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Abstract. Global measurements of absorptive
::::::::
absorbing

:
aerosol optical depth (AAOD) are scarce and mostly provided by

the ground network AERONET (AErosol RObotic NETwork). In recent years, several satellite products of AAOD have

appeared
::::
been

:::::::::
developed. This study’s primary aim is to establish the usefulness of these datasets for AEROCOM (AEROsol

Comparisons between Observations and Models) model evaluation with a focus on the years 2006, 2008 and 2010. The satellite

products are super-observations consisting of 1o × 1o × 30min aggregated retrievals.5

This study consist of two parts: 1) an
::::::
consists

:::
of

:::
two

:::::::
papers,

:::
the

::::::
current

::::
one

::::
that

::::
deals

:::::
with

:::
the

:
assessment of satellite

datasets; 2) their application to
::::::::::
observations

:::
and

::
a
::::::
second

:::::
paper

::::
that

:::::
deals

::::
with the evaluation of AEROCOM models . The

current paper describes the first part and
:::::
models

:::::
using

:::::
those

:::::::
satellite

::::
data.

::
In

:::::::::
particular,

:::
the

::::::
current

:::::
paper details an evaluation

with AERONET observations from the sparse AERONET network as well as a global intercomparison of satellite datasets,

with a focus on how minimum AOD (Aerosol Optical Depth) thresholds and temporal averaging may improve agreement10

:::::::
between

::::::
satellite

:::::::::::
observations.

All satellite datasets are shown to have reasonable skill for AAOD (3 out of 4 datasets show correlations with AERONET to

be r > 0.6
::
in

::::::
excess

::
of

:::
0.6) but less skill for SSA (Single Scattering Albedo; only 1 out of 4 datasets shows correlations with

AERONET to be r > 0.6). Nevertheless,
::
in

:::::
excess

:::
of

::::
0.6).

::
In

::::::::::
comparison,

:::::::
satellite

:::::
AOD

:::::
shows

::::::::::
correlations

:::::
from

::::
0.72

::
to

::::
0.88

::::::
against

:::
the

::::
same

::::::::::
AERONET

::::::
dataset.

::::::::
However,

:::
we

:::::
show

:::
that performance vs. AERONET and dataset

::::::::::
inter-satellite

:
agreements15
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for SSA significantly improve
:::::::
improve

::::::::::
significantly

:
at higher AOD. Temporal averaging also improves agreements between

satellite datasets. Nevertheless multi-annual averages still show systematic differences, even at high AOD. In particular, we

show that two POLDER products appear to have a systematic SSA difference over land of ∼ 0.04, independent of AOD.

Identifying the cause of this bias offers the possibility of substantially improving current datasets.

We also provide evidence that suggests that evaluation with AERONET observations leads to an underestimate of true biases20

in satellite SSA.

In the second part of this study we show thatnotwithstanding the ,
::::::::::::::
notwithstanding

::::
these

:
biases in satellite AAOD and SSA,

these
::
the

:
datasets allow meaningful evaluation with

:
of

:
AEROCOM models.

Copyright statement. TEXT

1 Introduction25

Aerosol is an important component of the Earth’s atmosphere that affects the planet’s climate, the biosphere, and human health.

Aerosol particles scatter and absorb sunlight as well as modify clouds. Anthropogenic aerosol changes the radiative balance

and influences global warming (??????). It may negatively affect solar power generation (??). Aerosol can transport soluble

iron, phosphate and nitrate over long distances and provide nutrients for the biosphere (?????) . Aerosol can penetrate deep

into lungs and may carry toxins or serve as disease vectors (??????).30

Aerosol reflects visible radiation from the Sun, and some aerosol also absorbs it (??). The species that absorb
::
the

:
most

visible sunlight are, in order of importance: black carbon, dust and brown carbon. Of these, black carbon is expected to

exert a significant positive radiative forcing on the climate (??). Absorbing aerosol’s impact is mostly through heating of the

atmospheric profile (direct effect) and subsequent stabilisation
::
or

::::::::::::
instabilisation

:::
(?) of the boundary layer (semi-direct effect).

This affects cloud formation (??) and precipitation (???). In particular over bright surfaces (ice, deserts, clouds) can the forcing35

due to absorbing aerosol
:::
can be significant (???).

On regional scales, biomass burning smoke has been implicated in increased tornado severity (?) while dust was observed to

reduce cyclones (?), black carbon may affect the Hadley cell
:::::::::
circulation

:
(??), and black carbon deposition can reduce glacier

albedo (???) which may speed up glacier melt.

Currently, absorptive
::::::::
absorbing

:
aerosol can be measured in a number of ways. AERONET (?) is a global but spatially sparse40

network of sun photometers that includes two scanning protocols (almucantar and hybrid) that allow inversion of measured

radiances into particle size distributions and refractive indices (?). From this inversion, columnar properties AOD and AAOD

can be derived. There are also networks of
:::
(?)

:
of

:
(filter-based

:
) absorption photometers, as used in EMEP (European Monitoring

and Evaluation Programme), ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) and IMPROVE (Interagency

Monitoring of Protected Visual Environments). These networks are concentrated in Europe and North America, and there45

is no global coverage. Moreover, these are surface measurements
:::
that

::
do

::::
not

:::::::
measure

:::
the

:::
full

:::::::::::
atmospheric

:::::::
column. Finally,
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absorption photometers like the SP2 were used on flight campaigns like HIPPO (???). Again, this yields spatially sparse in-situ

observations of absorbing aerosol. While these measurement networks have proven to be very important to our understanding of

absorbing aerosol, a satellite derived AAOD would contribute greatly by adding spatial context in regions with
:::::::::::
ground-based

instruments, and measurements in regions without
::::
such instruments. As it now stands, we have almost no observations of50

absorptive
::::::::
absorbing aerosol over the oceans, in particular in continental outflow regions.

However, in recent years a number of satellite AAOD products have appeared
::::
been

:::::::::
developed, often based on POLDER

(Polarization and Directionality of the Earth’s Reflectances) measurements. For example, ? used POLDER data to evaluate

SSA from AEROCOM models over oceans; ? evaluated over ocean above-cloud SSA in AEROCOM models for the African

fire season; ? estimated the global direct radiative effect of aerosol and ?? assimilated
:
?

::::::::
estimated

:::::::::::
aerosol-cloud

:::::::::::
interactions.55

??
:::::::::
assimilated

::::::::
POLDER

:
AOD and AAOD observations to estimate aerosol emissions

::::
while

::
?

::::::
showed

:::
the

:::::::
benefit

::
of

::::::
jointly

::::::::::
assimilating

::::::::
POLDER

:::::
AOD,

:::::::
AAOD

:::
and

:::::
SSA

::::::::::
observations. ? used combinations of A-TRAIN sensors to infer AAOD over

clouds and estimate short-wave direct aerosol effects.

The challenge in retrieving AAOD from satellite is made clear by the challenge of
::
in retrieving AAOD from AERONET

measurements. AERONET AAOD observations are known to be more error prone
:::::::
uncertain

:
than AOD observations. ? esti-60

mated that AERONET SSA errors
::::::::::
uncertainties

:
for AOD ≤ 0.2 at 440 nm would be at least 0.05, using numerical sensitivity

tests. A recent in-depth estimate of the uncertainty in Inversion V3 data (?) suggested those thresholds to be 440nm AOD> 0.3

and ≥ 0.45, respectively.
::
for

::::
four

:::::::
different

::::
sites

:::::::::
suggested

::::
SSA

:::::::::::
uncertainties

::
at

:::::
AOD

::
(at

::::
440

::::
nm)

:::::
= 0.2

::::
from

::::::
0.037

::
to

:::::
0.048

:
at
::::
440

:::
nm

::::
and

::::
from

:::::
0.035

::
to

:::::
0.045

::
at

::::
675

:::
nm.

::
It
::
is

:::
not

::::
clear

:::::::
whether

:::::
these

:::::::::::
uncertainties

::::::
should

::
be

:::::::::
interpreted

:::
as

::::::::::
site-specific

:::::
biases

::
or

:::::::
random

:::::
errors.

::::
This

:::::::::
distinction

::::::
matters

:::
as

::::::
random

:::::
errors

::::
can

::
be

:::::::
reduced

::::::
through

::::::::::
appropriate

::::::::
averaging

::
of

:::::
data. Large65

differences between AERONET SSA at low AOD and in-situ measurements were indeed confirmed by ?. Even at higher AOD

::::::
(≥ 0.5), ? suggested SSA errors of at least 0.03. ?

::::::
suggest

::::::
smaller

::::
SSA

:::::::::::
uncertainties

::
of

::::::
0.017

::
to

:::::
0.023

::
at

::::::
440nm

::::
and

:::::
0.015

::
to

:::::
0.026

::
at

:::
675

:::
nm

:::
for

:::::
AOD

:::
(at

::::
440

:::
nm)

::
=
:::
0.6

:
.
:
Given the challenges in satellite remote sensing compared to ground-based

remote sensing, satellite AAOD and SSA products may
:::
can be expected to have larger errors

::::
large

:::::
errors

::
as

::::
well.

:::::
GCOS

:::::::::::
requirements

::::
(?)

::
for

:::::
SSA

::::::
specify

:::
an

:::::::
accuracy

::::::
within

::::
0.03

::::
and

:
a
::::::::

stability
:::
per

::::::
decade

::::::
within

::::
0.01,

:::
for

::
a
:::::::::
horizontal70

::::::::
resolution

::
of

:::::
5–10

::::
km

:::
and

::
a
::::::::
temporal

:::::::::
resolution

::
of

::::
4hr.

:::::
These

::::::::::::
requirements

::::::
appear

:::::
based

:::
on

::::::
typical

:::::::
regional

::::
and

::::::
yearly

::::::::
variations

::
in

:::::
SSA.

::::::::
However,

::::
SSA

:::::::::::
requirements

:::
are

::::::::
different

:::
for

:::::::
different

::::::::::
applications

:::::::::::
(monitoring,

::::::
trends,

:::::
model

::::::::::
evaluation,

::::::
process

:::::::
studies)

:::::
while

::
the

::::::
GCOS

:::::::::::
requirements

:::
are

:::::
meant

::
to
:::::::
provide

:
a
:::::::
general

:::::
broad

:::::::
estimate

:::
(?).

