
Dear editor, 

Thank you for handling our paper. We are grateful that the two referees are helpful to improve our 

work. We provide a point-by-point response to the reviews and revised the manuscript accordingly. 

We are now improving our algorithm to process wind fields to accurately estimate the CO2 flux 

and are also extending our work to a global scale. To be consistent with our ongoing work, we 

have decided to reprocess all of the results of this study using our current codes. The conclusion 

and discussion are not changed, while the emission estimation results for China’s cities are slightly 

different from the previous version. We have updated the manuscript with all of the new values 

and new figures. The marked-up manuscript version shows what we have revised. 

Thank you for your consideration of this manuscript.  

 

Sincerely, 

Bo Zheng on behalf of all co-authors 

 

 

 

 

 

 



Referee #1: 

General comments. 

The manuscript reports good progress in quantifying multiple megacity emissions of CO2 in China 

using a plume transport model and CO2 observations by OCO-2 satellite. The mean estimate of 

the emissions from selected megacity areas is comparable with inventory data. The manuscript is 

well written and can be recommended for publication after minor revisions, taking into the account 

the following comments: 

Response: 

We thank the referee for the positive comments on our manuscript. 

Detailed comments. 

Line 42 As for instrument noise (not retrieval noise) it may be better to use a number in the order 

of 0.3 - 0.6 ppm as in (Worden et al., 2017) 

Response: 

This sentence has been rewritten as “an instrument noise typically around 0.3–0.6 ppm (Worden 

et al., 2017)”.  

Line 49 Authors write “To our knowledge, no attempt has been made yet to infer anthropogenic 

emissions from actual satellite data over a large area or a long period to evaluate a large-scale CO2 

budget.” Suggest being more specific here and write as “actual OCO-2 data”, otherwise, when 

speaking about satellites, there is a study by Janardanan et al., (2016) using several years of CO2 

data for assessing emissions from large regions. Also adding somewhere reference to Kort et al., 

2012 is useful from historical context. 

Response: 

We now use the expression “actual OCO-2 data” and have added the reference to Kort et al. (2012). 

Line 176 “The ceiling height of 500 m is comparable to the maximum height that smoke plumes 

from power plants and industrial plants typically reach.” The assumption seems to be weak, as 

turbulent mixing is supposed to mix CO2 up to PBL top, exceeding 500 m in many occasions. The 

practical choice of using a mean wind vector below 500 m may be driven by other reasons. 

Response: 

To quantify cross-sectional CO2 fluxes, we need to know the horizontal wind direction and wind 

speed at the CO2 plume height (Nassar et al., 2017). For a power plant, Nassar et al. (2017) used 

the wind vector at the stack height. Since this study focuses on cities that have emission sources 

with various stack heights, we used the average wind below 500 m following Beirle et al. (2011). 

Line 222 More informative reference to ODIAC is given by Oda et al., (2018) 

Response: 

We have added the reference to Oda et al. (2018) in the revised manuscript. 

Line 267 For CO2-M there is a recent mission paper by Janssens-Maenhout et al. (2020) 



Response: 

We have added the reference to Janssens-Maenhout et al. (2020). 

Line 210 Summertime uptake by green spaces in a city should not be used as an explanation here 

as vegetation uptake is also present in the background used as reference for estimating 

enhancements. 

Response: 

The XCO2 enhancement tends to be lower in summer than in winter (Mitchell et al., 2018) due to 

the photosynthetic uptake by plants. This phenomenon makes FFCO2 signal not easily separated 

from the surrounding background, which could partly explain the slight underestimates in the 

FFCO2 fluxes from OCO-2 XCO2 retrievals in summer. We have clarified it in the manuscript. 

Line 235 There is an impression that there is a 200-300% disagreement between MEIC and other 

inventories in cities, and it is caused by misplacing industrial emissions. There are other factors 

apart from placing industrial emissions. ODIAC is using a simple disaggregation of emissions by 

using nightlights, which may lead to underestimation of road emissions, as found by Gateley and 

Hutyra (2017), so it is supposed to be missing some emissions in cites still it was found by Gateley 

and Hutyra (2017) to correlate well with the detailed inventory at 5 km resolution. EDGAR 

inventory is not supposed to suffer from misplacing industrial emissions to the same extent as 

ODIAC thus there should be another reason for disagreement. A reader would benefit from 

providing more details on scale and reason for discrepancies between the inventories in the target 

areas. 

Response: 

We provide a brief discussion on the discrepancies between MEIC and other inventories as follows. 

“The large discrepancies are not surprising since global emission inventories typically involve 

large uncertainties at city scales (Gately and Hutyra, 2017; Gurney et al., 2019), because they 

disaggregate national emissions to gridded maps with simple proxies like population or nighttime 

light in the countries like China where they lack detailed direct local information. Only large power 

plants have exact geographic locations (from the CARMA global database (Wheeler and Ummel, 

2008)), in principle, not all of the industrial plants like MEIC. The ODIAC uses nightlights to 

disaggregate national emission estimates to grid cells, which may lead to an underestimation of 

road emissions in cities (Gately and Hutyra, 2017) and a misplacing of industrial emissions. The 

EDGAR relies on point source locations to allocate emissions in space while it still suffers from 

missing local information in China, and gridded population maps have to be used instead. Such an 

emission mapping approach overestimates emissions over densely populated cities in China 

(Zheng et al., 2017), because the industry plants, the primary CO2 emission sources in China, are 

located far away from densely urban areas. The MEIC inventory estimates industrial emissions at 

the facility scale, transport emissions at the county scale, and residential emissions at the provincial 

scale, which can achieve better spatial accuracy in emissions estimates than the global emission 

inventories.” 
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Referee #2: 

The study by Zheng et al. uses the complete XCO2 data record available from the OCO-2 satellite 

instrument to estimate the CO2 emissions of 60 individual sources (cities, power plants, industrial 

areas) in China, accounting for almost one fifth of China’s total CO2 emissions. Several previous 

studies showed the potential of OCO-2 to detect and quantify strong point sources, but those 

studies were demonstrations rather than systematic analyses of OCO-2’s ability to quantify 

regional emissions as presented here. The study by Zheng et al. is thus an important step forward. 

