SUPPLEMENTARY FIGURES AND TABLES LEGEND

Supplementary Table S1. Identity and characteristics of precipitation and aerosol isolates. Aerosol sampling period labels begin with "A" to distinguish from precipitation sampling periods 1-11 (see Table S3 for precipitation and aerosol sampling times). Taxonomy is denoted by results of BLAST from 16S sequences, percent identity to BLAST assignments, and membership to taxonomic divisions. Isolate identifiers derive from results of multiple sequence alignment analysis (Fig. S2). "IN onset temperature" refers to the first temperature at which isolates exhibited significant IN behavior above the background of the ZoBell media in which they were suspended. Duplicate isolates that were derived from the same sampling period were not featured in Fig. 3a or Fig. 4a and were not counted toward the 14 total identified ice nucleating isolates, but each duplicate was tested for its IN ability and results are shown here.

Supplementary Table S2. Cloud characteristics during 11 precipitation events over the sampling site: SIO Pier (32.8662 °N, 117.2544 °W). Cloud base and top altitudes were estimated using the RH product of the High-Resolution Rapid Refresh real-time atmospheric model, and three altitudes within the cloud were used as particle release points for FLEXPART back-trajectories (see Figure 6.1): cloud top, cloud base, and middle (halfway between). Regions where RH (Relative Humidity) > 95 % were considered for all events except Sampling Period 4 and 5, when a criterion of > 90 % was applied. The hourly products closest in time to the precipitation sampling period were used. When cloud depth and altitudes changed over the sampling period, the lowest cloud base and highest cloud altitude were selected as release points for FLEXPART back-trajectories.

Supplementary Table S3. Sampling periods for precipitation and aerosol samples collected on SIO Pier (32.8662 °N, 117.2544 °W). Synoptic weather conditions for each precipitation event were determined using National Weather Service Weather Prediction Center Surface Analysis Satellite Composite products.

Supplementary Table S4. Summary of ice nucleation behavior of the 9 isolates that were tested for ice nucleation in the absence of media and resuspended in filtered autoclaved seawater (FASW). In comparison with ice nucleation behavior above ZoBell background levels, ice nucleation behavior was generally enhanced in media-free isolates, except in the case of SSA45, *Psychrobacter* sp. The first temperature at which ice nucleation is significant above background was determined by applying the criterion described in Methods. See Methods and Figure S6 for details of media-free freezing experiment.

Supplementary Figure S1. Controls of IN measurements. (a) IN activity of 11 ZoBell media blanks. (b) IN activity of selected media–free isolate with a dilution factor of 1 (undiluted). Filtered autoclaved seawater (FASW) was used for resuspension of the isolates for INP measurement. (c) IN activity of selected media–free isolates with a dilution factor of 5. Some isolates were diluted with FASW to decrease opacity such that freezing events could successfully be detected by the camera, and the IN spectra of the

isolates and FASW are scaled by the same dilution factor for analysis of the isolate's ice nucleation ability beyond its media (Methods Sec. 2.4). Only INP concentrations that were significantly enhanced above FASW (p < 0.005, see Methods Sec. 2.4) are shown in (b) and (c).

Supplementary Figure S2. IN spectra of the 14 IN isolates and their respective ZoBell media samples, with IN spectra of both ZoBell and isolates scaled by the isolates' dilution factor. All isolates were diluted with additional ZoBell to decrease opacity such that freezing events could be detected with the camera. Only INP concentrations that were significantly enhanced above ZoBell (p < 0.005) are shown. See Methods section for description of the criterion applied to determine significant ice nucleation behavior above the background ZoBell levels.

Supplementary Figure S3. INP concentrations per liter air sampled for 7 aerosol samples collected at Ellen Browning Scripps Memorial Pier at Scripps Institution of Oceanography (SIO) (32.8662 °N, 117.2544 °W) between March and May 2016. The blue shaded region represents the composite spectrum of INP concentrations observed in a range of marine and coastal environments including the Caribbean, East Pacific and Bering Sea as well as laboratory-generated nascent sea spray (DeMott et al., 2016)*. INP spectra of the three samples from which IN isolates were derived (A1, A2, A5, see Table 1 and S1) are outlined in black. While the INPs observed in aerosol samples compare with INP concentrations in marine environments at warmer temperatures (DeMott et al., 2016), concentrations are enhanced at moderate to cold temperatures indicating terrestrial sources may have additionally contributed.

*DeMott et al., 2016 data has been updated with a completed dataset for the ICE-T study, as shown in (Yang et al., 2020).

