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Abstract. Global measurements of absorbing aerosol optical depth (AAOD) are scarce and mostly provided by the ground

network AERONET (AErosol RObotic NETwork). In recent years, several satellite products of AAOD have been developed.

This study’s primary aim is to establish the usefulness of these datasets for AEROCOM (AEROsol Comparisons between

Observations and Models) model evaluation with a focus on the years 2006, 2008 and 2010. The satellite products are super-

observations consisting of 1o × 1o × 30min aggregated retrievals.5

This study consists of two papers, the current one that deals with the assessment of satellite observations and a second paper

that deals with the evaluation of models using those satellite data. In particular, the current paper details an evaluation with

AERONET observations from the sparse AERONET network as well as a global intercomparison of satellite datasets, with a

focus on how minimum AOD (Aerosol Optical Depth) thresholds and temporal averaging may improve agreement between

satellite observations.10

All satellite datasets are shown to have reasonable skill for AAOD (3 out of 4 datasets show correlations with AERONET

in excess of 0.6) but less skill for SSA (Single Scattering Albedo; only 1 out of 4 datasets shows correlations with AERONET

in excess of 0.6). In comparison, satellite AOD shows correlations from 0.72 to 0.88 against the same AERONET dataset.

However, we show that performance vs. AERONET and inter-satellite agreements for SSA improve significantly at higher

AOD. Temporal averaging also improves agreements between satellite datasets. Nevertheless multi-annual averages still show15
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systematic differences, even at high AOD. In particular, we show that two POLDER products appear to have a systematic SSA

difference over land of ∼ 0.04, independent of AOD. Identifying the cause of this bias offers the possibility of substantially

improving current datasets.

We also provide evidence that suggests that evaluation with AERONET observations leads to an underestimate of true biases

in satellite SSA.20

In the second part of this study we show that, notwithstanding these biases in satellite AAOD and SSA, the datasets allow

meaningful evaluation of AEROCOM models.

Copyright statement. TEXT

1 Introduction

Aerosol is an important component of the Earth’s atmosphere that affects the planet’s climate, the biosphere, and human health.25

Aerosol particles scatter and absorb sunlight as well as modify clouds. Anthropogenic aerosol changes the radiative balance

and influences global warming (Angstrom, 1962; Twomey, 1974; Albrecht, 1989; Hansen et al., 1997; Lohmann and Feichter,

1997, 2005). It may negatively affect solar power generation (Li et al., 2017; Labordena et al., 2018). Aerosol can transport

soluble iron, phosphate and nitrate over long distances and provide nutrients for the biosphere (Swap et al., 1992; Vink and

Measures, 2001; McTainsh and Strong, 2007; Maher et al., 2010; Lequy et al., 2012) . Aerosol can penetrate deep into lungs30

and may carry toxins or serve as disease vectors (Dockery et al., 1993; Brunekreef and Holgate, 2002; Ezzati et al., 2002;

Smith et al., 2009; Beelen et al., 2013; Ballester et al., 2013).

Aerosol reflects visible radiation from the Sun, and some aerosol also absorbs it (Dubovik et al., 2002; Omar et al., 2005).

The species that absorb the most visible sunlight are, in order of importance: black carbon, dust and brown carbon. Of these,

black carbon is expected to exert a significant positive radiative forcing on the climate (Bond et al., 2013; Myhre et al., 2013).35

Absorbing aerosol’s impact is mostly through heating of the atmospheric profile (direct effect) and subsequent stabilisation or

instabilisation (Johnson et al., 2003) of the boundary layer (semi-direct effect). This affects cloud formation (Koren et al., 2008;

Brioude et al., 2009) and precipitation (Hodnebrog et al., 2016; Samset et al., 2016; Hodzic and Duvel, 2018). In particular

over bright surfaces (ice, deserts, clouds) the forcing due to absorbing aerosol can be significant (Haywood and Shine, 1995;

Graaf et al., 2012; Tegen and Heinold, 2018).40

On regional scales, biomass burning smoke has been implicated in increased tornado severity (Saide et al., 2015) while dust

was observed to reduce cyclones (Chen et al., 2016), black carbon may affect the Hadley cell circulation (Allen et al., 2012;

Tosca et al., 2013), and black carbon deposition can reduce glacier albedo (Thomas et al., 2017; Zhang et al., 2017; Dang et al.,

2017) which may speed up glacier melt.

Currently, absorbing aerosol can be measured in a number of ways. AERONET (Holben et al., 1998) is a global but spatially45

sparse network of sun photometers that includes two scanning protocols (almucantar and hybrid) that allow inversion of mea-
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sured radiances into particle size distributions and refractive indices (Dubovik and King, 2000). From this inversion, columnar

AAOD can be derived. There are also networks (Laj et al., 2020) of (filter-based) absorption photometers, as used in EMEP

(European Monitoring and Evaluation Programme), ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) and

IMPROVE (Interagency Monitoring of Protected Visual Environments). These networks are concentrated in Europe and North50

America, and there is no global coverage. Moreover, these are surface measurements that do not measure the full atmospheric

column. Finally, absorption photometers like the SP2 were used on flight campaigns like HIPPO (Schwarz et al., 2010, 2013;

Wang et al., 2014). Again, this yields spatially sparse in-situ observations of absorbing aerosol. While these measurement

networks have proven to be very important to our understanding of absorbing aerosol, a satellite derived AAOD would con-

tribute greatly by adding spatial context in regions with ground-based instruments, and measurements in regions without such55

instruments. As it now stands, we have almost no observations of absorbing aerosol over the oceans, in particular in continental

outflow regions.

However, in recent years a number of satellite AAOD products have been developed, often based on POLDER (Polarization

and Directionality of the Earth’s Reflectances) measurements. For example, Lacagnina et al. (2015) used POLDER data to

evaluate SSA from AEROCOM models over oceans; Peers et al. (2016) evaluated over ocean above-cloud SSA in AEROCOM60

models for the African fire season; Lacagnina et al. (2017) estimated the global direct radiative effect of aerosol and Hasekamp

et al. (2019b) estimated aerosol-cloud interactions. Chen et al. (2018, 2019) assimilated POLDER AOD and AAOD observa-

tions to estimate aerosol emissions while Tsikerdekis et al. (2021) showed the benefit of jointly assimilating POLDER AOD,

AAOD and SSA observations. Kacenelenbogen et al. (2019) used combinations of A-TRAIN sensors to infer AAOD over

clouds and estimate short-wave direct aerosol effects.65

The challenge in retrieving AAOD from satellite is made clear by the challenge in retrieving AAOD from AERONET

measurements. AERONET AAOD observations are known to be more uncertain than AOD observations. Dubovik et al. (2000)

estimated that AERONET SSA uncertainties for AOD ≤ 0.2 at 440 nm would be at least 0.05, using numerical sensitivity

tests. A recent in-depth estimate of the uncertainty in Inversion V3 data (Sinyuk et al., 2020) for four different sites suggested

SSA uncertainties at AOD (at 440 nm) = 0.2 from 0.037 to 0.048 at 440 nm and from 0.035 to 0.045 at 675 nm. It is not clear70

whether these uncertainties should be interpreted as site-specific biases or random errors. This distinction matters as random

errors can be reduced through appropriate averaging of data. Large differences between AERONET SSA at low AOD and

in-situ measurements were indeed confirmed by Andrews et al. (2017). Even at higher AOD (≥ 0.5), Dubovik et al. (2000)

suggested SSA errors of at least 0.03. Sinyuk et al. (2020) suggest smaller SSA uncertainties of 0.017 to 0.023 at 440nm

and 0.015 to 0.026 at 675 nm for AOD (at 440 nm) = 0.6 . Given the challenges in satellite remote sensing compared to75

ground-based remote sensing, satellite AAOD and SSA products can be expected to have large errors as well.

