferred from these studies ranges from 2.50 m (for individual isolated cars) through ~10 m
743  (vehicleensembles) to 41 m (vehicle ensembles in astreet canyon environment). We also note that the gradient in the net
744 thermal turbulent transfer coefficients drives concentration changes dueto VIT. Theexpectationthat VIT iscapableofverticad
745 transport out of the lowest layers ofaregional model is therefore a reasonable one.

746 (3) The magnitude ofthe localized energy input from VIT, while smaller than the input of solar energy during daylight
747 hours, is equivalent in magnitude tothe energy perturbations resulting from the use of a state-of-the-art urban radiative balance
748 model (TEB;see Methods). That is, locally, VIT has sufficient energy to be equivalent to the impact ofan improved urban
749 radiative transfer scheme — underlining its importance for vertical transport of pollutants.

750 (4) The impact of VIT dependson both local traffic conditions and the background meteorological conditions, with the
751 maximum effect occurring when turbulence in the ambient atmosphere is relatively weak (night through early morning), and
752 traffic levels are relatively high (morning rush hour).

753 (5) The use ofthe VIT parameterization has been demonstrated to result in decreases in air-quality model error, across
754  threedifferent key pollutants, with the most striking results for mean biases, without resorting to the use ofimposed minima
755 in the thermal turbulent exchange coefficients frequently used in air-quality models. T hese differences occur at greater then

756 90% confidence over much of the model domains for NQ, and PM2.5, and in urban core regions for Qs at 10km resolution, & ... { Formatted: Subscript

757 well as up to hundreds of metres above the surface. { Formatted: Subscript

758 (6) VIT has asignificant impact on the rapid vertical distribution of freshly emitted pollutants on the very localized scae
759 of roadways where the enhanced mixing occurs, in analogy to the rapid vertical transport used in parameterizations of plume
760 rise from large stacks. Its impact on mixing of pre-existing meteorological and chemical variables on the grid-cell scale is
761 expected to be small.

762 Based on these findings, we conclude that VIT has asignificant impact on pollutant transport and dispersion out of the lowest
763 layer of the atmosphere, and recommend its inclusion in regional air-quality models. Further improvements to the
764 parameterizations found herein would result from additional observations of T KE using Doppler lidar techniques, of vehide
765 ensembles under realistic driving conditions.
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938
939

| Direction of Vehicle Motion

940

941 Figure 1. Example of length scales associated with an ensemble of vehicles (after Kim etal., 2016, Figure 14). TKE contours along dashed
942 lines were extracted and fit to equations (1,2) for Table 1. Note that the length scale of turbulence immediately behind the leading vehicle,
943 alarge transport truck is only 5.13 3m, while the length scale immediately behind the trailing vehicle in the ensemble (an identical transport
944 truck) is 14.73 12.73m.
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946

947  Figure 2. lllustration of the impact of VIT on the local vertical gradient of the thermal turbulent transfer coefficients, at hightew (a,c)and
948  lowhigh (be,d) resolution. Purple, green, dashed blue, and red lines illustrate the height variation of concentration, meteorological or natural
949  coefficient of thermal turbulent transfer, VIT coefficient of thermal turbulent transfer, and net coefficient of thermal turbulent transfer,
950 respectively. (a,b) High and low resolution profiles and gradients, for the case where both concentration and meteorological thermal turbulent
951 transfer coefficients decrease with height. (c,d) High and low resolution profiles and gradients, for the case where concentration decreases
952  and meteorological thermal turbulent transfer coefficients increases with height.
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954  Figure 3. Vehicle km travelled per 10 km grid cell (km s) for (a) cars, (b) mid-size vehicles and (c) trucks, July, 2015.
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Figure 4. (a) Example estimated thermal turbulent transfer coefficients from VIT at 2 m elevation during a weekday at 10 am in July (m?%s
1), using the VKT data of Figure 3. (b) Vertical profile of VIT thermal turbulent transfer coefficients atone meter resolution in central
Manhattan Island, and individual values for the TKE associated with cars, mid-sized vehicles and trucks considered separately, generated
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961 using equation (8). Note that the profiles of (b) would be added to the ambient thermal diffusivity coefficients (see section 2.5, and
962 equation (12)).

