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Abstract. Theoretical models of the Earth’s atmosphere adhere to an underlying concept of flow driven by radiative transfer 7 

and the nature of the surface over which the flow is taking place:  heat from the sun and/or anthropogenic sources are the sole 8 

sources of energy driving atmospheric constituent transport.  However, another source of energy is prevalent in the human 9 

environment at the very local scale – the transfer of kinetic energy from moving vehicles to the atmosphere.  We show that 10 

this source of energy, due to being co-located with combustion emissions, can influence their vertical distribution to the extent 11 

of having a significant influence on lower troposphere pollutant concentrations throughout North America.  The effect of 12 

vehicle-induced turbulence on freshly emitted chemicals remains notable even when taking into account more complex urban 13 

radiative transfer-driven turbulence theories at high resolution.  We have designed a parameterization to account for the at-14 

source vertical transport of freshly emitted pollutants from mobile emissions resulting from vehicle-induced turbulence, in 15 

analogy to sub-grid-scale parameterizations for plume rise emissions from large stacks.  This parameterization allows vehicle-16 

induced turbulence to be represented at the scales inherent in 3D chemical transport models, allowing this process to be 17 

represented over larger regions than is currently feasible with large eddy simulation models.  Including this sub-grid-scale 18 

parameterization for the vertical transport of emitted pollutants due to vehicle-induced turbulence into a 3D chemical transport 19 

model of the atmosphere reduces pre-existing North American nitrogen dioxide biases by a factor of eight, and improves most 20 

model performance scores for nitrogen dioxide, particulate matter and ozone (for example, reductions in root mean square 21 

errors of 20, 9 and 0.5 percent, respectively). 22 

1 Introduction 23 

A common and ongoing problem with theoretical descriptions of the Earth’s atmosphere is a dichotomy in the representation 24 

of turbulent transport, between the turbulence estimated in weather forecast models, and the turbulence required for accurate 25 

simulations in air-quality forecast models.  Representations of atmospheric turbulence used in weather forecast and climate 26 

models have focused on parameterizations of “sub-gridscale turbulence”; descriptions of the storage and release of energy 27 

derived from incoming solar radiation and anthropogenic heat release, physical factors in the built -environment, and the 28 

transfer of sensible and latent heat between the built environment and the atmosphere.  These efforts adhere to an underlying 29 

concept of radiative-driven flow:  heat transfer from the sun and/or anthropogenic sources being the source of energy behind 30 
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atmospheric motions.  There has been considerable research focused on improving understanding radiative-driven flow in 31 

urban areas (e.g. the advection and diffusion associated with buildings and street canyons (Mensink et al., 2014), urban heat 32 

island radiative transfer theory (Mason et al., 2000), and in efforts to increase 3D model vertical and horizontal resolution in 33 

order to better capture the physical environment (Leroyer et al, 2014).  However, when these physical models of turbulence 34 

are applied to problems involving the emissions, transport and chemistry of atmospheric pollutants, predicted surface 35 

concentrations of emitted pollutants may be biased high, and concentrations aloft biased low, indicating the presence of missing 36 

additional sources of atmospheric dispersion (Makar et al., 2014; Kim et al., 2015).  Despite ongoing work to improve the 37 

turbulence schemes in meteorological models  (Makar et al., 2014; Hu et al., 2013;  Klein et al., 2014), computational predictive 38 

models of atmospheric pollution typically make use of a constant “floor” or “cut-off” in the thermal turbulent transfer 39 

coefficients provided by weather forecast models, sometimes with higher values of this cutoff over urban compared to rural 40 

areas (Makar et al., 2014), in an attempt to compensate for apparent insufficient vertical mixing of chemical tracers.  The 41 

turbulent mixing in these physical descriptions, while capable of reproducing observed meteorological conditions, do not 42 

explain lower concentration observations of emitted atmospheric pollutants.   43 

Large stack sources of pollutants provide a useful analogy in investigating a potential cause of this discrepancy.  Emissions 44 

from these sources occur at high temperatures, lofting their emitted mass high into the atmosphere as a  result of buoyancy 45 

effects.  However, the physical size of the stacks (< 10 m diameter) is much smaller than the grid cell size used in regional 46 

models (km to 10’s of km).  In order to capture the rapid vertical redistribution of emissions from large stacks, sub-grid-scale 47 

parameterizations are used, in which buoyancy calculations are performed to determine plume heights, which are then used to 48 

determine the distribution of freshly emitted pollutants (Briggs, 1975; Briggs, 1984; Gordon et al., 2018; Akingunola et al., 49 

2018).  For large stack emissions, these parameterizations account for the effect of the addition of energy (the hot exhaust gas) 50 

on the local distribution of pollutants, and are essential in estimating initial vertical distribution of those p ollutants. 51 

In this work, we investigate the potential for another type of at-source energy to influence the vertical distribution of freshly 52 

emitted pollutant concentrations: the addition of kinetic energy due to the displacement of air during the passage of vehicles 53 

on roadways.  Roadway observations in the 1970’s showed that this transferred energy has a significant influence on the 54 

transport of primary pollutants released from vehicle exhaust, with vehicle passage being associated with “a distinct bulge in 55 

the high frequency range of the wind spectrum”, “corresponding to eddy sizes on the order of a few metres”  (Rao et al., 1979).  56 

The same work found that the variation in the concentration of non-reactive tracers could be attributed to wakes behind moving 57 

vehicles.  Subsequent theoretical development led to the creation of the roadway-scale models describing turbulence within a 58 

few 10’s of metres around and above roadways, in turn used to estimate the very local-level impact of vehicles on emitted 59 

pollutant concentrations (Eskridge and Catalano, 1987).  These models showed that near-roadway concentrations of emitted 60 

pollutants were highly dependent on vehicle speed, with over a factor of two reduction in emission -normalized pollutant 61 

concentrations being associated with an increase in vehicle speed from 20 to 100 km/hr (Eskridge et al., 1991).   With the 62 

advent of portable, very high time resolution 3-D sonic anemometers, the turbulent kinetic energy of individual vehicles could 63 

be measured directly, either aboard an instrumented trailer towed behind a vehicle (Rao et al., 2002), or through 64 
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instrumentation mounted aboard a laboratory following other vehicles in traffic (Gordon et al., 2012; Miller et al., 2018).    65 

However, the application of this information has been limited up to now to theoretical and computational models of the near-66 

roadway environment and large eddy simulation models with horizontal domains of a few kilometers in extent.   67 

Regional air-quality models also have vertical resolution in the 10’s of metres near the surface, suggesting the potential for 68 

vehicle-induced turbulence (VIT) to influence turbulent mixing out of the lowest model layer(s).   Here we demonstrate that 69 

this sub-grid-scale vertical transport process, which due to its highly localized spatial nature (over roadways), has a 70 

disproportionate impact on the vertical distribution and transport of freshly emitted chemical tracers.   A comparable sub-grid-71 

scale process which has a similar influence on pollutants are the emissions from large stacks noted above (Gordon et al., 2018; 72 

Akingunola et al., 2018).  Accurate estimation of pollutant concentrations from the latter sources must take into account the 73 

at-source buoyancy and exit velocity of high-temperature exhaust to determine the vertical distribution of fresh emissions.  74 

Similarly, our work focusses on determining the local lofting of pollutants from and due to moving vehicles, in order to 75 

adequately represent the at-source vertical distribution of their emissions, on the larger scale.   76 

The extent of the vertical influence of VIT varies depending on the configuration of vehicles on the roadway.  From 77 

observations taken from a trailer following an isolated passenger van (Rao et al., 2002), and large eddy simulation (LES) / 78 

computational fluid dynamics (CFD) models of individual vehicles (Kim et al., 2011; Kim et al., 2016a), the vertical distance 79 

over which VIT can be distinguished from the background for isolated, individual vehicles (i.e. the mixing length) is on the 80 

order of 2.5 to 5.13 m.    However, as we show in Methods and Results, for observations of ensembles of vehicles in traffic 81 

(Gordon et al., 2012; Miller et al., 2018), and large eddy / computational fluid dynamics simulations of ensembles of vehicles 82 

(Kim et al., 2016a; Woodward et al., 2019; Zhang et al., 2017), the mixing lengths associated with VIT are larger, on the order 83 

of 10’s of m, to as much as 41 m.  The vertical extent of the impacts of alternating low and high areas of surface roughness 84 

have been shown to create downwind internal boundary layers to even more significant heights in the atmosphere (e.g 300m, 85 

Bou-Zeid et al., 2004, their Figure 12), suggesting that impacts into the lower boundary layer due to the alternating roughness 86 

elements (in our case, vehicles versus roadways) is not unreasonable.   We also show in Methods that the impact of VIT within 87 

the context of an air-quality model is via changes to the vertical gradient of the thermal turbulent transfer coefficients; the 88 

gradient of the sum of the natural turbulence and VIT terms, allows VIT to influence vertical mixing, even when model vertical 89 

resolution is relatively coarse. 90 

Large eddy simulation (LES) / computational fluid dynamics (CFD) models have shown the importance of VIT towards 91 

modifying local values of turbulent kinetic energy, as noted in the references above.  However, these models require relatively 92 

small grid cell sizes compared to regional chemistry models (cm to tens of metres) and time steps to allow forward time 93 

stepping predictions of future meteorology and chemistry.  These constraints in turn severely limit the size of the domain in  94 

which they can be applied, and the processing time for simulations for these reduced domains can be very high.  For example, 95 

the FLUENT model was used by Kim et al (2016a) with an adaptive mesh with a minimum cell size of 1 cm, with a 96 

100x20x20m domain, while Woodward et al (2019)’s implementation of FLUENT had a cell size of 50 cm, operating in a 97 

domain of 600,000 nodes (a volume of 75,000 cubic metres), and an adaptive timestep limited by a Courant number of 5.  The 98 
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latter criteria implies a computation timestep of less than 0.09 s for a 100 km hr-1 vehicle (or wind) speed, while a 1 cm grid 99 

cell size implies a computation timestep of less than 1.8x10-3 s timestep.  Similarly, the LES model employed by Zhang et al 100 

(2017) utilized a 1m x 2m x 1m cell size and a computation timestep of 0.03 s.  Other LES models have larger horizontal 101 

resolution, but are limited in horizontal domain extent relative to regional chemical transport models (example LES models 102 

incorporating gas-phase chemistry include:  Vinuesa and Vil.-Guerau de Arellano (2005), with a 50m horizontal resolution, 103 

3.2x3.2 km domain), Ouwersloot et al. (2011), with a 50m horizontal resolution and a 12.8km x 12.8 km domain, Li et al. 104 

(2016), with a 150m horizontal resolution and a 14.4km x 14.4km horizontal domain, and  Kim et al. (2016b), with a 66.6m 105 

horizontal resolution and a 6.4x6.4 km domain.  In contrast, a 3D regional chemical transport model typically operates over a 106 

domain with may be continental in extent (the simulations described here have a 10km and 2.5km horizont al resolutions with 107 

7680x6380 km and 1300x1050km domains, respectively).  The limiting horizontal resolution for regional chemical transport 108 

models is on the order of kilometres, with a limiting vertical resolution on the order of 10’s of metres, and times teps on the 109 

order of 1 minute.  These limits for regional chemical transport models are a function of the need to provide chemical forecasts 110 

over a relatively large region, within a reasonable amount of current supercomputer processing time (the chemical calculations 111 

typically taking up the bulk of the processing time).  LES models are capable of capturing VIT effects (Kim et al. (2016a), 112 

