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Abstract. The nationwide lockdown was imposed over India from 25" March to 31 May 2020 with varied
relaxations from phase-I to phase-1V to contain the spread of COVID-19. Thus, emissions from industrial and
transport sectors were halted during lockdown (LD) which resulted in a significant reduction of anthropogenic
pollutants. The first two lockdown phases were strictly followed (phase-I and phase-11) and hence are considered
as total lockdown (TLD) in this study. Satellite-based tropospheric columnar nitrogen dioxide (TCN) from the
years 2015 to 2020, tropospheric columnar carbon monoxide (TCC) during 2019-2020, and aerosol optical depth
(AODssg) from the years 2014 to 2020 during phase-1 and phase-I1 LD and pre-LD periods were investigated with
observations from Aura/OMI, Sentinel-5P/TROPOMI, and Aqua-Terra/ MODIS. To quantify lockdown-induced
changes in TCN, TCC, and AODss, detailed statistical analysis was performed on de-trended data using the
student’s paired statistical t-test. Results indicate that mean TCN levels over India showed a dip of 18% compared
to the previous year and also against the 5-year mean TCN levels during the phase-I lockdown, which was found
statistically significant (p-value <0.05) against the respective period. Furthermore, drastic changes in TCN levels
were observed over hotspots namely the eastern region and urban cities. For example, there was a sharp decrease
of 62% and 54% in TCN levels as compared to 2019 and against 5-year mean TCN levels over New Delhi with a
p-value of 0.0002 (which is statistically significant) during total LD. The TCC levels were high in the North East
(NE) region during the phase-1 LD period, which is mainly attributed to the active fire counts in this region.
However, lower TCC levels are observed in the same region due to the diminished fire counts during phase-II.
Further, AODss is reduced over the country by ~16 % (Aqua and Terra) from the 6-year (2014-2019) mean
AODss levels, with a significant reduction (Aqua/MODIS 28%) observed over the Indo-Gangetic plains (IGP)
region with a p-value of <<0.05. However, an increase in AODsso levels (25% for Terra/MODIS, 15% for

Aqua/MODIS) was also observed over Central India during LD compared to the preceding year and found
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significant with a p-value of 0.03. This study also reports the rate of change of TCN levels and AODssg along with

statistical metrics during the LD period.
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1. Introduction

Following the outbreak of the novel coronavirus disease (COVID-19) and its declaration as a pandemic
by the World Health Organization (WHQ) on 11" March 2020, several countries across the globe imposed national
lockdowns to contain the pandemic (e.g., Tian et al., 2020). India confirmed its first COVID-19 case on 30"
January 2020 with an exponential increase to 360 cases by 22" March 2020 (https://www.mohfw.gov.in/). In an
attempt to restrict this pandemic, the Indian government called for a ‘Janata Curfew’ on 22" March 2020, followed
by nationwide lockdown (LD) in a phased manner starting from 25" March — 14" April 2020 (21days) as phase-
I, 15" April — 3 May 2020 (19 days) as phase-11, 4" May —17™ May 2020 (14 days) as phase-I11 and 18 May —
31t May in 2020 (14 days) as phase-1V. Under this lockdown, 1.30 billion citizens of India were advised to stay
indoors, all the domestic and international flights, transport, and industrial production were suspended, and only
essential services were permitted. However, agriculture farming and its related sectors are permitted during phase-
Il as India is an agricultural-dependent country. As indicated above, indoor emissions (cooking) and emissions
from the emergency services were still present in phase-l. For phase-11, crop residue burnings were added in
addition to phase-I emissions. Except for these, the rest of the anthropogenic emissions from the above sectors are
completely shut during phase-I and phase-11. Thus, economic activities were greatly affected and hence there was
a shortfall in net energy consumption by about 30% (https://www.ppac.gov.in/) during the strict lockdown period
(first two lockdown phases).

Air pollution has arisen as an environmental issue that is harmful to human health (Xu et al., 2020) and
extends from local to global scale (Fang et al., 2009). The oxides of nitrogen (NO, NOy) play important role in
tropospheric chemistry and climate change. Exposure to nitrogen dioxide (NO,) has been correlated with an
increased rate of morbidity and subsequently increased rate of mortality (WHO, 2013). Global emissions of NOx
(NO, NO;) are primarily due to anthropogenic activities such as transportation (32% in India), industrial activities
(21% in India), thermal power plants (28% in India), biomass burning (19% in India) whereas the natural sources
of NOy are soils and lightning (Biswal et al., 2021). Thus, the hotspots region of NO; is thermal power plants,

urban cities, and industrial regions. In addition to NO,, carbon monoxide (CO) is also an important trace gas in
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the troposphere and is the main precursor of secondary pollutant ozone in NOy-rich environments. Though CO is
not a direct greenhouse gas, it has a global warming potential because of its effects on the lifetime of several
greenhouse gases. The natural and anthropogenic sources of CO are forest fire, biofuel burning, volcanic activities,
and incomplete combustion of fossil fuels, oil, coal, wood, natural gas, and oxidation of hydrocarbons. However,
a significant amount of contribution to CO is from anthropogenic emissions. Harmful effects of CO are dizziness,
headaches, stomachache, confusion, tiredness. CO is a tracer of air pollution due to its lifetime of about ~1-2
months (Drummond et al., 1996).

Natural and anthropogenic activities are responsible for aerosol in the atmosphere. Anthropogenic
activities over South Asia have caused considerable changes in aerosol composition and loading. Fine mode
aerosol (PM;5) is mainly from gas to particle conversions which are from biogenic and anthropogenic emissions.
Coarse mode aerosol (particles with a diameter larger than 10 um) arise from natural sources namely deserts,
oceans, volcanoes, and biosphere with less contribution from anthropogenic activities. Over the ocean surface,
the natural global aerosol mass is controlled by sulphate, sea salt, and dust aerosol (David et al., 2018). Further,
aerosol also affects the earth-atmospheric radiation budget directly in scattering and absorption of incoming solar
radiation and indirectly as clouds formation and precipitation (Ramachandran and Kedia, 2013). Thus, aerosol
can influence the Indian monsoon (David et al., 2018).