Supplementary Figure S4. 10-day back-trajectories from the SIO Pier (32.8662 °N, 117.2544 °W, 8m above MLLW) during the 3 aerosol sampling periods from which IN isolates originated, A1, A2, and A5 (see Tables 1, S1). FLEXPART back-trajectories were used to estimate potential aerosol sources. Shown are the particle centroids of back-trajectories. Origins of particles in the 10-day simulation are shown to range from 4000 m over Russia to 3000 m over the Northeast Pacific. FLEXPART results suggest a dominance of marine particle sources to aerosol samples.

Supplementary Figure S5. Image of aerosol (red box) and precipitation (yellow box) isolates on agar plates. Isolates derived from cultivation-based isolation.

Supplementary Figure S6. INP concentrations at -20 °C in aerosol collected at the Scripps Institution of Oceanography Pier (32°52'01.4"N 117°15'26.5"W) during and between precipitation events. INP concentrations in aerosol are represented by blue circles, and pink circles indicate background INP levels in field blanks. Dark blue bars indicate cumulative precipitation over a 24-hr period. (a) Highlighted in grey are three sampling days during which aerosol samples were available immediately before, during and after precipitation events. (b) Precipitation events over March 6 and 7, 2016 (left grey region in Fig. S5a) are magnified for better visibility. (c) The precipitation event from May

5 to May 6, 2016 (right grey region in Fig. S5a) is magnified for better visibility. For all three periods, INP concentrations in aerosol decrease during precipitation events, indicating sweepout of INPs by hydrometeors.

Supplementary Figure S7. Taxonomic distributions of precipitation (a) and aerosol (b) isolates. 83% of the unique families and genera identified in aerosol were common to those found in precipitation.

Supplementary Figure S8. Phylogenetic relationships of isolates (in bold) related to Actinobacteria reference sequences. The environmental source of the reference sequences (based on NCBI metadata) is indicated in grey. Isolates with ice nucleating properties are shaded in yellow; bootstrap values (n=500) are indicated at nodes; scale bar represents changes per positions.

Supplementary Figure S9. Phylogenetic relationships of isolates (in bold) related to Firmicutes reference sequences. The environmental source of the reference sequences based on NCBI metadata is indicated in grey. Isolates with ice nucleating properties are shaded in yellow; bootstrap values (n=500) are indicated at nodes; scale bar represents changes per positions.

Supplementary Figure S10. INP concentrations observed in 14 halotolerant isolates derived from precipitation and aerosol samples, normalized to culture OD (590 nm). Sample numbers in the legend indication the precipitation or aerosol sample from which the isolate was derived (see Table S3). Datapoints corresponding to isolates from aerosol are outlines in black. Error bars indicate 95% confidence intervals (see Methods Sec. 2.4). Only freezing activity that was significantly enhanced (p < 0.005) above ZoBell growth media is shown.

Supplementary Figure S11. Relationship of isolates within the same OTUs using multiple sequence alignments of 16S sequences. Multiple sequence alignments were used to generate phylogenetic trees. The resulting branch distances were used to label isolates within the same OTU. Distances > 0.1 were given a new number. This division was further subdivided by distances > 0.01 which were given a unique letter. Distances < 0.01 were considered possible duplicates. Freezing temperatures are shown in yellow boxes to indicate isolates with detected ice nucleation activity.

The data set supporting this manuscript is hosted by the UCSD Library Digital Collections (<u>https://doi.org/10.6075/J0GQ6W2Z</u>).