::
In

::::
part

:
2
::
of

::::
our

::::
study

:::
we

::::
will

::::
show

::::
that

::::::
current

:::::::
satellite

::::::
AAOD

:::
and

::::
SSA

::::::::::
capabilities

:::::
allow

:::::
useful

:::::::::
evaluation

::
of

:::::::
models.

For measurements to be useful in model evaluation, their errors after averaging (spatially, temporally) need to be smaller75

than the model errors the observations should be able to identify. A traditional evaluation of satellite datasets with AERONET

data is unlikely to establish this, partly because the model aspect is ignored, partly because AERONET hardly covers some

very interesting aerosol source regions (e.g. oceans, most deserts and boreal fire scapes)
::::
only

:::::::
sparsely. In the first part of this

study
:::
(the

::::::
current

::::::
paper)

:
we complement the traditional evaluation with a satellite intercomparison (in itself not unusual) to

broaden our understanding of satellite performance over diverse regions. In the second part
::
(a

::::::::
follow-up

::::::
paper), we present a80
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novel analysis that combines satellite evaluation & intercomparison with model evaluation, and allows assessment of
:::::
model

biases in the satellite data in the context of model
::::::
context

::
of

:::::::
satellite biases.

We will use satellite data aggregated over 1o×1o×30min as it allows spatio-temporal collocation amongst datasets (satellite,

AERONET, AEROCOM) which should strongly reduce representation errors in our analyses (??). All analyses, even of multi-

year averages, will start from spatio-temporally collocated datasets.85

This paper is the result of discussions in the AeroCom (AEROsol Comparisons between Observations and Models, https://

aerocom.met.no) and AeroSat (International Satellite Aerosol Science Network, https://aero-sat.org) communities. Both are

grass-roots communities, the first organised around aerosol modellers, and the second around retrieval groups. They meet

every year to discuss common issues in the field of aerosol studies.

The observational model datasets used in this study are described in Sect. ??. The collocation and analysis methodology are90

described in Sect. ??. A first look at the satellite datasets is presented in Sect. ??. Evaluation of satellite AOD, AAOD and SSA

with AERONET is performed in Sect ?? and a more detailed intercomparison of satellite data is shown in Sect. ??. A summary

and conclusions can be found in Sect. ??.

2 Datasets

2.1 Remote sensing data95

Original satellite L2 data
::::::::
(estimates

:::
of

::::::::::
geophysical

:::::::
variables

:::
on

:::
the

:::::::::::::
spatio-temporal

:::::::
sampling

::::::
pattern

:::
of

::
the

:::::::::
radiances,

:::
see

::::
also

:
?
:
) were aggregated unto a regular spatio-temporal grid with spatio-temporal grid-boxes of 1o×1o×30min. The resulting super-

observations (1o×1o×30min aggregates) are more representative of global model grid-boxes (∼ 1o−3o in size) while allowing

accurate temporal collocation with other datasets. At the same time, the use of super-observations significantly reduces data

amount without much loss of information (at the scale of global model grid-boxes). A list of products used in this paper is given100

in Table ??. A colour legend to the different products can be found in Fig. ??. More explanation of the aggregation procedure

can be found in Appendix ??.

Super-observations of AOD and AAOD at the same location and time were derived from the same set of L2 data and therefor

:::::::
therefore

:
measure the exact same scene . The exception is the POLDER-GRASP-M dataset which provides aggregate AOD and

SSA for slightly different samplings (there is an additional minimum AOD threshold for the calculation of the AAOD that will105

be aggregated and the resulting aggregated SSA). We assumed that this SSA nevertheless represents the same scene as the AOD

aggregate and recalculated an AAOD from that AOD and SSA. Consequently, The POLDER-GRASP-M AAOD presented in

this paper is different from the AAOD found in the official L3 product. The latter shows a high bias vs. AERONET due to same

aforementioned minimum AOD threshold. Note that in-situ measurements (????) have suggested a change in SSA at lower

AOD so our SSA assumption may introduce additional biases.
::::
(note

:::
an

::::::::
exception

:::
for

:::::::
GRASP

::::::
dataset

::::::::
described

:::::::
below).110

The main data are AOD and AAOD at 550 nm, the wavelength at which models typically provide (A)AOD. If (A)AOD was

not retrieved at this wavelength, it was
::::::::::::
logarithmically

:
interpolated or extrapolated from surrounding wavelengths.
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2.1.1 FL-MOC

MOC
::::::::
FL-MOC

:::
(Fu

::::
Liou

:
-
::::::::
MODIS,

:::::
OMI,

::::::::
CALIOP) is a technique for combining CALIOP aerosol backscatter, MODIS spec-

tral AOD, and OMI AAOD retrievals for estimating full spectral sets of aerosol radiative properties (SSA, asymmetry parameter115

and AOD).
:
It

::
is

:::
not

:
a
::::::::

retrieval
:::
per

::
se

:::
but

::
a

::::::::
consistent

:::::::::::::
reinterpretation

:::
of

:::
the

::::::::
combined

::::
data

::::::
within

::::
their

:::::
stated

::::::::::::
uncertainties.

Details are given in ?, Appendix A. In brief, MOC uses the level 2
:::::::
FL-MOC

::::
uses

:::
the

:::
L2 retrieved aerosol properties as input to

a simple look-up table retrieval of aerosol types and concentrations, under the assumption that aerosol properties are consistent

with the L2 aerosol observations within the stated uncertainties of each sensor’s retrieval. This technique also assumes that the

surface reflectance and clouds are properly treated in the underlying retrievals.120

Over land, MOC
:::::::
FL-MOC

:
uses OMAERUV AAOD, over ocean OMAERO AAOD. OMAERO is an advanced multi wave-

length UV-VIS algorithm that uses 17 wavelengths in the 331-500 nm range in order to calculate the aerosol optical depth

and to discriminate between various types of aerosols. It is an extension of the near UV TOMS method (see the OMAERUV

product) to a wider wavelength range. The OMAERO algorithm is applied over all surface types, however its primary objective

is to derive aerosol properties over the oceans due to the limited availablity of spectral surface reflectivity databases over land.125

2.1.2 OMAERUV

The Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite was deployed in July 2004. It is a high resolution spec-

trograph that measures the upwelling radiance at the top of the atmosphere in the ultraviolet and visible (270–500 nm) regions

of the solar spectrum (?). It has
:::
had a 2600 km wide swath and provides daily global coverage at a spatial resolution varying

from 13× 24 km at nadir to 28× 150 km at the extremes of the swath. OMI hyperspectral measurements are used as input to130

inversion algorithms to retrieve ozone vertical distribution and column amounts of O3, NO2, SO2, HCHO, BrO, and OClO.

OMI observations are also used to retrieve information on aerosols and clouds.

Aerosol properties in the near UV are derived from OMI observations at 354 and 388 nm (?). The OMI UV aerosol algorithm

(OMAERUV) takes advantage of the large sensitivity to aerosol absorption in the near UV discovered in the mid-90’s using

heritage TOMS instruments (?), and the low reflectance of all ice/snow free terrestrial surfaces, which facilitates the aerosol135

characterization over all arid and semi-arid regions of the world. The OMAERUV two-channel algorithm simultaneously

retrieves AOD and SSA at 388 nm. The main sources of uncertainty are assumed aerosol layer height, and cloud contamination,

the latter associated with the sensor’s coarse spatial resolution. The OMAERUV fifteen-year record of AOD has been validated

with AERONET observations (??). The SSA record has also been evaluated by comparisons to AERONET and SKYNET (

https://www.skynet-isdc.org/index.php) ground-based retrievals (??).140

2.1.3 POLDER-SRON

The POLDER-3 instrument was a multi-angle, multi-wavelength polarimeter flying aboard the Polarization & Anisotropy of

Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. It was launched in 2004

and was a part of the satellite constellation A-Train until 2009. Initially designed to be operated for 2 years, POLDER-3
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performed its measurements until late 2013, when it was decommissioned. PARASOL provides measurements of a ground145

scene under (up to) 16 different viewing geometries in 9 spectral bands (443, 490, 565, 670, 763, 765, 865, 910, 1020 nm).

Linear polarization measurements (Stokes parameters Q and U) are performed in 3 spectral bands (490, 670, 865 nm). Its

spatial resolution at the nadir was about 6 km, and its swath width was 2400 km.

An advanced retrieval algorithm making full use of the information content of the multi-angle photopolarimetric observations

from POLDER-3/PARASOL has been developed at SRON-Netherlands Institute for Space Research. This algorithm yields the150

different microphysical characteristics of a bi-modal aerosol size distribution
::::
The

::::::::
algorithm

:::
has

::::
large

:::::::::
flexibility

::
in

:::::::
defining

:::
the

::::::
aerosol

::::::::
properties

::::::::
included

::
in

::
the

:::::::
retrieval

::::
state

::::::
vector

:::
(?). The aerosol parameters of each mode included in the state vector are

the effective radius
:::
size

:::::::::
distribution

::
is
::::::::
described

:::
by

:::
the

::::
sum

::
of

::
an

::::::::
arbitrary

::::::
number

:::::::::
log-normal

:::::::::
functions,

:::::
called

::::::
modes,

::::::
where

::
for

::::
each

:::::
mode

:::
the

::::::::
effective

:::::
radius

:::::
(reff), effective variance ,

:::::
(veff),

::::::
aerosol

:
column number, and real and imaginary parts of the

refractive index . For the coarse mode, also the fraction of spheres is included in the state vector,
::
(in

:::
the

:::::
form

::
of

::::::::::
coefficients155

::
of

::::::::
spectrally

:::::::::
dependent

:::::::::
functions),

:::::::
fraction

::
of

::::::::
spherical

:::::::
particles

:
assuming the mixture of spheres and spheroids proposed by

?.
:
?
:
,
:::
and

:::
the

:::::::
Aerosol

:::::
Layer

::::::
Height

:::
can

:::
(in

::::::::
principle)

:::
be

::::::::
retrieved.

::
In

:::
the

:::::
setup

::::
used

::
in

:::
the

::::::
present

::::::
study,

::
the

:::::::::::::::
POLDER-SRON

::::::::
algorithm

:::::
yields

:::
the

::::::::
different

::::::::::::
microphysical

::::::::::::
characteristics

:::
of

:
a
::::::::

bi-modal
:::::::
aerosol

::::
size

::::::::::
distribution

::::
(fine

::::
and

:::::
coarse

:::::::
mode),

::::
with

:::
the

:::::::
fraction

::
of

:::::::
spheres

::::
only

:::
be

:::::::
retrieved

:::
for

:::
the

::::::
coarse

:::::
mode

:::::
(fine

:::::
mode

:::::::
assumed

:::
to

::::::
consist

::::
only

:::
of

:::::::
spheres)

::::
and

:::
the

::::::
Aerosol

::::::
Layer

::::::
Height

::
is

::::
fixed

:::
to

::::
1km.