963

964

965 Figure 5. GEM-MACH test domains: (a) 10km grid cell size North American domain. (b) 2.5km grid cell sizz Pan Am domain.
966
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967 )
968 Figure 6. AIRNOW hourly observation station locations for ozone (a,b), nitrogen dioxide (c,d),and particulate matter with diameters less

969 than 2.5 um (e,f). (a,c,e): Stations used for the 10km grid cell size domain evaluation. (b,d,f): Stations used for the 2.5km grid cell size
970  domain evaluation (all stations located within central box).
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975

976  Figure 7. Difference in 29 day average NO2, PM2.5 and Os, July 2016 Continental 10km domain simulations (VIT simulation — No VIT
977  simulation). Averages are paired at (a,c,e: 108FUTC, b,d,f: 224FUTC) according to species; (a,b): ANO2(ppbv); (c,d) APM2.5(ug m-3);
978  (e,f) AO3(ppbv).
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do 104FUTC. (bd.f): 224FUTC:.(a.h): NOy. (c.d) PM2.5; (e.f) Oz. Values > 1.0

indicate that the simulations differ at greater than 90% confidence.
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986

[987  Figure 98. Change in model NO2 performance at 358 North American surface monitoring sites, July 2016 (ppbv). Red colours indicate
988 stations where the addition of the VIT parameterization improved model performance, blue colours indicate stations where the addition of
989  the VIT parameterization degraded model performance. (a) AFAC2y,p_noviri (0) AIMBly o vir —ym i (€) AMGE y o yrr —yiri (8) ATyr _novirs
990 (&) ARMSEy o yrr —yirs (f) ACOEy r_woyrr i (9) AOAy 1 _yoyrr -
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995  Figure 109. Difference in 30 day average surface NO2, PM2.5 and Os, January 2016, PanAm 2.5km grid cell size domain simulation.

996  Averages are paired at (10, 14, and 22UFUTC) according to species; (a,b,c): ANOz;(ppbv) (d.e,f) APM2.5 (ngm-3); (g,h,i) AO3 (ppbv). Red
997  line in panel (a) indicates position of vertical cross-section shown in Figure 116.

42



1861 - (a)] 1861~ [imy 1861 ©

1595~ 1595 1595 30.00
1357+ 1387~ 1357+ 10.00
145 - ms- _nas 8.00
Fogs- E pag- Ewﬁ 5.00

460~ 460
a3 323 323: 0.80
ol th D 08 E L .J“:L 0.50

25 - LRy ) - - am
5 v 9 N o A C 7 . v
Ching, Dot Ty Mgy Pt Now St gy, Dt Tty Moy P Now vl g, Doty Ty Moy P N y et 0.30

1861 @) 1861 (e) 1861 (0] 0.10
1505 1595 1598 0.08
1357 1357~ 1357] 0 05
1145 145 — 1145
Eguy Eugy- E“" 0.03
'?w) S69- Fre) 0.01
g g Fon -0.01
460, 460
323

ot |
e 23 -0.03
- M-.m .‘.'.'.&M.ﬁ I:’é w ha AR - ..-l[.uj -0.05
vl Gl

03 1
)

25 25 . E

gy, Doty Tty Mongng Pt New y Bebin oty by, Dot Tty Mongeyy  Porsng Neve y ki oy Chicg, Doy gy Moy Pt New 3 B - -0.08
et ® | 11— |y 161 W | -g;g
1595| 1508 msi =4
138 1357~ |357‘» -0.50
S 145 s - -0.80
gm EW- 55«{» -1.00
769 769~ | g"”:‘ -3.00
=608 8 - 608

o L o e -5.00
323, 323, l w 3L -8.00
209 | 1 203 | | 03 ’ ] | ‘ >
=5 4y Wbl T M TR | % 10.00

998 g, g, Ty Mg D T o S A W P S -30.00
999  Figure 11. Vertical cross-sections of concentration differences between major eastern North American cities, January 2016, panels arranged
000  asin Figure 10. Vertical coordinate: unitless hybrid, top-of-scale is approximately 2 km. Units: ANO,, AO3: ppbv. APM2.5: ugm-.