																																		aceae	aceae	aceae			aceae	ander														
Family	Sporiodiobolaceae	Tremellaceae	Micrococcaceae	Brevibacteriaceae	Microbacteriaceae	Xanthomonadaceae	Tremellaceae	Paenibacillus	Bacilaceae	Brevibacteriaceae	Bacilaceae	Microbacteriaceae	Microbacteriaceae	Microbacteriaceae	Micrococcaceae	Microbacteriaceae	Microbacteriaceae	Planococcaceae	Planococcaceae	Pseudomonadacea	Pseudomonadaceae	Pseudomonadaceae	Pseudomonadaceae	Moraxellaceae	Moraxellaceae	Microbacteriaceae	Microbacteriaceae	Planococcaceae	Planococcaceae	Microbacteriaceae	Bacilaceae	Enterobacteriaceae	Enterobacteriaceae	Promicromonosporaceae	Promicromonosporaceae	Promicromonosporaceae	Metscnikowiaceae	Micrococcaceae	Promicromonosporaceae	Maravallanana	Milliamarinanaaa	Racilaceae	Enterobacteriaceae	Enterobacteriaceae	Enterobacteriaceae	Moraxellaceae	Bacilaceae	Paenibacillus	Bacilaceae	Moraxellaceae	Bacilaceae	Moraxellaceae	Microbacteriaceae Moraxellaceae	
Order	Sporidiales	Tremellales	Actinomycetales	Actinomycetales	Actinomycetales	Xanthomonadales	Tremellales	Bacillales	Bacillales	Actinomycetales	Bacillales	Actinomycetales	Actinomycetales	Actinomycetales	Actinomycetales	Actinomycetales	Actinomycetales	Bacillales	Bacillales	Pseudomondales	Pseudomondales	Pseudomondales	Pseudomondales	Pseudomondales	Pseudomondales	Actinomycetales	Actinomycetales	Bacillales	Bacillales	Actinomycetales	Bacillales	Enterobacteriales	Enterobacteriales	Actinomycetales	Actinomycetales	Actinomycetales	Saccharomycetales	Actinomycetales	Actinomycetales	Actin Unity cetalles	Altaromonadalae	Racillalos	Enterobacteriales	Enterobacteriales	Enterobacteriales	Pseudomondales	Bacillales	Bacillales	Bacillales	Pseudomondales	Bacillales	Pseudomondales	Actinomycetales Pseudomondales	
Class	Urediniomycetes	Tremellomycetes	Actinobacteria	Actinobacteria	Actinobacteria	Gammaproteobacteria	Tremeliomycetes	Bacilli	Bacilli	Actinobacteria	Bacilli	Actinobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Bacilli	Bacilli	Gammaproteobacteria	Gammaproteobacteria	Gammaproteobacteria	Gammaproteobacteria	Gammaproteobacteria	Gammaproteobacteria	Actinobacteria	Actinobacteria	Bacilli	Bacilli	Actinobacteria	Bacilli	Gammaproteobacteria	Gammaproteobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Saccharomycetes	Actinobacteria	Actinobacteria	Commentation	Gammanntaohadaria	Bacilli	Gammaproteobacteria	Gammaproteobacteria	Gammaproteobacteria	Gammaproteobacteria	Bacilli	Bacilli	Bacilli	Gammaproteobacteria	Bacilli	Gammaproteobacteria	Actinobacteria Gammaproteobacteria	
Phylum	Basidiomycota	Basidiomycota	Actinobacteria	Actinobacteria	Actinobacteria	Proteobacteria	Basidiomycota	Firmicutes	Firmicutes	Actinobacteria	Firmicutes	Actinobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Firmicutes	Firmicutes	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Actinobacteria	Actinobacteria	Firmicutes	Firmicutes	Actinobacteria	Firmicutes	Proteobacteria	Proteobacteria	Actinobacteria	Actinobacteria	Actinobacteria	Ascomycota	Actinobacteria	Actinobacteria	Protochootoolo	Proteobacteria	Firmicutes	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Firmicutes	Firmicutes	Firmicutes	Proteobacteria	Firmicutes	Proteobacteria	Actinobacteria Proteobacteria	
% Identity	%66	100%	100%	100%	100%	%66	%66	100%	100%	81%	100%	100%	100%	100%	81%	100%	100%	100%	100%	100%	100%	100%	100%	100%	%66	%66	%66	%66	%66	89%	100%	100%	100%	100%	%66	100%	89%	86%	100%	8/ DOI	100%	100%	100%	100%	100%	93%	100%	nsi 100%	100%	100%	100%	96%	99% 100%	