:
For retrievals over ocean, the state vector also includes the wind speed, chlorophyll-160

a concentration, and white-cap fraction, while for retrievals over land, the state vector includes the parameters describing

the surface BRDF (?)
:::::::::::
(Bidirectional

::::::::::
Reflectance

::::::::::
Distribution

::::::::
Function)

:::
(?). The retrieval is based on an iterative fitting of a

linearized radiative transfer model (?) to the PARASOL data, using a cost function containing a misfit term between the forward

model and measurement and a regularization term using a priori estimates of values of some of the retrieved parameters. The

algorithm, including an application to PARASOL measurements over ocean, is described in ?. More recent refinements are165

described by ???
:::::
?????. Retrieval results from the SRON algorithm have been used for aerosol type determination by ?, in

studies related to aerosol absorption and direct radiative effect by ??, and aerosol-cloud interactions by ?
:
?
:
,
:::
and

::::
data

::::::::::
assimilation

::
by

::
?. Currently, the algorithm has been applied to one year (2006) of global aerosol data.

2.1.4 POLDER-GRASP

For a description of the POLDER instrument, see the previous subsection.170

GRASP (Generalized Retrieval of Aerosol and Surface Properties) is a unified retrieval algorithm for atmosphere properties

from diverse remote sensing observations (??), based on earlier work by ??? for AERONET Inversions.

In the current paper, retrievals from the so-called “models” dataset (here: GRASP-M) are presented
:::
are

::::
used. Aerosol is

assumed
::
to

::
be

:
an external mixture of five different aerosol components and

:::::
which

:
are retrieved together with spectral param-

eters of surface BRDF and BPDF
:::::::::::
(Bidirectional

::::::::::
Polarisation

::::::::::
Distribution

:::::::::
Function). The aerosol is assumed

::
to

::
be

:
a mixture175

of spherical and non-spherical particles. Each fraction is characterized by particle size distributions similarly to AERONET

retrievals. The non-spherical component is modeled as a mixture of randomly oriented spheroids with fixed shape distribution
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(?). The
:::::
details

:::
of

:::
the

::::::::
“models”

::::::::
approach

:::
are

::::::::
discussed

:::
by

::
?

:::
and

::
?

:::
.The

:
actual inversion uses multi-pixel retrieval (?) where

horizontal pixel-to-pixel variations of aerosol and day-to-day variations of surface reflectance are enforced to be smooth.

The full archive of POLDER/PARASOL observations was retrieved using GRASP and can be found at https://www.grasp-180

open.com. In addition to the “models” dataset, two other datasets are available (“improved
::::::::
optimized” and “high-precision”)

that use slightly different assumptions in the retrieval. The
::::::
detailed

:::::::::
discussion

:::
and

:::::::::
validation

::
of

::
all

::::
three

:::
0.1

::::::
degree

::::::::::::::::
PARASOL/GRASP

:::::::
retrievals

:::
are

::::::::
provided

::
by

::
?.
::::
The

::::::::
"models" dataset used in this paper is considered the most applicable for a wide range of cir-

cumstances.

:::
The

::::::
dataset

:::::
used

::
in

:::
the

::::::
current

:::::
paper

::
is
::::::::::

aggregated
::
to

::
1

::::::
degree

:::::
spatial

:::::::::
resolution

:::::::
(details

:::
are

:::::
listed

::
at

::::::::::::::::
https://www.grasp-185

:::::::::
open.com).

::::
The

::::::::
"models"

::::::
dataset

::::::::
provides

::::
AOD

::::
and

::::::
AAOD

::::::::::
aggregated

::::
from

:::::::
slightly

:::::::
different

:::
L2

::::::::::
samplings:

::
an

:::::::::
additional

::::::::
minimum

:::::
AOD

::::::::
threshold

:
is
:::::
used

::::
when

::::::::::
aggregating

:::::::
AAOD.

:::
To

:::::
select

::::
data

::
of

:::::
higher

:::::::
quality,

::::::
AAOD

::::::::
retrievals

::::
were

:::::
used

::::
only

::
for

:::::
cases

::::
with

::::::::
sufficient

::::::
aerosol

:::::::
loading.

::::
The

:::::
same

::::
AOD

::::::::
threshold

::
is
:::::
used

::
for

:::::
SSA

::
as

::::
well.

:::::::::::
Specifically,

:
a
::::::::
minimum

:::::
AOD

:::
(at

:::
440

::::
nm)

::::::::
threshold

::
of

:::
0.3

::::
over

::::
land

::::
and

::::
0.02

::::
over

:::::
ocean

::::
were

:::::::
applied

::::
(the

::::::::
threshold

::::
over

:::::
ocean

::
is

:::::::
probably

::::
too

:::
low

::
to

::::::
assure

::::
high

::::::
quality

::::::
AAOD

:::
but

:::::
higher

:::::::::
thresholds

:::::
result

::
in

:::::::::
significant

::::
data

:::::
loss).190

::
In

:::
the

::::::
current

:::::
study

:::
we

:::::
prefer

::
to
::::

use
:::::::::
aggregated

:::::
AOD

:::
and

:::::::
AAOD

::::
data

:::
that

::::::::
describe

:::
the

::::
exact

:::::
same

::::::
scene,

:::
and

::::
this

::
is

:::
the

:::
case

:::
for

:::
the

:::::::::
FL-MOC,

:::::::::::
OMEARUV

:::
and

::::::::::::::
POLDER-SRON

:::::::
datasets

:::::::::
mentioned

::::::
earlier.

::::
For

:::
the

:::::::
GRASP

:::::::
product,

:::
we

:::::::
decided

::
to

::::::
assume

:::
that

:::
the

::::::::::
aggregated

::::
SSA

:::::::::
represents

:::
the

::::
same

:::::
scene

:::
as

:::
the

::::
AOD

:::::::::
aggregate

:::
and

::::::::::
recalculated

:::
an

::::::
AAOD

::::
from

::::
that

:::::
AOD

:::
and

::::
SSA.

::::::::::::
Consequently,

:::
the

::::::
AAOD

:::::::
product

::::::::
(indicated

::
as

::::::::::
GRASP-M)

::::::::
presented

::
in

::::
this

::::
paper

::
is
:::::::
different

:::::
from

:::
the

::::::
AAOD

:::::
found

::
in

:::
the

::::::
official

:::
L3

::::::::
"models"

:::::::
product.

:::::
In-situ

::::::::::::
measurements

:::::::
(????)

::::
have

::::::::
suggested

:
a
:::::::

change
::
in

::::
SSA

::
at

:::::
lower

:::::
AOD

::
so

:::
our

:::::
SSA195

:::::::::
assumption

::::
may

::::::::
introduce

:::::::::
additional

::::::
biases.

::::::::
However,

:::::::::
GRASP-M

:::::::
AAOD

::::::::
evaluated

:::::
better

::::::
against

::::::::::
AERONET

::::
than

::::::::
"models"

::::::
AAOD

:::::
which

:::::::
showed

:
a
::::
high

::::
bias

:::
vs.

:::::::::
AERONET

::::
due

::
to

:::
the

:::::::::::::
aforementioned

::::::::
minimum

:::::
AOD

::::::::
threshold.

:

:::
For

:::
this

:::::
study

:::
the

:::
L3

:::::::
GRASP

::::
data

:::::
were

::::::::::
additionally

::::::
filtered

::::::
based

::
on

:::
the

:::::::::::::
FittingResidual

::::
field

::::::
which

::::
was

:::::::
required

::
to

:::
be

::::::
smaller

::::
than

::::
0.05

::::
(over

::::::
Land)

::
or

:::
0.1

:::::
(over

::::::
Ocean).

::::
This

::::::
subset

::::::::
evaluates

::::::::::
substantially

:::::
better

:::
for

:::::
AOD

::::::::
retrievals

:::
and

:::::::::
somewhat

:::::
better

::
for

:::::::
AAOD

:::::::
retrievals

::::
than

:::
the

::::
full

::::::
dataset.

:
200

2.1.5 AERONET

AERONET (?) DirectSun V3 L2.0 (??) and Inversion V3 L1.5 & 2.0 data were downloaded from https://aeronet.gsfc.nasa.gov,

logarithmically interpolated to values at 550 nm and aggregated by averaging over 30 minutes. The DirectSun dataset contains

only AOD (at multiple wavelengths). These observations are based on direct transmission measurements of solar light and have

a low uncertainty of ±0.01 (??), at 400nm and larger.205

The Inversion dataset contains both AOD and AAOD
:::::
AAOD

::::
and

::::
SSA

:
(at multiple wavelengths) and these observations

are based on measurements of scattered solar light from multiple directions. This inversion uses radiative transfer calculations

(?) and yields larger errors than the DirectSun measurements. In particular, ? showed that SSA errors decrease with increas-

ing AOD and estimated 440nm SSA errors of ±0.03 for water-soluble aerosol at 440nm AOD ≥ 0.2 although for dust and

biomass burning aerosol higher AOD ≥ 0.5 were needed. These error estimates were based on numerical calculations. A re-210

cent in-depth estimate of the uncertainty in Inversion V3 data (?) suggested those thresholds to be 440nm AOD > 0.3 and
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≥ 0.45, respectively. For an examination of the impact of geometrical configuration on SSA observations, see ?. ? showed that

AERONET SSA retrievals were lower by 0.011 than flight campaign data (on average). ? also used
::::::::
compared flight campaign

measurements to evaluate AERONET SSA and found that it was
:::
the

::::
data

::::
were

:
usually within the expected errors, although

at low AOD ≤ 0.2 significant underestimation by AERONETwas observed. only had observations over two sites
::::::::::
significantly215

:::::
lower

::::
SSA

:::::
values

:::::
were

::::::::
observed

::
by

::::::::::
AERONET.

:
A
:::::::::::

confounding
:::::
issue

:::
for

:::
the

::::::::
evaluation

:::
of

::::
SSA

:::
(or,

:::
for

::::
that

::::::
matter,

:::::::
AAOD)

::::::
datasets

::
is
::::
that

::::
there

::
is

::
no

::::::::::
established

::::
gold

::::::::
standard.