Zhang et al., (2017), Woodward et al. (2019)), and their results have been used here in developing our parameterization, but 113 

are constrained by current computer capacity from being applied for the larger scale domains required in regional to 114 

continental-scale air pollution simulations.  A “scale gap” exists between LES and regional chemical transport models – for 115 

regional chemical transport models, parameterizations of the physical processes such as VIT, resolvable at the high resolution 116 

of LES models, are therefore required.  In return, these parameterizations allow the relative impact of the parameterized 117 

processes on the larger domain sizes of regional chemical transport models to be determined. 118 

2 Methodology 119 

2.1 Theoretical development 120 

In contrast to the very local resolution “roadway” models used to examine the impact of vehicle motion on pollutant 121 

concentration (Eskridge and Catalano, 1987; Eskridge et al., 1991), and computational fluid dynamics modelling of vehicle 122 

turbulence (Kim et al., 2011; Kim et al., 2016a; Woodward et al., 2019; Zhang et al., 2017), 3D models of atmospheric 123 

pollution (Galmarini et al., 2015) have horizontal grid-cell sizes of a one to 10’s of km, and thus emissions and vertical 124 

transport associated with roadways must be approached from the standpoint of sub-grid-scale parameterizations.    125 

Measurements of the turbulent kinetic energy (TKE) associated with vehicles are usually available on a “per-vehicle” or “per-126 

vehicle within an ensemble” basis .  These observations provide the average on-road TKE per vehicle passing a point per unit 127 

time (Gordon et al., 2012; Miller et al., 2018) and/or the shape of the enhanced TKE cross-section in the plane perpendicular 128 

to the vehicle’s motion (Rao et al., 2002).   A sub-gridscale parameterization linking these scales is therefore necessary in 129 

order to study the impacts of VIT on the vertical redistribution of freshly emitted pollutants, and hence on large-scale 130 
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atmospheric chemistry and transport.  Sub-gridscale parameterizations are commonly used in atmospheric models of weather 131 

forecasting to provide the rates of change of processes which occur at scales smaller than the model’s horizontal and/or vertical 132 

resolution:  cloud formation and buoyant plume rise from large stacks being a common example for model grid cell sizes of 133 

10km or more (Kain, 2004; Briggs, 1975; Briggs 1984; Gordon et al., 2018; Akingunola et al., 2018).   134 

Three separate problems must be addressed in the construction of such a VIT parameterization for atmospheric chemical 135 

transport models, specifically: 136 

(1) What is the relationship governing the decrease in VIT with increasing dis tance (height) from the vehicles? 137 

(2) How can observation data, in units of vehicles per unit time, be related to variables more commonly available for 138 

regional chemical transport models? 139 

(3) How can VIT be incorporated into a regional model in a manner that only the emissions due to vehicles are affected, 140 

given that the vehicle-induced turbulence will have the most significant impact on emissions from moving vehicles due to the 141 

relatively low area fraction of roadway area within a given grid cell? 142 

We address each of these issues in the sub-sections that follow. 143 

2.2 Changes in VIT with Height 144 

Measurements of TKE behind a passenger van (Rao et al., 2002) typically show a smooth distribution, with TKE decreasing 145 

both above and below the height of the upper trailing edge of the moving vehicle.  Similar results have been seen from very 146 

high resolution computational fluid dynamics modelling of the flow around individual vehicles, though the shape of the vehicle 147 

and the arrangement of vehicles on the roadway can have a strong influence on the location of the maximum and shape of the 148 

vertical profile in TKE (Kim et al., 2011; Kim et al., 2016a).  We examined four datasets (the observations of Rao et al., 2002, 149 

and the LES modelling of  Kim et al., 2016a; Woodward et al., 2019; Zhang et al., 2017) to evaluate the extent to which a 150 

Gaussian distribution may be used to represent the decrease in VIT with height above moving vehicles, as well as examining 151 

the expected range of mixing lengths which may result from VIT.  A Gaussian distribution of TKE with height is given by 152 

equation (1), where Iq(z) is the time integrated added TKE value for vehicle type q with height z (m2s -1), hq is the height of the 153 

vehicle, and Aq and σq are numerical constants: 154 

𝐼𝑞(𝑧) =
𝐴𝑞

√2 𝜋 𝜎𝑞
2

𝑒
(−

(𝑧−ℎ𝑞)
2

2 𝜎𝑞
2 )

                                                                            (1) 155 

Equation (1) may be re-written as: 156 

𝑙𝑛(√2 𝜋𝐼𝑞(𝑧)) = 𝑙𝑛 (
𝐴𝑞

𝜎𝑞
) −

(𝑧−ℎ𝑞)
2

2 𝜎𝑞
2                                                                   (2) 157 

Equation (2) shows that values of  −(𝑧 − ℎ𝑞)
2
 versus 𝑙𝑛(√2 𝜋𝐼𝑞(𝑧)), with the values of z taken from vertical profiles of Iq(z) 158 

in the literature, will yield a slope of 
1

2 𝜎𝑞
2 and an intercept of 𝑙𝑛 (

𝐴𝑞

𝜎𝑞
), and the correlation coefficient for this relationship may 159 

be used to judge the accuracy of the use of a Gaussian distribution to describe the decrease in TKE with height above moving 160 



6 
 

vehicles.  The resulting relationships may also be used to describe the vertical mixing length, defined “as the diameter of the 161 

masses of fluid moving as a whole in each individual case; or again, as the distance traversed by a mass of this type before it 162 

becomes blended in with neighbouring masses” (Prandtl, 1925; Bradshaw, 1974).  Here we assume that this blending has 163 

occurred at the height at which the Gaussian has dropped to 0.01 of the value at z=hq (i.e. the value of z at which VIT has 164 

reached 1% of its maximum value (i.e.  𝑒
(−

(𝑧−ℎ𝑞)
2

2 𝜎𝑞
2 )

= 0.01).   165 

An example of the analysis used to construct Table 1 appears in Figure 1, for a CFD example for an ensemble of vehicles, 166 

taken from the literature (Kim et al., 2016a).  In this figure, contours of TKE are shown as solid lines.  TKE values as a function 167 

of height at three locations behind the trucks were used to determine σq and hence estimate the length scale via equations (1) 168 

and (2).  A notable feature of this example is the substantial increase in length scale which occurs between the initial vehicle 169 

(a transport truck) and subsequent downwind vehicles (compare height of TKE contours, and the resulting length scales in 170 

Figure 1, between left and right sides of the figure).  Increases in downwind turbulent length scales associated with vehicles 171 

moving in close ensembles are a common feature in the literature.   172 

   173 

This analysis (see Table 1) shows that a Gaussian distribution accounts for much of the variability in TKE with height 174 

(correlation coefficients of 0.54 to 0.99), and under realistic traffic conditions, the mixing lengths increase in size, and may be 175 

considerably larger than those of isolated vehicles. 176 

Two VIT mobile laboratory studies (Gordon et al., 2012; Miller et al., 2018) observed vehicle-per-second TKE for vehicles 177 

moving in ensembles along multilane roadways, aggregated by vehicle classes using the same methodology, to derive formulae 178 

for the net TKE added by VIT at 4m and 2m (the height of the instrumentation used in these studies).  We combine these data 179 

here to determine the change in VIT with height.  Setting E as the TKE added due to the vehicles, two formulae result: 180 

𝐸(4𝑚) = 1.8 𝐹𝑐 + 2.2 𝐹𝑚 + 20.4 𝐹𝑡

𝐸(2𝑚) = 2.4 𝐹𝑐 + 6.2 𝐹𝑚 + 14.8 𝐹𝑡
                                                       (3) 181 

Where E(4m) and E(2m) are the TKE added driving within the ensemble at 4 and 2 m elevation from these two studies (m2 s-182 

2), and Fc, Fm, and Ft are the number of passenger cars, mid-sized (vans, flatbed pickup trucks, and SUVs) and large vehicles 183 

(10 to 18 wheel heavy-duty vehicles) travelling past a given point on the highway per second.  The numerical coefficients are 184 

the time integrated TKE values (Iq) at the two heights (m2s -1).  An alternative approach would be to make use of vehicle speed 185 

data within each grid cell and parameterizations utilizing vehicle speed (Di Sabatino et al., 2003; Kastner-Klein et al., 2003) 186 

to construct TKE additions due to the sub-grid-scale roadways.  However, vehicle speed information is not currently readily 187 

available on a gridded hourly basis, while estimates of vehicle km travelled are available in gridded form due to their use in 188 

emissions processing, and making the simple scaling assumption that the vehicles travel across one dimension of a grid cell 189 

allows us to generate the Fc values required to estimate TKE.  Note that vehicle speed is implicit in this methodology utilizing 190 

VKT – higher speeds will result in a greater number of vehicle km travelled per unit time, and hence higher TKE values. As 191 

in the above discussion, we assume a Gaussian distribution of the coefficients of the TKE equations of (3) with height for each 192 
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vehicle, where hq = 1.5m, 1.9m and 4.11m for cars, mid-sized vehicles and trucks, respectively, with each of the 2m and 4m 193 

values of the coefficients of (3) being used to determine the corresponding values of Aq and q of equation (1), (i.e. q = c,m,t).  194 

The resulting height-dependent formulae may be used to replace the coefficients of (3), leading to the following formula for 195 

the net turbulent kinetic energy associated with the number of vehicles in transit along a given stretch of roadway at a given 196 

time: 197 

𝐸𝑛𝑒𝑡(𝑧) =  2.43𝐹𝑐 𝑒[−2.40𝑥10−2(𝑧−1.5)2]

+ 15.58𝐹𝑚𝑒[−1.18𝑥10−1(𝑧−1.9)2]

+ 20.43𝐹𝑡  𝑒[−3.61𝑥10−2(𝑧−4.11)2]

                                                                    (4) 198 

Most 3-D chemical transport models make use of some variation of “K-theory” diffusion to link turbulent kinetic energy to 199 

mixing, with the vertical mixing of a transported variable c due to turbulence at heights z being related to the thermal turb ulent 200 

transfer coefficient K via: 201 

𝜕𝑐

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾

𝜕𝑐

𝜕𝑧
)                                                                                      (5) 202 

Finite differences and tridiagonal matrix solvers are usually used to forward integrate equation (5).  For example, the solver 203 

used in the GEM-MACH model uses the following finite difference for the spatial derivatives (both spatial derivatives are 204 

𝑂(∆𝜎2), the derivatives are carried out in, and the K values are transformed into, 𝜎 =
𝑃

𝑃0
 coordinates as 𝐾, where P is the 205 

pressure, and P0 is the surface pressure): 206 

𝑐𝑖
𝑛+1−𝑐𝑖

𝑛

∆𝑡
=

1

2
(𝐾̃𝑖+1+𝐾̃𝑖)(

𝑐𝑖+1−𝑐𝑖
𝜎𝑖+1−𝜎𝑖

)−
1

2
(𝐾̃𝑖+𝐾𝑖−1)(

𝑐𝑖−𝑐𝑖−1
𝜎𝑖−𝜎𝑖−1

)

𝜎
𝑖 +

1
2

−𝜎
𝑖−

1
2

                                                           (6) 207 

Note in (6) that the prognostic values of K calculated by the weather forecast model are on the same vertical levels as 208 

concentration; values of the additional component of K associated with VIT must therefore be calculated for model layers as 209 

opposed to layer interfaces.   210 

K and E may be linked through the relationship of Prandtl, where  l is a characteristic length scale: 211 

𝐾 = 0.4 𝑙√𝐸                                                                                            (7) 212 