GCOS requirements (WMO, 2011) for SSA specify an accuracy within 0.03 and a stability per decade within 0.01, for

a horizontal resolution of 5–10 km and a temporal resolution of 4hr. These requirements appear based on typical regional

and yearly variations in SSA. However, SSA requirements are different for different applications (monitoring, trends, model

evaluation, process studies) while the GCOS requirements are meant to provide a general broad estimate (Popp et al., 2016).80

In part 2 of our study we will show that current satellite AAOD and SSA capabilities allow useful evaluation of models.
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For measurements to be useful in model evaluation, their errors after averaging (spatially, temporally) need to be smaller

than the model errors the observations should be able to identify. A traditional evaluation of satellite datasets with AERONET

data is unlikely to establish this, partly because the model aspect is ignored, partly because AERONET covers some very

interesting aerosol source regions (e.g. oceans, most deserts and boreal fire scapes) only sparsely. In the first part of this study85

(the current paper) we complement the traditional evaluation with a satellite intercomparison (in itself not unusual) to broaden

our understanding of satellite performance over diverse regions. In the second part (a follow-up paper), we present a novel

analysis that combines satellite evaluation & intercomparison with model evaluation, and allows assessment of model biases

in the context of satellite biases.

We will use satellite data aggregated over 1o×1o×30min as it allows spatio-temporal collocation amongst datasets (satellite,90

AERONET, AEROCOM) which should strongly reduce representation errors in our analyses (Schutgens et al., 2016b, a). All

analyses, even of multi-year averages, will start from spatio-temporally collocated datasets.

This paper is the result of discussions in the AeroCom (AEROsol Comparisons between Observations and Models, https://

aerocom.met.no) and AeroSat (International Satellite Aerosol Science Network, https://aero-sat.org) communities. Both are

grass-roots communities, the first organised around aerosol modellers, and the second around retrieval groups. They meet95

every year to discuss common issues in the field of aerosol studies.

The observational datasets used in this study are described in Sect. 2. The collocation and analysis methodology are described

in Sect. 3. A first look at the satellite datasets is presented in Sect. 4. Evaluation of satellite AOD, AAOD and SSA with

AERONET is performed in Sect 5 and a more detailed intercomparison of satellite data is shown in Sect. 6. A summary and

conclusions can be found in Sect. 7.100

2 Datasets

2.1 Remote sensing data

Original satellite L2 data (estimates of geophysical variables on the spatio-temporal sampling pattern of the radiances, see

also Mittaz and Merchant (2019)) were aggregated unto a regular spatio-temporal grid with spatio-temporal grid-boxes of

1o × 1o × 30min. The resulting super-observations (1o × 1o × 30min aggregates) are more representative of global model grid-105

boxes (∼ 1o−3o in size) while allowing accurate temporal collocation with other datasets. At the same time, the use of super-

observations significantly reduces data amount without much loss of information (at the scale of global model grid-boxes). A

list of products used in this paper is given in Table 1. A colour legend to the different products can be found in Fig. 1. More

explanation of the aggregation procedure can be found in Appendix A.

Super-observations of AOD and AAOD at the same location and time were derived from the same set of L2 data and therefore110

measure the exact same scene (note an exception for GRASP dataset described below).

The main data are AOD and AAOD at 550 nm, the wavelength at which models typically provide (A)AOD. If (A)AOD was

not retrieved at this wavelength, it was logarithmically interpolated or extrapolated from surrounding wavelengths.
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2.1.1 FL-MOC

FL-MOC (Fu Liou - MODIS, OMI, CALIOP) is a technique for combining CALIOP aerosol backscatter, MODIS spectral115

AOD, and OMI AAOD retrievals for estimating full spectral sets of aerosol radiative properties (SSA, asymmetry parameter

and AOD). It is not a retrieval per se but a consistent reinterpretation of the combined data within their stated uncertainties.

Details are given in Kacenelenbogen et al. (2019, Appendix A). In brief, FL-MOC uses the L2 retrieved aerosol properties

as input to a simple look-up table retrieval of aerosol types and concentrations, under the assumption that aerosol properties

are consistent with the L2 aerosol observations within the stated uncertainties of each sensor’s retrieval. This technique also120

assumes that the surface reflectance and clouds are properly treated in the underlying retrievals.

Over land, FL-MOC uses OMAERUV AAOD, over ocean OMAERO AAOD. OMAERO is an advanced multi wavelength

UV-VIS algorithm that uses 17 wavelengths in the 331-500 nm range in order to calculate the aerosol optical depth and to

discriminate between various types of aerosols. It is an extension of the near UV TOMS method (see the OMAERUV product)

to a wider wavelength range. The OMAERO algorithm is applied over all surface types, however its primary objective is to125

derive aerosol properties over the oceans due to the limited availablity of spectral surface reflectivity databases over land.

2.1.2 OMAERUV

The Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite was deployed in July 2004. It is a high resolution spectro-

graph that measures the upwelling radiance at the top of the atmosphere in the ultraviolet and visible (270–500 nm) regions of

the solar spectrum (Levelt et al., 2006). It had a 2600 km wide swath and provides daily global coverage at a spatial resolution130

varying from 13× 24 km at nadir to 28× 150 km at the extremes of the swath. OMI hyperspectral measurements are used as

input to inversion algorithms to retrieve ozone vertical distribution and column amounts of O3, NO2, SO2, HCHO, BrO, and

OClO. OMI observations are also used to retrieve information on aerosols and clouds.

Aerosol properties in the near UV are derived from OMI observations at 354 and 388 nm (Torres et al., 2007). The OMI

UV aerosol algorithm (OMAERUV) takes advantage of the large sensitivity to aerosol absorption in the near UV discovered135

in the mid-90’s using heritage TOMS instruments (Herman et al., 1997), and the low reflectance of all ice/snow free terrestrial

surfaces, which facilitates the aerosol characterization over all arid and semi-arid regions of the world. The OMAERUV two-

channel algorithm simultaneously retrieves AOD and SSA at 388 nm. The main sources of uncertainty are assumed aerosol

layer height, and cloud contamination, the latter associated with the sensor’s coarse spatial resolution. The OMAERUV fifteen-

year record of AOD has been validated with AERONET observations (Torres et al., 2013; Ahn et al., 2014). The SSA record has140

also been evaluated by comparisons to AERONET and SKYNET ( https://www.skynet-isdc.org/index.php)

ground-based retrievals (Jethva et al., 2014, 2019).

2.1.3 POLDER-SRON

The POLDER-3 instrument was a multi-angle, multi-wavelength polarimeter flying aboard the Polarization & Anisotropy of

Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. It was launched in 2004145
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and was a part of the satellite constellation A-Train until 2009. Initially designed to be operated for 2 years, POLDER-3

performed its measurements until late 2013, when it was decommissioned. PARASOL provides measurements of a ground

scene under (up to) 16 different viewing geometries in 9 spectral bands (443, 490, 565, 670, 763, 765, 865, 910, 1020 nm).