:::
The

::::::::
Inversion

::::::
dataset

::::
also

:::::::
contains

:::::
AOD

:::::
(from

:::::
Direct

::::
Sun

:::::::::
retrievals)

:::::
which

::
is

:::::::
actually

::::
used

::
in

:::
the

::::::::
inversion.

:::::
Here

:::
we

::::
only

:::
use

::::
those

:::::
AOD

::::::
values

::
in

::
the

::::::::
Inversion

::::::
dataset

::::
that

::::
have

::::::::::::
corresponding

::::::
AAOD

:::
and

::::
SSA

::::::
values,

:::
so

:::
that

::::::::
aggregate

::::::
values

::::::
always

:::::::
describe

:::
the

::::
same

::::::
scene.220

Inversion L2.0 is a subset of L1.5 (which contains almost 30× more observations), based on further cloud screening and the

requirement that AOD at 440nm ≥ 0.4. This last criterion results in a minimum AOD at 550nm of 0.25 in the Inversion L2.0

product.

Since an individual AERONET site cannot be expected to be representative for
::
is

:::
not

:::::::::
necessarily

::::::::::::
representative

::
of a 1o×1o

grid-box, satellite evaluation may be negatively affected. To select only sites with high representativity we use a list published in225

? as described in ?
:
?, where we also describe some tests for its suitability (based on

:::::
tested

:::
this

:::::::::::::
representativity

::::::
(using 14 satellite

AOD products). The Kinne list was developed with the AERONET Direct Sun
::::::::
DirectSun

:
product (i.e. AOD) in mind but a

high-resolution modelling study by ? suggests that
:
?

:::::::
suggests

::::
that

:::::
spatial

:
representativity for AOD and AAOD observations

can differ substantially for individual sites. We chose to use the Kinne list because it also includes information on maintenance

quality, likely more important for Inversion than Direct Sun
::::::::
DirectSun

:
retrievals.230

2.1.6
::::
How

:::::::::::
independent

:::
are

:::::
these

:::::::
satellite

:::::::::
products?

::
An

:::::::::
interesting

::::::::
question

:
is
::::
how

:::::::::::
independent

::::
these

:::::::
satellite

:::::::
products

::::
are.

:::
The

:::::::
GRASP

::::
and

::::::
SRON

:::::::::
algorithms

:::
are

::::::::::
independent

:::::::
retrieval

:::::
codes

:::::
with

:::::
many

::::::
specific

::::::::::
differences

::
in

:::
the

::::::::::::::
implementation.

::::
First,

::
in

:::
the

::::::
present

:::::
study

::::::::::::::
POLDER-SRON

:::::::
retrieves

::::::::::
parameters

::
of

:::::::
bi-modal

:::::::::
lognormal

:::
size

::::::::::
distribution

:::
and

::::::::
complex

::::::::
refractive

::::
index

:::
for

:::::
each

:::
size

::::::
mode,

:::::
while

::::::::::::::::::
POLDER-GRASP-M

:::::::
retrieves

:::
the

:::::::::::::
concentrations

::
of

:::
five

:::::::
aerosol

::::::::::
components

::::
with

::::::::
assumed235

::::::::
properties

::
of

:::::
each

::::::::::
component

::::
(??).

:::::::
Second,

::::::::
GRASP

:::
and

::::::
SRON

::::
use

:::
the

:::::
same

::::::::::::
mathematical

:::::::
function

:::
for

:::
the

::::::
BRDF

:::::
over

:::
land

::::
(?)

:::
but

:::::::
estimate

:::
the

::::::::::
parameters

::
to

::::
this

:::::::
function

:::::::::::::
independently.

::
In

::::
both

::::::::::
algorithms,

:::::::
aerosol

:::
and

:::::::
surface

:::::::::
properties

:::
are

::::::::
estimated

:::::::::::::
simultaneously.

::::::
Third,

:::::
there

:::
are

:::::::::
significant

::::::::::
differences

::
in

::::
use

::
of

::
a
:::::
priori

::::::::::
constraints.

:::::::::::::::
POLDER-SRON

:::::::
follows

::::::::::::::
Phillips-Tikhonov

::::::::::::
regularization

::::
(??)

::::::::
including

:
a
:::::
priori

::::::::
estimates

:::
for

:::::
most

::
of

:::
the

:::::::
retrieved

:::::
state

:::::
vector

::::::::::
parameters

::
(a

:::::::
globally

:::::::
constant

:::::
value

:
is
:::::

used)
::::

and
:
a
:::::::
flexible

:::::::
strength

::
of

:::
the

::::::::::::
regularization

:::::
term.

:::
The

:::::::
GRASP

:::::::::
algorithm

::
is

:::::
based

:::
on

:::
the

::::::::::
least-square240

:::::::::
multi-term

:::::::
approach

::::
(see

:
?
:
)
:::
and

::::
uses

::::::
several

:
a
:::::
priori

:::::::::
constraints

:::::::::::::
simultaneously.

::::::::::
Specifically,

:::::::
GRASP

::::::::
"models"

::::
uses

:::::::::
smoothness

:::::::::
constraints

::
on

:::
the

:::::::
spectral

::::::::::
dependence

::
of

::::::
surface

::::::
BRDF

:::::::::
parameters.

::::::
Fourth,

:::
the

::::::
SRON

::::::::
algorithm

::::::::
retrieves

::::
from

::::::::::::
measurements

::
of

::::::::
individual

::::::
pixels

:::::
while

:::
the

::::::::
GRASP

::::::::
algorithm

::::::::
retrieves

::::
from

::::::::::::
measurements

:::
of

:::::::
multiple

::::::
pixels

:::::::::::::
simultaneously,

::::::::
applying

:::::::::::::
spatio-temporal

:::::::::
constraints

::
in

::
the

:::::::
process.

:::
For

::::::::
example,

::::
over

::::
land

:::::::::
constraints

::::
were

::::
used

::
to

::::
limit

::::::::
temporal

::::::::
variability

::
of

::::::::
retrieved

:::::
BRDF

:::::::::
parameters

:::
as

::::
well

::
as

:::::
spatial

:::::::::
variability

::
of

:::::::
aerosol

:::::::
retrieved

:::::::::
parameters

::::
(see

:::
??

:
).245
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:::
The

::::::::
FL-MOC

:::::::
product

::::
uses

::::::::::
OMAERUV

::::::
AAOD

::
as

:::::
input

::::
over

::::
land

::
but

::::::::
FL-MOC

::::
only

::::
uses

:::::::::::
OMAERUV

::::::
AAOD

::
as

::
an

:::::::
a-priori

:::
and

::::::
assigns

::::
this

::
a

:::::::
sizeable

::::::::::
uncertainty.

::::::::
CALIOP

:::::::::
backscatter

::
is
::::::::

expected
::
to
:::::::

provide
::
a
::::::::
constraint

:::
on

:::::
SSA,

:::
and

::::::::::::
consequently

::::::
AAOD.

:::
As

:
a
::::::
matter

::
of

::::
fact,

:::
our

:::::::
analysis

::::::
shows

:::
that

::::::::
FL-MOC

::::
and

::::::::::
OMAERUV

::::::
exhibit

:::::
rather

::::
low

::::::::::
correlations

:::
for

::::::
AAOD

::::
(and

:::::
SSA).

::::
This

:::::::
suggests

::::
that

:::
the

:::::::::::
OMAERUV

::::::
a-priori

::::
does

::::
not

:::
lead

:::
to

:
a
::::::
strong

::::::::::
dependency

::
of

::::::::
FL-MOC

:::
on

:::::::::::
OMAERUV.

:::
On

:::
the

::::
other

:::::
hand,

::
it

:::
also

::::::::
suggests

:::
that

::
at

::::
least

::::
one

::
of

::::
these

::::::::
products

:::::::
contains

:::::::
sizeable

::::::
errors.250

3 Collocation & analysis methodology

To evaluate and intercompare the remote sensing datasets, they will need to be collocated in time and space to reduce rep-

resentation errors (???). In practice this collocation is another aggregation (performed for each dataset individually) to a

spatio-temporal grid with slightly coarser temporal resolution (1 or 3 hours, the spatial grid-box size remains 1o × 1o). This is

followed by a masking operation that retains only aggregated data if it exists in the same grid-boxes for all involved datasets.255

More details can be found in Appendix ??.

We need to allow some flexibility in the time separation between data (here 3 hours) to ensure sufficient numbers of col-

located data pairs for further analysis. ? showed that shorter time separations greatly limited the number of pairs but did not

substantially alter the correlation of satellite AOD with AERONET. On the other hand, longer time separations appear to nega-

tively affect the correlation of satellite AAOD with AERONET, see Fig. ??. The analysis shows that satellite AOD correlation260

with AERONET Inversion data slowly decreases as the collocation criterium
:::::::
criterion is relaxed from 3 to 24 hours. However,

satellite AAOD shows a sharp drop in correlation with AERONET at 6 hours (OMAERUV is the exception, the correlation is

::::::
already low and barely changes). We surmise this is due to plumes of absorbing aerosol drifting over the sites, requiring tight

temporal constraints on collocation. Consequences of this finding will be further discussed in Sect. ??.

As the FL-MOC dataset, based on CALIOP measurements, is smaller than the other satellite datasets, we were compelled265

to collocate FL-MOC with AERONET within 2o instead of 1o. Even so, the data count for the FL-MOC evaluation is lowand

this results in significant statistical noise.

After spatio-temporally collocating two or more datasets, the data may be further averaged in space and/or time for analysis

purposes. Spatio-temporally averaged SSA is always derived from averaged AOD &
:::
and AAOD:

SSA = 1−AAOD/AOD. (1)270

During the evaluation of products with AERONET, a distinction will be made between either land or ocean grid-boxes in

the common grid. A high resolution land mask was used to determine which 1o × 1o grid-box contained at most 30% land

(designated an ocean box) or water (designated a land box). Most ocean boxes with AERONET observations will be in coastal

regions, with some over isolated islands.
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3.1 Taylor diagrams275

A suitable graphic for displaying multiple datasets’ correspondence with a reference dataset (’truth’), is provided by the Taylor

diagram (?). In this polar plot, each data point (r,φ) shows basic statistical metrics for an entire dataset. The distance from

the origin (r) represents the internal variability (standard deviation) in the dataset. The angle φ through which the data point is

rotated away from the horizontal axis represents the correlation with the reference dataset, which is conceptually located on the

horizontal axis at radius 1 (i.e. every distance is normalised to the internal variability of the reference dataset). It can be shown280

(?) that the distance between the point (r,φ) and this reference data point at (1,0) is a measure of the Root Mean Square Error

(RMSE, unbiased). A line extending from the point (r,φ) is used to show the bias versus the reference dataset (positive for

pointing clock-wise).The distance from the end of this line to the reference data point is a measure of the Root Mean Square

Difference (RMSD, no correction for bias).