As was done for Table 1, we have chosen this value on a per-vehicle basis as the vertical location at which the Gaussian 213 

profiles derived above reach 0.01 (i.e. 1%) of their maximum value.  Using each of the coefficient values of (3) at the two 214 

heights, in conjunction with equation (1) treated as a two-variable in two unknowns (Aq, σq) problem we find values of lc, lm, 215 

and lt of 13.56, 6.25, and 11.28 m, respectively.  These values are based on observed traffic conditions, and fall well within 216 

the range of mixing lengths provided for vehicle ensembles in Table 1, however, we note that they are a source of uncertainty, 217 

with the percent uncertainties (Gordon et al., 2012) associated with the 4m values at ±52%, ±157%, and ±12% for cars, mid-218 

sized vehicles and trucks, respectively.  The relatively low values of lm and high uncertainties in the corresponding mid-sized 219 

vehicle per-vehicle estimates of TKE relative to the other vehicle types are likely the result of a combination of s mall sample 220 

size (Gordon et al. (2012) noted the relative proportion of the three vehicle classes as 89.9% cars, 4.8% mid-sized, and 5.3% 221 

trucks, respectively) and the variety of ensemble versus isolated vehicles sampled (noting the variation in Table 1 for vehicles 222 
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within the smaller vehicle size classes).  Additional observations of vehicle turbulence are clearly needed, particularly in the 223 

region above the largest vehicles on the road (4.1m), using remote sensing techniques such as Doppler lidar, in order to improve 224 

mixing length estimates.  However, the values used here are reasonable with respect to the available data, and while likely 225 

overestimating the mixing length associated with isolated vehicles (Rao et al., 2002; Kim et al., 2016a) likely underestimate 226 

the mixing length of ensembles of vehicles (Kim et al., 2016a), particularly for ensembles moving within street canyons 227 

(Woodward et al., 2019; Zhang et al., 2017).  The latter represent the some of the specific regions where vehicle emissions are 228 

likely to dominate.  229 

We derive the following formula for the addition to the thermal turbulent transfer coefficient associated with vehicle passage 230 

as a function of height: 231 

𝐾𝑉𝐼𝑇(𝑧) = 0.4 
𝑙𝑐𝐹𝑐+𝑙𝑚𝐹𝑚+𝑙𝑡𝐹𝑡

𝐹𝑐+𝐹𝑚+𝐹𝑡
√{

2.43𝐹𝑐𝑒[−2.40𝑥10−2(𝑧−1.5)2]

+15.58𝐹𝑚𝑒[−1.18𝑥10−1(𝑧−1.9)2]

+20.43𝐹𝑡𝑒[−3.61𝑥10−2(𝑧−4.11)2]

}                                 (8) 232 

    233 

The use of (8) must be undertaken with care.  Like most regional air-quality models, the vertical resolution of GEM-MACH 234 

used here is relatively coarse (the first four model layer midpoints are located approximately 24.9, 99.8, 205.0, and 327.0 m 235 

above the surface).   Layer midpoint values must be representative of the layer resolution in order to describe the impact of 236 

VIT on the layer.  A simple linear interpolation between the peak values of KVIT and the first model interface will overestimate 237 

the impact of VIT within the lowest model layer, while the use of (8) for the mid-point value alone will underestimate the 238 

influence of VIT within the lowest part of the first model layer.   The best representation of a sub-grid-scale scalar quantity 239 

within a discrete model layer is its vertical average within that layer.  Here, we calculate the vertically integrated average of 240 

(8) within each model layer, to provide the best estimate of the impact of VIT, to within the vertical resolution of the model. 241 

2.3 VIT and Model Vertical Resolution  242 

The issue of the vertical extent of the impact of VIT is worth considering in the context of model layer thickness.  Given that 243 

the vertical length scale of added VIT is on the order of 10’s of metres, as denoted in the studies quoted herein, it is reasonable 244 

to question whether the added turbulence should be expected to have an impact on the dispersion of pollutants.  This apparent 245 

contradiction is easily resolved by noting, (1) that the turbulence due to VIT is added as an addition to the pre-existing 246 

“meteorological” thermal turbulent transfer coefficient (with the net turbulence profile, not the VIT alone, determining its 247 

impact on vertical mixing); and (2) that the impact of this net turbulence does not depend just on the magnitude of the net 248 

coefficients of thermal turbulent transfer, but also on their vertical gradient.   This second point can be illustrated by expanding 249 

the diffusion equation using the chain run of calculus (i.e. 
𝜕𝑐

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾𝑛𝑒𝑡

𝜕𝑐

𝜕𝑧
) = 𝐾𝑛𝑒𝑡

𝜕2𝑐

𝜕𝑧2 +
𝜕𝐾𝑛𝑒𝑡

𝜕𝑧

𝜕𝑐

𝜕𝑧
) , and the aid of an example, 250 

shown in Figure 2.  Figure 2 displays examples of cases where the concentration gradient and natural thermal turbulent transfer 251 

coefficient both decrease linearly with height (Figure 2(a,b)), and where the concentration gradient decreases with height while 252 
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the natural thermal turbulent transfer coefficients increase with height (Figure 2(c,d)).  The added KVIT is shown as a blue 253 

dashed line, and the net vertical thermal turbulent transfer is shown as a red line. Figure 2 (a) and Figure 2(c) depict these 254 

curves at a high vertical resolution, while Figure 2(b) and Figure 2(d) depict them at a low (regional model) resolution.  Note 255 

that in the latter, the vehicle-induced addition to the net thermal turbulent transfer coefficient depicted in Figure 2(a,c) lies 256 

entirely within the lowest model layer of Figure 2(b,d).  In both Figure 2(a) and Figure 2(b), the impact of KVIT is to slow the 257 

build-up of near-surface concentrations.  In both Figure 2(c) and Figure 2(d), the impact of KVIT is to more rapidly vent near-258 

surface concentrations further up into the atmosphere.  That is, at both high and low resolution, KVIT affects near-surface 259 

concentrations, due to the vertical gradient of  
𝜕𝐾𝑛𝑒𝑡

𝜕𝑧
).  Centered difference calculations for the low resolution case are shown 260 

in Figure 2(b,d) to illustrate the point that gradients in low vertical resolution net diffusivity result in reductions in lowest 261 

model layer trapping, and increases in venting from this lowest layer.  In both of these cases, the addition of vehicle turbulence 262 

to the lowest model layer changes the gradient of the net thermal turbulent transfer coefficient, in turn leading to reduced 263 

surface concentrations.  The above example illustrates the manner in which VIT may have an impact even on relatively low 264 

vertical model resolution. 265 

2.4 Relating VIT to Available Gridded Data – Vehicle Km Travelled  266 

Along individual roadways, equation (8) makes use of Fc, Fm, and Ft observations at points along roadways within a grid-cell, 267 

hence deriving local estimates of VIT.   This data is currently difficult to obtain for large-scale applications, and hence we 268 

have turned to secondary sources of information to estimate these three terms.  Vehicle Kilometer Travelled (VKT) is used for 269 

estimating on-road vehicle emissions at jurisdiction level (e.g. county level for the US and province level for Canada) for  270 

national emissions inventories.  Emissions processing systems used for air-quality models make use of spatial surrogates to 271 

help determine the spatial allocation of the mass emitted from different types of vehicles on different roadways (Adelman et 272 

al., 2017).   The same set of surrogates is used for calculating VKT (km s -1) for each grid cell of the model domain (varying 273 

by hour of day and day of week, for each of the three vehicle categories listed (see Figure 3), in turn providing diurnal variations 274 

of VIT matching traffic flow.  The data shown are derived from 2006 Canadian (Taylor, 2019) and 2011-based projected 2017 275 

US VKT (EPA, 2017).  Note that for the 10km grid cell size used here, values of Fc, Fm, and Ft may be derived by dividing 276 

these numbers by 10.  The largest contribution to total vehicle km travelled is by the “cars” class (Figure 3(a)) due to their 277 

greater numbers (the originating study (Miller et al., 2018) found that 89.9% of vehicles measured were cars), followed by 278 

trucks (Figure 3(c); 5.3% of vehicles measured), and mid-sized vehicles (Figure 3(b); 4.8% of vehicles measured).   279 

These VKT data may be linked to the above VIT formula (8), provided the distance each vehicle is travelling within that grid 280 

cell is known.  Here, we have made two additional assumptions.  The first assumption is that each vehicle carries out a simple 281 

transit of the cell – the distance travelled is the cell-size.  While this may be a reasonable first-order approximation, we note 282 

that it has limitations:  for example, when the number of vehicles on the roads overwhelm the capacity of the roads (rush-hour 283 

traffic jams) the distance travelled decreases.  However, under these circumstances the VKT values will also decrease; the 284 
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impact of rush-hour conditions should to some extent be included within the VKT estimates available for emissions processing 285 

systems.  The second assumption is that the VKT contributions within a grid-cell are additive – i.e. that their numbers may be 286 

added via the “F” terms in (8) (Gordon et al., 2012; Miller et al., 2018), an assumption found to be accurate in CFD modelling 287 

(Kim et al., 2016a).  Note that this assumption may result in overestimates of the net TKE – a better methodology for future 288 

work would be to collect and make use of statistics of vehicle density by roadway type within each grid-cell.  However, we 289 

note that assuming that vehicles are evenly distributed over roadways in a grid cell would result in a net underestimate of the 290 

TKE contributed over the larger roadways and main arteries of urban areas.   291 

Example 10 AM EDT North American 10km resolution gridded vehicle-induced thermal turbulent transfer coefficient  values 292 

(KVIT, equation 8) created using these assumptions, and an example vertical profile of KVIT for central Manhattan Island at 293 

0.5m vertical resolution are shown in Figure 4.  The resulting enhancements to “natural” K values at the vertical resolution of 294 

the version of the GEM-MACH air-quality model, at 2.5km horizontal resolution, are shown in Figure S1 as dashed lines.  The 295 

enhancements are confined to the lowest model layer, as might be expected from the vertical resolution employed in this 296 

version of GEM-MACH.  Nevertheless, the values are sufficient to significantly change simulated vertical transport due to 297 

modifications to the resolved gradient in thermal turbulent transfer coefficients, as discussed above.  Both the magnitude and 298 

gradient of Knet = K+KVIT may contribute to the concentration changes:  breaking the vertical diffusion equation down using 299 

the chain rule, (5) may be rewritten 300 

𝜕𝑐

𝜕𝑡
= 𝐾

𝜕2𝑐

𝜕𝑧2 +
𝜕𝐾

𝜕𝑧

𝜕𝑐

𝜕𝑧
                                                                                   (9) 301 

Both terms on the right-hand-side of (9) may contribute to decreases in concentration c at the surface and increases in 302 

concentrations aloft.  If the near-surface concentration profile (∂c⁄∂z) is negative (concentrations decrease with height), then 303 

increases in K will result in surface concentration decreases).  If this results in sufficient lofting that the concentration profile 304 

maximizes above the ground (i.e. ∂c⁄∂z becomes positive near the surface), then decreasing values of K with height (i.e. 305 

negative values of ∂K⁄∂z) will also result in a shift towards negative rates of change, through the second term in the right-hand-306 

side of (9).   All six panels of Figure S1 show increased K values; i.e. increases in the first term in (9).  All six panels also 307 

show a trend of ∂K⁄∂z  becoming more negative (that is, near-surface positive slopes become less positive, negative slopes 308 

become more negative), decreasing the magnitude of the second term in (9) in Figure S1 (b,c,d,f), and switching to a negative 309 

rate of change in Figure S1(a,e).  Both changes in the magnitude and gradient of K resulting from VIT contribute to the resulting 310 

changes in surface concentration.   311 

The thermal turbulent transfer coefficient values of Figure S1 may also be compared to the minima on “natural” K values 312 

imposed in air pollution models in an attempt to account for missing subgrid-scale mixing (Makar et al., 2014; these are 313 

typically on the order of 0.1 to 2.0 m2s -1).   Aside from Figure S1(a), the vertical profiles here would not be modified by these 314 

lower limits.   We also note that these VIT-induced changes in total thermal turbulent transfer coefficients only impact the 315 

species emitted at the road-way level, as discussed below. 316 
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2.5 Construction of a Sub-Gridscale Parameterization for On-Road Vehicle-Induced Turbulence  317 