Earlier studies indicate that vehicular emissions (Mahalakshmi et al., 2014, 2015), industrial and thermal
power plant emissions (Ramachandran et al., 2013) contribute significantly to atmospheric pollution, including
gaseous pollutants. The ambient air quality is largely determined by the concentration of trace gases and
particulate matter in the atmosphere (Nishanth et al., 2014). An increase in the concentration levels of trace gases
and particulate matter has been a challenging environmental issue in urban and industrial areas. Numerous studies
have been attempted across the globe to understand the air pollution concentrations during the lockdown period
and results indicate the varied range of percentage reductions in pollutant concentrations. These studies are based
on ground-based measurements alone (Mohato and Ghosh, 2020; Mor et al., 2020) or satellite data alone (Biswal
etal., 2020; Xu et al., 2020) or with a combination of ground measurements and satellite data (Ratnam et al, 2020;
Biswal et al., 2021; Singh and Chauhan, 2020). Biswal et al. (2021) reported lockdown induced changes in
tropospheric NO- variability over the urban and rural regions of the Indian sub-continent with a marked reduction
of 30-50 % over the urban and megacities. This change was mainly attributed to the reduced traffic emissions due
to restrictions on travel. In contrast to the above, an increase in levels of air pollutants during lockdown is also
noticed in certain regions, which are associated with natural emissions (dust storms, forest fires) and prevailing

meteorological conditions. During India’s phase-I of lockdown (25" March 2020 — 71 April 2020), Ratnam et al.
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(2020) showed a decrease of Aerosol Optical Depth (AODsso) over the Indo-Gangetic plains (IGP) region and a
drastic increase over central India, which were mainly due to the absence of anthropogenic activities and
dominance of natural sources respectively. However, the above said studies have not carried any detailed statistical
analysis to indicate the significant changes are due to the imposed lockdown besides the long-term variability.

The objective of the present study is to understand the air quality quantitatively over the Indian region
under the control measures related to COVID-19 restrictions in the country. Thus, the present study examined the
spatio-temporal variations of remotely sensed Tropospheric columnar NO; (TCN), Tropospheric columnar CO
(TCC) and Aerosol Optical Depth (AODsso) during LD and pre-LD and compared with the preceding year (2019)
and short-term mean (2014 - 2020). The present study reported lockdown-induced changes on TCN, TCC, and
AODsso over the Indian region with special emphasis on the hotspot (usual predominant sources), and urban
regions. Further, to study the lockdown-induced changes besides the inter-annual variability, statistical analyses
were carried out to assess the influence of India’s strict lockdown on these pollutants. To distinguish natural and
anthropogenic emissions, we attempted to correlate the subsequent changes associated with meteorology, long-
range transport as well as forest fires.

2. Data

Satellite measured air pollutants data offer reliable, uninterrupted observations with high spatial and
temporal coverage than ground-based measurements which are point observations. Thus, the TCN observations
from the Sentinel-5P/Tropospheric Monitoring Instrument (S5P-TROPOMI) and Aura/Ozone Monitoring
Instrument (Aura/OMI), TCC data from high spatial resolution TROPOMI, AODss data from Moderate
Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua platforms are used in the present study. The brief
details of these sensors are given in Table 1. The TROPOMI was launched on 13" October 2017 as the single
payload onboard the S5P satellite of the European Space Agency (ESA) has nadir-viewing spectral range covering
wavelength bands between the ultraviolet and the shortwave infrared. TROPOMI is a push-broom imaging
spectrometer flying in a sun-synchronous orbit at 824 km altitude and is designed to retrieve the concentration of
several atmospheric constituents which include TCN, TCC, SO, etc. TROPOM I retrieved TCN and TCC values
with quality flag greater than 0.50 are considered in the present study (Eskes et al., 2019). It was developed jointly
by ESA and Royal Netherlands Meteorological Institute (KNMI), which is the most advanced multispectral
imaging spectrometer (Alonso et al., 2020). OMI was successfully launched on the National Aeronautics and
Space Administration’s (NASA’s) on Earth Observing System Aura Satellite is a push broom ultraviolet/visible

spectrometer that measures the Earth’s backscattered radiance and solar irradiance. Aura/OMI has a swath width



125  of 2600 km with a nadir field-of-view, at a spatial resolution of 0.25°x0.25° giving daily global 30 % Cloud-
Screened TCN level 3 product (present study used Version 3) and crossing the equator at 13:45 local time
(Krotkov et al., 2017). The MODIS sensor onboard NASA’s two Earth Observing System Terra and Aqua
platforms are providing AOD retrievals.

Parameter Data source Resolution Website
Aura/OMI 0.25°%0.25° (version: V003)
TCN Sentinel-5P/TROPOMI 3.5x7 km? (year, 2019; https://earthdata.nasa.gov/
version: 01.02.02 &
01.03.00) & 3.5x5.5 km?
(year, 2020; version:
01.03.02)
TCC Sentinel-5P/TROPOMI 7x7 km? (year, 2019; https://earthdata.nasa.gov/
version: 01.02.02 &
01.03.00) & 5.5x7km? (year,
2020; version: 01.03.02)
AOD MODO08_D3 from Terra 1°x1° (version: v6.1) https://ladsweb.modaps.eosdis.nasa.go
& MYDO08_D3 from v/
Agqua
Fire count VIIRS 375m https://firms.modaps.eosdis.nasa.gov/d
ownload/create.php
Winds and ECMWF-ERAS 0.25°x0.25° https://cds.climate.copernicus.eu/cdsap
Relative reanalysis p#!/dataset/reanalysis-erab-pressure-
Humidity levels?tab=form
Reference Period: Jan-July (2014 — 2020); Strict Lockdown Period: 25" March — 3™ May 2020
Table 1: Data resources

130 Daily level 3 (version: V003) TCN data was obtained from Aura/OMI for computing the short-term mean of TCN
from 2015-2019 (https://disc.gsfc.nasa.gov/datasetssf OMNO2d_003/summary). However, high spatial resolution
TCN and TCC data (Level 2) from TROPOMI is used during the LD period of 2020 and the equivalent period in
2019 (http://doi.org/10.5270/S5P-s4ljg54). The daily gridded global AOD product (Level 3) from Terra
(MODO08_D3_v6.1) Aerosol Optical Depth at 550 nm, (Deep Blue algorithm, Land-only) and Aqua