.*C BLAST Identity	Rhodotorula mucilaginosa	Cryptococcus aureus	Arthrobacter sp. (A. Iuteolus, A.citreus)	Brevibacterium sp. (B.linens)	Curtobacterium sp. (C. pusilium, C. flaccumfaciens, C. oceanosedimentum)	Lysobacter concretionis	Cryptococcus sp. (C. flavescens, C. aureus)	Paenibacillus sp.	Bacillus sp. (B. baekryungensis, B. hwajinpoensis)	Brevibacterium sp. (B. luteolum)	Bacillus sp. (B. baekryungensis, B. hwajinpoensis)	Microbacterium esteraromaticum	Microbacterium esteraromaticum	Microbacterium esteraromaticum	Citricococcus sp. (C. muralis)	Curtobacterium sp.	Curtobacterium flaccumfaciens	Planococcus sp.(P. maritimus, P. plakortidis, P. rifietoesis)	Planococcus sp.	Pseudomonas sp. (P. synxantha, P. grimontii, P. extremaustralis)	Pseudomonas veronii	Pseudomonas sp. (P. synxantha, P. grimontii, P. extremaustralis)	Pseudomonas sp. (P. synxantha, P. mucidolens, P. grimontii,)	Psychrobacter sp. (P. maritimus)	Psychrobacter sp.	Microbacterium esteraromaticum	Microbactenium esteraromaticum	Planococcus maritimus	Planococcus sp.	Unknown Microbacterium sp.	Bacillus halmapalus	Pantoea sp. (P. agglomerans, P. ananatis)	Pantoea sp. (P. agglomerans, P. ananatis)	Cellulosimicrobium sp. (C. funkei, C.cellulans, C. marinum)	Cellulosimicrobium sp. (C. funkei, C.cellulans, C. marinum)	Cellulosimicrobium sp. (C. funkel, C.cellulans, C. marinum)	Metschikowia sp. (M. zobellii, M. krissli, M. reukaufii)	Unknown Artrirobacter sp.	Cellulosimicrobium sp. (C. funkei, C.cellulans, C. marinum)	Cellarosmucranis p. (C. Tariker, C. Genarans, C. mennum) Doueleedeedee en 70 enterente D. feacefiel	rsycinouduur sp. (r. punnuns, r. ideuans) Mihmanina fontielanidoei	Racifitis so (R. aniimaris R. viatnamansis)	Pantoea so. (P. ananatis, P. stewartii, P. acciomerans)	Pantoea sp. (P. ananatis, P. stewartli, P. agglomerans)	Pantoea sp. (P. ananatis, P. stewartii, P. agglomerans)	Psychrobacter sp.	Bacillus sp. (B. muralis)	Paenibacillus sp. (P. tundrae, P. amyloyticus, P. agarideverons, P. taichungensi 100%	Bacillus haimapalus	Psychrobacter sp.	Bacillus halmapalus	Psychrobacter sp. (P. pulmonis, P. faecalis)	Microbacterium esteraromaticum Psychrobacter sp. (P. pulmonis, P. faecalis)	
IN Onset Temperature °C	n/a	-9.25	n/a	n/a	n/a	n/a	n/a	-14.75	n/a	-2.25	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-12.25	n/a	n/a	-14.5	-17	-16.75	-14	-15	n/a	-16.5	-13.23	C/.9L-	-13.75	-14.25	n/a	n/a	n/a	n/a	-17.5	n/a	n/a	n/a	-14	n/a	n/a	n/a n/a	
IN Ability	2	yes	8	8	0	Q	Q	yes	2	yes	9	2	8	Q	0	0L	2	8	8	8	8	Q	8	8	8	Q	9	yes	8	Q	yes	yes	yes	yes	yes	8	yes	yes	yes	sak	yes	er u	2	2	Q	yes	8	8	0	yes	8	8	22	1
Sampling Period	-	-	2	2	2	2	ຕ	e	4	4	5	5	5	5	9	9	9	9	9	9	9	9	9	9	9	7	7	7	7	7	8	89	80	6	6	6	6	ŋ	10	2 ;	4	42	A2	A2	A2	A2	A3	A4	A5	A5	A6	A6	A7	
Isolate	Rhodoturula sp.	Cryptococcus sp. 1	Arthrobacter sp.	Brevibacterium sp. 1a	Curtobacterium sp. 1	Lysobacter sp.	Cryptococcus sp. 2	Paenibacillus sp. 1	Bacillus sp. 2a	Brevibacterium sp. 1b	Bacillus sp. 1b	Microbacterium sp 1	Microbacterium sp 1	Microbacterium sp 2a1	Citriocococcus sp.	Curtobacterium sp. 2	Curtobacterium sp. 2	Planococcus sp. 2a2	Planococcus sp. 2a2	Pseudomonas sp. 1	Pseudomonas sp. 2a1	Pseudomonas sp. 2a2	Pseudomonas sp. 2a3	Psychrobacter sp. 1b1	Psychrobacter sp. 1c1	Microbacterium sp 2a2	Microbacterium sp 2a4	Planococcus sp. 1	Planococcus sp. 2a1	Unknown Microbacterium	Bacillus sp. 1a1	Pantoea sp. 1a	Pantoea sp. 1a	Cellulosimicrobium sp. 1a1	Cellulosimicrobium sp. 1a2	Cellulosimicrobium sp. 1a3	Metschikowia sp.	Unknown Arthrobacter	Cellulosimicrobium sp. 1a3	Devolved and a sp. 143	Fsyciilouduel sp. 102 Minmarina en	Bacillus sn 1a2	Pantoea sp. 1b	Pantoea sp. 1b	Pantoea sp. 1b	Psychrobacter sp. 2a	Bacillus sp. 2b2	Paenibacillus sp. 1	Bacillus sp. 2b1	Psychrobacter sp. 1c2	Bacillus sp. 2b1	Psychrobacter sp. 1a	Microbacterium sp 1 Psychrobacter sp. 2b	
Isolate ID	Iso1	Iso2	lso3	lso5	Iso4	lso6	Iso10A	Iso10B	lso9	lso8	Iso20	Iso12	Iso19	lso7	Iso36A	Iso40	Iso41	Iso35A	Iso36B	Iso37	Iso35B	Iso34	Iso39	Iso38B	Iso38A	Iso32Ap	Iso33By	Iso32B	Iso33A	Iso33Bp	Iso31	Iso29	lso30	Iso21	Iso22	Iso24B	Iso24A	so23	1so27	12020	SCA47	SSA14	SSA15	SSA17	SSA18	SSA16	SSA43	SSA44A	SSA46	SSA45	SSA47	SSA48	SSA26 SSA25	