We note that the portion of the area of a grid-cell which is roadway-covered will be relatively small for most air pollution 318 

model resolutions, such as those considered here.   For example, satellite imagery of the largest freeways show these to have 319 

a width of less than 400m.  Hence, the largest roads make up less than 1/5 of the total area of a 2.5km grid-cell, and less than 320 

1/20 of a 10km grid cell).  The largest impact of VIT is thus likely to be for the chemical species being emitted by the mobile 321 

sources, in terms of the grid-cell average concentration.  Furthermore, the grid cell approach common to these models results 322 

in horizontal numerical diffusion from the roadway scale to the grid cell scale:  sub-grid-cell scale emissions are automatically 323 

mixed across the extent of the grid cell.  The key impact of VIT will thus be in the vertical dispersion of the pollutants emitted 324 

from mobile sources.  We must therefore devise a numerical means to ensure this additional source of diffusion is added to the 325 

model, bearing these constraints in mind.   326 

Two examples of similar sub-gridscale processes appear in the literature.  The first example are the cloud convection 327 

parameterizations used in numerical weather forecast models (Kain et al., 2004), wherein the formation and vertical transport 328 

associated with convective clouds, are known to occur at smaller scales than the grid cell size employed in a numerical weather 329 

prediction model, are treated using sub-gridscale parameterizations.  In these parameterizations, cloud formation and transport 330 

are calculated within the grid-cell on a statistical basis, using formulae linking the local processes to the resolvable scale of the 331 

model.  The second example is found in the treatment of emissions from large stacks within air-quality forecast models (Gordon 332 

et al., 2018; Akingunola et al., 2018).  These sources usually have stack diameters on the order less than 10m, and these sources 333 

emit large amounts of pollutant mass at high temperatures and velocities.  In order to represent these sources, the most common 334 

approach is to calculate the height of the buoyant plume using the predicted ambient meteorology (vertical temperature profile, 335 

etc.) as well as the stack parameters (exit velocity, exit temperature, stack diameter).  The emitted mass during the model 336 

timestep from the stack is then distributed over a defined vertical region within the gridcell in which the source resides.  Note 337 

that the mass is also automatically distributed immediately in the horizontal dimension within the grid cell – the key issue is 338 

to ensure that the emitted mass is properly distributed in the vertical dimension.  Our aim in the VIT parameterization that 339 

follows is identical in intent to that of the existing major point source treatments in air-quality models:  to redistribute the mass 340 

emitted by vehicle sources in the vertical dimension, taking the very local physics influencing that vertical transport of fresh 341 

emissions into account.  We therefore focus on determining the at-source vertical transport of emitted mass associated with 342 

VIT.   343 

We start with the formulae for the transport of chemical species by vertical diffusion: 344 

𝜕𝑐𝑖

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾

𝜕𝑐𝑖

𝜕𝑧
) + 𝐸𝑖                                                                          (10) 345 

Where ci is the emitted chemical species, K represents the sum of all forms of thermal turbulent transfer in the grid-cell, and 346 

Ei is the emissions source term for the species emitted at the surface (applied as a lower boundary condition on the diffusion 347 

equation).  For grid-cells containing roadways and hence mobile emissions, we split K into meteorological and vehicle-induced 348 
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components (KT and KVIT respectively), and the emissions into those from mobile sources and those from all other sources 349 

(Ei,mob and Ei,oth, respectively): 350 

𝜕𝑐𝑖

𝜕𝑡
=

𝜕

𝜕𝑧
[(𝐾𝑇 + 𝐾𝑉𝐼𝑇)

𝜕𝑐𝑖

𝜕𝑧
] + 𝐸𝑖,𝑚𝑜𝑏 + 𝐸𝑖 ,𝑜𝑡ℎ                                                         (11) 351 

The terms in (11) may be rearranged: 352 

𝜕𝑐𝑖

𝜕𝑡
= {

𝜕

𝜕𝑧
[𝐾𝑇

𝜕𝑐𝑖

𝜕𝑧
] + 𝐸𝑖,𝑜𝑡ℎ } + {

𝜕

𝜕𝑧
[(𝐾𝑇 + 𝐾𝑉𝐼𝑇)

𝜕𝑐𝑖

𝜕𝑧
] + 𝐸𝑖,𝑚𝑜𝑏} − {

𝜕

𝜕𝑧
[𝐾𝑇

𝜕𝑐𝑖

𝜕𝑧
]}                             (12) 353 

 354 

The first bracketed term in (12) describes the rate of change of the chemical due to its emission by non-mobile area sources 355 

and vertical diffusion due to meteorological sources of turbulence within the grid -cell, but outside of the sub-grid-scale 356 

roadway.  The second term describes the rate of change of the vertical diffusion of the mobile-source-emitted pollutants over 357 

the sub-grid-cell roadway, which experiences both meteorological and roadway turbulence, and the final term prevents double-358 

counting of the meteorological component in equation (11), which is equivalent to equation (12).  Note that turbulent mixing 359 

for non-emitted chemicals is determined by solving equation (5), and for chemicals which are not emitted from mobile on-360 

road sources, equation (10) is solved, with Ei = Ei,oth.  This form of the diffusion equation (12) allows the net change in 361 

concentration to be calculated from three successive calls of the diffusion solver, starting from the same initial concentration 362 

field.  One advantage of this approach is that existing code modules for the solution of the vertical diffusion equation may be 363 

used – rather than being used once, they are used three times, with different values for the input coefficients of thermal turbulent 364 

transfer coefficient (K) and for the lower boundary conditions (E)..  The solution, once a suitable means of estimating KVIT is 365 

available, is thus relatively easy to implement in existing numerical air pollution model frameworks.   366 

2.6 Comparison of energy densities:  VIT, Solar, and Urban Perturbations in Sensible and Latent Heat  367 

The relative contribution of TKE from VIT towards energy density can be compared to the daytime solar maximum energy 368 

input to illustrate why VKT has relatively little impact during daylight hours, particularly in the summer.  The maximum TKE 369 

from VIT can be determined easily from Figure 3 and the use of our formulae; Figure 3(a) shows vehicle km travelled values 370 

ranging from a maximum of 308 in the highest density 10km grid cell in North America (New York City) down through four 371 

orders of magnitude in background grid cells with few vehicles.  A typical urban value would be 30.8 VKT: this gives an Fc 372 

value from our formulae of 3.08 vehicles s -1 for a 10km grid cell size.  Assuming that the vehicles are all cars, from our 373 

formulae we have a corresponding total TKE added at the point crossed by the vehicles, at height z=h cars=1.5 m, of 7.48 m2 s-374 

2.    We can combine this and the Fc value along with the area and volume of a lane of a roadway to estimate the energy density 375 

(EVIT) on dimensional grounds: 376 

𝐸𝑉𝐼𝑇 = [
(𝑇𝐾𝐸)(𝑎𝑖𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)(𝑙𝑎𝑛𝑒 𝑣𝑜𝑙𝑢𝑚𝑒)𝐹𝑐

(𝑙𝑎𝑛𝑒 𝑎𝑟𝑒𝑎)
]                                                           (13) 377 

Assuming each vehicle has a length of 4.5 m, width of 2.0 m, height of 1.5m, a lane length of 10 km, and an air density of 378 

1.225 kg m-3, one arrives at 84.8 kg s -3, and values ranging from a North American grid maximum of 848 kg s -3 to a background 379 

value four orders of magnitude smaller (8.48x10-2 kg s -3).  These energy densities may be compared to the typical solar energy 380 
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density reaching the surface at mid-latitudes of 1300 W m-2, or in SI units, 1300 kg s -3, and the typical range of perturbations 381 

in latent and sensible heat fluxes associated with the use of a more complex urban radiative transfer scheme (the Town Energy 382 

Balance module; Mason, 2000) in our 2.5km grid cell size simulations (typical diurnal ranges in the perturbations associated 383 

with/without use of TEB: latent: -200 to +3 W m-2; sensible: -100 to +100 W m-2 respectively).   That is, under most daylight 384 

conditions, the energy densities associated with VIT will be relatively small compared to the solar energy density at midday, 385 

with a typical urban value of 6.5%, and range from 65% in the cell with the highest VKT values down to 0.0065% in 386 

background conditions where the vehicle numbers are relatively small.  Urban traffic however may contribute similar energy 387 

levels as the changes in net latent and sensible heat fluxes associated with the use of an urban canopy radiative transfer model.   388 

We also note that at night, during the low sun angle conditions of early dawn late evening, and during the lower sun angles of 389 

winter, the relative importance of VIT to solar radiative input will be larger.  Consequently, the impact of VIT will be higher 390 

at night and in the early morning rush hours, and at other times when the sun is down or sun angles are low, as is demonstrated 391 

below. 392 

2.7 GEM-MACH simulations 393 

A research version of the Global Environmental Multiscale – Modelling Air-quality and CHemistry (GEM-MACH) numerical 394 

air quality model, based on version 2.0.3 of the GEM-MACH platform, was used for the simulations carried out here (Makar 395 

et al., 2017; Moran et al., 2010; Moran et al., 2018; Chen et al., 2020).  GEM-MACH is a comprehensive 3D deterministic 396 

predictive numerical transport model, with process modules for gas and aqueous phase chemistry, inorganic particle 397 

thermodynamics, secondary organic aerosol formation, vertical diffusion (in which area sources such as vehicle emissions are 398 

treated as lower boundary conditions on the vertical diffusion equation), advective transport, and particle microphysics and 399 

deposition.  The model makes use of a sectional approach for the aerosol size distribution, here employing 12 aerosol bins.  400 

The version used here also follows the “fully coupled” paradigm – the aerosols formed in the model’s chemical modules in 401 

turn may modify the model’s meteorology via the direct and indirect effects (Makar et al., 2015a,b; Makar et al., 2017).   The 402 

meteorological model forming the basis of the simulations carried out here is version 4.9.8 of the Global Environmental 403 

Multiscale weather forecast model (Cote et al., 1998a,b; Caron et al., 2015; Milbrandt et al., 2016).   Emissions for the 404 

simulations conducted here were created from the most recent available inventories at the time the simulations were carried 405 

out – the 2015 Canadian area and point source emissions inventory, 2013 Canadian transportation (onroad and offroad) 406 

emissions inventory, and 2011-based projected 2017 US emissions inventory.  As noted above, the model simulations were 407 

carried out on two separate model domains shown in Figure 5; a 10 km horizontal grid cell size North American domain 408 

(768x638 grid cells; 7680x6380 km), and a 2.5km horizontal grid cell size PanAm Games domain (520x420 grid cells; 409 

1300x1050 km).  For the 10km domain, simulations were for the month of July, 2016, while for the higher resolution model, 410 

month-long summer (July 2015) and winter (January 2016) simulations were carried out, with and without the VIT 411 

parameterization.  These periods were based on the availability of emissions data, previous model simulations for the same 412 
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time periods appearing in the literature (Makar et al., 2017; Stroud et al., 2020), and the timing of a prior field study (Stroud 413 

et al., 2020).    414 

2.8 VIT as a Sub-grid-scale Phenomena  415 

It should be noted that the VIT enhancements to turbulent exchange coefficients are used  to determine the vertical distribution 416 

of freshly emitted pollutants at each model time step – they are not applied for all species within a model grid cell.  Similar 417 

sub-grid-scale approaches are used for the vertical redistribution of mass from large stack sources of pollutants, where 418 

buoyancy calculations are applied to determine the rise and vertical distribution of pollutants from large industrial sources.  419 