Linear polarization measurements (Stokes parameters Q and U) are performed in 3 spectral bands (490, 670, 865 nm). Its

spatial resolution at the nadir was about 6 km, and its swath width was 2400 km.150

An advanced retrieval algorithm making full use of the information content of the multi-angle photopolarimetric observa-

tions from POLDER-3/PARASOL has been developed at SRON-Netherlands Institute for Space Research. The algorithm has

large flexibility in defining the aerosol properties included in the retrieval state vector (Fu and Hasekamp, 2018). The aerosol

size distribution is described by the sum of an arbitrary number log-normal functions, called modes, where for each mode the

effective radius (reff), effective variance (veff), aerosol column number, real and imaginary parts of the refractive index (in155

the form of coefficients of spectrally dependent functions), fraction of spherical particles assuming the mixture of spheres and

spheroids proposed by Dubovik et al. (2006), and the Aerosol Layer Height can (in principle) be retrieved. In the setup used in

the present study, the POLDER-SRON algorithm yields the different microphysical characteristics of a bi-modal aerosol size

distribution (fine and coarse mode), with the fraction of spheres only be retrieved for the coarse mode (fine mode assumed to

consist only of spheres) and the Aerosol Layer Height is fixed to 1km. For retrievals over ocean, the state vector also includes160

the wind speed, chlorophyll-a concentration, and white-cap fraction, while for retrievals over land, the state vector includes the

parameters describing the surface BRDF (Bidirectional Reflectance Distribution Function) (Litvinov et al., 2011). The retrieval

is based on an iterative fitting of a linearized radiative transfer model (Hasekamp and Landgraf, 2005) to the PARASOL data,

using a cost function containing a misfit term between the forward model and measurement and a regularization term using a

priori estimates of values of some of the retrieved parameters. The algorithm, including an application to PARASOL measure-165

ments over ocean, is described in Hasekamp et al. (2011). More recent refinements are described by Stap et al. (2015); Wu et al.

(2015); Lacagnina et al. (2015); Fu and Hasekamp (2018); Fu et al. (2020). Retrieval results from the SRON algorithm have

been used for aerosol type determination by Russell et al. (2014), in studies related to aerosol absorption and direct radiative

effect by Lacagnina et al. (2015, 2017), and aerosol-cloud interactions by Hasekamp et al. (2019b), and data assimilation by

Tsikerdekis et al. (2021). Currently, the algorithm has been applied to one year (2006) of global aerosol data.170

2.1.4 POLDER-GRASP

For a description of the POLDER instrument, see the previous subsection.

GRASP (Generalized Retrieval of Aerosol and Surface Properties) is a unified retrieval algorithm for atmosphere properties

from diverse remote sensing observations (Dubovik et al., 2011, 2014), based on earlier work by Dubovik and King (2000);

Dubovik et al. (2002, 2006) for AERONET Inversions.175

In the current paper, retrievals from the so-called “models” dataset are used. Aerosol is assumed to be an external mixture

of five different aerosol components which are retrieved together with spectral parameters of surface BRDF and BPDF (Bidi-

rectional Polarisation Distribution Function). The aerosol is assumed to be a mixture of spherical and non-spherical particles.

Each fraction is characterized by particle size distributions similarly to AERONET retrievals. The non-spherical component is
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modeled as a mixture of randomly oriented spheroids with fixed shape distribution (Dubovik et al., 2006). The details of the180

“models” approach are discussed by Lopatin et al. (2020) and Chen et al. (2020).The actual inversion uses multi-pixel retrieval

(Dubovik et al., 2011) where horizontal pixel-to-pixel variations of aerosol and day-to-day variations of surface reflectance are

enforced to be smooth.

The full archive of POLDER/PARASOL observations was retrieved using GRASP and can be found at https://www.grasp-

open.com. In addition to the “models” dataset, two other datasets are available (“optimized” and “high-precision”) that use185

slightly different assumptions in the retrieval. The detailed discussion and validation of all three 0.1 degree PARASOL/GRASP

retrievals are provided by Chen et al. (2020). The "models" dataset used in this paper is considered the most applicable for a

wide range of circumstances.

The dataset used in the current paper is aggregated to 1 degree spatial resolution (details are listed at https://www.grasp-

open.com). The "models" dataset provides AOD and AAOD aggregated from slightly different L2 samplings: an additional190

minimum AOD threshold is used when aggregating AAOD. To select data of higher quality, AAOD retrievals were used only

for cases with sufficient aerosol loading. The same AOD threshold is used for SSA as well. Specifically, a minimum AOD (at

440 nm) threshold of 0.3 over land and 0.02 over ocean were applied (the threshold over ocean is probably too low to assure

high quality AAOD but higher thresholds result in significant data loss).

In the current study we prefer to use aggregated AOD and AAOD data that describe the exact same scene, and this is the195

case for the FL-MOC, OMEARUV and POLDER-SRON datasets mentioned earlier. For the GRASP product, we decided to

assume that the aggregated SSA represents the same scene as the AOD aggregate and recalculated an AAOD from that AOD

and SSA. Consequently, the AAOD product (indicated as GRASP-M) presented in this paper is different from the AAOD found

in the official L3 "models" product. In-situ measurements (Delene and Ogren, 2002; Andrews et al., 2011, 2017; Schmeisser

et al., 2018) have suggested a change in SSA at lower AOD so our SSA assumption may introduce additional biases. However,200

GRASP-M AAOD evaluated better against AERONET than "models" AAOD which showed a high bias vs. AERONET due to

the aforementioned minimum AOD threshold.

For this study the L3 GRASP data were additionally filtered based on the FittingResidual field which was required to be

smaller than 0.05 (over Land) or 0.1 (over Ocean). This subset evaluates substantially better for AOD retrievals and somewhat

better for AAOD retrievals than the full dataset.205

2.1.5 AERONET

AERONET (Holben et al., 1998) DirectSun V3 L2.0 (Giles et al., 2019; Smirnov et al., 2000) and Inversion V3 L1.5 &

2.0 data were downloaded from https://aeronet.gsfc.nasa.gov, logarithmically interpolated to values at 550 nm

and aggregated by averaging over 30 minutes. The DirectSun dataset contains only AOD (at multiple wavelengths). These

observations are based on direct transmission measurements of solar light and have a low uncertainty of ±0.01 (Eck et al.,210

1999; Schmid et al., 1999), at 400nm and larger.

The Inversion dataset contains AAOD and SSA (at multiple wavelengths) based on measurements of scattered solar light

from multiple directions. This inversion uses radiative transfer calculations (Dubovik and King, 2000) and yields larger errors
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than the DirectSun measurements. In particular, Dubovik et al. (2000) showed that SSA errors decrease with increasing AOD

and estimated 440nm SSA errors of ±0.03 for water-soluble aerosol at 440nm AOD ≥ 0.2 although for dust and biomass215

burning aerosol higher AOD ≥ 0.5 were needed. These error estimates were based on numerical calculations. A recent in-

depth estimate of the uncertainty in Inversion V3 data (Sinyuk et al., 2020) suggested those thresholds to be 440nm AOD

> 0.3 and ≥ 0.45, respectively. For an examination of the impact of geometrical configuration on SSA observations, see Torres

et al. (2014). Schafer et al. (2014) showed that AERONET SSA retrievals were lower by 0.011 than flight campaign data (on

average). Andrews et al. (2017) also compared flight campaign measurements to AERONET SSA and found that the data were220

usually within the expected errors, although at low AOD ≤ 0.2 significantly lower SSA values were observed by AERONET.

A confounding issue for the evaluation of SSA (or, for that matter, AAOD) datasets is that there is no established gold standard.