001

43



10.00

5.00
3.33
2.05
2.00
1.67
1.43
1.25
111
1.05
0.95
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

002 0.01

003

------------ Formatted: Font: Italic

004  2.5km grid cell size domain simulation. Panels arranged as in Figure 10: (10, 14, and 22UFUTC) according to species; (a,b.c): NO»; (d.e.f)
005 PM2.5; (g.h,i) O3(ppbv). Green line in panel (a) indicates position of vertical cross-section shown in Figure 13. Values > 1.0 (red colours)
006 indicate that the simulations differ at greater than 90% confidence.
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1018
1019 Table 1. Gaussian distribution fits of VIT TKE drop-off with height, from observation and CFD studies.

Study, Case Slope Intercept R? Mixing length.
(_(z—fu,)‘)

(zate\ 270/ =
0.01), m

Isolated vehicles:

Rao et al. (2002), cube van, 50 mph, hg = 2m 2.2452 1.8534 0.9856 3.53

Rao et al. (2002), cube van, 30 mph, hg=2m 1.0230 1.4969 0.9709 4.22

Kim et al. (2016), lead automobile, hg = 1.5m 4.6431 3.9013 0.8845 2.50

Kim et al. (2016), lead diesel cargo truck, hg =4m 3.6143 4.2223 0.9355 5.13

Vehicle Ensembles:

Kim et al. (2016), automobile immediately | 0.073529 41144 0.9801 9.41

following lead diesel cargo truck hg =1.5m

Kim et al (2016), 2" automobile, following lead | 0.47337 3.9275 1.00° 4.60

diesel cargo truck hg = 1.5m

Kim et al. (2016) 2" diesel cargo truck, hg = 4m 0.04070 4.7935 0.5424 14.64

Woodward et al. (2019) vehicle ensemble?, | 0.01916 -1.2402 0.9135 17.01

hg=1.5m, parallel to flow, right lane

Woodward et al. (2019) vehicle ensemble®, hy = | 0.01155 -1.4532 0.7543 21.46

1.5m, parallel to flow, left lane

Woodward et al. (2019) vehicle ensemble®, hq = | 0.012489 -1.4766 0.9667 20.70

1.5m, transverse to flow, right lane

Woodward et al. (2019) vehicle ensemble®, hy = | 0.0098004 | -1.7815 0.9536 23.16
1.5m, transverse to flow, leftlane
Zhang et al. (2017), VSL: hq = 1.6m, vehicle speed | 0.0029165 | 5.1706 0.6614 41.24
=9 km hr!, Wind 11 km hr!
Zhang etal. (2017), VS2: hq = 1.6m, speed =36 km | 0.005158 5.0964 0.8306 31.38
hr'!, Wind 11 km hr!
Zhang et al. (2017), VS3: hq = 1.6m, vehicle speed | 0.007298 6.3394 0.9006 26.62
=36 km hr'!, Wind 36 km hrt
Zhang et al. (2017), VS4: hq = 1.6m, vehicle speed | 0.005411 5.6387 0.9339 30.67
=36 km hr'!, Wind 36 km hr*
Zhang et al. (2017), VSb: hq = 1.6m, vehicle speed | 0.003478 4.3150 0.8574 37.89
=36 km hr't, Wind 54 km hrt
1020
1021 a.  Note that only two contour lines were available for retrieving TKE and height values from this vehicle within Figure 14 of Kim
1022 et al. (2016); while the correlation coefficient is formally unity, this is a two-point line.
1023 b.  Woodward et al. (2019) Figure 21 turbulent velocity components in the parallel and transverse directions were squared, and
1024 distances were scaled to give equivalent distances from wind-tunnel to ambient environment.
1025
1026
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1027
1028
1029
1030