The applied methods are thorough and convincing. I particularly appreciated the conservative and 

careful selection of cases, for which emission quantification was safely possible. The results of the 

study nicely demonstrate the potential but also the great challenges offered by spaceborne CO2 

observations for emission quantification. 

Emissions were estimated in the same way as in previous studies, i.e. by computing the integral 

amount of CO2 in cross-sections through the plume multiplied by the wind component 

perpendicular to these cross-sections. However, there are novel elements that go beyond previous 

studies, notably the combination of a detailed emission inventory for China with a Gaussian plume 

approach where sources (e.g. cities) are not treated as individual plumes but as superpositions of 

multiple plumes emanating from individual area and point sources. Although the information from 

these super-positioned plumes was not used directly for plume quantification, it was used to 

attribute the plumes to specific emission sources, which was a critical step in the selection of 

suitable cases. 

Overall, the paper is very well written and an important contribution to the growing literature on 

the quantitative interpretation of OCO-2 observations. I thus support publication after addressing 

the following points. 

Response: 

We thank the referee for the constructive and positive comments on our paper. We provide point-

by-point responses as follows. 

Main points: 

- The title of the manuscript suggests that the study is about emissions of cities. However, the 60 

plumes are not only from cities but also from "industrial regions". The authors should state 

explicitly how many of these plumes were representing emissions from cities, power plants and 

industrial complexes. This is important information for the planning of future satellite missions, 

since it is still not clear how well plumes from cities can be observed in comparison to those from 

power plants. 

Response: 

Among the 60 plumes that we analyzed, 33 plumes are from cities and the other 27 ones are from 

industrial regions. We now clarify this in the Sect. 3.1 as follow. 

“The finally selected 60 cases include both densely populated urban areas (33 cases) and small 

industrial areas (27 cases) that gather many industrial plants.” 

We also revise the title of our paper to “Observing carbon dioxide emissions over China’s cities 

and industrial areas with the Orbiting Carbon Observatory-2”. 



- The choice of a maximum distance of 50 km (page 4, line 100) between sources and OCO-2 track 

seems rather arbitrary. How does this choice affect the results? 50 km seems a rather short distance. 

More distant sources could contribute to the plumes and bias the corresponding estimates. The 

model-based study of Kuhlmann et al. (https://doi.org/10.5194/amt-12-6695-2019), for example, 

demonstrated that the plume of a power plant (Jänschwalde) 100 km away from a city (Berlin) 

could significantly overlap with the city plume in some cases. 

Response: 

Due to the steady-state assumption, the Gaussian plume model that was used to relate OCO-2 

XCO2 enhancements with emission sources is not reliable for long-range atmospheric transport (> 

50 km, US EPA, 2015). We therefore prefer to restrict our analysis to the enhancements that can 

be related to sources within 50 km, thereby avoiding plumes originating from further away. For 

the cases that we selected, the agreement with the MEIC inventory (Fig. 3) suggests that we do not 

need to account for large emission sources outside the 50 km radius to interpret the enhancement. 

- According to Bieser et al. (https://doi.org/10.1016/j.envpol.2011.04.030), roughly 90% of 

emissions from power plants occur between 200 m and 500 m above surface. How would emission 

estimates for power plants change using an average wind speed over this range rather than an 

average over 0–500 m (page 6, line 176)? Note that at the small distances between source and 

OCO-2 track considered in this study one cannot expect a homogeneous mixing of the plume over 

the depth of the PBL. 

Response: 

The 60 plumes that we analyzed are all from cities and industrial regions that have emission 

sources with various stack heights. The small industrial boilers and kilns, the major sources of CO2 

emissions in China, typically have smokestacks that are several tens of meters high. Therefore we 

used an average wind over 0–500 m to estimate the cross-sectional CO2 fluxes from cities and 

industrial regions, which is the same configuration as Beirle et al. (2011) who also estimated city 

emissions (of nitrogen oxide) based on satellite observations. 

Minor points and grammar: 

- Page 1, line 18: Change "from the detailed China’s emission inventory" to "from China’s detailed 

emission inventory" 

Response: 

Corrected. 

- P2, L34: "with the footprints" –> "with footprints" 

Response: 

Corrected. 

- P2, L35: "natural CO2 budget" -> "natural CO2 budgets" 

Response: 

Corrected. 



- P2, L36: "has allowed the initial insight" -> "has provided initial insight" 

Response: 

Corrected. 

- P2, L46: "spaceborne CO2 observation" -> "spaceborne CO2 observations" 

Response: 

Corrected. 

- P3, L64: "relies on the information about the wind" -> "relies on auxiliary information about 

winds" 

Response: 

Corrected. 

- P3, L66: "provides the location" -> "provides the locations" 

Response: 

Corrected. 

- P3, L75: "satellite sampling of OCO-2 capability" -> "sampling capability of OCO-2" 

Response: 

Corrected. 

- P3, L77: "centered at the locations" -> "centered on the locations" 

Response: 

Corrected. 

- P3, L86: Why should several XCO2 anomalies belong to the same CO2 plume? There is only a 

single transect per plume. Because of the moving windows? 

Response: 

The XCO2 anomalies are those exceeding two sigmas of the spatial variability above the local 

average in each moving window. If a CO2 plume crosses an OCO-2 track, the OCO-2 should 

observe a plume transect with XCO2 enhancement, where there could be several XCO2 anomalies 

larger than two sigmas above the local mean, although they correspond to the same CO2 plume. 

- P4, L91: "8 footprints if no is missing" -> "8 footprints if none is missing" 

Response: 

Corrected. 

- P4, L93: "within CO2 plume" -> "within the plume" 

Response: 



Corrected. 

- P4, L104: Only a detail: Why is the along-wind distance measured in kilometres, but the across-

wind distance in meters? 