The Inversion dataset also contains AOD (from Direct Sun retrievals) which is actually used in the inversion. Here we only

use those AOD values in the Inversion dataset that have corresponding AAOD and SSA values, so that aggregate values always

describe the same scene.225

Inversion L2.0 is a subset of L1.5 (which contains almost 30× more observations), based on further cloud screening and the

requirement that AOD at 440nm ≥ 0.4. This last criterion results in a minimum AOD at 550nm of 0.25 in the Inversion L2.0

product.

Since an individual AERONET site is not necessarily representative of a 1o × 1o grid-box, satellite evaluation may be

negatively affected. To select only sites with high representativity we use a list published in Kinne et al. (2013) as described230

in Schutgens et al. (2020), where we also tested this representativity (using 14 satellite AOD products). The Kinne list was

developed with the AERONET DirectSun product (i.e. AOD) in mind but a high-resolution modelling study by Schutgens

(2020) suggests that spatial representativity for AOD and AAOD observations can differ substantially for individual sites. We

chose to use the Kinne list because it also includes information on maintenance quality, likely more important for Inversion

than DirectSun retrievals.235

2.1.6 How independent are these satellite products?

An interesting question is how independent these satellite products are.

The GRASP and SRON algorithms are independent retrieval codes with many specific differences in the implementation.

First, in the present study POLDER-SRON retrieves parameters of bi-modal lognormal size distribution and complex refractive

index for each size mode, while POLDER-GRASP-M retrieves the concentrations of five aerosol components with assumed240

properties of each component (Chen et al., 2020; Lopatin et al., 2020). Second, GRASP and SRON use the same mathematical

function for the BRDF over land (Litvinov et al., 2011) but estimate the parameters to this function independently. In both

algorithms, aerosol and surface properties are estimated simultaneously. Third, there are significant differences in use of a

priori constraints. POLDER-SRON follows Phillips-Tikhonov regularization (Phillips, 1962; Tikhonov, 1963) including a

priori estimates for most of the retrieved state vector parameters (a globally constant value is used) and a flexible strength245

of the regularization term. The GRASP algorithm is based on the least-square multi-term approach (see Dubovik et al. (2011))

and uses several a priori constraints simultaneously. Specifically, GRASP "models" uses smoothness constraints on the spectral
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dependence of surface BRDF parameters. Fourth, the SRON algorithm retrieves from measurements of individual pixels while

the GRASP algorithm retrieves from measurements of multiple pixels simultaneously, applying spatio-temporal constraints in

the process. For example, over land constraints were used to limit temporal variability of retrieved BRDF parameters as well250

as spatial variability of aerosol retrieved parameters (see Dubovik et al. (2011); Chen et al. (2020)).

The FL-MOC product uses OMAERUV AAOD as input over land but FL-MOC only uses OMAERUV AAOD as an a-priori

and assigns this a sizeable uncertainty. CALIOP backscatter is expected to provide a constraint on SSA, and consequently

AAOD. As a matter of fact, our analysis shows that FL-MOC and OMAERUV exhibit rather low correlations for AAOD (and

SSA). This suggests that the OMAERUV a-priori does not lead to a strong dependency of FL-MOC on OMAERUV. On the255

other hand, it also suggests that at least one of these products contains sizeable errors.

3 Collocation & analysis methodology

To evaluate and intercompare the remote sensing datasets, they will need to be collocated in time and space to reduce represen-

tation errors (Colarco et al., 2014; Schutgens et al., 2016b, 2017). In practice this collocation is another aggregation (performed

for each dataset individually) to a spatio-temporal grid with slightly coarser temporal resolution (1 or 3 hours, the spatial grid-260

box size remains 1o × 1o). This is followed by a masking operation that retains only aggregated data if it exists in the same

grid-boxes for all involved datasets. More details can be found in Appendix A.

We need to allow some flexibility in the time separation between data (here 3 hours) to ensure sufficient numbers of collo-

cated data pairs for further analysis. Schutgens et al. (2020) showed that shorter time separations greatly limited the number of

pairs but did not substantially alter the correlation of satellite AOD with AERONET. On the other hand, longer time separations265

appear to negatively affect the correlation of satellite AAOD with AERONET, see Fig. 2. The analysis shows that satellite AOD

correlation with AERONET Inversion data slowly decreases as the collocation criterion is relaxed from 3 to 24 hours. However,

satellite AAOD shows a sharp drop in correlation with AERONET at 6 hours (OMAERUV is the exception, the correlation is

already low and barely changes). We surmise this is due to plumes of absorbing aerosol drifting over the sites, requiring tight

temporal constraints on collocation. Consequences of this finding will be further discussed in Sect. 7.270

As the FL-MOC dataset, based on CALIOP measurements, is smaller than the other satellite datasets, we were compelled

to collocate FL-MOC with AERONET within 2o instead of 1o. Even so, the data count for the FL-MOC evaluation is low.

After spatio-temporally collocating two or more datasets, the data may be further averaged in space and/or time for analysis

purposes. Spatio-temporally averaged SSA is always derived from averaged AOD and AAOD:

SSA = 1−AAOD/AOD. (1)275

During the evaluation of products with AERONET, a distinction will be made between either land or ocean grid-boxes in

the common grid. A high resolution land mask was used to determine which 1o × 1o grid-box contained at most 30% land

(designated an ocean box) or water (designated a land box). Most ocean boxes with AERONET observations will be in coastal

regions, with some over isolated islands.
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3.1 Taylor diagrams280

A suitable graphic for displaying multiple datasets’ correspondence with a reference dataset (’truth’), is provided by the Taylor

diagram (Taylor, 2001). In this polar plot, each data point (r,φ) shows basic statistical metrics for an entire dataset. The distance

from the origin (r) represents the internal variability (standard deviation) in the dataset. The angle φ through which the data

point is rotated away from the horizontal axis represents the correlation with the reference dataset, which is conceptually

located on the horizontal axis at radius 1 (i.e. every distance is normalised to the internal variability of the reference dataset). It285

can be shown (Taylor, 2001) that the distance between the point (r,φ) and this reference data point at (1,0) is a measure of the

Root Mean Square Error (RMSE, unbiased). A line extending from the point (r,φ) is used to show the bias versus the reference

dataset (positive for pointing clock-wise).The distance from the end of this line to the reference data point is a measure of the

Root Mean Square Difference (RMSD, no correction for bias).

3.2 Uncertainty analysis using bootstrapping290

Our estimates of error metrics are inherently uncertain due to finite sampling. If the sampled error distribution is sufficiently

similar to the underlying true error distribution, bootstrapping (Efron, 1979) can be used to assess uncertainties in e.g. biases or

correlations due to finite sample size. Bootstrapping uses the sampled distribution to generate a large number of synthetic sam-

ples by random draws with replacement. For each of these synthetic samples, a bias etc. can be calculated and the distribution

of these biases provides measures of the uncertainty, e.g. a standard deviation, in the bias due to statistical noise. Bootstrapping295

has been shown to be reliable even for relatively small sample sizes (that is the size of the original sample, not the number of

bootstraps), see Chernick (2008). In this study, the uncertainty bars in some figures were generated by bootstrap analysis.

If the sampled error distribution is different from the true error distribution, bootstrapping will likely underestimate uncer-

tainties. Sampled error distributions may be different from the true error distribution because the act of collocating satellite

and AERONET data favours certain conditions. E.g. the effective combination of two cloud screening algorithms (one for the300

satellite product, the other for AERONET) may favour clear sky conditions and reduce our sampling of errors due to cloud

contamination. This uncertainty due to sampling is unfortunately hard to assess, see e.g. Schutgens et al. (2020).