135  (MYDO08_D3_v6.1) Aerosol Optical Depth at 550 nm (Deep Blue algorithm, Land-only) platforms were used to

investigate the aerosol loading over the Indian region for above said period. Detailed information about OMI
sensor and MODIS sensor onboard Aqua/Terra platforms is explained by Li et al. (2020). Overland, the previous
studies reported that MODIS-derived AOD uncertainty with respect to the Aerosol Network (AERONET) is +
0.05 + 0.20 x AODaeroner (Sayer et al., 2013; Levy et al. 2013). Details of MODIS AOD retrieved algorithm for



140

145

150

155

160

165

collection 6.1 and its validation can be found in Hsu et al., (2019) and Sayer et al., (2019) respectively. In addition
to the above datasets, fire counts data from Visible Infrared Imaging Radiometer Suite (VIIRS) with confidence
> 80% were used. To understand the role of meteorology, winds from European Centre for Medium-Range
Weather Forecasts (ECMWF- ERAS) reanalysis which gives hourly data at different pressure levels (700 hPa and
850 hPa) was also used in the present study. Similarly, relative humidity from ECMWF for the respective pressure

levels is also used.

3. Methods

In the present study, we attempted to assess the impact of lockdown on air quality over India by
examining remotely sensed daily concentrations of TCN, TCC, and AODsso from January 2014 to October 2020.
Further, daily concentrations of the above said parameters were de-trended during the study period to subside the
long-term changes. Hence, phase-wise changes in TCN, TCC levels, and AODss could be attributed to LD-
induced changes. Thus, the present study focused on the air pollution over the Indian region, its states, and its
capital city during the strict lockdown periods (phase-1 and phase-I1). Analysis of satellite-based observations of
TCN from the years 2015 to 2020, TCC during 2019-2020, and AODsso from 2014-2020 was carried out for
lockdown period (phase-I and phase- 11) as well as pre-lockdown period. Short-term climatological means during
pre-LD, phase-I, phase-11 were computed for TCN from 2015 to 2020 and AODsso from 2014 to 2020 to assess
the temporal changes of pollutants in the atmosphere. We have focused our analysis on the first two phases of
lockdown in which the industrial and transport sectors were brought to a near standstill.

Figure 1 shows the data processing and execution strategy followed in this study. The detailed
methodology used in this study is as follows. Python programming language is used to analyse TCN, TCC, and
AODss variables during the study period as discussed in Figure 1. The parameters TCN, TCC, and AODssg are
extracted from the respective source files considering quality flags
(https://github.com/aarathimuppalla/airpollution_Id_study.git). Swath and mask are calculated for the region of
Interest and the data is resampled using the nearest neighbour algorithm. Further, time-averaged maps of TCN,
TCC, and AODsgs for pre-lockdown, phase-1, and phase-I1 lockdown were generated for the years 2020 and 2019
along with difference maps. With respect to 2020, if the difference in pollutant concentrations (3x) is greater than
zero indicating an increased effect and vice versa. Short-term climatological means of TCN for the years 2015 -
2020 and AOD for the years 2014 - 2020 were computed. Thereafter, the regional increase/decrease in pollutant

concentrations over the country and individual states were analysed.
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« Generated daily TCN, TCC and AOD values over Indian region.
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Time averaged maps were generated for pre- lock down (01-21st
March), phase-l lockdown (25" March -14" April) and phase-Il
lockdown (15t April - 03 May) for India and Indian states during

2020.

step 1 in the year 2019.

l

Re-sampling the data using
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algorithm to the ROI

I

Data processing flow on Python platform

Apply generated mask to the re-
sampled data

*+ Where x (TCN, TCC, and AOD) is concentration of

+ Time averaged maps are generated for the above said periods at

Computed differences between three time schedules (pre-
lockdown, phase-l and phase-ll) in 2020 against 2019 schedules.
6x = lockdown period (x)- pre lockdown period (x) >0 ( Increase effect)

(x) <0 ( decrease effect)

ABejens uonnosxa eleq

pollutants

calculated for pre- lockdown, , phase-|I and phase-Il.
——
Step-3

2020.

Computed short term climatological average during 2015-2019
lockdown period which was compared against lockdown period in

Figure 1

3.1 Statistical metrics

: Data processing steps and methodology

Further, detailed statistical metrics for TCN, TCC, and AODsso namely mean, standard deviation (SD), percentage

of the number of positive and negative pixels, and student’s paired t-test values were computed. To estimate

metrics from the long-term data against lock period in 2020, here we utilized TCN data obtained from OMI and

AODss from MODIS. These metrics are calculated for every week starting from 1%t January to 31% July as 31
weeks in total for the years 2015-2020 for TCN and 2014-2020 for AODss over the Indian region. Thus, the

following steps were implemented to quantify the metrics. These steps are written for TCN as an example.

b2020-2015 (TCN) = TCN (2020) — TCN (2019)

b2020_2015 to 2019 (TCN) = TCN (2020) - TCN (2015 - 2019)

1SD =

€y

(2)

(3)
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b; >1SD, positive pixels (Pp)
If bi < - 1SD, negative pixels (Np) 4)
-1SD < b;i <1SD, neglect pixels

Where N is the total number of qualified pixels over the Indian region and p;, is mean bias. At each pixel, weekly
bias (b) of TCN is estimated from the weekly mean TCN during the 2020 lockdown period w.r.t 2019 and 2015-
2019 period as shown in equations (1-2). For prominent change detection, additionally, 1SD deviation filter was
applied on the bias values of TCN and AODsso. Therefore, if bias is greater than 1SD then the featuring pixels are
classified as positive and if less than -1SD then they are considered as negative pixels. Pixels within £1SD are
omitted to avoid minimalistic feature changes and for better characterization. Subsequently, we computed the

percentage of positive (Increased area) and negative pixels (decreased area) using the following equations (5-6).

t

%P, counN( ) 5)
t(N

%N, = W x 100 (6)

The same equations were applied on AODsso during the 2014 - 2020 study periods. Further to understand LD-
induced changes in TCN and AODsso quantitatively daily mean values are de-trended using yearly data, which
accounts for long-term changes in TCN and AODsso respectively. De-trended values of TCN and AODss are
generated by subtracting the linear regression estimated values from the daily values of TCN and AODsso. TO
study the lockdown-induced changes with significant levels, a paired t-test (Freedman et al., 2007) was
implemented on the de-trended TCN and AODsso data during the respective study period. The t-test follows a
Student’s t-distribution under the null hypothesis of Ho with the means (p) of two populations are equal (11= H2)
with alternative hypothesis Ha: pi# p2. To reject or accept the null hypothesis, p-value was used in this study. The
hypothesis Ho is rejected when a p-value is less than 0.05 and accepted if p-value is greater than 0.05 (5 %

significance level).