3.2 Uncertainty analysis using bootstrapping285

Our estimates of error metrics are inherently uncertain due to finite sampling. If the sampled error distribution is sufficiently

similar to the underlying true error distribution, bootstrapping (?) can be used to assess uncertainties in e.g. biases or corre-

lations due to finite sample size. Bootstrapping uses the sampled distribution to generate a large number of synthetic samples

by random draws with replacement. For each of these synthetic samples, a bias etc. can be calculated and the distribution of

these biases provides measures of the uncertainty, e.g. a standard deviation, in the bias due to statistical noise. Bootstrapping290

has been shown to be reliable even for relatively small sample sizes (that is the size of the original sample, not the number of

bootstraps), see ?. In this study, the uncertainty bars in some figures were generated by bootstrap analysis.

If the sampled error distribution is different from the true error distribution, bootstrapping will likely underestimate uncer-

tainties. Sampled error distributions may be different from the true error distribution because the act of collocating satellite

and AERONET data favours certain conditions. E.g. the effective combination of two cloud screening algorithms (one for the295

satellite product, the other for AERONET) may favour clear sky conditions and limit
:::::
reduce

:::
our

:
sampling of errors in case of

:::
due

::
to cloud contamination. This uncertainty due to sampling is unfortunately hard to assess(

:
, see e.g. ?)

:
?.

As an example of uncertainty due to sampling, we present Fig. ?? in which an evaluation of the current satellite AOD data

with Inversion L2.0 data
::::
(only

:::::
those

:::::
AOD

:::
that

::::
have

::::::::::::
corresponding

::::::
AAOD

:::::::::
inversions,

::::::
which

::::::::
constrains

:::::
AOD

::
at

::::::
440nm

::::::
> 0.4)

shows substantial shifts compared to Direct Sun
::::::::
DirectSun

:
L2.0. As the uncertainty ranges indicate, the changes in biases are300

not due to statistical noise. Neither is this due to differences in collocated DirectSun and Inversion L2.0 AOD values, that

agree very well. Rather, the issue is that AERONET Inversion data are an unrepresentative subsample of the DirectSun data

::::::::
(Inversion

::::
data

:::
are

::::::
skewed

:::
to

::::
high

:::::
AOD). It is unclear what this means for the AAOD and SSA evaluation but readers should

be aware of this unaccounted-for sampling issue that may introduce biases.

3.3
::::
Error

:::::::
metrics

:::
for

::::::::::
evaluation305
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:::
We

:::
will

::::
use

:::
the

::::
usual

::::::
global

::::
error

::::::::
statistics

:::::
(bias,

:::::::
standard

:::::::::
deviation,

::::::
Pearson

::::::::::
correlation,

:::::::::
regression

:::::::
slopes),

::::::
treating

:::
all

::::
data

::
as

::::::::::
independent.

::::::::::
Regression

:::::
slopes

:::::
were

::::::::
calculated

::::
with

:
a
::::::
robust

::::::::
Ordinary

::::
Least

:::::::
Squares

::::::::
regressor

:::::
(OLS

:::::::
bisector

::::
from

:::
the

::::
IDL

:::::::
sixlin

:::::::
function,

:
?
::
).

::::
This

::::::::
regressor

:
is
::::::::::::

recommended
:::::
when

:::::
there

::
is

::
no

::::::
proper

::::::::::::
understanding

::
of

:::
the

:::::
errors

::
in
:::
the

:::::::::::
independent

:::::::
variable,

:::
see

::::
also

:
?
:
.

4 A first look at the satellite products310

Multi-year averages of satellite AAOD and their differences are shown in Fig. ??. The AAOD maps can only be compared

with some caution, as they are derived from products with different temporal sampling. The differences, on the other hand,

are based on collocated data and confirm major features. The products all agree on a major AAOD hotspot from (likely)

African Savannah biomass burning. Three products agree on
:::::
AAOD

::::::::
hotspots

::
in

::::::
China

:::
and

:::::
India,

::::
that

:::
are

:
known polluted

regions like India and China also being AAOD hotspots (OMAERUV, which is relatively featureless, is the exception.
::::

We315

::::::
surmise

::::
this

::
is

:::
due

::
to

:::
the

:::::
large

:::::::
pixelsize

:::
of

:::
the

::::
OMI

::::::::::
instrument,

:::
see

:::::
Table

:::
??,

:::::
which

::::
will

:::
not

:::::::
resolve

::::
small

:::::
scale

::::::::
structure

::
in

::::::
AAOD.

::::
The

::::::::
existence

::
of

::::
such

:::::
small

:::::
scale

:::::::
structure

::::
was

:::::::
inferred

::::
from

::::
Fig.

:::
??). POLDER-GRASP-M and OMAERUV show

a clear AAOD hotspot due to Amazonian biomass burning. POLDER-GRASP-M estimates relatively high values over land,

and the ocean at high northern latitudes. OMAERUV shows relatively low AAOD over land but high over the entire ocean.

FL-MOC clearly estimates higher AAOD over the Sahara than either POLDER-GRASP-M or OMAERUV. POLDER-SRON320

estimates relatively high AAOD over the Rocky mountains
:::::::::
Mountains, the Andes and Australia. Unfortunately, even in multi-

year averages significant differences in regional AAOD between the products are observed, in excess of 50%. Figure S1 shows

the corresponding SSA maps. As expected, POLDER-GRASP-M has relatively low SSA and OMAERUV relatively high SSA

over land. FL-MOC has the highest SSA over ocean of all products.
::
As

:::
the

:::::::
satellite

:::::
AOD

:::
are

:::::
fairly

:::::::
similar,

:::::
lower

:::::
values

:::
of

::::::
AAOD

:::::::
translate

::::
into

:::::
higher

::::::
values

::
of

:::::
SSA.325

One caveat is that AAOD and SSA retrievals are likely to be better (more accurate and precise) at high AOD. In the above

analysis, no account was taken of AOD levels and the products were discussed as they are. The impact of AOD will later be

discussed .
::
be

::::::::
discussed

:::::
later,

:::::
when

::::::::
discussing

:::
the

:::::::::
evaluation

::::
with

::::::::::
AERONET

::
in

:::::
Sect.

::
??

:::
and

:::
the

:::::::
satellite

::::::::::::::
intercomparison

::
in

::::
Sect.

:::
??.

5 Evaluation of satellite products with AERONET330

Taylor plots of the performance of the satellite products are shown in Fig. ??. Satellite AOD is evaluated against AERONET

Direct Sun
::::::::
DirectSun

:
L2.0. Satellite AAOD & SSA, are evaluated against AERONET Inversion L2.0 (which constrains AOD

at 440nm > 0.4 and provides much less data than Direct Sun
::::::::
DirectSun). All products show high correlation with AERONET

AOD (r ≥ 0.76), although the correlations found are lower than found in ?
:::::
those

:::::
found

::
in

::
? for several MODIS Aqua prod-

ucts (0.87-0.88). Correlations for AAOD and SSA are lower than for AOD suggesting that it is more challenging to retrieve335

absorptive qualities.
:::::::
absorbing

::::::::
qualities.

:
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Interestingly, POLDER-SRON’s SSA correlates significantly better with AERONET than POLDER-GRASP-M’s (their

AOD and AAOD perform similarly)), suggesting balancing errors in AODand AAOD in the first product
::
but

::::
this

:
is
::
a
::::::::
sampling

:::::
effect:

:::::
once

::::
both

:::::::
products

:::
are

:::::::::
collocated

::::::::
together,

:::::::::::::::::::
POLDER-GRASP-M’s

:::::
SSA

:::::::::
correlation

::::
with

::::::::::
AERONET

::::::::
increases

:::::
from

::::
0.41

::
to

::::
0.69.

::::
The

:::::::::
explanation

:::
for

:::
this

::
is
:::
not

:::::::
entirely

:::::
clear,

:::::::
although

::
it

::::
turns

:::
out

:::
that

::::::::::::::::::
POLDER-GRASP-M

::::::::
evaluates

::::::
poorer

::::
with340

:::::::::
AERONET

:::
for

::::
2010

::::
than

:::
for

:::::
2006

:::
and

::::
2008

:::::::::::::::
(POLDER-SRON

::
is

::::::::
currently

::::::
limited

::
to

:::::
2006,

:::
see

:::::
Table

:::
??).

::::::::
Although

:::
the

::::::
poorer

::::::::
evaluation

:::
for

:::::
2010

:::
can

::
be

::::
seen

::
in

::::::
AOD,

::::::
AAOD

:::
and

:::::
SSA,

:
it
::
is
::::
only

::::::::::
statistically

:::::::::
significant

:::
for

::::
SSA.

The impact of statistical noise on the AAOD evaluation is explored in Fig. ??. Using a bootstrapping technique, the spread in

correlation and standard deviation were explored. For most datasets, the results seem fairly robust, except for FL-MOC which

uses
::::::
yielded only 24 data points. A proper intercomparison of products , however, requires collocation (of all the satellite data),345

which reduces available cases even further. Figure S2 shows that results are not very different from Fig. ??, but the statistical

noise increases substantially. The sampling noise on such a small subset should be even larger, see also Fig. ?? and ?
:
?. For a

sense of perspective, 53
::
48 data points represents less than 0.0006%

:::::::
0.0008%

:
of the total POLDER-GRASP-M data amount

used in this paper.

5.1 Evaluation and intercomparison of AOD350

In Fig. ??, we provide more detail on the satellite AOD products and their evaluation against AERONET Direct Sun
::::::::
DirectSun

L2.0 AOD. In the central column, we show the products themselves, averaged over several years
::
1,

:
2
:::
or

:
3
:::::::
year(s),

:::::::::
depending

::
on

:::::::::
availability

::::
(see

:::::
Table

:::
??). Note that the products exist for different years and even within

::
for the same years have different

:::::::
products

:::
will

:::::
have

:::::::
different

:::::::
temporal

:
samplings so comparisons should be made with caution

::::
(??). In the left and right column,

we show satellite data collocated with AERONET. On the left-hand side is a scatterplot of the raw data (with associated statistics355

provided) and on the right-hand side is a map of multi-year difference with AERONET (provided at least 32 data points were

available per site).