As an example of uncertainty due to sampling, we present Fig. 3 in which an evaluation of the current satellite AOD data

with Inversion L2.0 data (only those AOD that have corresponding AAOD inversions, which constrains AOD at 440nm > 0.4)

shows substantial shifts compared to DirectSun L2.0. As the uncertainty ranges indicate, the changes in biases are not due to305

statistical noise. Neither is this due to differences in collocated DirectSun and Inversion L2.0 AOD values, that agree very well.

Rather, the issue is that AERONET Inversion data are an unrepresentative subsample of the DirectSun data (Inversion data are

skewed to high AOD). It is unclear what this means for the AAOD and SSA evaluation but readers should be aware of this

unaccounted-for sampling issue that may introduce biases.
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3.3 Error metrics for evaluation310

We will use the usual global error statistics (bias, standard deviation, Pearson correlation, regression slopes), treating all data

as independent. Regression slopes were calculated with a robust Ordinary Least Squares regressor (OLS bisector from the IDL

sixlin function, Isobe et al. (1990)). This regressor is recommended when there is no proper understanding of the errors in

the independent variable, see also Pitkänen et al. (2016).

4 A first look at the satellite products315

Multi-year averages of satellite AAOD and their differences are shown in Fig. 4. The AAOD maps can only be compared with

caution, as they are derived from products with different temporal sampling. The differences, on the other hand, are based on

collocated data and confirm major features. The products all agree on a major AAOD hotspot from (likely) African Savannah

biomass burning. Three products agree on AAOD hotspots in China and India, that are known polluted regions (OMAERUV,

which is relatively featureless, is the exception. We surmise this is due to the large pixelsize of the OMI instrument, see320

Table 1, which will not resolve small scale structure in AAOD. The existence of such small scale structure was inferred from

Fig. 2). POLDER-GRASP-M and OMAERUV show a clear AAOD hotspot due to Amazonian biomass burning. POLDER-

GRASP-M estimates relatively high values over land, and the ocean at high northern latitudes. OMAERUV shows relatively

low AAOD over land but high over the entire ocean. FL-MOC clearly estimates higher AAOD over the Sahara than either

POLDER-GRASP-M or OMAERUV. POLDER-SRON estimates relatively high AAOD over the Rocky Mountains, the Andes325

and Australia. Unfortunately, even in multi-year averages significant differences in regional AAOD between the products are

observed, in excess of 50%. Figure S1 shows the corresponding SSA maps. As expected, POLDER-GRASP-M has relatively

low SSA and OMAERUV relatively high SSA over land. FL-MOC has the highest SSA over ocean of all products. As the

satellite AOD are fairly similar, lower values of AAOD translate into higher values of SSA.

One caveat is that AAOD and SSA retrievals are likely to be better (more accurate and precise) at high AOD. In the above330

analysis, no account was taken of AOD levels and the products were discussed as they are. The impact of AOD will be discussed

later, when discussing the evaluation with AERONET in Sect. 5.2 and the satellite intercomparison in Sect. 6.

5 Evaluation of satellite products with AERONET

Taylor plots of the performance of the satellite products are shown in Fig. 5. Satellite AOD is evaluated against AERONET

DirectSun L2.0. Satellite AAOD & SSA, are evaluated against AERONET Inversion L2.0 (which constrains AOD at 440nm335

> 0.4 and provides much less data than DirectSun). All products show high correlation with AERONET AOD (r ≥ 0.76),

although the correlations found are lower than those found in Schutgens et al. (2020) for several MODIS Aqua products (0.87-

0.88). Correlations for AAOD and SSA are lower than for AOD suggesting that it is more challenging to retrieve absorbing

qualities.
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Interestingly, POLDER-SRON’s SSA correlates significantly better with AERONET than POLDER-GRASP-M’s but this340

is a sampling effect: once both products are collocated together, POLDER-GRASP-M’s SSA correlation with AERONET

increases from 0.41 to 0.69. The explanation for this is not entirely clear, although it turns out that POLDER-GRASP-M eval-

uates poorer with AERONET for 2010 than for 2006 and 2008 (POLDER-SRON is currently limited to 2006, see Table 2.1).

Although the poorer evaluation for 2010 can be seen in AOD, AAOD and SSA, it is only statistically significant for SSA.

The impact of statistical noise on the AAOD evaluation is explored in Fig. 6. Using a bootstrapping technique, the spread in345

correlation and standard deviation were explored. For most datasets, the results seem fairly robust, except for FL-MOC which

yielded only 24 data points. A proper intercomparison of products requires collocation (of all the satellite data), which reduces

available cases even further. Figure S2 shows that results are not very different from Fig. 5, but the statistical noise increases

substantially. The sampling noise on such a small subset should be even larger, see also Fig. 3 and Schutgens et al. (2020). For

a sense of perspective, 48 data points represents less than 0.0008% of the total POLDER-GRASP-M data amount used in this350

paper.

5.1 Evaluation and intercomparison of AOD

In Fig. 7, we provide more detail on the satellite AOD products and their evaluation against AERONET DirectSun L2.0 AOD.

In the central column, we show the products themselves, averaged over 1, 2 or 3 year(s), depending on availability (see Table 1).

Note that the products exist for different years and even for the same years products will have different temporal samplings so355

comparisons should be made with caution (Colarco et al., 2014; Schutgens et al., 2016a). In the left and right column, we show

satellite data collocated with AERONET. On the left-hand side is a scatterplot of the data (with associated statistics provided)

and on the right-hand side is a map of multi-year difference with AERONET (provided at least 32 data points were available

per site).

The scatter plots show good correlation with AERONET. The POLDER products show higher correlations and slopes closer360

to one (1) than FL-MOC and OMAERUV. Nevertheless, differences in evaluation seem rather small, which unfortunately

cannot be said for the global distributions of AOD. POLDER-GRASP-M has rather high AOD over land and OMAERUV

has rather high AOD over ocean (note that the satellite data themselves are not collocated). The multi-year differences with

AERONET suggest that OMAERUV overestimates everywhere except in some regions with strongly absorbing aerosol. An

intercomparison of satellite AOD with Aqua-DT is presented in Fig. S3 and suggests typically higher estimates over (Southern365

Hemisphere) Land for the POLDER products and over Ocean for OMAERUV. Note that Aqua-DT is not without significant

regional biases, see Schutgens et al. (2020).

Figure 8 shows results when bias (sign-less) and correlation per site (that yielded at least 32 collocations) are averaged over

all sites, for each satellite product. The same 52 sites are used for all datasets although each product is individually collocated

with AERONET. For FL-MOC, no site provided at least 32 observations and it is not included in the analysis. For POLDER-370

SRON, only 18 sites provided at least 32 collocated observations and it was similarly excluded. As was also shown in Schutgens

et al. (2020), OMAERUV shows rather large biases compared to the other AOD products. POLDER-GRASP-M, on the other
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hand, shows the smallest bias. The filtering of GRASP retrievals described in Sect. 2.1 plays a significant role in this result

(without filtering, POLDER-GRASP-M shows a bias twice as large).