Table S1

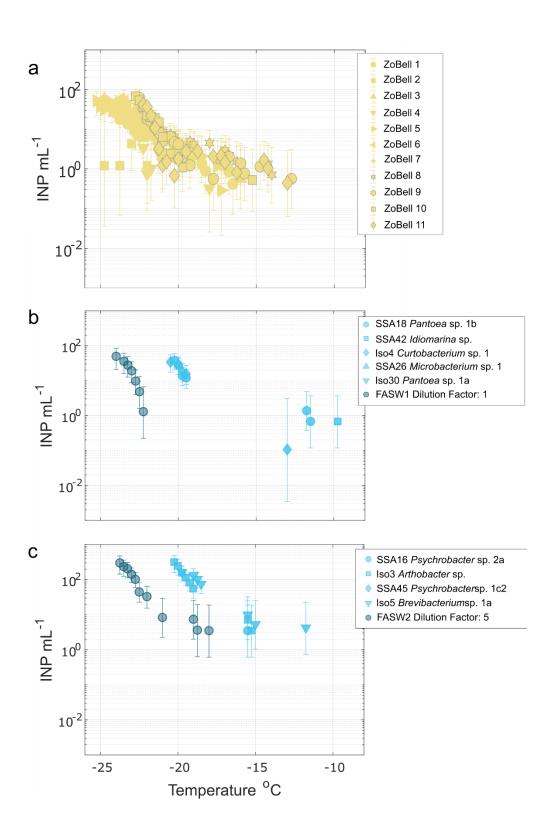
Table S2

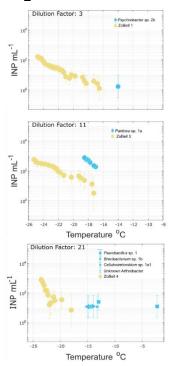
Period	Local date	Local time start	Local time stop	UTC date	UTC time	RH criteria	Temp (K)	Pressure (mb)	Geopotential height (m)
1	3/6/2016	9:07	10:07	3/6/2016	17:07 – 18:07	>95%	283 – 274	950 – 750	800 – 2000
2	3/7/2016	18:30	19:30	3/8/2016	2:30 – 3:30	>95%	275 – 268	850 – 750	1700 – 3000
3	3/11/2016	16:20	17:20	3/12/2016	00:20 - 1:20	>95%	282 – 275	950 - 800	500 – 2200
4	3/12/2016	8:20	9:14	3/12/2016	16:20 – 17:14	> 90%	280 – 278	925 – 900	1000 – 1100
5	3/29/2016	23:35	0:35	3/30/2016	6:35 – 7:35	> 90%	270, 275	800, 900	2000, 700
6	4/7/2016	8:15	11:00	4/7/2016	15:15 – 18:00	> 95%	278 – 270	1000, 750 – 650	2200 - 4000
7	4/7/2016	12:07	13:07	4/7/2016	19:07 – 20:07	> 95%	275 – 265	750 – 600	2000 - 4000
8	5/5/2016	22:59	23:59	5/6/2016	6:00 - 7:00	> 95%	275 – 273	825 – 750	1100 – 2100
9	5/6/2016	2:59	3:59	5/6/2016	10:00 - 11:00	>95%	282 – 270	875 – 700	1000 – 3000
10	5/6/2016	4:59	5:59	5/6/2016	13:00 - 14:00	> 95%	275 – 273	825 – 675	2000 - 3000
11	5/6/2016	8:59	9:59	5/6/2016	17:00 – 18:00	> 95%	275 – 270	825 – 750	1800 – 2800