The scatter plots show good correlation with AERONET. The POLDER products show higher correlations and slopes

closer to
:::
one

:
(1(one ) than FL-MOC and OMAERUV. Nevertheless, differences in evaluation seem rather small, which un-

fortunately cannot be said for the global distributions of AOD. POLDER-GRASP-M has rather high AOD over land and360

OMAERUV has rather high AOD over ocean (note that the satellite data themselves are not collocated). The multi-year differ-

ences with AERONET suggest that POLDER-GRASP-M mostly overestimates AOD (several sites show small underestimates)

while OMAERUV overestimates everywhere except in some regions with strongly absorbing aerosol. In ? we evaluated 14

satellite AOD products (see also list in Fig. ??), and most showed both positive and negative biases varying with region.

Compared to those products, POLDER-GRASP-M and OMAERUV show a more globally consistent positive bias. Note that365

POLDER-SRON provides fewer observations and hence collocated data than the other two products. There is however a

suggestion it is less biased. An intercomparison of satellite AOD with Aqua-DT is presented in Fig. S3 and also suggests

typically high estimates over land
::::::
suggests

::::::::
typically

::::::
higher

::::::::
estimates

::::
over

:::::::::
(Southern

:::::::::::
Hemisphere)

:::::
Land

:
for the POLDER

products and also over ocean
:::
over

::::::
Ocean

:
for OMAERUV.

::::
Note

:::
that

:
Aqua-DT is not without biases either, see ?, but this

analysis confirms the evaluation with AERONET and adds spatial context to it
::::::::
significant

:::::::
regional

::::::
biases,

:::
see

::
?.370
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Figure ?? shows results when bias (sign-less) and correlation per site
::::
(that

::::::
yielded

::
at

::::
least

:::
32

::::::::::
collocations)

:
are averaged over

all sites, for all satellite products
::::
each

:::::::
satellite

::::::
product. The same 92

::
52

:
sites are used for all datasets although each product is

individually collocated with AERONET. For FL-MOC, no site provided at least 32 observations and it is not included in the

analysis. For POLDER-SRON, only 18 sites provided at least 32 collocated observations . The POLDER-SRON result should

therefore not be
::
and

::
it
::::
was

::::::::
similarly

::::::::
excluded.

:::
As

:::
was

::::
also

::::::
shown

::
in

::
?,
:::::::::::

OMAERUV
::::::
shows

:::::
rather

:::::
large

:::::
biases

:
compared to375

the other datasets. In any case,
:::::
AOD

::::::::
products. POLDER-GRASP-Mand OMAERUV appear to have larger biases and lower

correlations per site than most of the datasets studied in ?.
:
,
::
on

:::
the

:::::
other

:::::
hand,

:::::
shows

:::
the

:::::::
smallest

::::
bias.

::::
The

:::::::
filtering

::
of

:::::::
GRASP

:::::::
retrievals

::::::::
described

::
in
:::::
Sect.

::
??

:::::
plays

:
a
:::::::::
significant

::::
role

::
in

:::
this

:::::
result

:::::::
(without

::::::::
filtering,

:::::::::::::::::
POLDER-GRASP-M

::::::
shows

:
a
::::
bias

:::::
twice

::
as

:::::
large).

:

5.2 Evaluation of AAOD and SSA380

Figure ?? provides more detail on the evaluation of satellite (A)AOD & SSA products against AERONET Inversion L2.0

(which constrain AOD at 440nm > 0.4). In the first three columns, we show scatter plots for respectively AOD, AAOD and

SSA. In the last column we show SSA differences with AERONET as a function of AERONET AOD (Inversion L1.5). All

products underestimate
::::::::::
AERONET AOD and AAOD, although only by a small amount in

::
the

:
case of POLDER-GRASP-M.

More importantly, AAOD correlations can be low as 0.34 (OMAERUV) and regression slope can deviate substantially from385

1 (0.6 for OMAERUV). In contrast, some product
:::::::
products

:
underestimate SSA while others over-estimate it. Due to data

sparsity (e.g. for POLDER-GRASP-M, the count dropped from 17692 to 529
:::::
10454

::
to

:::
423), it is not possible to do an analysis

per AERONET site (as was done for AOD) and see how the global bias relates to regional biases. Bootstrap analysis suggest

that the global statistics
::::::
results are fairly robust against statistical noise (except FL-MOC, see also Fig. ??).

The right-most column in Fig. ?? shows SSA difference as a function of (AERONET) AOD. To ensure the largest possible390

range in AOD values Inversion L1.5 instead of L2.0 is used. Especially at lower AOD, this dataset will have larger errors in

AAOD and SSA than L2.0. Interestingly, as AOD increases, all satellite products seem to agree better with AERONET (for

FL-MOC, the bin with largest AOD values is affected by a very low data count). This is of course as one would expect. For

smaller AOD, there is increasingly more spread although the difference distribution remains fairly unbiased. The exception is

POLDER-GRASP-M which shows increasingly lower SSA than AERONET at low AOD. We suggest that it is rather unlikely395

that three different satellite products have a similar SSA bias at low AOD as AERONET (and hence show no bias in the

difference with AERONET) and that this low bias in POLDER-GRASP-M analysis is real. A
:::::::
However,

::
a better understanding

of the nature of errors (bias vs. random) in AERONET SSA at low AOD is desirable.

Summarizing, there is skill in satellite AAOD and SSA but compared to AOD the correlations with AERONET are substan-

tially lower. POLDER-SRON is the exception, with similar and fairly high correlations (∼ 0.75) for all three parameters. How-400

ever, it seems to underestimate AAOD by ∼ 25% at high AOD
::::::
AAOD (slope of 0.76 in the AAOD scatter plot). OMAERUV

appears to show the largest deviations from AERONET (low correlations and slopes) but its overall error statistics (mean and

standard deviation) is not too different from the other products. Results for FL-MOC may be a statistical fluke due to the low

data count. POLDER-GRASP-M overal performs rather nicely
:::::
shows

::::
quite

::::
high

::::::::::
correlations

:::
for

:::::
AOD

:::::
(0.86)

:::
and

::::::
AAOD

:::::
(0.6)
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::::
with

:::::::::
reasonable

:::::
slopes

:
but has a very low correlation with AERONET for SSA (0.37)

::::
0.41),

:::
but

::::
this

:::::
seems

::
to

:::::::
depend

:::::::
strongly405

::
on

::::::::
sampling

::
as

::::::::
discussed

::
at
:::
the

::::
start

:::
of

:::
this

::::::
section. In addition, it appears to systematically underestimate SSA at low AOD.

Yet another aspect to this dataset (not visible in any of the analysis shown) is that it appears to have hard
:
a

::::
hard

::::
SSA cut-off as

SSA values larger than 0.99 do not occur.

A profound problem is the paucity of data. Even for POLDER-GRASP-M, we can only evaluate its performance (against

AERONET) for less than 0.006% the total number of available observations. Is this sufficient to make meaningful statements410

about the performance of a product at large? In Schutgens et al. 2019a
:
?, we showed that the process of collocation can skew

error statistics (by changing the sampling) to the point that it becomes hard to meaningfully distinguish performance of several

products. That study was done for AOD which allows much higher numbers of collocated data with AERONET than AAOD.

To elucidate this, we compare the difference in SSA between the two POLDER products (collocated within 3 hours
:
,

:::::::::
considering

:::::
AOD

:::::::
≥ 0.25

::::
only) for three different samplings. First, we look at global POLDER SSA statistics, second,

:
.415

::::::::
Secondly, we look at POLDER SSA statistics over AERONET sites only. Thirdly, we look at POLDER SSA statistics that

are collocated with AERONET observations. Figure ?? shows the associated difference distributions. Using various non-

parametric statistical tests (Mann-Whitney U, Student’s t, Kolmogorov-Smirnov) we can show that the distribution means for

the first and third sampling are fundamentally
::::::::::
significantly

:
different. Not only that, but the mean difference in SSA for the

first sampling is 2.6 as large (-0.044
::::::
-0.043 vs. -0.017) as for the third sampling(and is statistically significant). As POLDER-420

SRON is biased high and POLDER-GRASP-M is biased low vs AERONET, the corrollary
::::::::
corollary to this is of course that

at least one of the products has a larger bias vs the truth globally than can be seen in the AERONET observations. Conversely

this suggests that the AERONET Inversion dataset does not allow a truly global evaluation of satellite datasets: it provides a

sub-sample with skewed statistics of SSA
::::
errors. Incidentally, it is the temporal sub-sampling enforced by collocation with

AERONET observations that causes the largest shift in the difference distribution (POLDER measurements over AERONET425

sites show a similar SSA distribution as the global dataset). It is possible that the SSA difference is partly driven by cloud

contamination which we know is present in these satellite datasets (?)
:::
(?) and may be ameliorated when a third cloud masking

(from AERONET) is applied (through the collocation of data).

6 Intercomparison of satellite AAOD and SSA

To get a better appreciation of the satellite products, we now present a global intercomparison. To start with, Fig. ?? shows430

SSA differences between two products as a function of their mean AOD. As in Fig. ??, these differences become smaller (i.e.

show a smaller spread) at higher AOD, as expected (intercomparisons with FL-MOC are the exception). However, while the

spread in the difference distribution may become narrower, substantial biases remain: -0.012 or 0.022 for either OMAERUV

intercomparisons and 0.037 for an intercomparison of the POLDER products. Even ignoring these biases and concentrating on

the spreads: satellite SSA
::::::
satellite

::::
SSA

::::::
values still exhibit random differences of 0.03 or larger for AOD ' 1, as also confirmed435

by the AERONET evaluation.
::
In

::::::::
addition,

:::::::::
substantial

:::::
biases

:::::::
remain.
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The previous analysis was global but substantial differences can be seen between land and ocean scenes. For instance, the

SSA bias between the POLDER products over land, does not decrease at lower AOD but remains fairly constant. A more

detailed analysis can be found in Fig. ?? which shows biases, correlations and regression slopes for different products. Un-

surprisingly, correlations and slopes tend to improve with minimum AOD, while biases may remain fairly constant (POLDER440

products), decrease (OMAERUV vs POLDER-GRASP-M) or even increase (FL-MOC). As a consequence it should be chal-

lenging to determine an AOD threshold above which products can be expected to perform within certain parameters. A similar

analysis for AAOD can be found in Fig. S4. Note that the improvement in correlation with increasing AOD threshold is now

only seen for the POLDER intercomparison, again suggesting SSA may be positively affected by balancing errors.