4. Results and Discussion

The present study analysed the satellite-based TCN, TCC, and AODsso data to assess the lockdown-induced

changes over the Indian region.
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4.1 Effect of Lockdown (LD) on TCN

The Spatio-temporal variability in TCN concentrations during the pre-lockdown and lockdown period (phase-I
and phase-Il) were analysed for the years 2019 and 2020 using high spatial resolution (Table 1) TROPOMI.
Temporally averaged concentrations of TCN during pre-LD (01 March to 21t March 2020), phase-1 and phase-
Il of lockdown, and the corresponding period of the previous year (2019) are shown in Figures 2a-c, along with
the differences in concentration levels between different periods. During the pre-LD time of years 2019 and 2020
as shown in Figure 2a, the extent of TCN hotspot regions (majorly Eastern and National Capital region) remain
same however, a mild reduction of TCN was noticed during pre-LD of 2020 compared to 2019. This could be
probably due to inter-annual variability in TCN levels and also the absence of source emissions due to lockdown
imposed by neighbouring countries via long-range transport (For example lockdown imposed in China from 23
January 2020, Italy from 21 February 2020, and Malaysia from 18" March 2020). During this period, Biswal et
al., (2021) reported similar reduction of TCN over NCR and other cities across the globe (Tian et al., 2020; Xu et
al., 2020; Berman and Ebisu, 2020; Collivignarelli et al., 2020; Jephcote et al., 2021).

The mean TCN over the entire country during phase-1 of 2020 and 2019 are 1.53x10%° and 1.86x10*°
molecules cm™ respectively. A reduction of about 22 % TCN levels is observed in 2020 compared to 2019 during
phase-I, which accounts for both inter-annual variability and lockdown-imposed changes. Further to understand
the lockdown-induced changes in TCN levels, this study was focused on TCN hotspots, which includes power
plants and metropolitan cities with industrial and transport activities. To contain the spread of COVID-19, about
95 % of the anthropogenic activities were halted (Ratnam et al., 2020) during phase-1 LD. However, during phase-
I, a few anthropogenic emissions are present under essential services (such as pharma industries, power plants,
medical services, vehicles that were carrying daily commaodities) and indoor emissions. As a result, the TCN
levels and their area of extent as shown in Figure 2b during phase-I of LD in 2020 over the hotspot regions (Eastern
region of India) decreased by 22 % when compared to an equivalent period of 2019. The eastern region of India
has a significant number of major power plants and refineries with associated industries. During phase-I LD in
2020, a reduction of TCN levels is observed over this region, which is due to the shutdown of industries and urban
activities such as transport and small-scale industries. However, the country’s high TCN levels are noticed in the
eastern region with less spread indicating the active role of power plant industries located in this region.
Simultaneously, the National capital region (NCR) shows a marked reduction by about ~70 % during phase-I LD.
The major source of emissions in the NCR is dominated by heavy traffic, densely located industries, and industries

of steel, cement, and sugar (Garg et al., 2002; Ghude et al., 2008). As mentioned above, India’s strict lockdown
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permitted only essential services therefore remaining all activities were halted during the phase-I period. Thus,
resulted in low levels of TCN over the hotspot regions except in the eastern region and a few grids of central
western region due to continuous operation of power plants and petroleum refineries (Biswal et al., 2021).

To sustain the Indian economy, activities namely agricultural practices and associated activities (crop
residue burning) were permitted during phase-I1 along with phase-I restrictions. Figure 2c shows TCN levels and
their difference map during phase-11 LD. With respect to the same period of phase-11 in 2019, the TCN levels over
the country decreased by 13 % with a mean TCN of 1.55x10%* molecules cm™ and 1.75x10%° molecules cm? in
2020 and 2019. Thus, a continued decrease of TCN levels is recorded over the hotspot regions. However, an
increase of TCN also observed over the neighbouring regions of the eastern region indicating the dispersion of
TCN. In contrast to earlier, an increase in TCN levels over the northeast region could be due to seasonal biomass
burning in this region. Thus, the mean TCN levels over the entire country is 1.54x10% molecules cm during total
LD (phase-1 and phase-I1 together) with a reduction of 18 % compared to the respective period in 2019 as well as
with respect to 5 years mean TCN.

Overall, the southern part of India reported fewer TCN values as compared to eastern and NCR regions
(hotspot regions) during pre-LD, phase-1, and Phase-Il. The hotspots over the southern part of India are not as
dense as in the eastern and northern regions could be one of the reasons for its lower values. The southern part of
India is comparatively hot and humid which will lead to high OH (hydroxyl) radicals concentrations than the
Northern part of India. As a result, photolysis of NO, will increase which results in low NO. concentrations.
Further, in south India, the number of large point sources, amount of biomass burning, and vehicular population
are less compared to the Northern part of India (Ghude et al., 2008). Thus, reduced TCN levels over the southern
part of India irrespective of LD were observed due to the above facts. Weekly variations of TCN were also shown
in Figure 2d to assess the extent of source emission during the lockdown period. Therefore, the present study
depicted the possible driving factors of TCN values during pre-LD, phase-1, and phase-1l using high-resolution

spatial data from the satellite.
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Figure 2: Time-averaged TROPOMI TCN concentration and their difference maps between 2020 and 2019

during a) pre-LD b) phase-I lockdown c¢) phase-11 lockdown d) weekly mean TCN variation starting from

25" March to 03 May 2020.