Both stacks and roadways are treated as sub-grid-scale sources of pollutants which are influenced by very local sources of 420 

energy (stacks: high emission temperatures and exit velocities; roadways: vehicle induced turbulence) resulting in an enhanced 421 

vertical redistribution of newly emitted chemical species.  In both cases, the vertical transport results from an interplay between 422 

the energy associated with the emission process (stacks:  high temperature emissions with the ambient vertical temperature 423 

profile; VIT: kinetic energy imparted to the atmosphere in which emissions have been injected with the ambient turbulent 424 

kinetic energy).  This interaction precludes a treatment solely from the standpoint of model input emissions, since the extent 425 

of the mixing will depend on the local atmospheric conditions as well as the energy added due to the manner in  which the 426 

emissions occur. Both processes have been addressed by large eddy simulation modelling on a very local scale, but 427 

parameterizations are required in both cases for regional scale simulations.  In both cases, the parameterized vertical 428 

redistribution of pollutants is applied to freshly emitted species – the horizontal spatial extent of the emitting region is 429 

sufficiently small that although present, the enhanced mixing will have a minor effect on the redistribution of pre -existing 430 

chemicals and on other atmospheric constituents affected by vertical transport.  VIT in the context of regional chemical 431 

transport models is thus best treated as a sub-grid-scale phenomena applied to fresh emissions, in direct analogy to the approach 432 

taken for large stack emissions. 433 

 434 

3 Results 435 

3.1 VIT Height Dependence as a Gaussian Distribution 436 

Under Methods, we describe the potential for the use of a Gaussian distribution to describe the fall-off in TKE with height 437 

above vehicles.  Using the equations presented there, we have analyzed VIT studies appearing in the literature, determining 438 

the decrease in TKE as a function of height from published figures, then fitting these data to a Gaussian distribution to the 439 

height above ground.  The result of this analysis for several data sets is shown in Table 1, generated by extracting vehicle 440 

centerline TKE values from contour plots of published data, and is subdivided into isolated vehicle and vehicle ensemble 441 

studies and cases.   442 
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The inferred mixing length shows a marked variation between that of isolated vehicles or the lead vehicle in an ensemble, and 443 

that of other vehicles appearing further back in the ensemble.  Both directly observed and CFD modelled values of the inferred 444 

mixing length for isolated vehicles or the lead vehicles of an ensemble vary from 2.5 to 5.13 m.  For subsequent vehicles in 445 

an ensemble, the mixing lengths increase to range from 4.6 to 41m.  The difference in mixing length between the lead vehicle 446 

in an ensemble, and subsequent identical vehicles appearing later in the ensemble also increases.  For example note that diesel 447 

truck mixing lengths inferred from the CFD modelling examining different vehicle configurations (Kim et al., 2016a) increase 448 

from 5.13 to 14.64 m, and the mixing lengths for automobiles increase from 2.50 m (isolated automobile), to 4.6m (automobile 449 

two vehicles back from a lead diesel truck), to 9.41 m (automobile immediately behind a leading diesel truck).    The mixing 450 

length associated with VIT may also be significantly influenced by the ambient wind and local built environment – the mixing 451 

length associated with the component of TKE due to VIT within street canyons (Woodward et al., 2019; Zhang et al., 2017) 452 

ranges from 2/3 to greater than the street canyon height, with maximum mixing lengths of 41m.  It is important to note that 453 

these mixing lengths are driven by the vehicle passage within the canyon; they result from the additional TKE added 454 

with/without vehicles in the CFD simulations.  The above data show that a Gaussian distribution provides a reasonable 455 

description of the decrease of TKE from vehicles with height, and, under realistic traffic conditions, the mixing lengths increase 456 

in size, and are be considerably larger than those of isolated vehicles, and are comparable to or greater than the near-surface 457 

vertical discretization of air quality models. 458 

The length scales associated with VIT range from 2.50 m in the case of isolated vehicles (Kim et al., 2016a), through ~10 m 459 

for vehicles moving in ensembles (Woodward et al., 2019; Zhang et al., 2017) up to 41 m, with the larger values being typical 460 

for urban street canyons.  The latter describe the specific regions VIT is expected to have the greatest impact, given the high 461 

vehicle density within the urban core.  However, our parameterization makes use of length scales derived from observations 462 

on open (non-street canyon) freeways (Gordon et al. 2012; Miller et al., 2018), and thus may underestimate the length scales 463 

in the urban core.  The impact of multiple vehicles travelling in an ensemble on open roadways was specifically depicted in 464 

the open roadway simulations of Kim et al. (2016a) reproduced in Figure 1, where the vertical extent of turbulent mixing was 465 

shown to grow with increasing number of vehicles travelling in an ensemble. Furthermore, as was discussed and demonstrated 466 

in Methods using the diffusivity equation, the length scale of the turbulence need not be greater than the model lowest layer 467 

resolution in order to capture the impacts of VIT on mixing, being due in  part to the gradient in turbulence with height. 468 

3.2 Model Domains and Evaluation Data  469 

Our 3D air-quality model (GEM-MACH) and our VIT parameterization, including its diurnal variation, are described under 470 

Methods.  Two air-quality model grid cell size and domain configurations were used for our simulations – the first employs a 471 

10km grid cell size with a North American domain, and is used for the current operational GEM-MACH air-quality forecast 472 

(Moran et al., 2010; Moran et al., 2018; Figure 5(a)).  The second was a 2.5km grid-cell resolution domain focused on the 473 

region between southern Ontario, Quebec and northeastern USA (Joe et al., 2018; Ren et al., 2020; Stroud et al., 2020; Figure 474 

5(b)).   475 
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The impact of VIT was determined through paired model simulations, with and without the VIT parameterization, evaluated 476 

against surface monitoring network data.   The latter include hourly model output for ozone (O3), nitrogen dioxide (NO2), and 477 

particulate matter with diameters less than 2.5 μm (PM2.5), across North America and in our high resolution eastern North 478 

America domain, evaluated at observation station locations with data from the AirNow network (AirNow, 2020).  Observation 479 

station locations used in simulation evaluation for these species are shown in Figure 6, for the two model configurations.  The 480 

juxtaposition of observation stations with urban populations (where the highest vehicle density may be found) may be seen by 481 

comparing Figure 6 with Figure S2. 482 

3.3 Continental 10km Grid Cell Size Domain Evaluation 483 

Simulations were carried out for the month of July, 2016 for the 10km grid cell size North American domain.  Model 484 

performance metrics used to here are described in Table S1, and provided for the 10 km resolution “VIT” and “No VIT” 485 

simulations relative to the hourly observation data for PM2.5, NO2, and O3 in Table 2.  These three chemicals were chosen 486 

due to their well-known link to human health impacts of air pollution (Steib et al., 2008; Abelsohn et al., 2011). 487 

The addition of VIT improved the scores for most performance metrics (bold-face print in Table 2).  For NO2, the addition of 488 

VIT improved all scores with the exception of the correlation coefficient, which was degraded in the third digit.  All PM2.5 489 

scores improved, with the exception of the mean bias, which became more negative by 0.5 g m-3 across North America.  All 490 

ozone scores improved, the exceptions being the correlation coefficient (which was the same for both simulations, or improved 491 

in the 3rd digit depending on the domain or country), and the ozone mean bias for the USA (which increased by +0.18 ppbv).    492 

Some of the improvements were substantial, when considered in a relative sense:  this was most noticeable for the NO2 scores, 493 

with the North American Mean Bias for NO2 improving by a factor of 8.4, the mean gross error and index of agreement by 494 

19%, the root mean square error by 25%, and the FAC2 score by 6%.  Relative improvements for PM2.5 across North America 495 

were more modest (ranging from 0.3% for FAC2 to 14% for the correlation coefficient.  The corresponding relative changes 496 

for O3 ranged from a 22% reduction in the mean bias magnitude to a fraction of a percent improvement for FAC2, mean gross 497 

error, root mean square error, and index of agreement.  Overall, the model performance for the Continental 10km domain July 498 

2016 simulations improved across different metrics, indicating that the increased vertical turbulent mixing resulting from the 499 

incorporation of VIT results in a more accurate representation of atmospheric mixing and chemistry.   500 

Following the above comparison using all available surface monitoring network data (Table 2), we carried out a further 501 

evaluation where the stations were selected based on human population within grid cells (Figure S2(a)), with only those stations 502 

in which the population exceeded 800 km-2 used for analysis.  The results of this evaluation are shown in Table S2, which may 503 

be compared to Table 2 to show the relative influence of VIT on high population areas.  We note that the magnitude of the 504 

improvement in model performance associated with VIT has increased for many statistics when high population (i.e. high 505 

vehicle traffic) areas are examined separately in this manner; for example the incremental improvement in North American 506 

NO2 mean bias changes from 1.053 ppbv for all stations versus 1.782 for population > 800 km-2 stations, and the incremental 507 

improvement in PM2.5 MGE for North America changes from 0.249 to 0.665 𝜇g m-3 (both numbers are differences between 508 
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No VIT and VIT values in Tables 2 and S2 in each case.  The number of model performance improvements with the use of 509 

VIT has increased when grid cells with populations greater than 800 km-2 are evaluated (62 out of 72 metrics improved with 510 

the use of VIT in Table 2, while 66 out of 72 metrics improved for stations corresponding to grid cells with populations greater 511 

than 800 km-2).  Most of these additional improvements were associated with better ozone prediction performance in urban 512 

regions. 513 

The timing and spatial distribution of the differences in the 29 day mean values of NO2, PM2.5 and O3 at 10 and 22 UT (6 AM 514 

and 6 PM EDT) are shown in Figure 7.  NO2 and PM2.5 have decreased in the urban areas and along the major road networks 515 

in the early morning (Figure 7(a,c)), while the ozone (Figure 7(e)) increases in the urban areas and along the roadways, with a 516 

minor increase in the surrounding countryside.  The VIT effect occurs at night and in the early morning:  the average differences 517 

are minimal by 6 PM EDT (Figure 7 (b,d,f)).  This diurnal cycle of the average impact of VIT is expected:  at night and during 518 

the early morning the radiative-transfer driven atmosphere is relatively stable, natural background turbulence is low in 519 

magnitude, and the relative contribution of VIT is therefore large.  The reverse is true during the later morning to late afternoon, 520 

as the solar radiative balance causes near-surface turbulence to rise several orders of magnitude relative to nighttime values, 521 

and the relative contribution of VIT at those times becomes minimal.  The strongest contribution of VIT thus occurs under 522 

more stable atmospheric conditions:  at night and in the early morning.     523 

The region over which the two simulations’ mean values differ at the 90% confidence level is shown in Figure 8.  The 524 

difference between the mean values of the two simulations (MVIT, MNoVIT) becomes significant at a confidence level c if the 525 

regions defined by  𝑀𝑉𝐼𝑇 ± 𝑧∗ 𝜎𝑉𝐼𝑇

√𝑁
 and 𝑀𝑁𝑜𝑉𝐼𝑇 ± 𝑧∗ 𝜎𝑁𝑜𝑉𝐼𝑇

√𝑁
 do not overlap (where N is the number of gridpoint values averaged, 526 

the 𝜎 values are the standard deviations of the means, and z* is the value of the √𝑐 percentile point for the fractional confidence 527 

interval c of the normal distribution, where z*=1.645 at c=0.90.  Grid cell values where the mean values differ at or above the 528 