5.2 Evaluation of AAOD and SSA375

Figure 9 provides more detail on the evaluation of satellite (A)AOD & SSA products against AERONET Inversion L2.0 (which

constrain AOD at 440nm > 0.4). In the first three columns, we show scatter plots for respectively AOD, AAOD and SSA. In

the last column we show SSA differences with AERONET as a function of AERONET AOD (Inversion L1.5). All products

underestimate AERONET AOD and AAOD, although only by a small amount in the case of POLDER-GRASP-M. More

importantly, AAOD correlations can be low as 0.34 (OMAERUV) and regression slope can deviate substantially from 1 (0.6380

for OMAERUV). In contrast, some products underestimate SSA while others over-estimate it. Due to data sparsity (e.g. for

POLDER-GRASP-M, the count dropped from 10454 to 423), it is not possible to do an analysis per AERONET site (as was

done for AOD) and see how the global bias relates to regional biases. Bootstrap analysis suggest that results are fairly robust

against statistical noise (except FL-MOC, see also Fig. 6).

The right-most column in Fig. 9 shows SSA difference as a function of (AERONET) AOD. To ensure the largest possible385

range in AOD values Inversion L1.5 instead of L2.0 is used. Especially at lower AOD, this dataset will have larger errors in

AAOD and SSA than L2.0. Interestingly, as AOD increases, all satellite products seem to agree better with AERONET (for

FL-MOC, the bin with largest AOD values is affected by a very low data count). This is of course as one would expect. For

smaller AOD, there is increasingly more spread although the difference distribution remains fairly unbiased. The exception is

POLDER-GRASP-M which shows increasingly lower SSA than AERONET at low AOD. We suggest that it is rather unlikely390

that three different satellite products have a similar SSA bias at low AOD as AERONET (and hence show no bias in the

difference with AERONET) and that this low bias in POLDER-GRASP-M analysis is real. However, a better understanding of

the nature of errors (bias vs. random) in AERONET SSA at low AOD is desirable.

Summarizing, there is skill in satellite AAOD and SSA but compared to AOD the correlations with AERONET are sub-

stantially lower. POLDER-SRON is the exception, with similar and fairly high correlations (∼ 0.75) for all three parameters.395

However, it seems to underestimate AAOD by ∼ 25% at high AAOD (slope of 0.76 in the AAOD scatter plot). OMAERUV

appears to show the largest deviations from AERONET (low correlations and slopes) but its overall error statistics (mean and

standard deviation) is not too different from the other products. Results for FL-MOC may be a statistical fluke due to the low

data count. POLDER-GRASP-M shows quite high correlations for AOD (0.86) and AAOD (0.6) with reasonable slopes but

has a very low correlation with AERONET for SSA (0.41), but this seems to depend strongly on sampling as discussed at the400

start of this section. In addition, it appears to systematically underestimate SSA at low AOD. Yet another aspect to this dataset

(not visible in any of the analysis shown) is that it appears to have a hard SSA cut-off as SSA values larger than 0.99 do not

occur.

A profound problem is the paucity of data. Even for POLDER-GRASP-M, we can only evaluate its performance (against

AERONET) for less than 0.006% the total number of available observations. Is this sufficient to make meaningful statements405

about the performance of a product at large? In Schutgens et al. (2020), we showed that the process of collocation can skew
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error statistics (by changing the sampling) to the point that it becomes hard to meaningfully distinguish performance of several

products. That study was done for AOD which allows much higher numbers of collocated data with AERONET than AAOD.

To elucidate this, we compare the difference in SSA between the two POLDER products (collocated within 3 hours, con-

sidering AOD ≥ 0.25 only) for three different samplings. First, we look at global POLDER SSA statistics. Secondly, we look410

at POLDER SSA statistics over AERONET sites only. Thirdly, we look at POLDER SSA statistics that are collocated with

AERONET observations. Figure 10 shows the associated difference distributions. Using various non-parametric statistical tests

(Mann-Whitney U, Student’s t, Kolmogorov-Smirnov) we can show that the distribution means for the first and third sampling

are significantly different. Not only that, but the mean difference in SSA for the first sampling is 2.6 as large (-0.043 vs. -0.017)

as for the third sampling. As POLDER-SRON is biased high and POLDER-GRASP-M is biased low vs AERONET, the corol-415

lary to this is of course that at least one of the products has a larger bias vs the truth globally than can be seen in the AERONET

observations. Conversely this suggests that the AERONET Inversion dataset does not allow a truly global evaluation of satellite

datasets: it provides a sub-sample with skewed statistics of SSA errors. Incidentally, it is the temporal sub-sampling enforced

by collocation with AERONET observations that causes the largest shift in the difference distribution (POLDER measure-

ments over AERONET sites show a similar SSA distribution as the global dataset). It is possible that the SSA difference is420

partly driven by cloud contamination which we know is present in these satellite datasets (Schutgens et al., 2020) and may be

ameliorated when a third cloud masking (from AERONET) is applied (through the collocation of data).

6 Intercomparison of satellite AAOD and SSA

To get a better appreciation of the satellite products, we now present a global intercomparison. To start with, Fig. 11 shows

SSA differences between two products as a function of their mean AOD. As in Fig. 9, these differences become smaller (i.e.425

show a smaller spread) at higher AOD, as expected (intercomparisons with FL-MOC are the exception). However, satellite

SSA values still exhibit random differences of 0.03 or larger for AOD ' 1, as also confirmed by the AERONET evaluation. In

addition, substantial biases remain.

The previous analysis was global but substantial differences can be seen between land and ocean scenes. For instance, the

SSA bias between the POLDER products over land, does not decrease at lower AOD but remains fairly constant. A more430

detailed analysis can be found in Fig. 12 which shows biases, correlations and regression slopes for different products. Un-

surprisingly, correlations and slopes tend to improve with minimum AOD, while biases may remain fairly constant (POLDER

products), decrease (OMAERUV vs POLDER-GRASP-M) or even increase (FL-MOC). As a consequence it should be chal-

lenging to determine an AOD threshold above which products can be expected to perform within certain parameters. A similar

analysis for AAOD can be found in Fig. S4.435

A final analysis concerns multi-year averages of these products. Model evaluation will be done on such averages and it may

be useful to better understand the agreement (or lack thereof) between products in that case, even though the aforementioned

biases are unlikely to be much reduced. Figure 13 shows an intercomparison of three products (FL-MOC is excluded due

to its low data count). The analysis shows statistics of the intercomparison of multi-year averages of SSA, as a function of
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two thresholds: a minimum AOD and a minimum number of super-observations during three years (per 1o × 1o grid-box).440

The underlying super-observations were always collocated (to within 3 hours) before temporal averaging took place. We see

that, in general, correlations increase and standard deviation in the difference decrease when either threshold increases. The

improvement with increasing AOD has already been discussed and is due to better signal-to-noise conditions for the retrieval

schemes. The improvement with increasing number of observations (used in the temporal averaging) can be interpreted as a

significant random error in either product being lessened through averaging. In general, the AOD threshold has a more profound445

impact but the number of observations threshold allows more flexibility (by choosing a longer time-series to work with, smaller

SSA differences (up to a point!) may be achieved).

However, biases between products can be quite robust as is particularly clear for the POLDER products. The decreasing

bias for OMAERUV vs. POLDER-SRON (and, incidentally, the sudden jump in correlation for AOD > 0.4) is not really a

sign of a better agreement between products at high AOD. Under these conditions, most observations come from the African450

dust and biomass burning regions. POLDER-SRON retrieves very reflective dust and very absorbing biomass burning aerosol

while OMAERUV retrieves fairly reflective dust and fairly absorbing biomass burning aerosol. Consequently, global SSA bias

decreases due to a balancing of very different biases over these regions while similar spatial patterns yield high correlations.