11



270

275

280

285

290

295

4.1.1 Short-term climatological variations in TCN due to lockdown

Time series analysis of TCN was carried out during 2015 - 2020 for January to July over the entire Indian region
covering cold and hotspot regions as shown in Figures 3a-d. A smoothing function with a span of 7 days was used
for better visualization of patterns/trends in TCN levels as shown in Figures 3a-b, with red (green) bars indicating
increase (decrease) TCN levels in 2020 relative to 2019 and mean of 2015-2019. The 7-day moving average shows
a significant decrease of TCN concentration with a 99.99% (p-value << 0.05) confidence interval during the total
lockdown period. However, it is also noticed that a decrease of TCN during prior and post lockdown periods,
which is further tested statistically and found insignificant change with p-values of 0.08 and 0.24 respectively.
Further statistical significance of TCN variability across hotspot, cold spot regions, and also over the major cities
where TCN dropped () drastically (except NE which showed increase) along with their percent drop during total
LD when compared to 5 year mean TCN levels were summarized in Table 2. It clearly shows the TCN levels over
the IGP (22% |), eastern region (29% |), and major cities (New Delhi 54% |) declined significantly compared to
the preceding 5 year mean TCN levels during the total LD period. Change in TCN during the study period is also
associated with the inter-annual and seasonal variability besides its dominant anthropogenic sources. Figure 3c
shows the annual means of TCN in pre-LD, phase-I, and phase-I1 LD during 2015-2020 period. It depicts inter-
annual variability in TCN between the years at each time scale along with the lockdown-imposed changes.
Between the time scales during the study period, a clear seasonality in TCN levels is also observed in Figure 3c.

The horizontal bar plots in Figure 3d show the rate of change (RoC) in TCN levels in 2020 against the
mean during 2015-2019 indicating the impact of lockdown on TCN concentrations over the Indian region. The
RoC is extremely important in weather and climatological studies because it allows understanding and predicting
the trends/patterns in climatic parameters. RoC is used to describe the percentage change in a parameter over a
defined time period and it represents the rate of acceleration of the parameter. To compute the RoC in this study,
we have used de-trended TCN daily values, which account for long-term variability in TCN. Thus, the present
RoC depicts the TCN variability due to the lockdown-imposed changes alone. There is an observable lowering in
TCN levels relative to the short-term climatological mean by 12% for the pre-lockdown period as Lal et al., (2020)
also reported similar results. During the period from January-April 2020, authors reported a substantial reduction
in the level of TCN, TCC, and AODsso across the globe during the COVID-19 pandemic as each country (at
different spatial scale) imposed lockdown at different time scales. This could be the reason for a reduction in
concentrations of TCN during the pre-LD period in 2020 as compared with 2019 as well as the mean picture of
2015-2019. Furthermore, a noteworthy reduction of TCN concentration by 18% and 15% is observed for the

phase-1 and phase-1l lockdowns respectively over the Indian region.
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Figure 3: Moving average time series analysis during January-July of TCN during a) 2019 vs. 2020 b) short-
term climatological mean of TCN (2015-2019) vs. 2020 c¢) Annual variations of TCN (2015-2020) during
period of before lockdown and different phases of lockdown and d) Rate of change of TCN during 2020

w.r.t. 2015-2019 period.

Region/City “Student’s Paired t-test p-value (RoC in percent during Total LD)
Pre-LD During total LD Post LD
IGP 0.03 << 0.05(22% ) 0.31
East 0.62 << 0.05(29% ) 0.11
NE 0.66 0.19(3% 1) 0.55
New Delhi 0.57 0.0002 (54% ) 0.05
Bangalore 0.58 2.62E°(43% ) 0.17
Chennai 0.37 0.012 (41% ) <<0.05
Mumbai 0.95 0.011 (35% ) 0.17
Hyderabad 0.49 0.0003 (30% ) 0.007
“p-value < 0.05 is significant and vice-versa; (|, 1) indicates (decrease, increase)

Table 2: Student's paired t-test for TCN during the lockdown period against 5-year mean (2015-2019)

13



330

335

340

345

(a) —o—2015-19 ys 2020 —e— 2019 vs 2020 (b) —o—2015-19 ys 2020 —=— 2019 vs 2020

=)

=
1
1

h
=
1

173
=
1

% of positive pixels
= \
o
1
% of negative pixels
1

~
=
1
1

—
=
1

il ] [0

T 1 T 1 I L) 1 T 1 1 I I T 1 T I T I T T T T I 1 1 1 I I T T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
No of Weeks No of Weeks

Figure 4: OMI measured TCN a) percentage of positive pixels b) percentage of negative pixels during the
period 2020 vs (2015-19) and 2020 vs 2019.

Figures 4a-b show statistically computed TCN metrics for a number of positive pixels and number of negative
pixels in percentage during January to July period on a weekly interval which starts from 01% January. Weekly
TCN means for the year 2015-2019, 2019 and 2020 were used to calculate positive and negative pixel count based
on methodology stated in section 3.1. Thus, the red color line in Figures 4a-b represents the number of
positive/negative pixels for the years 2019 vs. 2020 and the black color line represents the same for the years
2015-2019 vs 2020. The study showed a greater number of negative pixels (decreased area) during lockdown
weeks and vice-versa for positive pixels which depict the extent of area affected due to LD and subsequent changes

in air pollutants over the Indian region.

4.2 Effect of LD on TCC

The mean TCC levels over the Indian region during the pre-lockdown and LD periods were studied to assess the
COVID-19 lockdown-induced changes in TCC. Figures 5a-c show mean concentrations of TCC over the Indian
region during pre-LD, phase-1, and phase-1l LD periods using TROPOMI data. During the pre-lockdown period
(01-21% March 2020), TCC levels were higher (mean = 2.39x10*® molecules cm) as compared to 2019 by ~
4.8%, which indicates the increasing effect of anthropogenic activities and inter-annual variability. As shown in
Figure 5b difference map, the TCC levels increased in the north-eastern (NE) region followed by part of central

India (CI) and south of north-west (S-NW) of India as compared to 2019 of phase-1 LD period. An observed
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increase over these regions was evaluated statistically and found insignificant (p > 0.05). An increase of TCC in
the NE region of India is mainly attributed to the active fire counts (Figure 5d) during phase-1 of LD as shown in
Figure 5b. During phase-1, other regions of India namely the IGP, north, and south regions show decreased TCC
levels compared to the same period of 2019. The decreased TCC levels in these regions during phase-I are
attributed to the shutdown of industries (cement, sugar, and steel, etc.), absence of transportation and restriction
on crop residue burning. However, household emissions due to residential cooking are still present during
lockdown which is a major contribution to CO from rural areas and some parts of the urban region (slums). In
India, 72 % of the population live in rural and urban slums and most of them are continued to use household
biofuel for cooking under lockdown (Verma et al., 2018; Beig et al., 2020).