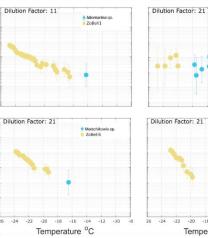
Table S3

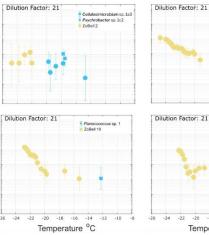
Precipitation

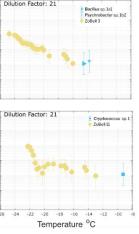
Frecipitation									
Sampling Period	Local Date	Local Time	UTC Date	UTC time	Number of Isolates	General characteristics			
1	3/6/2016	9:07 – 10:07	3/6/2016	17:07 – 18:07	2	frontal rain			
2	3/7/2016	18:30 – 19:30	3/8/2016	2:30 - 3:30	4	convective, local updraft rain			
3	3/11/2016	16:20 - 17:20	3/12/2016	00:20 - 1:20	2	frontal rain from decaying atmospheric river			
4	3/12/2016	8:20 - 9:14	3/12/2016	16:20 – 17:14	2	warm, low cloud rain			
5	3/29/2016	23:35 – 0:35	3/30/2016	6:35 – 7:35	4	scattered, low coastal clouds, lack of dynamical system			
6	4/7/2016	8:15 – 11:00	4/7/2016	15:15 – 18:00	7	frontal rain from tropical moisture source			
7	4/7/2016	12:07 – 13:07	4/7/2016	19:07 – 20:07	4	frontal rain from tropical moisture source			
8	5/5/2016	22:59 – 23:59	5/6/2016	6:00 - 7:00	2	pre-frontal rain, meso-scale system			
9	5/6/2016	2:59 – 3:59	5/6/2016	10:00 - 11:00	3	post-frontal rain, meso-scale system			
10	5/6/2016	4:59 – 5:59	5/6/2016	13:00 - 14:00	1	post-frontal rain, meso-scale system			
11	5/6/2016	8:59 – 9:59	5/6/2016	17:00 - 18:00	1	post-frontal rain, meso-scale system			

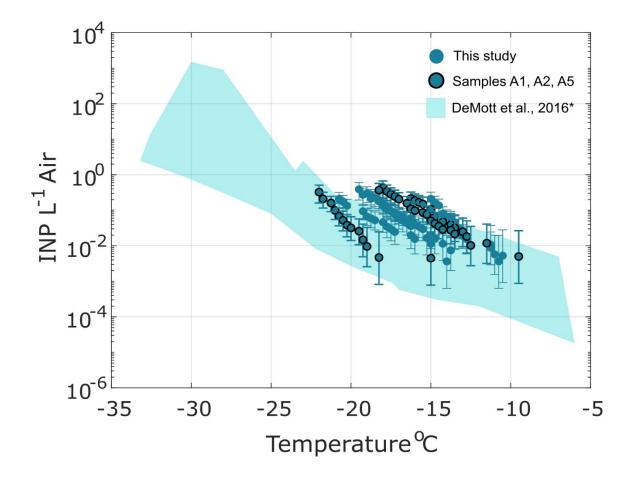

Aerosol

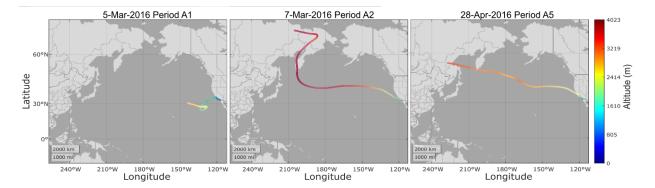

/ 101 0001					
Sampling Period	Local Date	Local Time	UTC Date	UTC time	Number of Isolates
A1	3/5/2016	10:40 – 12:15	3/5/2016	18:40 – 20:15	1
A2	3/7/2016	14:58 – 16:52	3/7/2016	22:58 – 23:52	5
A3	3/8/2016	11:34 – 14:42	3/8/2016	19:34 – 22:42	1
A4	3/28/2016	09:09 – 12:22	3/28/2016	16:09 – 19:22	1
A5	4/28/2016	11:45 – 13:22	4/28/2016	18:45 – 20:22	2
A6	5/5/2016	12:00 - 14:23	5/5/2016	19:00 – 21:23	2
A7	5/6/2016	14:15 – 16:37	5/6/2016	21:15 – 23:37	2