Response: 

Here z (along-wind distance) has to be specified in kilometers to give a·z0.894 in meters 

(Bovensmann et al., 2010). 

- P5, L136: I think it would be clearer to state "We find 49,322 cases with local XCO2 

enhancements". It wasn’t clear to me initially whether these were individual pixels or plumes. 

Response: 

Corrected. 

- P5, L144: 50 km is not an appropriate scale for synoptic transport. I suggest to simplify to ".. or 

transport of CO2 over a longer distance" 

Response: 

Corrected. 

- P5, L148: "in space to make it difficult" -> "in space making it difficult" 

Response: 

Corrected. 

- P6, L153: It would be better to write "Although the total number of selected cases is small, it is 

several times larger .." 

Response: 

Corrected. 

- P6, L163: "at about local 13:30" -> "at about 13:30 local time" 

Response: 

Corrected. 

- P6, L164: "part of OCO-2 ground track" -> "part of the OCO-2 ground track" 

Response: 

Corrected. 

- P6, L175: "CO2 fluxes" -> "CO2 flux" 

Response: 

Corrected. 

- P6, L178: Why shifted by 1°? Maybe it would be clearer to state "shifted by 1° in this case". 



Response: 

Corrected. 

- P7, L186: How was the uncertainty of the hourly emission rate of Qinhuangdao determined? 

Does the MEIC inventory include uncertainties? 

Response: 

Yes, the MEIC inventory includes uncertainties of city emission estimates (Zheng et al., 2018). 

- P7, L194: There were 4 cases where the same source was quantified twice. It would be good to 

know how consistent those double quantifications are with the estimated uncertainty of <24%. 

Response: 

The emissions from 3 cities were quantified twice over the same season (i.e., cold or warm) at the 

same or different years. The consistency in these estimates for the same city, defined as the 

difference between one estimate and the two independent estimates mean, is 15–24%. 

- P7, L203ff: The interpretation of the small differences of 5-6% between satellite based estimates 

and MEIC in different seasons is pushed too far in this section considering the uncertainties. At 

least the arguments should be presented as possible explanations rather than as facts (e.g. write 

"could be due to" rather than "are due to"). The over-interpretation of the results culminates in the 

statement that human respiration accounts for 38% of the (5.5%) difference and that the remaining 

difference could be due to a bias in MEIC. The numbers deduced from the satellite observations 

are not sufficiently robust to speculate about a bias in the inventory as small as 3 percent. 

Uncertainties in the method (notably the assumption that the 0-500 m average wind speed is 

representative) could easily explain such differences, probably also differences in the results 

between summer and winter since vertical mixing is different in these seasons. 

Response: 

We rewrote this paragraph as follows according to the reviewer’s suggestion. 

“The differences in the results between cold and warm seasons could be due to uncertainties in the 

emission estimate methods of both our OCO-2 based inversion and the MEIC inventory. The 

satellite-based larger estimates in the cold season could be partially due to the fact that human 

respiration contributes to urban CO2 fluxes while not included in the MEIC inventory of fossil fuel 

and cement emissions. We make a rough estimate of the metabolic CO2 release by multiplying an 

emission factor of 0.52 t-CO2 yr−1 person−1 (Prairie and Duarte, 2007) by the population living in 

each emitting area. The results suggest that human metabolic CO2 emissions explain 8% of the 

larger satellite-based emission estimates on average in the cold season. The remaining difference 

could be due to the assumption that the 0-500 m average wind speed is representative of the 

transport wind in the plume diffusion, the natural processes like plant respiration, or the slight 

growth of fossil fuel emissions since 2013, but could also reflect some bias in the MEIC estimates. 

In the warm season, despite human respiration emissions, the satellite-based inversions give lower 

emission estimates possibly due to the carbon uptake by plants damping the XCO2 enhancements 

(Mitchell et al., 2018), which makes anthropogenic emission signals not easily separated from the 

background in the satellite-based inversions.” 

- P8, L233: "principle, not all" -> "principle, but not all" 



Response: 

Corrected. 

- P8, L235: "densely urban areas" -> "densely populated urban areas" 

Response: 

Corrected. 

- P8, L44: The last section should be renamed to "Conclusions". 

Response: 

Corrected. 

- P9, L271: "with less CO2 inventory infrastructures" -> "with less advanced CO2 inventory 

infrastructures" 

Response: 

Corrected. 

- Figure 1: The blue bar should be called "XCO2 anomalies" rather than "XCO2 outliers" 

Response: 

Corrected. 
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Abstract. In order to track progress towards the global climate targets, the parties that signed the Paris Climate Agreement 

will regularly report their anthropogenic carbon dioxide (CO2) emissions based on energy statistics and CO2 emission factors. 10 

Independent evaluation of this self-reporting system is a fast-growing research topic. Here, we study the value of satellite 

observations of the column CO2 concentrations to estimate CO2 anthropogenic emissions with five years of the Orbiting Carbon 

Observatory-2 (OCO-2) retrievals over and around China. With the detailed information of emission source locations and the 

local wind, we successfully observe CO2 plumes from 60 46 cities and industrial regions over China and quantify their CO2 

emissions from the OCO-2 observations, which add up to a total of 1.36 Gt CO2 yr−1 that account for 1713% of mainland 15 

China’s annual emissions. The number of cities whose emissions are constrained by OCO-2 here is three to ten times larger 

than previous studies that only focused on large cities and power plants in different locations around the world. Our satellite-

based emission estimates are broadly consistent with the independent values from the detailed China’s detailed emission 

inventory MEIC, but are more different from those of two widely used global gridded emission datasets (i.e., EDGAR and 

ODIAC), especially for the emission estimates for the individual cities. These results demonstrate some skill in the satellite-20 

based emission quantification for isolated source clusters with the OCO-2, despite the sparse sampling of this instrument not 

designed for this purpose. This skill can be improved by future satellite missions that will have a denser spatial sampling of 

surface emitting areas, which will come soon in the early 2020s. 