However, the mean TCC levels as shown in Figure 5c¢ are higher during phase-11 of lockdown. Over the
entire country, the mean TCC value during phase-11 is 2.38 x10* molecules cm2in comparison to the 2019 mean
value of 2.32x10% molecules cm. In phase-11 of LD, the TCC levels are decreased in the NE region, which is
strongly attributed to the reduced active fire activity in this region as shown in Figure 5¢. Except in the NE region,
a consistent increase of TCC levels is observed during phase-1l. Since the agriculture farming industry is
exempted in the phase-11 LD and observed active fire counts in central India, thus observed enhancement in the
TCC levels during phase-Il. An increase or decrease of TCC levels in the atmosphere is mainly dominated
significantly by anthropogenic activities compared to natural emissions (Kanchana et al., 2020) as discussed
earlier. However, comprehensive reasons for the increase of TCC levels in phase-I1 are not investigated in this

study.
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Figure 5: TROPOMI derived Time averaged TCC concentration and their difference maps in 2020 and

2019 a) pre-LD b) phase-I lockdown c) phase-11 lockdown d)Fire counts from VIIRS for phase-1, phase-11

during 2020.
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4.3 Effect of LD on AODsso
We have used Terra-Aqua/MODIS derived AODsso during 2014-2020 for January to July to understand the
lockdown-imposed changes. Terra/MODIS AODsso represents the footprint for 10:30 and Aqua/MODIS AODssg
for the 13:30 local time. As we observed similar spatial variation of AODsso from both Terra-Aqua/MODIS, only
Aqua/MODIS derived AODss is shown here (Figure 6). AODsso levels over the Indian region for 2019, 2020,
and the difference in AODsso for both years for the pre-lockdown period are depicted in Figure 6a. During this
period, the AODsso levels for 2020 over the IGP region (~21% of the Indian Territory landmass) are more
compared to the rest of the regions of India which is expected throughout the year. This is mainly because of its
orographic effect and densely populated (accommodating ~ 40% of the Indian population). The main
anthropogenic sources over the IGP region are coal-based power plants and industries, crop residue and forest
fires, and household cooking which contribute to high AOD in this region. Thus, the IGP is known as the first
hotspot for anthropogenic aerosol emission in South Asia. During phase-I of LD as shown in Figure 6b, aerosol
loading over the IGP region attained its baseline concentration (~ 45% drop w.r.t. 2019 of the same period) due
to the strict implementation of LD. This region is densely populated and congested industrial activities, which
were shut down during this period resulted in a nearly AOD free atmosphere. This indicates an absence of
anthropogenic activities due to mobility restrictions. Further, prevailing meteorology over IGP (high wind speed
and low relative humidity at 850 hPa and 700 hPa) is also favoured for a decrease in AODsso during phase-I LD.
Despite the strict LD in the country, an unexpected increase in AODssp is observed by ~28 % compared
to the preceding year of the same period over Central India (CI) which is predominantly dominated by dust storms
(Ratnam et al., 2020) through long-range transport and prevailing meteorology (Pandey et al., 2020). Thus, to
understand the prevailing meteorology over Cl, phase-wise relative humidity and wind speed at pressure levels
850 hPa and 700 hPa respectively were analysed as shown in Figures 7a-b. During phase-1 and phase-Il, the
majority of the winds over CI are dominated by westerly (calm winds) with high relative humidity. Under this
prevailing meteorology, calm winds contribute to slow dispersion and high Relative humidity (RH) modulates the
aerosol chemistry and hygroscopic growth mechanism (Pandey et al., 2020). As a result, the increase of AODsso
over Cl is observed. Further, high AODsso over NE regions was also observed because of high active forest fire
counts (Figure 5d) compared to the 2019 LD period. Figure 6¢ shows AODsso during phase-II of India’s LD in
2020 against AODssg in 2019 of the same period. During this phase, an increase in AODsso (~ 3%) over IGP was
observed. Over Cl, a reduction of AODsso (~ 18%) was observed compared to phase-I of LD and not much change

(~1%) when compared to the respective period in 2019 which depicts reversal of meteorology in phase-1l with
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respect to phase-I. Causative factors for this decrease over Cl w.r.t phase-I are due to low RH and high wind speed
at 700 hPa and 850 hPa over this region.

In a nutshell, this study demonstrates the lockdown induced Terra/MODIS AODss changes over the IGP
and CI during the total LD period shows a significant change with a p-value of 0.01 (99 % confidence interval)
with a decrease of 20 % over IGP and 0.03 (97 % confidence interval) with an increase of 25 % over Cl when

compared to the equivalent period in 2019.
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Figure 6: Aqua/MODIS derived Time averaged AODsso and their difference maps in 2020 and 2019 a) pre-
LD b) phase-1 lockdown c) phase-11 lockdown d) weekly variation in total lock period during 2020.
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4.3.1 Short-term climatological variation of AODsso due to lockdown

Aerosol optical depth is one of the important short-term climatic forcing agents along with long-lived greenhouse
gases namely carbon dioxide (CO;), methane (CH4), water vapor (H.O), and nitrous oxide (N.O). A 7-day
smoothing average filter was applied on AODsso time series data as discussed in section 4.1.1. Figures 8a-d show
a 7-day moving average time series analysis of AODss levels for MODIS Terra and Aqua from January to July
over the Indian region for 2014-2019 mean values, 2019 and 2020. AODsso measured by Terra/Aqua-MODIS
(Figures 8b & 8d) show a significant change in aerosol loading over the country during the lockdown period in
2020 compared to the mean AODssg of 2014-2019. Statistical analysis of Student’s paired t-test shows a strong
significant change in AODsso with a p-value of <<0.05 for Terra/Aqua-MODIS during the total LD against 6-year
mean (2014-2019). Interestingly the present analysis shows a very much significant change of AODsso during post

LD compared to LD with p-value <<<0.05 (order of an Integerx10-'2), which attributes to the continued effect
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of lockdown as phase-Ill and IV and scavenging effect during monsoon season. Due to the increase of
precipitation in the active summer monsoon (June-July) season, lowering of aerosol is expected (Boucher et al.,
2013). Thus, the continued lockdown and active monsoon improved the air quality beyond the strict lockdown
period as shown in Figures 8a-d.