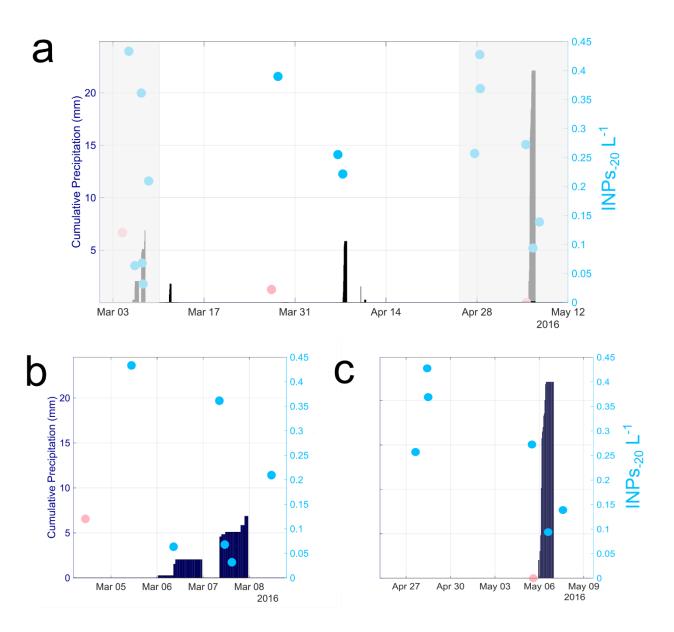

Table S4

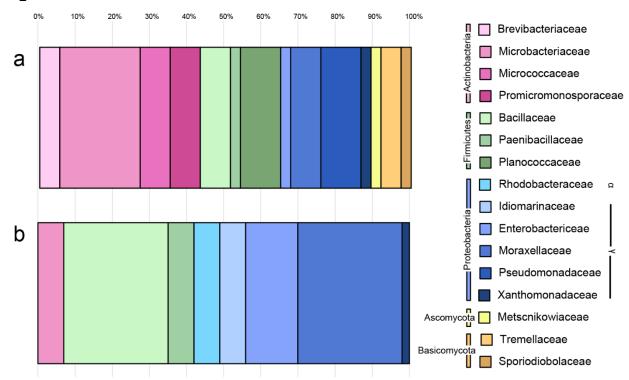

Isolate	Species	Ice nucleation above background?	Bell First Significant Freezing Temperature (°C)	FA Ice nucleation above background?	SW First Significant Freezing Temperature (°C)
lso3	Arthrobacter sp. (A. luteolus, A.citreus)	no	n/a	yes	-15.25
lso4	Curtobacterium sp. (C. pusillum, C. flaccumfaciens, C. oceanosedimentum)	no	n/a	yes	-13
lso5	Brevibacterium sp. (B.linens)	no	n/a	yes	-11.75
lso30	Pantoea sp. (P. agglomerans, P. ananatis)	yes	-16.75	yes	-15.5
SSA42	Idiomarina fontislapidosi	yes	-14.25	yes	-9.75
SSA16	Psychrobacter sp.	yes	-17.5	yes	-15.5
SSA18	Pantoea sp. (P. ananatis, P. 7tewartia, P. agglomerans)	no	n/a	yes	-11.5
SSA45	Psychrobacter sp.	yes	-14	no	n/a
SSA26	Microbacterium esteraromaticum	no	n/a	no	n/a