1 Introduction 

The Paris Agreement on climate change requires all parties (countries) to report their anthropogenic greenhouse gas emissions 25 

and removals at least every two years within an enhanced transparency framework (UNFCCC, 2018). Then, starting in 2023, 

the country reports will periodically form the basis for a global stocktake that will assess collective progress in bringing the 

global greenhouse gas emissions consistent with global warming well below 2°C above pre-industrial levels. In order to address 

potential biases in this self-reporting mechanism, the contribution of independent observation systems is being increasingly 
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sought (IPCC, 2019). Our focus here is on the direct observation of fossil fuel carbon dioxide (CO2) emission plumes from 30 

space and on the quantification of CO2 emissions from this observation independently. 

NASA’s second Orbiting Carbon Observatory (OCO-2) polar satellite (Eldering et al., 2017) is one of the best existing 

instruments for the retrieval of column-averaged dry-air mole fraction of CO2 (XCO2). It observes the clear-sky and sun-lit 

part of the Earth with the footprints of a few km2 (1.29 km × 2.25 km) gathered in a ~10 km wide swath for each orbit, 

particularly suitable for informing natural CO2 budgets at the continental scales. It has already acquired more than five years 35 

of science data since its launch in July 2014, which has providedallowed the initial insight into carbon fluxes from the tropical 

terrestrial ecosystems (Liu et al., 2017; Palmer et al., 2019) but not without ambivalence due to likely significant residual 

systematic errors in the OCO-2 XCO2 retrievals (Chevallier, 2018). 

Extending the use of OCO-2 to monitor fossil fuel CO2 emissions is rather challenging because the excess XCO2 generated by 

large cities or power plants typically reaches ~ 1% at best (Kort et al., 2012), which is about 4 ppm compared with an instrument 40 

noise typically around 1 0.3–0.6 ppm (Worden et al., 2017) for a single sounding. This non-negligible noise in the XCO2 

retrievals is hardly balanced by the amount of data sampled near emission sources with a narrow swath, which hampers the 

detection of emission plumes and the precision of emission quantification. Only under rare occasions, the OCO-2 tracks cross 

CO2 plumes downwind large cities (Labzovskii et al., 2019; Reuter et al., 2019) or power plants (Schwandner et al., 2017; 

Nassar et al., 2017; Zheng et al., 2019), limiting the possibility to quantify the corresponding CO2 emissions to few cases 45 

within a year. So far, studies on the potential of spaceborne CO2 observations to infer CO2 emissions from large cities or power 

plants have relied on the Observing System Simulation Experiments (OSSEs) (Bovensmann et al., 2010; O'Brien et al., 2016; 

Broquet et al., 2018; Kuhlmann et al., 2019; Wang et al., 2020) and on several well-chosen cases with real OCO-2 retrievals 

(Nassar et al., 2017; Reuter et al., 2019; Zheng et al., 2019; Wu et al., 2020). To our knowledge, no attempt has been made yet 

to infer anthropogenic emissions from actual satellite OCO-2 data over a large area or a long period to evaluate a large-scale 50 

CO2 budget. 

Here we analyze all OCO-2 ground tracks between September 2014 and August 2019 over and around China, which is the 

largest emitter country in the world, in order to quantify CO2 anthropogenic emissions at a large spatial extent over China. We 

develop a novel, simple, and effective approach to identify the CO2 plumes from isolated emission clusters, to relate them 

unambiguously to nearby human emission sources, and to estimate the CO2 emission fluxes causing each plume. The five-year 55 

period allows nearly one-fifth sixth of all the emissions from mainland China to be observed, although OCO-2 swaths have a 

low probability to cross the emission plume from a given city. The budget of CO2 emissions aggregating all the sources inferred 

from the satellite is compared to different emission inventories compiled by multiplying fuel consumption statistics by 

emission factors. Such a comparison, for the first time covering a significant fraction of the emissions from a country, 

demonstrates the potential of independently evaluating the self-reporting emission inventories from space. 60 
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2 Data and Method 

2.1 Data input 

We use version 9r of the OCO-2 bias-corrected XCO2 retrievals (Kiel et al., 2019). We use the good quality data 

(xco2_quality_flag equals 0) over both land and ocean, and associated retrieval uncertainty statistics. Our inversion framework 

relies on auxiliarythe information about the winds and about the spatial distribution of emission sources, which are jointly used 65 

to link the observed CO2 plume section with upwind local emission sources. We choose the spatially explicit Multi-resolution 

Emission Inventory for China (MEIC) dataset (Zheng et al., 2018a, 2018b) that provides the locations of ~100,000 individual 

industrial point sources (82% of mainland China emissions) and 0.1°×0.1° area source emissions (18% of mainland China 

emissions) developed for the year 2013. Unlike other inventories used to map industrial emissions using spatial proxies, MEIC 

includes local reports from each power plant and industrial operator about their emissions and geographic locations. The ERA5 70 

reanalysis data (C3S, 2017) provides us with a first guess for the local wind fields. 

2.2 OCO-2 XCO2 local enhancement 

The key steps of our method are the identification of an XCO2 local enhancement from the satellite data that can be attributed 

to a CO2 plume from a large emission source, its separation from the surrounding background, and the establishment of a 

numerical link to the nearby upwind human emission sources. They are designed to account for the specificity of the satellite 75 

sampling capability of OCO-2 capability and for the XCO2 retrieval errors. 

First, we look for XCO2 anomalies along the OCO-2 tracks, which exceed 2 sigmas of the spatial variability above the local 

average within 200-km wide moving windows centered at on the locations of the anomalies. These anomalies potentially 

belong to significant CO2 plumes. In each window corresponding to such an anomaly and with more than 200 high-quality 

retrievals (with ~800 retrievals if none are missing due to cloud contaminations or other issues in the retrieval algorithm), the 80 

following curve fitting is applied to the XCO2 retrieval data along the OCO-2 track: 
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where y is XCO2 (ppm), x is the distance (km) along the OCO-2 track in a fitting window, m, b, A, µ, and σ are parameters that 

determine the curve shape, estimated by a nonlinear least-squares fit weighted by the reciprocal of XCO2 uncertainty statistics. 