The annual mean AODsso over the Indian region in each phase is shown as vertical bars in Figures 8e-f,
indicating the inter-annual variability of AODsso across the phases and seasonal modulation between the phases
during 2014-2020. Despite inter-annual and seasonal variability of AODsso, the strict lockdown in 2020 shows a
decrease in phase-1 and phase-11 compared to pre-LD, which could be associated with the reduced anthropogenic
sources besides prevailing meteorology as discussed in section 4.3. The RoC in AODsso was computed (Figures
8e-f) to understand the effect of short-term climatological mean AODsso over the lockdown period in 2020. A
positive RoC of +8.8 % (+14%) was observed during pre-LD as measured by Terra/MODIS (Aqua/MODIS)
against 6-year mean AODsso. This increase is tested statistically and found insignificant with p-values of 0.11 and
0.37 for Terra/MODIS and Aqua/MODIS respectively. During phase-l1 (phase-11) Terra/MODIS showed
statistically significant negative RoC with -24 % (- 9%) and Aqua/MODIS showed -22 % (-7%) against 6-year
mean AODsspas most of the sectors were turned off except household emissions and essential services. Therefore,
this study reports, India’s strict lockdown improved the aerosol air quality over the country with marked changes

over the IGP and CI respectively.
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Figure 8: a) Moving average time series analysis of AODsso measured by Terra/MODIS during 2019 and
2020 b) Terra/MODIS short-term climatological mean of AODsso (2014-2019) vs. 2020 c) time series AODsso
measured by Aqua/MODIS during 2019 and 2020 d) Aqua/MODIS short-term climatological mean of
AODsso (2014-2019) vs. 2020 e) Variations of Terra/MODIS measured AODsso before Lockdown and
different phases of Lockdown and respective RoC f) Variations of Aqua/MODIS measured AODsso before

Lockdown and different phases of Lockdown and respective RoC.
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Figures 9a-d show the number of positive and negative AODss pixels in percentage at weekly intervals computed
from the respective biases during the study period over the Indian region. Figures 9a-b show the percentage of
positive and negative pixels of AODsso measured by the Terra/MODIS. During the lockdown weeks (shaded in
grey color) in 2020, the number of positive pixels was less w.r.t 2019 and the short-term climatological mean of
AOD. Figure 9b shows more percentage of the negative pixel during the same study period indicating the larger
area of the extent with lower AODsso due to strict lockdown in India. This change is even high w.r.t short-term
climatological mean of AODsso. The Aqua/MODIS-derived AODssg also shows similar variability and is as shown

in Figures 9c-d.
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Figure 9: Terra/MODIS (a) percentage of number of positive pixels b) percentage of number of negative
pixels during the period 2020 vs (2014-19) and 2020 vs 2019. Aqua/MODIS (c) percentage of positive pixels
d) percentage of negative pixels during the period 2020 vs (2014-19) and 2020 vs 2019.
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4.4 State wise Rate of Change (RoC) of TCN w.r.t. 2015-2019 and AOD w.r.t. 2014-2019

Table 3 show state-wise RoC computed for pre-LD, phase-1, phase 11, and total LD phases in 2020 with respect
to 5 year mean (2015-2019) for TCN and with respect to 6 year mean (2014-2019) for Terra/AODsso and
Aqua/AODsso. A positive percentage of RoC indicates an increase of pollutants for the respective phases shown
in Table 3 when compared to the same phase period of means of TCN for 2015-2019 and means of AODss, for
2014-2019. A negative percentage of RoC indicates the decrease of TCN and AODssp w.r.t 2015-2019 and 2014-
2019 values respectively for the phases as shown in the Table 3. Results depict the change of pollutants over each
state during the lockdown period compared to the respective period in 5 year mean for TCN and 6 year mean for
both AODsso.

During the total lockdown period in 2020 w.r.t the mean of TCN during the same period for 2015-2019,
the TCN values are dropped in the hotspot zones namely eastern states (Odisha, Chhatisgarh, and Jharkhand) and
NCR regions (New Delhi, Ghaziabad, Faridabad, Gurugram, and Noida). Thus, the drop in TCN values over these
regions is evaluated statistically and found a significant change. Similarly, the AODsso measured by the Terra-
Aqua/MODIS also shows a strong reduction over the IGP region during the total LD. However, an unexpected
increasing effect is noticed in the CI states with respect to 6 year mean of respect AODsso during phase-I. Similar
results are also observed when compared to the preceding (2019) year mean AODsso Which is discussed earlier
section in a detailed manner. Further, it is observed that the negative RoC of AODsso over the IGP region during
phase-I is more prominent compared to phase-Il1 RoC. It is also noticed further that the RoC of AODsso computed
from the Terra-Aqua showing similar trends during the total lockdown period with a small difference in the
amplitudes. This difference of amplitude between these two sensors could be due to a difference in overpass time,
which changes atmospheric dynamics such as planetary boundary layer height, solar zenith angle, and prevailing
meteorology. An average of Terra/Aqua- MODIS derived RoC of AODsso shows a strong reduction in the western
part of India mainly Rajasthan (-36 %) and Gujarat (-31 %) respectively during the total LD period (Ranjan et al.,
2020). Therefore, in a nutshell, an analysis of RoC depicts regional variability of air pollutants during the total

LD period in 2020 w.r.t to short-term (5-6 year) mean.
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Pre-LD (%)

Phase-1 (%)

Phase-11 (%0)

Total LD (%)