90% confidence level are thus defined as 
|𝑀𝑉𝐼𝑇−𝑀𝑁𝑜𝑉𝐼𝑇|

𝑧∗

√𝑁
(𝜎𝑉𝐼𝑇+𝜎𝑁𝑜𝑉𝐼𝑇)

> 1 thus differ at greater than the 90% confidence level.  The mean 529 

values at each gridpoint and their standard deviations may thus be used to determine the confidence level – these values for 530 

each of the mean differences of Figure 7 are shown in Figure 8, with red colours indicating differences significant at greater 531 

than 90% confidence.   532 

From Figure 8, it can be seen that the continental scale model means for the VIT versus No VIT simulations for surface NO2, 533 

surface PM2.5 and surface O3 at night differ at 90% confidence, over much of the domain for NO2 and PM2.5, and in urban 534 

core areas for O3.  The spatial extent of 90% confidence is much greater under the stable conditions of night (Figure 8 (a,c,e)) 535 

than the less stable conditions of daytime (Figure 8(b,d,f)), as would be expected from the relative magnitude of KT versus 536 

KVIT during the day and night.   While the nighttime influence of VIT on NO2 extends over much of the continent, for O3, the 537 

impact is primarily within the cities, where the increased mixing of NOx results in higher nighttime O3 concentrations due to 538 

decreased NOx titration. 539 

The all-domain model performance metrics of Table 2 were also calculated for each measurement station, and the appropriate 540 

differences in the metrics or their absolute values were used to determine location-specific impacts of the VIT parameterization 541 
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for NO2, PM2.5 and O3 (Figures 9, S3 and S4).  Differences in the values of the metrics between the two simulations are 542 

shown, with the sign of the differences arranged so that red/blue colours indicate better performance for the VIT/No VIT 543 

simulations respectively, red indicating better scores for the VIT simulation.  The colour scales in these Figures are arranged 544 

to include 3 orders of magnitude between lowest and highest difference scores and zero, and to encompass the maximum value 545 

of the differences observed at across all stations.  The values vary between metrics and the chemical species, with the largest 546 

changes occurring for NO2, followed by PM2.5 and the smallest changes for O3, relative to typical concentrations of these 547 

species, and in accord with Table 2.  NO2 performance improvements with the VIT simulation (red colours) occur across most 548 

stations for the FAC2, MGE, RMSE, COA and IOA scores (Figure 9 (a,c,e,f,g)), while r and |MB| scores are more variable, 549 

with some stations having better performance for the No VIT simulation.  PM2.5 performance improvements are more mixed, 550 

with large improvements for correlation coefficient (Figure S3(d)) and IOA (Figure S3(g), a mild but overall positive effect of 551 

VIT for MGE, RMSE and COE (Figure S3(c,e,f)), and more stations showing a degradation of performance for FAC2 and 552 

|MB|, echoing the net effect for these last two metrics seen in Table 2.  O3 performance shows a strong regional variation 553 

(Figure S4):  most scores improve with the use of the VIT parameterization in the western and north-eastern parts of the 554 

continent, and degrade in the south-eastern USA.  The degradation in the south-eastern (e.g. increases in O3 concentrations in 555 

a region which already experiences a positive O3 bias) are associated with the transport of urban O3 precursors into forested 556 

areas in the region, with additional O3 production occurring there.  These effects may be removed through the introduction of 557 

an additional parameterization for the reduced turbulence and shading within forested canopies (Makar et al., 2017; Figure 558 

S5), with the combined parameterizations resulting in improvements in both NO2 and O3 performance.  While the use of VIT 559 

degrades O3 performance in this region, this degradation is thus very small relative to the large improvements noted with the 560 

canopy effect (see Makar et al., 2017; Figure S5 and its associated discussion in the S.I.).  Another significant feature is the 561 

improvement (red colours) in most O3 station scores in urban regions (Figure S4).  These improved scores largely result from 562 

increases in ozone in the early morning hours (Figure 7(e)), where VIT has resulted in increased vertical mixing, reducing 563 

surface level NOx and hence NOx titration of ozone, and also by mixing higher ozone levels aloft down into the lowest model 564 

layer. 565 

Overall, the impact of the VIT parameterization was to improve North American simulation accuracy, across multiple 566 

statistical metrics, with the most significant improvements in the model performance for simulated NO2.  Spatially, model 567 

performance was generally greatest in urban regions and western and northeastern North America, though this depends on the 568 

chemical species and the performance metric chosen.   569 

3.7 Eastern North America 2.5km Grid Cell Size Domain Evaluation  570 

With the use of a smaller grid cell size (i.e. “higher resolution”), meteorological models and on-line air-quality models such 571 

as GEM-MACH have the option of employing theoretical approaches which better simulate the more complex radiative 572 

transfer and physical environment-induced turbulence of urban areas.  Urban heat islands are known to have a significant effect 573 

on turbulence, for example (Mason, 2000; Makar et al., 2006).  In these simulations, we make use of the Town Energy Balance 574 



19 
 

(TEB; Mason, 2000; Leroyer et al., 2014; Lemonsu et al., 2005),  a single-layer urban canopy module which solves the 575 

equations for urban atmosphere’s surface and energy budgets for a variety of urban elements (roads, walls, roofs), then 576 

aggregates the results for the net urban canopy. Such parameterizations are inappropriate for use in larger grid cell size models 577 

due to the latter’s inability to resolve individual surface types and spatial gradients at the city scale.  An important consideration 578 

in determining the relative importance of vehicle-induced turbulence is whether improvements in performance still occur, 579 

when these other sources of turbulent kinetic energy are included explicitly.  We address this issue in our 2.5km grid cell s ize 580 

modelling by employing the TEB parameterization, for both VIT and No VIT simulations, evaluating both simulations against 581 

surface monitoring network observations as before.  Both summer and winter simulations were carried out on the blue domain 582 

of Figure 5(b), and the same performance metrics were calculated as for the larger North American simulations (Table 3). 583 

A similar pattern of performance improvement can be seen between 10km and 2.5km grid cell size domains, comparing Tables 584 

2 and 3, with improvements due to the use of VIT predominating in both summer and winter: despite the addition of a more 585 

explicit urban radiative balance approach, better scores were achieved with the addition of the VIT parameterization. Note that 586 

comparisons between the 2.5km and 10km simulations for similar emissions inputs appear elsewhere in the literature (Stroud 587 

et al., 2020). The number of improved scores increases from summer to winter.  Stable atmospheric conditions and low 588 

meteorological turbulence levels are more common in winter than summer, during both day and night, and the impact of the 589 

additional source of turbulence is thus proportionally stronger in the winter season.  The VIT effects at the urban scale are  the 590 

strongest for NO2 and PM2.5, and less noticeable for simulated O3, similar to the North American domain simulation.  The 591 

largest improvements for the three species and across seasons occur for winter PM2.5, with the improved performance taking 592 

place in the first or second digit of the given metric.  Metric differences for NO2 aside from mean bias occur in the second to 593 

third digit in the winter, with summer differences occurring in the first to 2nd digit.  Changes to O3 are relatively minor, with 594 

some improvements and degradation in performance in the 3rd digits across the different metrics. 595 

UT-hour average differences between the two 2.5km grid-cell size simulations, for the three species evaluated for the summer 596 

and winter simulations, appear in Figures (S6, S8), and Figures (10, 12) respectively.   The summer differences in surface 597 

concentration (Figure S6) are the largest at 6 AM local time (10UT; first column of panels), and have largely decreased to near 598 

zero by 6 PM (22 UT; last column).   Corresponding concentration vertical distribution differences along a cross-section linking 599 

the major cities show the early morning depletion (increase) of NO2, PM2.5 (O3) are coupled to increases (decreases) aloft 600 

(Figure S7, first column of panels).  NO2 and PM2.5 reductions extend to altitudes of up to 2km with the increase in radiative-601 

driven turbulence during the day, while the change in NOx/VOC regime aloft leads to increases in lower Troposphere O3 602 

(Figure S7, second column).   Daytime mixing increases lead to a reduction in the effect by nightfall (Figure S7, third column). 603 

VIT-enhanced transport of NO2 from urban to rural areas can also be seen (Figure S6, center column/first column; note 604 

increases in NO2 on the periphery of the urban areas, pink to red colours).  This additional NOx added to NOx-limited regions 605 

leads to low-level (mostly sub-ppbv) increases in daytime O3 at 10AM which persist through to 6PM. Over the Great Lakes, 606 

the change in vertical transport on land, coupled with daytime lake breeze circulation (Makar et al., 2010; Joe et al., 2018; 607 

Stroud et al., 2020) results in a decrease in daytime NO2 and PM2.5 over the Lakes and corresponding late-afternoon O3 608 
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increases (Figure S6, blue colours in centre column of panels over the lakes for NO2 and PM2.5, red colours in the final panel 609 

of the sequence for O3).   The changes in the near-roadway environment thus have larger regional effects, changing the pathway 610 

and reaction chemistry of transported chemicals on a regional scale. 611 

The stronger impact of VIT under winter conditions is illustrated in Figures 10 and 11; NO2 decreases (Figures 10, 11 (a,b,c)) 612 

persist throughout the day, though to a lower degree by 6 PM (contrast Figures S6,S7 (a,b,c) to Figures 10,11 (a,b,c)).  The 613 

vertical influence of VIT reaches an altitude of approximately 2 km in the winter (1 km in the summer); contrast Figure S7 614 

and Figure 11.  The absence of winter biogenic hydrocarbon production during the day has likely limited the daytime increase 615 

in O3 to the cities (compare Figure S6(h) with Figure 10(h)).     The large effect of VIT along major roadways can be seen in 616 

both Figures S6 and Figure 10, particularly in the 6AM column of panels (a,d,g) in both figures, with the greatest reductions 617 

aside from urban regions occurring along major roadways (e.g. Chicago to Detroit area).   618 

The spatial extent of the region where the wintertime mean values for the PanAm domain differ at greater than 90% confidence 619 

are shown in Figures 12 and 13 for the model’s surface concentrations and the corresponding vertical cross-section, 620 

respectively.  The corresponding summertime differences for this domain are shown in Figures S8 and S9.  For the wintertime 621 

PanAm domain simulations, surface NO2 and PM2.5 90% confidence regions are similar to those of the continental 10km 622 

domain, and can be seen to extend into the late morning hours (14 UT; 10 AM local time; Figure 12(b,e)).  The mean values 623 

of NO2 and to a lesser extent PM2.5 also differ at greater than 90% confidence later in the day in the urban core regions (Figure 624 

12(c,f)).  In contrast to the continental scale results (Figure 8) the influence of VIT on surface O3 approaches but remains 625 

below the 90% confidence level at 14 UT in the urban regions (Figure 12(h)), and remains below 90% confidence at the other 626 

times shown.  The vertical influence of wintertime VIT results in mean values differing at greater than 90% confidence up to 627 

~700m altitude for NO2 and PM2.5, and the above-ground O3 mean values differ at greater than 90% confidence for regions 628 

between 25 and 200m altitude over specific large urban areas (e.g. New York City at 14 UT, Figure 13(h)).  Regions of greater 629 

than 90% confidence in the vertical at 22 UT for NO2 and PM2.5 are confined to the urban core regions near the surface (Figure 630 

13(c,f)).  For the summertime high resolution PanAm domain simulations, differences at greater than 90% confidence occur 631 

for surface NO2 and PM2.5 at night and early morning (Figures S8,S9 (a,d)) and persist until later morning over parts of the 632 