The linear part m·x + b represents the background level assuming the background is linear (Reuter et al., 2019), while the 85 

remaining part depicts a single XCO2 peak with a Gaussian shape (Nassar et al., 2017). Several XCO2 anomalies should belong 

to the same CO2 plume: in order to only define a single equation for a given plume and the corresponding background, we fit 

the curve around each XCO2 anomaly and select the one with the largest R2. We also reject all cases with low R2 (less than 

0.25) to achieve better fitting performance. 

Second, we select the cases when the range of µ ± 3σ is fully covered by the 200-km window to achieve complete fitting curves 90 

that cover both the plume part and the wide range of local background. To make the curve fitting robust, we further select the 
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observational cases that have at least 3 valid cross-track footprints (8 footprints if none is missing) on average within the plume 

transect (µ ± 2σ) to constrain the shape of the fitted curve with enough data points. Finally, we check if the parameter A is 

positive and if the average XCO2 value within the CO2 plumes (defined as the average of raw XCO2 retrievals within µ ± 2σ) 

minus the surrounding background concentration (derived as the average of raw XCO2 retrievals outside 2σ) is larger than the 95 

standard deviation of the background values within 200 km. Only the cases that pass these two filtering criteria are finally 

identified as the XCO2 local enhancements in this study. 

2.3 Gaussian plume model 

We use the Gaussian plume model (Bovensmann et al., 2010) to attribute the observed XCO2 enhancement to a neighbor 

cluster of emission sources. We simulate the sum of XCO2 plumes generated by each point source and each emission grid cell 100 

from the MEIC inventory within 50 km of the studied OCO-2 track with equations: 
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where V is the CO2 vertical column (g m−2) downwind of the emission sources, F is the emission rate (g s−1), u is the wind 

speed (m s−1), z is the along-wind distance (km), n is the across-wind distance (m), and a is the atmospheric stability parameter. 105 

Equation (3) converts V (g m−2) to XCO2 (ppm), where M is the molecular weight (kg mol−1), g is the gravitational acceleration 

(m s−2), Psurf is the surface pressure (Pa), and w is the total column water vapor (kg m−2). 

F is derived from the MEIC emission inventory (Zheng et al., 2018b), including both point sources and 0.1°×0.1° area source 

emissions. Each grid cell of area sources is used as a point source in Equation (2). u is the average wind at 1000, 975, and 950 

hPa to approximate the wind below 500 m (Beirle et al., 2011) at the time of the OCO-2 overpass, derived from the ERA5 110 

reanalysis data (C3S, 2017). In the presence of relief, the average of the pressure-level winds is weighted towards the surface. 

a is a function of the atmospheric stability condition (Martin, 1976) determined by both the 10-m wind speed and the incoming 

solar radiation (Seinfeld and Pandis, 2006). Wind, solar radiation, and Psurf are all derived from the ERA5 reanalysis dataset 

(C3S, 2017), and w is adopted from the OCO-2 files. 

2.4 Cross-sectional CO2 flux estimate 115 

We relate each satellite observed XCO2 enhancement to anthropogenic emission sources within 50 km using the Gaussian 

plume model. We visually inspect the observed and modeled XCO2 and further select the ones that exhibit a single and isolated 

CO2 plume to attribute the plume to a neighbor cluster of emission sources and estimate the corresponding cross-sectional CO2 

fluxes. We remove the linear background from the fitted curve of Equation (1) and calculate the area under the remaining fitted 

curve to derive the CO2 line density (ppm m), which can be converted to the unit of g m−1 through Equation (3). The errors in 120 
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the CO2 line densities are those of the area under the fitted curve, mainly driven by the random errors of the XCO2 retrievals 

and also by the Equation (1) that is not a perfect representation of actual CO2 plumes. The standard error statistics for each 

parameter in Equation (1) are obtained from the weighted nonlinear least-squares fitting, which are propagated to calculate the 

uncertainties of the area under the fitted curve. 

The CO2 line densities are multiplied by the wind speed (m s−1) in the direction normal to the OCO-2 tracks at the location of 125 

the plume peak to estimate cross-sectional CO2 fluxes (g s−1). The average wind below 500 m is used like in Equation (2). To 

reduce the errors in the wind direction, we allow rotation of the wind direction within 45° on each side of the ERA5 local wind 

direction to maximize the spatial correlation between the Gaussian plume-modeled and the OCO-2-observed XCO2 according 

to Nassar et al. (2017). The derived cross-sectional CO2 fluxes approximately represent upwind source emissions under steady-

state atmospheric conditions, while changes in the atmospheric stability (e.g., strong turbulent diffusion) could make the cross-130 

sectional flux diverge from the source emissions (Varon et al., 2018; Reuter et al., 2019). 

3 Results 

3.1 CO2 emission plumes seen by satellite 

The identification of CO2 emission plumes crossed by the satellite field of view starts with the search for XCO2 local 

enhancements. These are defined as XCO2 peaks above the background along the thin OCO-2 tracks. As shown in Fig. 1, we 135 

have identified a total of 6,565 OCO-2 ground tracks over or around China between September 2014 and August 2019, with 

an even share between the cold-season (from September to February, 47%) and the warm-season ones (from March to August, 

53%). We find 49,322 cases with local XCO2 local enhancements that exceed 2 sigmas above the local average in a 200 km-

wide moving window along the satellite tracks. However, 97% of these XCO2 enhancements are removed after evaluation of 

the integrity of the plume section and of the spatial variation of surrounding background retrievals, leaving only 1,439 XCO2 140 

cases as potent candidates for retrieving emissions. 

The second step consists in attempting to attribute the observed 1,439 CO2 enhancements to nearby human emission sources. 