Maps of the SSA difference between the POLDER products as a function of minimum AOD can be seen in Fig. S5. A higher

minimum AOD mostly constrains data to a smaller portion of the globe but does not affect local biases greatly.455

7 Conclusions

In this study, we evaluate several remote sensing datasets of AAOD and SSA, from a variety of sensors (CALIOP on CA-

LYPSO, OMI on Aura, POLDER on PARASOL), in preparation of an AEROCOM model evaluation. This is the first global

study to intercompare satellite remotely sensed products of AAOD (and SSA).

The evaluation of the products (daily aggregates over 1o × 1o) is done through comparison with AERONET DirectSun460

(AOD) and Inversion (AAOD and SSA) observations. To minimize sampling issues, satellite products and AERONET data

are collocated in time and space, within 3 hours and 1 degree. One interesting finding is that AAOD evaluation requires a

tighter temporal collocation criterion than AOD, with steep declines in correlation found for temporal collocation after 3 hours

or more. We interpret this to be due to absorbing aerosol primarily being found in plumes. While we do not explore this

further, this high temporal variability in observed AAOD may affect model evaluation as well. It could suggest that models465

need emissions with diurnal profiles, and output at higher frequencies than daily to obtain the best possible agreement with

observations.

All satellite AOD products show significant correlation with AERONET (0.76≤ r ≤ 0.86). Global biases are not very dif-

ferent from those found in an earlier study of traditional products (Schutgens et al., 2020). However, when considering typical

multi-year biases per AERONET site, there is a suggestion that POLDER-GRASP-M has smaller biases than these traditional470

products (there is a hint this may also be true for POLDER-SRON but paucity of data makes this analysis less certain). In
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contrast, OMAERUV shows the largest (and mostly positive) biases in AOD. Compared to Aqua-DT (Dark Target), the four

products studied in this paper tend to estimate higher AOD over most of the land.

Results for AAOD are more diverse, with generally lower correlations (0.34≤ r ≤ 0.78) than for AOD. For most products,

SSA correlates significantly worse with AERONET than AAOD. All products show an improvement in SSA with regards to475

AERONET at higher AOD. POLDER-GRASP-M is noted for a low bias in SSA at low AOD.

The two POLDER products perform better against AERONET than the other two products, with typically (but not always)

higher correlations, smaller biases and regression slopes closer to one (1) for all three parameters AOD, AAOD and SSA.

However, dearth of measurements makes it very difficult to 1) meaningfully compare evaluation metrics amongst the products

and 2) draw global conclusions. Theoretical evidence (Hasekamp and Landgraf, 2007; Hasekamp, 2010; Hasekamp et al.,480

2019a) suggests that retrieval schemes for absorptive properties will benefit from using polarisation measurements at multiple

view angles which would support the idea that the POLDER products perform better. In addition, the OMAERUV product is

based on measurements from a sensor with substantially larger pixels than POLDER and will struggle to resolve the fine-scale

structure of aerosol plumes.

An intercomparison of multi-year satellite AAOD and SSA suggests significant biases across the globe. Differences of 50%485

in multi-year averages of AAOD are not unusual. OMAERUV shows lower AAOD over land than the other products, but

slightly higher AAOD over ocean. FL-MOC shows significantly higher AAOD over the Sahara and POLDER-GRASP-M is

noted for a high AAOD at high Northern latitudes, both over land and ocean. POLDER-SRON has much higher AAOD than

the other products over high-altitude regions. Many of these regions are unfortunately poorly instrumented with AERONET

sites. Satellite SSA does agree better at high AOD, as was also observed for AERONET, although dearth of data means this490

can not be firmly concluded for FL-MOC. However, correlations for super-observations are often lower than 0.6, even at high

AOD (0.75). Over ocean, SSA products tend to correlate better than over land. The two POLDER products correlate better

than any other satellite pair (r =∼ 0.8 over ocean for AOD> 0.75). In addition to high AOD, we show that temporal averaging

also improves agreement between satellite products, although it is not possible to give recommendations that work well with

all products and for all regions. Even so, biases between products exist at high AOD after substantial temporal averaging.495

Most surprisingly, POLDER-GRASP-M and POLDER-SRON show a fairly systematic difference in SSA (-0.04), indepen-

dent of AOD (there are regional variations). For low AOD (< 0.1) cases over ocean, this systematic difference becomes small

in the global average because of two opposite biases organised roughly (!) by hemisphere (see also Fig. S1). Identifying the

cause of this bias may lead to substantial improvements of both products (or at least one of them). Based on a comparison with

AERONET data, we suggest that cloud contamination is a possible candidate.500

Throughout the paper, we have given examples of how limited sampling of observations (especially AERONET) constrains

our ability to understand the true error statistics of satellite AAOD and SSA. The most prominent example is a much re-

duced systematic difference (-0.017) between POLDER-GRASP-M and POLDER-SRON SSA as seen in an evaluation with

AERONET Inversion L2.0 observations, as compared to the global satellite dataset (-0.04). This suggest that biases inferred

from an AERONET evaluation will be smaller than those actually present in the satellite products. To increase available SSA505

observations, one could use Inversion L1.5 data (which includes SSA at low AOD) and sample it to L2.0 AOD measurements
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(which, unlike SSA, exist at low AOD), thereby benefitting from the better L2.0 cloud screening. Especially if follow-up studies

can show that inversion errors at individual sites behave as random errors (amenable to temporal averaging) and not systematic

biases such an intermediate product might be very useful.

This paper is one part of a two paper study into the use of satellite AAOD and SSA for aerosol model evaluation. In its510

companion paper, we use the datasets introduced in the current paper to evaluate AEROCOM (AEROsol Comparisons between

Observations and Models) models. It turns out that robust and consistent evaluation of the models is possible, notwithstanding

the biases in the satellite data we have detailed in the current paper. The main reason seems to be that model biases (and the

diversity in those biases) are even larger than satellite biases. Hence these satellite AAOD and SSA products are very useful:

in regions with AERONET sites, they provide spatial detail lacking in a surface network; in regions without AERONET sites,515

they are the only datasets of observed AAOD and SSA available.
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Figure 1. Colour legend used throughout this paper to designate the different satellite products, for both this study and the AOD study in

Schutgens et al. (2020).
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Figure 2. Correlation of satellite AOD (solid) and AAOD (dashed) with AERONET Inversion L2.0 data, as a function of temporal collocation

criterion. Colours indicate satellite product, see also Fig 1. Satellite products were individually collocated with AERONET.

Appendix A: Generic aggregation and collocation

The aggregation of satellite L2 products into super-observations in this paper, and the subsequent collocation of different820

datasets for intercomparison and evaluation used the following scheme.

Assume a homogenous L2 dataset with times and geo-locations and observations of AOD and AAOD. Homogenous means

that AOD and AAOD are available for the same times, geo-locations and wavelengths. Each observation has a known spatio-

temporal foot-print, e.g. in the case of satellite L2 retrievals that would be the L2 retrieved pixel size and the short amount of

time (less than a second) needed for the original measurement.825
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Figure 3. Global biases in four satellite AOD datasets depending on the chosen reference dataset (DirectSun or Inversion). Colours indicate

satellite product, see also Fig 1. Numbers in upper left and lower right corner indicate amount of collocated data, averaged over all products.

Error ranges indicate 5-95% uncertainty ranges based on a bootstrap analysis, see Sect. 3.2. Satellite products were individually collocated

with AERONET, within 3 hours.

Satellite L2 data are aggregated into super-observations as follows. A regular spatio-temporal grid is defined as in Fig. A1.