Great Lakes (Figure S8(b,e)), and isolated locations over cities (Figure S9(b,e)). Differences in the mean ozone aloft occur at 633 

night at greater than 90% confidence occur over the largest cities (e.g. New York, Figure S9(a)).   634 

Taken together, Figures 8, 12, 13, S8 and S9 show that the incorporation of VIT into the model results in mean values which 635 

are statistically different at the 90% confidence level, for NO2 and PM2.5 over large regions, and to a lesser degree for O3 over 636 

urban areas, with a greater influence at night, in the early morning, and under the more stable conditions of winter compared 637 

to summer. 638 

Differences in station-specific performance scores for the two simulations for the 2.5km grid-cell size domain, constructed as 639 

for the 10km domain, are shown in Figures S10, S11, and S12 (summer) and Figures S13, S14 and S15 (winter) for NO2, 640 

PM2.5 and O3, respectively.  641 
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The summer scores (Figs. S10, S11, S12) show the most significant improvements in the urban areas across all performance 642 

metrics, with the largest relative magnitude differences for NO2 and PM2.5, and lower magnitude changes for O3.  As for the 643 

North American simulations, O3 performance improvements occur in the cities, due to increased vertical mixing, and, O3 scores 644 

in rural regions have degraded, but may be improved with the use of a forest canopy parameterization, as discussed further in 645 

the SI (Figure S5 and related text,, S12, and S15).   The overall impact of the incorporation of the VIT parameterization is 646 

clearly a positive one, particularly in urban areas:  VIT has been shown to have a significant impact on summertime urban and 647 

suburban scale photochemistry. 648 

The metrics of the winter 2.5km station-specific evaluation for NO2 (Figure S13) show both local improvements and 649 

degradation in performance, depending on location.  Wintertime PM2.5 performance improves substantially across most 650 

metrics and most locations (Figure S14).  Wintertime ozone performance is variable, though improvements can be seen for 651 

most metrics within the largest urban areas (Figure S15).   652 

4 Discussion and Conclusions 653 

Our work implies that the turbulence associated with vehicle motion is capable of having a significant effect on the 654 

concentrations of key pollutants in the lower atmosphere, using a parameterization which allows these effects to be 655 

incorporated at the relatively coarse horizontal resolutions of regional chemical transport models.  Incorporating that effect 656 

into both continental-scale and higher resolution regional/urban scale air implementations of a pollution model resulted in an 657 

overall improvement in model performance, across several different performance metrics.  The improvement at higher 658 

resolution (when the TEB urban parameterization was included in the model setup) implies that the mixing associated with 659 

urban radiative transfer and roughness is not sufficient to account for the observed pollutant concentrations; the effect of VIT 660 

is robust despite differences in radiative transfer schemes and across different horizontal resolutions. 661 

However, we also acknowledge several limitations of our VIT formulation and have recommendations for future work which 662 

would allow it to be improved and the uncertainties in our analysis reduced.   663 

First, we have assumed that single-vehicle induced turbulence accounts for all of the turbulent kinetic energy contributed by 664 

vehicles (Gordon et al., 2012; Miller et al., 2018).  The passage of multiple vehicles also induces a “wake flow” in their 665 

direction of motion.  While this effect has been recognized in very high resolution roadway -scale models (Eskridge and 666 

Catalano, 1987; Eskridge et al., 1991), the breakdown of opposing wake flows into turbulence (arising from two-way traffic 667 

and/or multiple lanes of traffic travelling at different speeds) has not been examined, to the best of our knowledge.  However, 668 

these wake flows are of sufficiently high energy that their residual power is being harnessed via vertical-turbine wind power 669 

generation systems in both Turkey (Devecitech, 2020) and Scotland (Shell, 2020).  The single-vehicle additive 670 

parameterization we have created here may thus underestimate the net turbulent effect of vehicle passage.  At the same time, 671 

our assumption that individual VIT within a grid cell is simply additive may also be incorrect, resulting in overestimates of 672 

that portion of the net VIT.  With the advent of Doppler LIDAR systems with sufficient time resolution to capture turbulence, 673 
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we advocate for and are currently embarking on new observation studies employing these systems in scan mode across 674 

highways, to fully characterize all vehicle-induced contributions to turbulence as a function of the number and type of vehicles 675 

crossing below a LIDAR scan path perpendicular to the highway. 676 

Second, our assumption that each vehicle’s pathway crosses the grid cell is a considerable source of uncertainty.  There we are 677 

limited by the lack of availability of simultaneous vehicle speed and number data.  However, recent developments in satellite-678 

based radar technology have been shown to provide accurate estimates of the speed of individual vehicles along major 679 

highways (Meyer et al., 2006; Bethke et al., 2006), and binning and collection of these data may improve the linkage between 680 

the more commonly available vehicle-km-travelled data and VIT beyond that used here.  Other sources of gridded vehicle 681 

and/or road density data (World Bank, 2018) should also be explored.   682 

Third, one consideration for our parameterization is the issue of “traffic jams”; a large number of vehicles being present on the 683 

road without much motion in such conditions.  However, we note that in this case, the number of vehicles crossing a point in 684 

space will drop – that is, if the underlying traffic data (vehicle-km-travelled) is of sufficient quality that traffic jams are 685 

included, the existing parameterization should adequately handle these effects.  Both our second and this third consideration 686 

argue for the creation of more accurate vehicle travel data for use in air-quality models.    687 

Last, we note that the ambient concentrations of pollutants such as NO2, O3 and PM2.5 are influenced by a host of factors 688 

included in other parameterizations of air-quality models, and in the quality of the available emissions data.  However, we 689 

have shown here that improvements in the forecast quality of three different species with human -health impacts may be 690 

achieved through the same process improvement.  An examination of all of the other possible sources of error in air-quality 691 

models is beyond the scope of this work.  This work is not intended to be taken as a review or critique of existing boundary 692 

layer parameterizations within meteorological or regional air-quality models. There has been excellent work in recent years 693 

on improving these parameterizations, and there are several reviews discussing th is topic in the literature (e.g. Edwards et al., 694 

2020).  Rather, we focus here on an ancillary problem specific to regional air-quality models:  whether the turbulent kinetic 695 

energy associated with vehicle motion could account for sufficient sub -grid-scale vertical mixing to influence the 696 

concentrations of fresh surface-emitted pollutants, at and above roadways, and further downwind.  That is, on the extent to 697 

which the at-source vertical transport of fresh pollutants from the mobile sector needs to take into account local sources of 698 

energy for transport at the point of emission (whether in large stacks (Gordon et al., 2018; Akingunola et al., 2018) or over 699 

roadways (as examined here)). 700 

Despite the uncertainties identified above, our analysis has shown: 701 

(1) The drop-off of VIT with height above moving vehicles is well-represented by a Gaussian distribution, from multiple 702 

measurement and computational fluid dynamics modelling studies. 703 

(2) The mixing lengths inferred from these studies ranges from 2.50 m (for individual isolated cars) through ~10 m 704 

(vehicle ensembles) to 41 m (vehicle ensembles in a street canyon environment).  We also note that the gradient in the net 705 

thermal turbulent transfer coefficients drives concentration changes due to VIT.  The expectation that VIT is capable of vertical 706 

transport out of the lowest layers of a regional model is therefore a reasonable one. 707 



23 
 

(3) The magnitude of the localized energy input from VIT, while smaller than the input of solar energy during daylight 708 

hours, is equivalent in magnitude to the energy perturbations resulting from the use of a state-of-the-art urban radiative balance 709 

model (TEB; see Methods).  That is, locally, VIT has sufficient energy to be equivalent to the impact of an improved urban 710 

radiative transfer scheme – underlining its importance for vertical transport of pollutants. 711 

(4)  The impact of VIT depends on both local traffic conditions and the background meteorological conditions, with the 712 

maximum effect occurring when turbulence in the ambient atmosphere is relatively weak (night through early morning), and 713 

traffic levels are relatively high (morning rush hour). 714 

(5) The use of the VIT parameterization has been demonstrated to result in decreases in air-quality model error, across 715 

three different key pollutants, with the most striking results for mean biases, without resorting to the use of imposed minima 716 

in the thermal turbulent exchange coefficients frequently used in air-quality models.  These differences occur at greater than 717 

90% confidence over much of the model domains for NO2 and PM2.5, and in urban core regions for O3 at 10km resolution, as 718 

well as up to hundreds of metres above the surface. 719 

(6)        VIT has a significant impact on the rapid vertical distribution of freshly emitted pollutants on the very localized scale 720 

of roadways where the enhanced mixing occurs, in analogy to the rapid vertical transport used in parameterizations of plume 721 

rise from large stacks.  Its impact on mixing of pre-existing meteorological and chemical variables on the grid-cell scale is 722 

expected to be small. 723 

Based on these findings, we conclude that VIT has a significant impact on pollutant transport and dispersion out of the lowest 724 

layer of the atmosphere, and recommend its inclusion in regional air-quality models.  Further improvements to the 725 

parameterizations found herein would result from additional observations of TKE using Doppler lidar techniques, of vehicle 726 

ensembles under realistic driving conditions. 727 
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 902 

Figure 1.  Example of length scales associated with an ensemble of vehicles (after Kim et al., 2016, Figure 14).  TKE contours along dashed 903 
lines were extracted and fit  to equations (1,2) for Table 1.  Note that the length scale of turbulence immediately behind the  leading vehicle, 904 
a large transport truck is only 5.13 m, while the length scale immediately behind the trailing vehicle in the ensemble (an identical transport 905 
truck) is 14.73 m. 906 

 907 
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 908 

Figure 2.  Illustration of the impact of VIT on the local vertical gradient of the thermal turbulent transfer coefficients, at high (a,c) and low 909 
(b,d) resolution.  Purple, green, dashed blue, and red lines illustrate the height variation of concentration, meteorological or natural coefficient 910 
of thermal turbulent transfer, VIT  coefficient of thermal turbulent transfer, and net coefficient of thermal turbulent transfer, respectively.  911 
(a,b) High and low resolution profiles and gradients, for the case where both concentration and met eorological thermal turbulent transfer 912 
coefficients decrease with height.  (c,d) High and low resolution profiles and gradients, for the case where concentration decreases and 913 
meteorological thermal turbulent transfer coefficients increases with height. 914 
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 915 

Figure 3.  Vehicle km travelled per 10 km grid cell (km s-1) for (a) cars, (b) mid-size vehicles and (c) trucks, July, 2015.   916 

 917 
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 918 

919 
Figure 4. (a) Example estimated thermal turbulent transfer coefficients from VIT at 2 m elevation during a weekday at 10 am in  July (m2s-920 
1), using the VKT data of Figure 3. (b) Vertical profile of VIT thermal turbulent transfer coefficients at one meter resolution  in central 921 
Manhattan Island, and individual values for the TKE associated with cars, mid-sized vehicles and trucks considered separately, generated 922 
using equation (8).  Note that the profiles of (b) would be added to the ambient thermal diffusivity coefficients (see section 2.5, and 923 
equation (12)). 924 

 925 

 926 
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Figure 5. GEM-MACH test domains:  (a) 10km grid cell size North American domain.  (b) 2.5km grid cell size Pan Am domain. 927 

  928 
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 929 
Figure 6. AIRNOW hourly observation station locations for ozone (a,b), nitrogen dioxide (c,d), and particulate matter with diameters less 930 
than 2.5 m (e,f).  (a,c,e): Stations used for the 10km grid cell size domain evaluation.  (b,d,f):  Stations used for the 2.5km grid cell size 931 
domain evaluation (all stations located within central box). 932 
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 936 