Only 355 370 of the 1,439 XCO2 local enhancements can be related to emission sources in the MEIC dataset using the Gaussian 

plume model within a 50-km upwind distance from each OCO-2 ground track. The other cases that reveal XCO2 enhancement 

but no nearby emission sources within 50 km upwind are probably due to either OCO-2 XCO2 retrieval errors at local scales, 145 

or sources missing in MEIC, or synoptic transport of CO2, over a much longer distance (Parazoo et al., 2011). 

The third step is the quantification of cross-sectional CO2 fluxes within the satellite observed CO2 plumes. Only 64 60 of the 

355 370 cases correspond to single isolated CO2 plumes within a 200 km-wide window, which allow unambiguous attribution 

to an emission site or cluster. One reason why we reject the other 291 310 cases is that they have two or more individual 

plumes, (partially overlapping or separated), which are distant in space to makinge it difficult to merge into a single isolated 150 

emission plume transect. Some of the rejected cases also lack observation data of good quality (xco2_quality_flag equals 0) at 

a distance of several tens of kilometers due to significant retrieval errors in the local satellite observations. 
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The data filtering process retains more cold-season observations (6955%) than warm-season ones, in particular after the last 

first step (5652% cases are from the cold season after the second first step), due to favorable meteorological patterns during 

the cold season. Although Tthe total number of selected cases is small, it is several times larger than in previous studies that 155 

only focused on large cities and large power plants in different locations of the world (Nassar et al., 2017; Reuter et al., 2019; 

Wu et al., 2020). The finally selected 64 60 cases include both densely populated urban areas (33 cases) and small industrial 

areas (27 cases) that gather many industrial plants. The peak height of XCO2 enhancement in the plumes (A/(σ√2π) in Equation 

(1)) is within 01.18–6.0 μmol mol−1 (abbreviated as ppm) above the average local background and 2–7 times higher than the 

standard deviation of background levels within 200 km. The width of observed CO2 plumes, defined as the full width at half 160 

maximum of peak height, is estimated between 42.42 and 7461.72 km. 

3.2 Quantifying CO2 emissions: one city example 

Figure 2 presents one example of the 64 60 selected cases. The emitter here is the city Qinhuangdao Anshan that has about 

one 1.5 million inhabitants. On October 17th 20182016, CO2 emissions from Qinhuangdao Anshan were blown southward by 

a 17.61 m s−1 wind at the OCO-2 overpass time and generated an XCO2 local enhancement offshore larger than 2 ppm (Fig. 165 

2). At about local 13:30 local time, OCO-2 flew over the sea to the east of China (Fig. 2a), crossed the CO2 plume transported 

from QinhuangdaoAnshan, and successfully observed the local enhancement near the northernmost southernmost part of the 

OCO-2 ground track (Fig. 2b). 

We plot the XCO2 retrieval data (grey dots in Fig. 2c) along the satellite ground track, the plot window of which is centered at 

the highest XCO2 value in the CO2 plume. We first fit the black curve (R2 = 0.47) based on Equation (1) to depict the CO2 170 

plume transect. The local background is represented by a straight line −32.63E−35·x + 404402.8 1 that approximates a flat 

background of 4024.18 ppm. Then we subtract the background line from both the XCO2 data and the fitted black curve to 

obtain the net enhancement of XCO2 above the local background (pink dots and red curve in Fig. 2d). The maximum XCO2 

net enhancement (peak height of the red curve) is 2.7 4 ppm and the plume width is 1537.40 km. The CO2 line density is 

estimated as 10.607 ± 0.041 t-CO2 m −1 (central estimate ± 1σ) by computing the area under the red curve (the orange shade in 175 

Fig. 2d). The uncertainty is mainly caused by random errors of the single XCO2 retrievals. 

The CO2 line density derived from the satellite retrievals is further multiplied by the wind speed in the normal direction to the 

OCO-2 track to quantify the cross-sectional CO2 fluxes. We use the average wind below 500 m from the ERA5 reanalysis 

data. The ceiling height of 500 m is comparable to the maximum height that smoke plumes from power plants and industrial 

plants typically reach. The wind direction around AnshanQinhuangdao is optimized according to Nassar et al. (2017) and is 180 

shifted by 1° in this case to maximize the spatial correlation between the satellite-observed (Fig. 2d) and the model-simulated 

(Fig. 2e) XCO2 enhancements. The wind speed in the normal direction to the OCO-2 track is then estimated as 02.6 m s−1 at 

the location of the maximum XCO2 value (Fig. 2b). The CO2 hourly flux at the satellite overpassing time is finally estimated 

as 35.74 ± 10.27 kt-CO2 h−1, considering uncertainties both in the CO2 line density and in the wind speed. 
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The satellite observed CO2 plume can be traced back to anthropogenic emission sources located in the urbanized area of the 185 

Qinhuangdao Anshan city by the Gaussian plume model combined with the local emission map given by the MEIC inventory. 

We use monthly, weekly, and diurnal emission time profiles by region and by source sector from MEIC to split the annual 

emission totals reported by MEIC to hourly emission rates during the satellite overpass. The MEIC hourly emission rate of 

Qinhuangdao Anshan is 62.46 ± 10.98 kt-CO2 h−1, which is close to the satellite-based inversion estimate. 

3.3 CO2 emission estimates for 60 regions cases in China 190 

We quantify the CO2 emissions corresponding to the 64 60 CO2 plumes selected from the five-year OCO-2 archive. These 

represent 60 46 different urban areas or industrial regions in China. There are 14 regions whose emission plumes were observed 

twice in our selection of the satellite data. The 64 60 CO2 plumes present CO2 line densities between 0.1 and 2.8 t-CO2 m −1, 

and hourly CO2 fluxes at the time of the satellite overpass are estimated within the range of 0.32–165.04 kt-CO2 h−1 with the 

1σ uncertainties of 20–2830%. The larger sources tend to present lower relative uncertainties, because a larger XCO2 195 

enhancement makes it easier to separate a plume from its background, and is thus more easily observed by the satellite. The 

inversions that estimate CO2 emissions larger than 4 kt-CO2 h−1 tend to constrain their relative uncertainties below 2425%. 