A final analysis concerns multi-year averages of these products. Model evaluation will be done on such averages and it may445

be useful to better understand the agreement (or lack thereof) between products in that case, even though the aforementioned

biases are unlikely to be much reduced. Figure ?? shows an intercomparison of three products (FL-MOC is excluded due to

its low data count). The analysis shows statistics of the intercomparison of multi-year averages of SSA, as a function of two

thresholds: a minimum AOD and a minimum number of observations
:::::::::::::::
super-observations

::::::
during

::::
three

:::::
years

:
(per 1o × 1o grid-

box). The underlying super-observations were always collocated (to within 3 hours) before temporal averaging took place. We450

see thatin general ,
:::

in
:::::::
general, correlations increase and standard deviation in the difference decrease when either threshold

increases. The improvement with increasing AOD has already been discussed and is due to better signal-to-noise conditions

for the retrieval schemes. The improvement with increasing number of observations (used in the temporal averaging) can be

interpreted as a significant random error in either product being lessened through averaging. In general, the AOD threshold has

a more profound impact but the number of observations threshold allows more flexibility (by choosing a longer time-series to455

work with, smaller SSA differences
:::
(up

::
to

:
a
::::::
point!)

:
may be achieved).

However, biases between products can be quite robust as is particularly clear for the POLDER products. The decreasing bias

for OMAERUV vs. POLDER-SRON (and, incidentally, the sudden jump in correlation for AOD > 0.4) is not really a sign of

a better agreement between products at high AOD. Under these conditions, most observations come from the African dust and

biomass burning regions. POLDER-SRON retrieves very reflective dust and very absorptive
::::::::
absorbing biomass burning aerosol460

while OMAERUV retrieves fairly reflective dust and fairly absorptive
::::::::
absorbing

:
biomass burning aerosol. Consequently, global

SSA bias decreases due to a balancing of very different biases over these regions while similar spatial patterns yield high

correlations. Maps of the SSA difference between the POLDER products as a function of minimum AOD can be seen in

Fig. S5. A higher minimum AOD mostly constrains data to a smaller portion of the globe but does not affect local biases

greatly.465

7 Conclusions

In this study, we evaluate several remote sensing datasets of AAOD and SSA, from a variety of sensors (CALIOP on CA-

LYPSO, OMI on Aura, POLDER on PARASOL), and use them to evaluate AEROCOM models
::
in

:::::::::
preparation

::
of

:::
an

::::::::::
AEROCOM

:::::
model

::::::::::
evaluation. This is the first global study to intercompare satellite remotely sensed products of AAOD (and SSA).
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The evaluation of the products (daily aggregates over 1o × 1o) is done through comparison with AERONET Direct Sun470

::::::::
DirectSun (AOD) and Inversion (AAOD and SSA) observations. To minimize sampling issues, satellite products and AERONET

data are collocated in time and space, within 3 hours and 1 degree. One interesting finding is that AAOD evaluation requires

a tighter temporal collocation criterium
:::::::
criterion

:
than AOD, with steep declines in correlation found for temporal collocation

after 3 hours or more. We interpret this to be due to absorptive
::::::::
absorbing aerosol primarily being found in plumes. While we

do not explore this further, this high temporal variability in observed AAOD may affect model evaluation as well. It could475

suggests
::::::
suggest

:
that models need emissions with diurnal profiles, and output at higher frequencies than daily to obtain

:::
the

best possible agreement with observations.

All satellite AOD products show significant correlation with AERONET (0.76≤ r ≤ 0.86)but their biases tend to be fairly

large and more systematically positive compared to traditional products
:
.
::::::
Global

:::::
biases

:::
are

:::
not

::::
very

::::::::
different

::::
from

:::::
those

:::::
found

::
in

::
an

::::::
earlier

:::::
study

::
of

::::::::
traditional

::::::::
products

:::
(?).

::::::::
However,

:::::
when

::::::::::
considering

::::::
typical

:::::::::
multi-year

:::::
biases

::::
per

:::::::::
AERONET

::::
site,

:::::
there480

:
is
::
a
:::::::::
suggestion

::::
that

::::::::::::::::::
POLDER-GRASP-M

:::
has

::::::
smaller

::::::
biases

::::
than

:::::
these

:::::::::
traditional

:::::::
products

::::::
(there

:
is
::

a
::::
hint

:::
this

::::
may

::::
also

:::
be

:::
true

:::
for

::::::::::::::
POLDER-SRON

:::
but

:::::::
paucity

::
of

::::
data

:::::
makes

::::
this

:::::::
analysis

:::
less

:::::::
certain).

::
In
::::::::

contrast,
::::::::::
OMAERUV

::::::
shows

:::
the

::::::
largest

::::
(and

:::::
mostly

::::::::
positive)

:::::
biases

::
in
::::::
AOD.

:::::::::
Compared

::
to

::::::::
Aqua-DT (e. g. MODIS Dark Target)that are only used for AOD retrievals (?).

The exception is FL-MOC over ocean, which actually relies on Dark Target retrievals,
:::

the
::::

four
::::::::
products

::::::
studied

::
in

::::
this

:::::
paper

:::
tend

:::
to
::::::::

estimate
:::::
higher

:::::
AOD

::::
over

::::
most

:::
of

::
the

::::
land.485

Results for AAOD are more diverse, with generally lower correlations (0.34≤ r ≤ 0.78) than for AOD. For most prod-

ucts(POLDER-SRON is the exception), SSA correlates significantly worse with AERONET than AAOD(exception is POLDER-SRON).

All products show an improvement in SSA with regards to AERONET at higher AOD. POLDER-GRASP-M is noted for a low

bias in SSA at low AOD.

:::
The

::::
two

::::::::
POLDER

:::::::
products

:::::::
perform

:::::
better

:::::::
against

:::::::::
AERONET

::::
than

:::
the

:::::
other

::::
two

::::::::
products,

::::
with

:::::::
typically

::::
(but

:::
not

:::::::
always)490

:::::
higher

:::::::::::
correlations,

::::::
smaller

::::::
biases

::::
and

::::::::
regression

::::::
slopes

::::::
closer

::
to

:::
one

::::
(1)

:::
for

::
all

:::::
three

:::::::::
parameters

::::::
AOD,

::::::
AAOD

::::
and

:::::
SSA.

::::::::
However,

:::::
dearth

::
of

::::::::::::
measurements

::::::
makes

:
it
::::
very

:::::::
difficult

::
to

::
1)

::::::::::::
meaningfully

:::::::
compare

:::::::::
evaluation

::::::
metrics

:::::::
amongst

:::
the

::::::::
products

:::
and

::
2)

::::
draw

::::::
global

::::::::::
conclusions.

::::::::::
Theoretical

:::::::
evidence

:::::
(???)

:::::::
suggests

:::
that

:::::::
retrieval

::::::::
schemes

::
for

:::::::::
absorptive

::::::::
properties

::::
will

::::::
benefit

::::
from

:::::
using

::::::::::
polarisation

:::::::::::::
measurements

::
at

:::::::
multiple

:::::
view

::::::
angles

:::::
which

::::::
would

:::::::
support

:::
the

::::
idea

::::
that

:::
the

:::::::::
POLDER

::::::::
products

::::::
perform

::::::
better.

::
In

::::::::
addition,

:::
the

::::::::::
OMAERUV

:::::::
product

::
is

:::::
based

:::
on

::::::::::::
measurements

::::
from

::
a
:::::
sensor

:::::
with

::::::::::
substantially

:::::
larger

::::::
pixels495

:::
than

:::::::::
POLDER

:::
and

::::
will

:::::::
struggle

::
to

::::::
resolve

:::
the

::::::::
fine-scale

::::::::
structure

::
of

::::::
aerosol

:::::::
plumes.

An intercomparison of multi-year satellite AAOD and SSA suggests significant biases across the globe. Differences of

75
::
50% in multi-year

:::::::
averages

::
of

:
AAOD are not unusual. OMAERUV shows lower AAOD over land than the other products,

but slightly higher AAOD over ocean. FL-MOC shows significantly higher AAOD over the Sahara and POLDER-GRASP-M

is noted for a high AAOD at high Northern latitudes, both over land and ocean. POLDER-SRON has much higher AAOD than500

the other products over high-altitude regions. Many of these regions are unfortunately poorly instrumented with AERONET

sites. Satellite SSA does agree better at high AOD, as was also observed for AERONET, although dearth of data means this

can not be firmly concluded for FL-MOC. However, correlations for super-observations are often lower than 0.6, even at high

AOD (0.75). Over ocean, SSA products tend to correlate better than over land. The two POLDER products correlate better than
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any other satellite pair (r =∼ 0.8 over ocean for AOD > 0.75). In addition to high AOD, we show that temporal averaging also505

improves agreement between satellite products, although it is difficult
:::
not

:::::::
possible

:
to give recommendations that work well

with all products
:::
and

:::
for

::
all

::::::
regions. Even so, biases between products exist at high AOD after substantial temporal averaging.

Most surprisingly, POLDER-GRASP-M and POLDER-SRON show a fairly systematic difference in SSA (-0.04), indepen-

dent of AOD (there are regional variations). A major exception would be cases over the deep ocean at
:::
For

:
low AOD (< 0.1) .

Especially at high AOD (> 0.4), over land, this bias is pronounced.
::::
cases

::::
over

::::::
ocean,

:::
this

:::::::::
systematic

::::::::
difference

::::::::
becomes

:::::
small510

::
in

:::
the

:::::
global

:::::::
average

:::::::
because

::
of

::::
two

:::::::
opposite

::::::
biases

::::::::
organised

:::::::
roughly

::
(!)

:::
by

::::::::::
hemisphere

::::
(see

::::
also

:::
Fig.

::::
S1).

:
Identifying the

cause of this bias may lead to substantial improvements of both products (or at least one of them). Based on a comparison with

AERONET data, we suggest that cloud contamination is a possible candidate.