1031
1032

Table 2. Model performance for NO2, PM2.5, and Os, 10km grid cell size North American domain. No VIT refersto simulation without
vehicle-induced turbulence, VIT refers to the simulation incorporating vehicle-induced turbulence. Bold-face print identifies the better
score, italics the worse score, and regular font indicates similar performance, between the two simulations, for each metric and chemical
species compared.
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RMSE 7.089 5665 | 6.058 4.764 7.934 6.396 Formatted
COE 0.083 0.092 | 0.238 0.029 | 0.017 0.142 Formatted
10A 0.459 0.546 | 0.381 0.486 0.492 0571 Formatted
Formatted
’ FAC2 0.451 0.453 ] 0.402 0.412 0.466 0.465 Formatted
B 2,116 2619 | -0.032 0669 | -2.683 3.154 Formatted
PM25 MGE 2987 1733 | 4.733 2237 5.043 7864 Formatted
L N Ve 0.672 0.638 [ 0.879 0.787 | 0.632 0.610 il |\ Formatt=d
T 0.185 0.211 | 0.147 0.163 0.217 0.241 il :°““a:e:
RMSE 7.033 7300 | B.870 7.323 7.628 7.071 ¥\ F:::ﬂ:d
COE 0.203 0.143 | ;0.431 0.281 | 0.188 0.146 |
ll Formatted
10A 0.399 0.429 | 0.285 0.360 0.406 0.427 i Formatted
N |
FAC2 0.819 0.823 ] 0.760 0.767 0.830 0.833
00 MB 0.097 0.080 | ;3.652 3.498 | 0.503 0.684
(ppbv) MGE 710.05Q 10.009 | B.111 8.023 10.379 10.346
NMGE 0.325 0.323 | 0.343 0.339 0.322 0.321
" 0.707 0707 | 0.703 0.705 0.694 0.604 Formatted
RMSE 13.005 13.035 | 10.357 10242 | 13.511 13.458 Formatted
COE 0.239 0247 | 0.144 0.153 0.229 0.232
10A 0.619 0621 | 0.572 0.577 0.615 0.616
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1033 Table 3. Model performance for NO2, PM2.5, and O3, 2.5 km grid cell sizz Pan Am domain. No VIT refersto simulation without vehicle-
1034  induced turbulence, VIT refersto the simulation incorporating vehicle-induced turbulence. Bold-face print identifies the better score, italics
1035  the worse score, and regular font indicates similar performance, between the two simulations, for each metric and chemical species compared.

Specles Evaluation PanAm_Domain PanAm_Domain
) Metric July January
No VIT VIT No VIT VIT
B FAC2 0.584 0.593 0.714 0.711
) mMB 1.005 0.386 0.852 -0.328
{po) NMGE 0.670 0.626 0.457 0.455
) T 0,560 0543 0.736 0,693
' RMSE 6.909 6.373 7917 7892
COE 0.059 0121 0.348 0350
10A 0.530 0.560 0.674 0.675
- FAC2 0.573 0.569 0.563 0.592
: mMB -2.669 -3.055 3.930 2.362
IDMZ.SO MGE 5813 5.729 8.315 7012
- TNvGE 053 052 0865 012
: ; ok |0 O8]
) RMSE 8972 8791 24875 23194
10A 0.462 0.467 0.269 0.383
B FAC2 0.831 0.832 0.852 0.854
o MB 4.138 4.213 1.652 1.731
(o) [ WGE 10600 068 | 643 6427
) NMGE 0.333 0.333 0.259 0.259
- r 0.709 0.709 0.688 0.687
) RMSE 13.826 13.838 8.440 8.427
COE 0.146 0.146 0.190 0.191
10A 0.573 0.573 0.595 0.59
1036
1037
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