We compare the satellite-based CO2 hourly fluxes to the corresponding source emissions given by MEIC (Fig. 3), after 

applying emission time profiles to transform MEIC annual emissions into hourly emissions at the time of satellite overpass. 

Although the point source based MEIC emissions data is only for the year 2013, China’s countrywide emissions remained 200 

stable between 2013 and 2017 and marginally grew only after 2017 (Friedlingstein et al., 2019). The satellite-based and MEIC 

estimated emissions are broadly consistent within a factor of two (solid dots in Fig. 3) with comparable uncertainties for the 

same individual estimates. Both approaches estimate the same average CO2 flux of the 64 emission plumes as 3.8 kt-CO2 h−1. 

The average of satellite-based estimates is 275.15% higher than the MEIC values in the cold season (solid blue dots in Fig. 3), 

while 56.02% lower in the warm season (solid red dots in Fig. 3). 205 

The differences in the results between cold and warm seasons could be due to uncertainties in the emission estimate methods 

of both our OCO-2 based inversion and the MEIC inventory. The satellite-based larger estimates in the cold season could beare 

partially due to the fact that human respiration contributes to urban CO2 fluxes while not included in the MEIC inventory of 

fossil fuel and cement emissions. We make a rough estimate of the metabolic CO2 release by multiplying an emission factor 

of 0.52 t-CO2 yr−1 person−1 (Prairie and Duarte, 2007) by the population living in each emitting area. The results suggest that 210 

human metabolic CO2 emissions explain 38% of the larger satellite-based emission estimates on average in the cold season. 

The remaining difference could be due to the assumption that the 0–500 m average wind speed is representative of the transport 

wind in the plume diffusion, the natural processes like plant respiration, or to the slight growth of fossil fuel emissions since 

2013, but could also reflect some bias in the MEIC estimates. In the warm season, despite human respiration emissions, the 

satellite-based inversions give lower emission estimates possibly due to the carbon uptake by plants lowerdamping the XCO2 215 

enhancements over a city (Mitchell et al., 2018), which makes anthropogenic emission signals not easily urban green spaces 

that are not separated from the background  anthropogenic emissions in the satellite-based inversions method. 
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The uncertainties in the satellite-based emission estimates are driven by those of the local wind field and of the CO2 line density 

derived from the XCO2 retrievals. We reduce the errors in wind directions and consequently increase the R2 of the linear 

correlation between satellite- and MEIC-based emission estimates across emitting areas from 0.16 37 (open dots) to 0.507 220 

(solid dots) as shown in Fig. 3. The magnitude of the wind speed uncertainty, typically considered 10–20% (Nassar et al., 

2017; Varon et al., 2018; Reuter et al., 2019), is comparable to the uncertainty in the satellite-based CO2 line densities (43–

1923% for the 604 emission plumes). In high wind-speed conditions, the CO2 plumes are spread more quickly and thus cause 

smaller local enhancements, which weakens the signal of XCO2 and causes larger uncertainties in the estimate of CO2 line 

densities. Generally, our estimates reach lower relative uncertainties for larger emission cities under lower wind speeds. 225 

3.4 Comparison with global bottom-up inventories 

We extrapolate the satellite-based CO2 hourly fluxes to annual total fluxes using emission time profiles, and compare them to 

two global bottom-up emission maps: ODIAC (Oda and Maksyutov, 2015, Oda et al., 2018) and EDGAR (Janssens-Maenhout 

et al., 2019). We use the cases between the years 2014 and 2018 when both inventories are available, and extract CO2 emissions 

over each satellite-observed emitting area from the emission maps (Fig. 4). For the areas observed by the satellite in different 230 

years, we compute annual values from the corresponding inversions and average them for the comparison with ODIAC and 

EDGAR. 

For individual estimates, ODIAC (Figs. 4b) and EDGAR (Figs. 4c) are broadly consistent with the annual budgets from the 

satellite-based inversions, but the fit is slightly better in the case of EDGAR. For Beijing where MEIC remarkably agrees with 

the satellite estimate (Fig. 3), ODIAC and EDGAR estimate larger emissions by 322% and 202%, respectively. SuchThe large 235 

discrepancies are not surprising since global emission inventories typically involve large uncertainties at city scales (Gately 

and Hutyra, 2017; Gurney et al., 2019), because they disaggregate national emissions to gridded maps with simple proxies like 

population or nighttime light in the countries like China where they lack detailed direct local information. Only large power 

plants have exact geographic locations (from the CARMA global database (Wheeler and Ummel, 2008)), in principle, but not 

all of the industrial plants like MEIC. The ODIAC uses nightlights to disaggregate national emission estimates to grid cells, 240 

which may lead to an underestimation of road emissions in cities (Gately and Hutyra, 2017) and a misplacing of industrial 

emissions. The EDGAR relies on point source locations to allocate emissions in space while it still suffers from missing local 

information in China, and gridded population maps have to be used instead. Such an emission mapping approach overestimates 

emissions over densely populated cities in China (Zheng et al., 2017), because the industry plants, the primary CO2 emission 

sources in China, are located far away from densely populated urban areas. The MEIC inventory estimates industrial emissions 245 

at the facility scale, transport emissions at the county scale, and residential emissions at the provincial scale, which can achieve 

better spatial accuracy in emissions estimates than the global emission inventories. 

The sum of the emissions from the satellite-observed areas reaches 1.2585 Gt CO2 yr−1 (Fig. 4a), accounting for 137% of the 

mainland China’s total emissions. The corresponding bottom-up estimates from ODIAC, EDGAR, and MEIC are 1.1339, 

1.5538, and 1.52 17 Gt CO2 yr−1, respectively. ODIAC emissions are 19.62% lower than the satellite-based estimates while 250 
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EDGAR emissions are only 210.4% lowerhigher. The slight growth of the emissions from 2014 to 2018 (documented in, e.g., 

EDGAR) could alone explain mostly the 64% lower value for MEIC (valid for the year 2013) than the satellite estimate. 