The spatio-temporal size of the grid-boxes (here 1o × 1o × 30min) exceeds that of the footprint of the L2 data that will be

aggregated. All observations are assigned to a spatio-temporal grid-box according to their times and geo-locations. Once

all observations have been assigned, observations are averaged by grid-box. It is possible to require a minimum number of

observations to calculate an average. Finally, all grid-boxes that contain observations are used to construct a list of super-830

observations as in Fig. A2. Only times and geo-locations with aggregated observations are retained. As the original L2 dataset

was homogeneous, so is the resulting L3 dataset.

Station data is similarly aggregated over 1o×1o×30min. Point observations will suffer from spatial representativeness issues

(Sayer et al., 2010; Virtanen et al., 2018; Schutgens et al., 2016a), but the representativity of AERONET sites for 1o×1o grid-

boxes is fairly well understood (Schutgens, 2020), see also Section 2.1.5. These aggregated L3 AERONET data will also be835

called super-observations.

Different datasets of super-observations can be collocated in a very similar way. Again a regular spatio-temporal grid is

defined as in Fig. A1 but now with grid-boxes of larger temporal extent (typically 1o×1o×3hr). Because this temporal extent

is short compared to satellite revisit times, either a single satellite super-observation or none is assigned to each grid-box. A

single AERONET site however may contribute up to 6 super-observations per grid-box (in which case they are averaged).840

After two or more datasets are thus aggregated individually, only grid-boxes that contain data for both datasets will be used
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Figure 4. Global maps of AAOD for four products, and their differences. AAOD differences are based on collocated data (within 3 hours).

Note that the products are available for different years, e.g. POLDER-SRON and FL-MOC do not overlap. No minimum AOD was required.
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Figure 5. Taylor diagrams 3.1 for the satellite products. AOD is evaluated against AERONET DirectSun L2.0, AAOD and SSA are evaluated

against AERONET Inversion L2.0. Colours indicate satellite product (see also Fig. 1), numbers next to coloured blocks indicate amount of

collocated data. The lines extending from the data points indicate the bias. Products were individually collocated with AERONET, within 3

hours.
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Figure 6. Impact of statistical noise on the correlation and internal variability of satellite AAOD products, using bootstrapping. Shaded

regions indicate 5%− 95% uncertainty range of correlation and standard deviation (uncertainty in bias is not shown). Colours indicate

satellite product, see also Fig 1, numbers next to coloured blocks indicate amount of collocated data. Satellite products were individually

collocated with AERONET Inversion L2.0 within 3 hours.

to construct two lists of aggregated data as in Fig. A2. Those two lists will have identical size and ordering of times and geo-

locations and are called collocated datasets. By choosing a larger temporal extent of the grid-box, the collocation criterion can

be relaxed.

As the super-observations are on a regular spatio-temporal grid and collocation requires further aggregation to another845

regular but coarser, grid, the whole procedure is very fast. It is possible to collocate 7 products from afternoon platforms over

three years using an IDL (Interactive Data Language) code (that served as a prototype for CIS) and a single processing core in

just 30 minutes (Schutgens et al., 2020). This greatly facilitates sensitivity studies.

Starting from super-observations, a 3-year average can easily be constructed by once more performing an aggregation oper-

ation but now with a grid-box of 1o×1o×yr. If two collocated datasets are aggregated in this fashion, their 3-year average can850

be compared with minimal representation errors. This allows us to construct global maps of e.g. multi-year AOD difference

between two sets of super-observations.

A software tool (the Community Intercomparison Suite) is available for these operations at www.cistools.net (last

accessed on December 20, 2019) and is described in great detail in Watson-Parris et al. (2016).
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Figure 7. For the four satellite products are shown: a scatter plot of individual super-observations versus AERONET (the colour indicates

amount of data in percentages, see Sect. 3.3 for an explanation of the metrics); a global map of the three-year AOD average; a global map

of the three-year AOD difference average with AERONET (if site provided at least 32 observations; land sites are circles, ocean sites are

squares, diamonds are the remainder). For FL-MOC, insufficient data prevent the plotting of a difference map. Products were individually

collocated with AERONET DirectSun L2.0 within 3 hours.
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 52 sites, each with at least  32 observations

Figure 8. Evaluation of satellite products with AERONET per site, averaged over all sites. Squares indicate products used in the present

study, circles indicate products used in Schutgens et al. (2020). Error bars indicate 5-95% uncertainty range based on a bootstrap analysis

(see Sect. 3.2) of sample size 1000 (the bootstrap was performed on the contributing AERONET sites). Colours indicate satellite product,

see also Fig. 1. Products were individually collocated with AERONET DirectSun L2.0 within 3 hour. All products use the same sites, each

of which produced at least 32 collocations. POLDER-SRON and FL-MOC were excluded from this analysis due to lack of data.
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Figure 9. Evaluation of super-observations of AOD, AAOD and SSA for the satellite products. SSA is also evaluated as a function of AOD

(binned). In the three left-most figures, the colour indicates amount of data in percentages; for an explanation of the metrics, see Sect. 3.3.

The right-most column uses two vertical axes: the left-hand side is used for individual data points (sub-sampled), the right-hand axis is used

for the grey-scale distribution (9,25,50,75,91% quantiles) and the median difference (blue line). Products were individually collocated with

AERONET Inversion L2.0 within 3 hour, except the right-most column which used Inversion L1.5.
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Figure 10. SSA differences POLDER-GRASP-M vs. POLDER-SRON for three different samplings: all available data, data available over

AERONET sites that provide Inversion L2.0 data, data available at the times and locations of Inversion L2.0 data. The vertical coloured lines

at the top show distribution means and the short horizontal lines extending from the middle show 2σ ranges. The dashed vertical line shows

zero difference. Number of collocated data are indicated in the figure as well. This analysis suggests that an evaluation with AERONET

would underestimate the actual difference between the two products. In all cases, data was collocated within 3 hours and a minimum AOD >

0.25 was required.
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Figure 11. Difference in satellite product SSA as a function of AOD (averaged over both products). Two vertical axes are used: the left-hand

side is used for individual data points (sub-sampled), the right-hand axis is used for the grey-scale distribution (9,25,50,75,91% quantiles)

and the median difference (blue line). Data were collocated within 3 hours.
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Figure 12. Comparison of different pairs of satellite SSA, over land (red) and ocean (blue), for different thresholds of minimum AOD (0.0,

0.25, 0.5, and 0.75). The data were collocated within 3 hours.
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Figure 13. Intercomparison of SSA satellite products after multi-year averaging, as a function of minimum AOD and number of collocated

observations (thicker lines group cases with the same minimum AOD but increasing number of observations). Bias uses a dashed line, and

RMSE a solid line. Cover is defined as fraction of surface area covered by data. FL-MOC is not present due to scarcity of observations. The

data were collocated within 3 hours.
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Figure A1. A regular spatio-temporal grid in time, longitude and latitude. Such a grid is used for the aggregation operation that is at the heart

of the collocation procedure used in this paper. Grid-boxes may either contain data or be empty. Note that data may refer to any combination

of observations, e.g. AOD at multiple wavelengths or AOD and AAOD at 550 nm. However, the dataset is homogenous. Reproduced from

Watson-Parris et al. (2016).

Figure A2. A list of data. Such a list is the primary data format used for the observations in this paper. Note that data may refer to any

combination of observations, e.g. AOD at multiple wavelengths or AOD and AAOD at 550 nm. However, the dataset is homogenous.

Reproduced from Watson-Parris et al. (2016).
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