State Name TCN | Terra/ | Aqua/ | TCN Terra/ | Aqua/ | TCN | Terra/ | Aqua/ | TCN Terra/ | Aqua/
AOD AOD AOD AOD AOD AOD AOD AOD
Andhra Pradesh -15 -7 -6 -33 -30 -30 -23 6 -11 -28 -15 -22
Arunachal Pradesh -14 -16 -3 8 14 21 13 -25 -51 8 4 1
Assam -12 -13 -18 9 -10 -12 -3 -13 -29 2 -11 -19
Bihar -4 20 30 -19 -54 -63 -16 -12 -24 -18 -34 -45
Chhattisgarh -20 -1 1 -19 -5 -6 -18 24 15 -20 7 4
Gujarat -1 -14 -24 -4 -33 -47 -15 -16 -27 -9 -25 -37
Haryana 0 11 18 -47 -39 -44 -21 -28 -41 -31 -34 -43
Himachal Pradesh -13 35 -3 -36 -43 -50 -7 -9 8 -18 -28 -21
Jammu & Kashmir 13 4 13 12 3 1 -18 18 15 -3 10 7
Jharkhand -14 21 -1 -30 -40 -39 -16 20 11 -24 -13 -16
Karnataka -9 32 17 -24 -31 -26 -22 -3 -7 -23 -19 -18
Kerala -1 26 24 -10 -30 -45 -20 -20 -9 -14 -27 -32
Madhya Pradesh -11 13 5 -13 -16 -14 -4 -13 -7 -9 -14 -10
Maharashtra -8 -1 -1 -18 11 23 -10 -8 9 -15 3 18
Manipur 45 -37 -37 -4 -26 -24 -20 -5 -6 -7 -21 -19
Meghalaya -6 3 -8 13 -21 -21 -21 -4 -7 5 -15 -16
Mizoram 31 -16 -22 -15 -20 -22 0 -13 -28 -8 -18 -24
Nagaland -1 -23 -19 -12 -18 -19 22 -5 -25 0 -13 -18
Odisha -22 -8 -23 -18 -18 -9 -14 14 12 -18 -5 0
Punjab -14 9 0 -46 -47 -45 -16 -21 -29 -29 -32 -37
Rajasthan 12 14 -3 -10 -42 -33 -2 -34 -37 -6 -37 -35
Sikkim -60 -85 -63 -30 16 70 -36 37 -100 -33 15 62
Tamil Nadu -7 53 49 -18 -40 -40 -23 -6 -22 -20 -23 -32
Telangana -20 12 -2 -24 4 4 -18 3 5 -21 4 4
Tripura 19 -8 -8 28 -23 -33 -28 -30 -39 8 -27 -32
Uttar Pradesh 18 18 22 -27 -49 -54 -18 -6 -9 -22 -25 -30
Uttarakhand -15 13 -11 -23 -58 -56 -38 -5 3 -30 -34 -28
West Bengal -8 17 15 -15 -41 -47 -22 -7 -7 -19 -28 -32
Goa -40 -5 -23 -30 -28 -16 -26 -3 -18 -29 -18 -16
New Delhi -2 14 16 -70 -33 -27 -40 9 13 -54 -17 -19
Table 3: State wise RoC (%) computed during pre-LD, phase-1, phase-11, and total LD for TCN,

Terra/MODIS derived AODsso and Aqua/MODIS derived AODsso.
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5 Conclusions

The present study was carried out an analysis on air pollution in connection with the world’s largest lockdown

imposed by the Government of India to contain the spread of COVID-19. The lockdown was extended as 4

lockdowns with strict lockdown from phase-1 to several relaxations in phase-1V. However, the lockdown was

near-total only in phase-I and 1, with the total shutdown of industrial and transport sectors. Thus, we have only

considered the first two phases in the present study as total lockdown. We used satellite-based observations of

tropospheric TCN, TCC, and AODss pollutant concentrations analysed during the period of lockdown and before

LD against the same period of the preceding year (2019) and also against the short-term mean (2014-2019) for

about 6 years.

Following are the major findings from the present study

Due to India’s strict LD, the TCN levels are dropped significantly to 18 % across the country compared
to the preceding year with a p-value of 0.0007 (confidence interval of 99.93 %).

Further, analysis is emphasized over the TCN hotspot regions of the Indian sub-continent and observed
reduction of (29%) TCN during the total LD period with higher confidence interval.

The TCN levels with respect to short-term climatological mean are markedly dropped over the urban
locations namely New Delhi (- 54%), Bangalore (- 43 %), Chennai (- 41 %), Mumbai (-35 %) and
Hyderabad (- 30 %) respectively with high confidence interval about 99.90 %.

However, during the total LD, an unexpected increase of TCN levels is recorded over the NE region,
which is directly correlated with the seasonal biomass burning in this region. This increase is also
evaluated statistically against 5-year mean TCN and found insignificant with a p-value of 0.19.

The TCC levels are decreased during phase-I over IGP, north, and south regions which could be due to
the absence of transportation and shutdown of industries. Although variability in the TCC levels was
noticed during the total LD period it was tested statistically and found insignificant. Observed high
tropospheric CO levels in the NE region during the phase-1 LD period, which is mainly attributed to the
active fire counts in this region. Also observed low TCC levels in the NE region during phase-11 due to
the diminished effect of fire counts.

Since the IGP region is densely populated and clustered industries, which were shut down during phase-
I of India’s LD, the AODsso levels are attained to near baseline in this region (AOD mean value = 0.2).
This drastic decrease of AODss in the IGP region was statistically evaluated and found very significant
with a p-value of 0.008 with the preceding year (45% decrease) and 50 % reduction against 6-year mean

with a p-value <<0.05.
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e Despite the country’s LD, the AODss levels are high over the CI, which was predominantly dominated
by the transportation of dust storms and prevailing meteorology. Also observed high AODssp over NE
and is associated with active fire counts. However, this increase is significant in the CI with a p-value
of 0.03 and insignificant in the NE region with a p-value of 0.33, which indicates insignificant change
due to LD.

e The LD-induced changes in AODssp measured by the Terra-Aqua/MODIS show a significant change
over the Indian region with very high confidence against the 6-year short-term climatological mean. This
variability helps to improve the regional air quality.

e Further, an analysis of RoC was carried out to depict the regional variability of air pollutants during the

total LD period in 2020 w.r.t to short-term climatological mean.

Therefore, this study successfully demonstrates the satellite-based TCN, TCC, and AODss changes due to India’s
lockdown during 2020 and compared against the preceding year (2019) and also against the short-term mean
picture of 2014-2019.

6 Code/Data Availability

The satellite and reanalysis data used in the present study are freely available and can be downloaded as
summarized in Table 1 with the user’s credentials. Python code is uploaded to an online repository
(https://github.com/aarathimuppalla/airpollution_Id_study.git) and can be accessed through individual login
credentials.
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