Overall, EDGAR matches the individual estimates from the satellite-based inversions better than ODIAC for the 1713% of 

mainland China’s CO2 emissions that are observed by the satellite. However, both of these two global emission inventories 

reveal large uncertainties in emission estimates for individual areas as shown in Figs. 4b and 4c. 255 

4. DiscussionConclusions 

We developed a novel objective approach to quantify local anthropogenic CO2 emissions from the OCO-2 XCO2 satellite 

retrievals. The key of this method is a conservative selection of the satellite data that can be safely exploited for emission 

quantification. It also depends on the wind information and the information about the locations of human emission sources in 

the upwind vicinity of the selected OCO-2 tracks. Future developments could aim at refining the stringent data selection, or at 260 

improving the estimation of wind speed estimation or the description of the plume footprint, for instance using detailed regional 

atmospheric transport models but the current simplicity of our approach makes it easily applicable everywhere over the globe 

in principle. Our first regional analysis over mainland China suggests that 1713% of its CO2 human emissions can be observed 

and constrained, to some extent, by five years of retrieval data from the OCO-2, a satellite instrument not designed for this 

task. The satellite-based emission inversion results are broadly consistent (R2=0.507, meaning we agree on broad classes of 265 

emitters) with the reliable point source-based MEIC regional inventory despite our simple modeling of the plume and of its 

background, and despite possible biases due to local non-fossil fuel emissions or local sinks that contribute to the plume 

intensity. We also use the satellite-based estimates as a rough independent evaluation of two global bottom-up inventories, 

ODIAC and EDGAR. 

There is still a large gap between what the satellite can see and what the National Greenhouse Gas Inventory reports submitted 270 

to the United Nations Framework Convention on Climate Change (UNFCCC), mentioned at the start of the introduction. The 

former is made of specific emission plumes linked to recent emission events without any sectoral distinction within the plume. 

The latter is made of the country- and annual-scale emission values assigned to specific human-caused source/sink categories. 

The exhaustiveness of the MEIC inventory, which involved detailed analysis of the fine spatial and temporal emission patterns, 

allowed us to bridge most of this gap for a time period when Chinese emissions did not vary much, but few countries have 275 

such a detailed geospatial inventory of their emissions and are able to update it timely for such a task. We also acknowledge 

the limitations of the emission temporal profiles even from the detailed MEIC inventory. The sparse sampling of the OCO-2 

instrument, despite the good precision of individual soundings, will partly be overcome by the next-generation of CO2-

dedicated imagery satellites, such as the CO2 Monitoring mission (CO2M) in Europe (Clery, 2019; Janssens-Maenhout et al., 

2020) and the Geostationary Carbon Cycle Observatory (GeoCarb) in the U.S. (Moore III et al., 2018) that will have denser 280 

spatial coverage. However, their measurement principle still relies on sunlight and will prevent us from well sampling the 

emission diurnal cycle. The need for a good knowledge of the emission space-time patterns (not only the emission values) will 
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therefore remain for the comparison between the national inventories and the satellite-based estimates. However, for countries 

with less advanced CO2 inventory infrastructures (typically non-Annex I parties to UNFCCC), we could also envisage an 

incremental approach where both bottom-up and top-down estimates are developed together in parallel. 285 
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 420 

Figure 1: OCO-2 XCO2 observation cases contained in each processing step. Step 1 starts from 6,565 OCO-2 tracks around and over 

China between September 2014 and August 2019 (grey bar) and finds 49,322 XCO2 anomalies along the OCO-2 tracks (blue bar). 12,590 

anomalies (purple bar) and their surrounding data points within a 200 km-wide window can be fitted by a complete nonlinear curve using 

Equation (1), of which 1,439 XCO2 anomalies (green bar) are identified as local enhancement significantly higher than the background. Step 

2 uses the Gaussian plume model to select 37055 XCO2 enhancements (yellow bar) that can be traced back to upwind fossil fuel emission 425 
sources within 50 km. In step 3, we finally select the 604 cases with single isolated CO2 plumes to quantify the CO2 emissions. The red 

curve shows the percentage of cold-season observational cases in each bar. The detail of each step is described in Sect. 2.
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Figure 2: Quantification of CO2 emissions from QinhuangdaoAnshan. (A) The OCO-2 orbit on October 17th 2018 2016 is plotted on 

the map of MEIC emission point sources. (B) Zoom in closer to see OCO-2 XCO2 data, local wind speed, and wind direction. The width of 430 
the track is made of eight cross-track OCO-2 footprints. (C) The valid XCO2 data points (grey dots) plotted along the OCO-2 orbit with a 

fitted curve (black) based on Equation (1). (D) The XCO2 enhancement (red dots) above background, the fitted curve (red), and the area 

under the curve (orange shade). (E) The modeled XCO2 enhancement (blue dots) by the Gaussian plume model combined with the MEIC 

emission inventory. 



17 

 

 435 
Figure 3: Comparison between OCO-2 based and MEIC estimated CO2 hourly fluxes. Each dot represents one of the 64 60 plume cases 

selected in this study, plotted according to the MEIC estimated CO2 flux (x-axis) and the OCO-2-based estimate (y-axis). The open dots are 

OCO-2 estimates using the ERA5 wind data, while the solid dots use the optimized wind and distinguish the warm-season (red dots) and the 

cold-season (blue dots) cases. 
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 440 

Figure 4: Comparing OCO-2 based CO2 emission estimates with bottom-up inventories. (A) The sum of emissions from the 60 different 

regions observed by OCO-2 between the years 2014 and 2018, including OCO-2 estimates (scaled up to annual emissions based on MEIC 

emission time profiles, pink bar), ODIAC (green bar), EDGAR (blue bar), and MEIC (purple bar) estimates. (B) Comparison of regional 

CO2 emissions between OCO-2-based (y-axis) and ODIAC estimates (x-axis). (C) Comparison of regional CO2 emissions between OCO-2-

based (y-axis) and EDGAR estimates (x-axis). 445 
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