Figure 7. Difference in 29 day average NO2, PM2.5 and O3, July 2016 Continental 10km domain simulations (VIT simulation – No VIT 937 
simulation).  Averages are paired at (a,c,e: 10UT, b,d,f: 22UT) according to species; (a,b): NO2(ppbv); (c,d) PM2.5(g m-3); (e,f) 938 
O3(ppbv). 939 
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 940 
 941 
Figure 8. 90% confidence levels for the 29 day NO2, PM2.5 and O3 July 2016 Continental 10km domain simulations.  Panels arranges as 942 
in Figure 7:   (a,c,e): 10UT, (b,d,f): 22UT;,(a,b): NO2, (c,d) PM2.5; (e,f) O3.  Values > 1.0 indicate that the simulations differ at  greater than 943 
90% confidence. 944 

 945 

 946 
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 947 

Figure 9. Change in model NO2 performance at 358 North American surface monitoring sites, July 2016 (ppbv).  Red colours indicate 948 
stations where the addition of the VIT parameterization improved model performance, blue colours indicate stations where the addition of 949 
the VIT parameterization degraded model performance. (a)  ∆𝐹𝐴𝐶2𝑉𝐼𝑇−𝑁𝑜 𝑉𝐼𝑇 ; (b) ∆|𝑀𝐵|𝑁𝑜 𝑉𝐼𝑇 −𝑉𝐼𝑇 ; (c) ∆𝑀𝐺𝐸𝑁𝑜  𝑉𝐼𝑇−𝑉𝐼𝑇 ; (d) ∆𝑟𝑉𝐼𝑇 −𝑁𝑜 𝑉𝐼𝑇 ; 950 
(e) ∆𝑅𝑀𝑆𝐸𝑁𝑜  𝑉𝐼𝑇 −𝑉𝐼𝑇 ; (f) ∆𝐶𝑂𝐸𝑉𝐼𝑇 −𝑁𝑜 𝑉𝐼𝑇 ; (g) ∆𝐼𝑂𝐴𝑉𝐼𝑇 −𝑁𝑜 𝑉𝐼𝑇 . 951 
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 952 

 953 

954 
Figure 10. Difference in 30 day average surface NO2, PM2.5 and O3, January 2016, PanAm 2.5km grid cell size domain simulation.  955 
Averages are paired at (10, 14, and 22UT) according to species; (a,b,c):NO2;(ppbv) (d,e,f) PM2.5 (g m-3); (g,h,i) O3 (ppbv).  Red line 956 
in panel (a) indicates position of vertical cross-section shown in Figure 11. 957 
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 958 

Figure 11. Vertical cross-sections of concentration differences between major eastern North American cities, January 2016 , panels arranged 959 
as in Figure 10. Vertical coordinate: unitless hybrid, top-of-scale is approximately 2 km.  Units:  NO2, O3: ppbv.  PM2.5: g m-3. 960 
 961 
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 962 

Figure 12.  90% confidence levels for the 30 day average surface NO2, PM2.5 and O3, January 2016, PanAm 2.5km grid cell size domain 963 
simulation.  Panels arranged as in Figure 10:  (10, 14, and 22UT) according to species; (a,b,c):NO2; (d,e,f) PM2.5; (g,h,i) O3 (ppbv).  Green 964 
line in panel (a) indicates position of vertical cross-section shown in Figure 13. Values > 1.0 indicate that the simulations differ at greater 965 
than 90% confidence. 966 
 967 
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 969 

 970 

 971 

 972 

Figure 13.  Vertical cross-sections of 90% confidence ratio values between major eastern North American cities, January 2016, panels 973 
arranged as in Figure 10.  Values > 1.0 indicate that the simulations differ at greater than 90% confidence. 974 

  975 
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 976 
Table 1. Gaussian distribution fits of VIT TKE drop-off with height, from observation and CFD studies. 977 

Study, Case Slope Intercept  R2 Mixing length  

(z at 𝑒
(−

(𝑧−ℎ𝑞 )
2

2 𝜎𝑞
2

)

=
0.01), m 

Isolated vehicles:  

Rao et al. (2002), cube van, 50 mph, hq = 2m 2.2452 1.8534 0.9856 3.53 

Rao et al. (2002), cube van, 30 mph, hq=2m 1.0230 1.4969 0.9709 4.22 

Kim et al. (2016), lead automobile, hq = 1.5m 4.6431 3.9013 0.8845 2.50 

Kim et al. (2016), lead diesel cargo truck, hq =4m 3.6143 4.2223 0.9355 5.13 

Vehicle Ensembles: 

Kim et al. (2016), automobile immediately 
following lead diesel cargo truck, hq = 1.5m 

0.073529 4.1144 0.9801 9.41 

Kim et al (2016), 2nd automobile, following lead 

diesel cargo truck, hq = 1.5m 

0.47337 3.9275 1.00a 4.60 

Kim et al. (2016) 2nd diesel cargo truck, hq = 4m 0.04070 4.7935 0.5424 14.64 

Woodward et al. (2019) vehicle ensembleb, 

hq=1.5m, parallel to flow, right lane 

0.01916 -1.2402 0.9135 17.01 

Woodward et al. (2019) vehicle ensembleb, hq = 

1.5m, parallel to flow, left  lane 

0.01155 -1.4532 0.7543 21.46 

Woodward et al. (2019) vehicle ensembleb, hq = 

1.5m, transverse to flow, right lane 

0.012489 -1.4766 0.9667 20.70 

Woodward et al. (2019) vehicle ensembleb, hq = 

1.5m, transverse to flow, left  lane 

0.0098094 -1.7815 0.9536 23.16 

Zhang et al. (2017), VS1: hq = 1.6m, vehicle speed 

= 9 km hr-1, Wind 11 km hr-1 

0.0029165 

 

5.1706 0.6614 41.24 

Zhang et al. (2017), VS2: hq = 1.6m, speed = 36 km 

hr-1, Wind 11 km hr-1 

0.005158 

 

5.0964 

 

0.8306 

 

31.38 

 

Zhang et al. (2017), VS3: hq = 1.6m, vehicle speed 

= 36 km hr-1, Wind 36 km hr-1 

0.007298 

 

6.3394 

 

0.9006 

 

26.62 

 

Zhang et al. (2017), VS4: hq = 1.6m, vehicle speed 

= 36 km hr-1, Wind 36 km hr-1 

0.005411 

 

5.6387 

 

0.9339 

 

30.67 

 

Zhang et al. (2017), VS5: hq = 1.6m, vehicle speed 

= 36 km hr-1, Wind 54 km hr-1 

0.003478 

 

4.3150 

 

0.8574 

 

37.89 

 

 978 
a. Note that only two contour lines were available for retrieving TKE and height values from this vehicle within Figure 14 of Kim 979 

et al. (2016); while the correlation coefficient is formally unity, this is a two-point line. 980 
b. Woodward et al. (2019) Figure 21 turbulent velocity components in the parallel and transverse directions were squared, and 981 

distances were scaled to give equivalent distances from wind-tunnel to ambient environment. 982 
 983 

  984 
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Table 2. Model performance for NO2, PM2.5, and O3, 10km grid cell size North American domain. No VIT refers to simulation without 985 
vehicle-induced turbulence, VIT  refers to the simulation incorporating vehicle-induced turbulence. Bold-face  print identifies the better 986 
score, italics the worse score, and regular font indicates similar performance, between the two simulations, for each metric and chemical 987 
species compared.  988 

Species 

  

Evaluation 

Metric 

North America Canada 

  

USA 

  

No VIT VIT No VIT VIT No VIT VIT 

  

  

  

NO 2 
(ppbv)  

  

  

  

FAC2 0.449 0.474 0.437 0.464 0.461 0.484 

MB 1.195 0.142 1.553 0.716 0.860 -0.396 

MGE 4.226 3.542 3.679 3.057 4.738 3.996 

NMGE 0.832 0.698 0.911 0.757 0.783 0.661 

r 0.515 0.511 0.520 0.518 0.507 0.506 

RMSE 7.089 5.665 6.058 4.764 7.934 6.396 

COE -0.083 0.092 -0.238 -0.029 -0.017 0.142 

IOA 0.459 0.546 0.381 0.486 0.492 0.571 

 
  

  

  

PM2.5 

(g m-3) 

  

  
  

  

FAC2 0.451 0.453 0.402 0.412 0.466 0.465 

MB -2.116 -2.619 -0.032 -0.669 -2.688 -3.154 

MGE 4.982 4.733 4.733 4.237 5.043 4.864 

NMGE 0.672 0.638 0.879 0.787 0.632 0.610 

r 0.185 0.211 0.147 0.163 0.217 0.241 

RMSE 7.933 7.300 8.870 7.323 7.628 7.271 

COE -0.203 -0.143 -0.431 -0.281 -0.188 -0.146 

IOA 0.399 0.429 0.285 0.360 0.406 0.427 

 

  

  

O 3 
(ppbv) 

  

  

  

  

  

FAC2 0.819 0.823 0.760 0.767 0.830 0.833 

MB -0.097 0.080 -3.652 -3.498 0.503 0.684 

MGE 10.050 10.009 8.111 8.023 10.379 10.346 

NMGE 0.325 0.323 0.343 0.339 0.322 0.321 

r 0.707 0.707 0.703 0.705 0.694 0.694 

RMSE 13.095 13.035 10.357 10.242 13.511 13.458 

COE 0.239 0.242 0.144 0.153 0.229 0.232 

IOA 0.619 0.621 0.572 0.577 0.615 0.616 

 989 

  990 
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Table 3. Model performance for NO2, PM2.5, and O3, 2.5 km grid cell size Pan Am domain. No VIT refers to simulation without vehicle-991 
induced turbulence, VIT  refers to the simulation incorporating vehicle-induced turbulence. Bold-face print identifies the better score, italics 992 
the worse score, and regular font indicates similar performance, between the two simulations, for each metric and chemical species compared. 993 

Species 

  

Evaluation 

Metric 

PanAm Domain 

July  

PanAm Domain 

January 

No VIT VIT No VIT VIT 

  

  

  

NO 2 
(ppbv)  

  

  

  

FAC2 0.584 0.593 0.714 0.711 

MB 1.005 0.386 0.852 -0.328 

MGE 4.137 3.866 5.166 5.146 

NMGE 0.670 0.626 0.457 0.455 

r 0.560 0.543 0.736 0.693 

RMSE 6.909 6.373 7.917 7.892 

COE 0.059 0.121 0.348 0.350 

IOA 0.530 0.560 0.674 0.675 

  

  

  
PM2.5 

(g m-3) 

  

  

  

  

FAC2 0.573 0.569 0.563 0.592 

MB -2.669 -3.055 3.930 2.362 

MGE 5.813 5.729 8.315 7.012 

NMGE 0.537 0.529 0.865 0.729 

r 0.338 0.346 0.163 0.170 

RMSE 8.972 8.791 24.875 23.194 

COE -0.077 -0.061 -0.463 -0.234 

IOA 0.462 0.467 0.269 0.383 

  

  

O 3 
(ppbv) 

  

  

  

  

  

FAC2 0.831 0.832 0.852 0.854 

MB 4.138 4.213 1.652 1.731 

MGE 10.640 10.648 6.433 6.427 

NMGE 0.333 0.333 0.259 0.259 

r 0.709 0.709 0.688 0.687 

RMSE 13.826 13.838 8.440 8.427 

COE 0.146 0.146 0.190 0.191 

IOA 0.573 0.573 0.595 0.596 

 994 

 995 