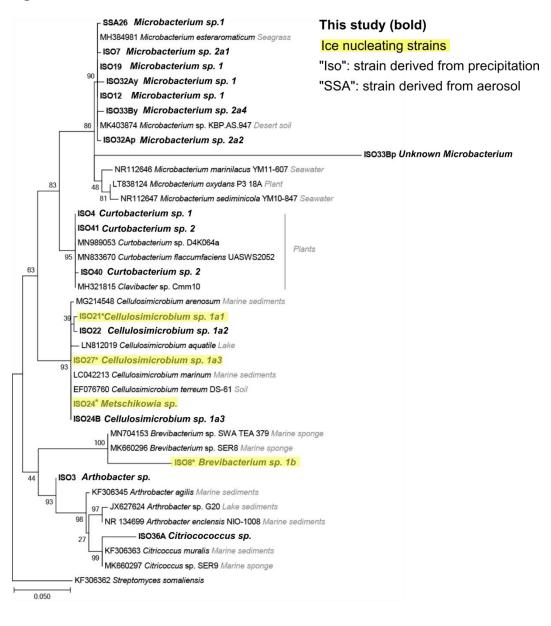

Figure S1

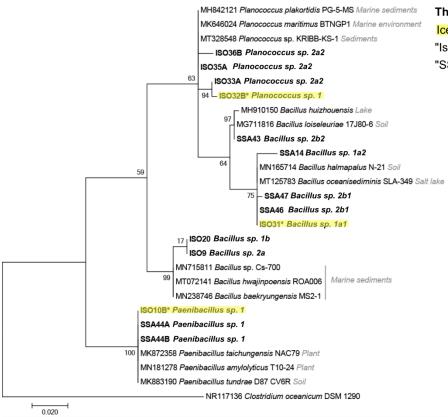


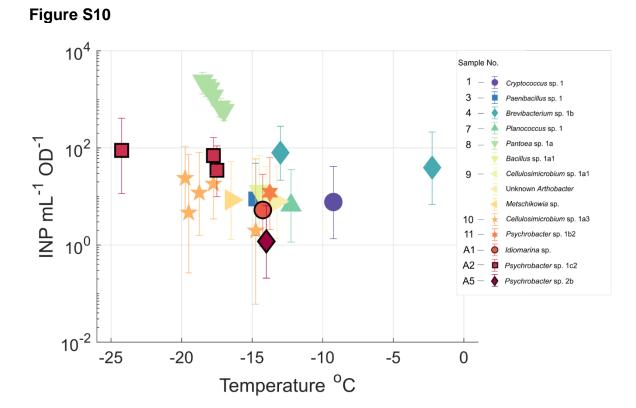












This study (bold) Ice nucleating strains

"Iso": strain derived from precipitation "SSA": strain derived from aerosol

Tree scale: 0.01 0.53425	ISO2 Cryptopogue en 1 0 25 °C
0.53425	ISO2 Cryptococcus sp. 1 -9.25 °C ISO10A Cryptococcus sp. 2
	100 10A 019010000003 Sp. 2
Tree scale: 0.001 - 0.0137363	ISO29 Pantoea sp. 1a -17 °C
•	°SSA18 Pantoea sp. 1b
0.0137363	SSA15 Pantoea sp. 1b
	SSA17 Pantoea sp. 1b
Tree scale: 0.01 ,, 0.00921SO38B Psychrobacter sp. 1b1	
0.04074 SSA48 Psychrobacter sp. 1a	
ISO49 Psychrobacter sp. 1b2 -13.75 °C	
	SSA25 Psychrobacter sp. 2a
0.0085	¹²¹³⁵ SSA16 Unknown Psychrobacter <mark>-17.5 °C</mark>
doozense SO38A Psychrobacter sp. 1c1	
^{0.00‡} SSA45 Psychrobacter sp. 1c2 <mark>-14 °C</mark>	
Tree scale: 0.01 - 0.252169	
V. AUG. TWO	ISO37 Pseudomonas sp. 1
0.252169	^{0.003577} /SO35B Pseudomonas sp. 2a1
	^{0.0014005} SO34 Pseudomonas sp. 2a2
	^{8.00140} 9SO39 Pseudomonas sp. 2a3
Tree scale: 0.01 - 0.256906	ISO32B Planococcus sp. 1 -12.25 °C
¢.	^{0.0060525} 1 Millococcus sp. 1 12.25 O
0.256906	⁰ _{0.0050} SO35A Planococcus sp. 2a1
	¹ ISO36B Planococcus sp. 2a2
∫SSA44B Paenibacillus sp.1	
ISO10B Paenibacillus sp.1 -14.75 °C	
SSA44A Paenibacillus sp. 1	
	ISO20 Bacillus sp. 1b
Tree scale: 0.01 - 0.276495	0.0042253\$SA14 Bacillus sp. 1a2
	0.0042253 SO31 Bacillus sp. 1a1 -14.5 °C
Ĭ	^{0.028384} ISO9 Bacillus sp. 2a
0.276495	0.00739291SSA43 Bacillus sp. 2b1
	0.0283884 0-SSA46 Bacillus on 2h2
	SSA47 Bacillus sp. 2b2
Tree scale: 0.01	ISO5 Brevibacterium sp. 1a
0.03237	——— ISO8 Brevibacterium sp. 1b -2.25 °C
	crobium sp. 1a1 -14 °C
0.00136986	ISO22 Cellulosimicrobium sp. 1a2 -15 °C
0.00173227	ISO27 Cellulosimicrobium sp. 1a3 -14.75 °C
	ISO24 Cellulosimicrobium sp. 1a3 -16.5 °C
	[®] ISO24B Cellulosimicrobium sp. 1a3
Tree scale: 0.01	
0.0000	ISO4 Curtobacterium sp.1
0.259232	ISO40 Curtobacterium sp. 2 ISO41 Curtobacterium sp. 2
°SSA26 M	Aicrobacterium sp. 1
1/ree scale: 0.01 - 0.271592	licrobacterium sp. 1
11 T	licrobacterium sp. 1
0.1045	•
0.271592	^{0.00334505} SO33By Microbacterium sp. 2a4
0.1045	²¹ 0.00217#81SO32Ay Microbacterium sp. 2a3
	0,00217#41SO7 Microbacterium sp. 2a1
	^{₀₀₀₁₄ଌ‡} 1SO32Ap Microbacterium sp. 2a1
Tree scale: 0.01 → 0.4875	ISO3 Arthrobactor on 1
0.4875	──── ISO3 Arthrobacter sp. 1 ──── ISO23 Unknown Arthrobacter <mark>-13.25 °C</mark>