Throughout the paper, we have given examples of how limited sampling of observations (especially AERONET) constrains

our ability to understand the true error statistics of satellite AAOD and SSA. The most prominent example is a much re-515

duced systematic difference (-0.017) between POLDER-GRASP-M and POLDER-SRON SSA as seen in an evaluation with

AERONET Inversion L2.0 observations, than is present in
::
as

::::::::
compared

::
to

:
the global satellite dataset (-0.04). This suggest that

biases inferred from an AERONET evaluation will be smaller than those actually present in the satellite products. It will not

be easy to increase Inversion L2.0 observationsdue to the technical limitations in the sensors (?). However, an alternative
::
To

:::::::
increase

:::::::
available

::::
SSA

:::::::::::
observations,

:::
one

:::::
could

:::
use

::::::::
Inversion

:
L1.5 product with similar cloud screening as

::::
data

::::::
(which

:::::::
includes520

::::
SSA

::
at

:::
low

:::::
AOD)

::::
and

::::::
sample

::
it

::
to L2.0 might go a long way, especially

::::
AOD

::::::::::::
measurements

:::::::
(which,

:::::
unlike

:::::
SSA,

::::
exist

::
at
::::
low

:::::
AOD),

:::::::
thereby

:::::::::
benefitting

::::
from

:::
the

:::::
better

:::::
L2.0

:::::
cloud

::::::::
screening.

:::::::::
Especially

:
if follow-up studies can show that inversion errors

at individual sites behave as random errors (amenable to temporal averaging) and not systematic biases
::::
such

::
an

:::::::::::
intermediate

::::::
product

:::::
might

:::
be

::::
very

:::::
useful.

This paper is one part of a two paper study into the use of satellite AAOD and SSA for aerosol model evaluation. In its525

companion paper, we use the datasets introduced in the current paper to evaluate AEROCOM (AEROsol Comparisons between

Observations and Models) models. It turns out that , notwithstanding serious biases in the satellite data, robust and consistent

evaluation of the models is possible. In ,
::::::::::::::

notwithstanding
:::
the

:::::
biases

::
in
:::
the

:::::::
satellite

::::
data

:::
we

::::
have

:::::::
detailed

::
in

:::
the

::::::
current

::::::
paper.

:::
The

:::::
main

:::::
reason

::::::
seems

::
to

:::
be

:::
that

::::::
model

:::::
biases

::::
(and

:::
the

::::::::
diversity

::
in

:::::
those

::::::
biases)

:::
are

::::
even

:::::
larger

::::
than

:::::::
satellite

::::::
biases.

::::::
Hence

::::
these

:::::::
satellite

::::::
AAOD

:::
and

::::
SSA

::::::::
products

:::
are

::::
very

::::::
useful:

::
in regions with AERONET sites, they provide spatial detail lacking in530

a surface network. In
:
;
::
in regions without AERONET sites, they are the only datasets of observed AAOD and SSA available.

Code and data availability. All remote sensing data is freely available. Analysis code was written in IDL and is available from the author

upon request.
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Figure 1. Colour legend used throughout this paper to designate the different satellite products, for both this study and the AOD study in ?
:
?.
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criterion. Colours indicate satellite product, see also Fig ??. Satellite products were individually collocated with AERONET.
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Figure 3. Global biases in four satellite AOD datasets depending on the chosen reference dataset (Direct Sun
::::::::
DirectSun or Inversion). Colours

indicate satellite product, see also Fig ??. Numbers in upper left and lower right corner indicate amount of collocated data, averaged over

all products. Error ranges indicate 5-95% uncertainty ranges based on a bootstrap analysis,
:::
see

::::
Sect.

:::
??. Satellite products were individually

collocated with AERONET, within 3 hours.
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Figure 4. Global maps of AAOD for four products, and their differences. AAOD differences are based on collocated data (within 3 hours).

Note that the products are available for different years, e.g. POLDER-SRON and FL-MOC do not overlap. No minimum AOD was required.
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Figure 5. Taylor diagrams
:
??

:
for the satellite products. AOD is evaluated against AERONET Direct Sun

:::::::
DirectSun L2.0, AAOD and SSA

are evaluated against AERONET Inversion L2.0. Colours indicate satellite product (see also Fig. 1), numbers next to coloured blocks indicate

amount of collocated data.
:::
The

::::
lines

:::::::
extending

::::
from

:::
the

:::
data

:::::
points

::::::
indicate

:::
the

::::
bias. Products were individually collocated with AERONET,

within 3 hours.
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Figure 6. Impact of statistical noise on the correlation and internal variability of satellite AAOD products, using bootstrapping. Shaded

regions indicate 5%− 95% uncertainty range
::
of

::::::::
correlation

::::
and

::::::
standard

::::::::
deviation

:::::::::
(uncertainty

::
in

::::
bias

::
is

:::
not

::::::
shown). Colours indicate

satellite product, see also Fig ??, numbers next to coloured blocks indicate amount of collocated data. Satellite products were individually

collocated with AERONET Inversion L2.0 within 3 hours.

Appendix A: Generic aggregation and collocation

The aggregation of satellite L2 products into super-observations in this paper, and the subsequent collocation of different

datasets for intercomparison and evaluation used the following scheme.

Assume a homogenous L2 dataset with times and geo-locations and observations of AOD
:::
and

::::::
AAOD. Homogenous means545

that AOD and AAOD are available for the same times, geo-locations and wavelengths. Each observation has a known spatio-

temporal foot-print, e.g. in the case of satellite L2 retrievals that would be the L2 retrieved pixel size and the short amount of

time (less than a second) needed for the original measurement.

Satellite L2 data are aggregated into super-observations as follows. A regular spatio-temporal grid is defined as in Fig. ??.

The spatio-temporal size of the grid-boxes (here 30min × 1o × 1o
:::::::::::::
1o × 1o × 30min) exceeds that of the footprint of the L2 data550

that will be aggregated. All observations are assigned to a spatio-temporal grid-box according to their times and geo-locations.

Once all observations have been assigned, observations are averaged by grid-box. It is possible to require a minimum number

of observations to calculate an average. Finally, all grid-boxes that contain observations are used to construct a list of super-

observations as in Fig. ??. Only times and geo-locations with aggregated observations are retained. As the original L2 dataset

was homogeneous, so is the resulting L3 dataset.555

Station data is similarly aggregated over 30min × 1o × 1o
:::::::::::::
1o × 1o × 30min. Point observations will suffer from spatial repre-

sentativeness issues (???), but the representativity of AERONET sites for 1o × 1o grid-boxes is fairly well understood (?)
::
(?),

see also Section ??. These aggregated L3 AERONET and MAN data will also be called super-observations.

Different datasets of super-observations can be collocated in a very similar way. Again a regular spatio-temporal grid is

defined as in Fig. ?? but now with grid-boxes of larger temporal extent (typically 3hr × 1o × 1o
:::::::::::
1o × 1o × 3hr). Because this560

temporal extent is short compared to satellite revisit times, either a single satellite super-observation or none is assigned to each
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Figure 7. For the four satellite products are shown: a scatter plot of individual super-observations versus AERONET
:::
(the

:::::
colour

:::::::
indicates

:::::
amount

::
of
::::

data
::
in

:::::::::
percentages,

:::
see

::::
Sect.

:::
??

::
for

:::
an

::::::::
explanation

::
of
:::

the
:::::::
metrics); a global map of the three-year AOD average; a global map

of the three-year AOD difference average with AERONET (if site provided at least 32 observations; land sites are circles, ocean sites are

squares, diamonds are the remainder). For FL-MOC, insufficient data prevent the plotting of a difference map. Products were individually

collocated with AERONET DirectSun L2.0 within 3 hours.

grid-box. A single AERONET site however may contribute up to 6 super-observations per grid-box (in which case they are

averaged). After two or more datasets are thus aggregated individually, only grid-boxes that contain data for both datasets will

be used to construct two lists of aggregated data as in Fig. ??. Those two lists will have identical size and ordering of times and
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Figure 8. Evaluation of satellite products with AERONET per site, averaged over all sites. Squares indicate products used in the present study,

circles indicate products used ?
:
in

:
?. Error bars indicate 5-95% uncertainty range based on a bootstrap analysis

:::
(see

::::
Sect.

:::
??) of sample size

1000.
::::
1000

:::
(the

:::::::
bootstrap

::::
was

::::::::
performed

::
on

:::
the

:::::::::
contributing

:::::::::
AERONET

::::
sites).

:
Colours indicate satellite product, see also Fig. ??. Products

were individually collocated with AERONET DirectSun L2.0 within 3 hour. All products use the same sites, each of which produced at least

32 collocations. POLDER-SRON and FL-MOC were excluded from this analysis due to lack of data.

geo-locations and are called collocated datasets. By choosing a larger temporal extent of the grid-box, the collocation criterion565

can be relaxed.

As the super-observations are on a regular spatio-temporal grid and collocation requires further aggregation to another

regular but coarser, grid, the whole procedure is very fast. It is possible to collocate all 7 products from afternoon platforms

over three years using an IDL (Interactive Data Language) code (that served as a prototype for CIS) and a single processing

core in just 30 minutes
::
(?). This greatly facilitates sensitivity studies.570

Starting from super-observations, a 3-year average can easily be constructed by once more performing an aggregation opera-

tion but now with a grid-box of 3yr × 1o × 1o
:::::::::
1o × 1o×yr. If two collocated datasets are aggregated in this fashion, their 3-year

average can be compared with minimal representation errors. This allows us to construct global maps of e.g. multi-year AOD

difference between two sets of super-observations.

A software tool (the Community Intercomparison Suite) is available for these operations at www.cistools.net (last575

accessed on December 20, 2019) and is described in great detail in ?.
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Figure 9. Evaluation of super-observations of AOD, AAOD and SSA for the satellite products. SSA is also evaluated as a function of AOD

(binned).
::
In

::
the

::::
three

:::::::
left-most

::::::
figures,

:::
the

:::::
colour

:::::::
indicates

::::::
amount

::
of

::::
data

::
in

:::::::::
percentages;

:::
for

::
an

:::::::::
explanation

::
of

:::
the

::::::
metrics,

:::
see

::::
Sect.

:::
??.

The right-most column uses two vertical axes: the left-hand side is used for individual data points (sub-sampled), the right-hand axis is used

for the grey-scale distribution (9,25,50,75,91% quantiles) and the median difference (blue line). Products were individually collocated with

AERONET Inversion L2.0 within 3 hour, except
:::
the right-most column which used Inversion L1.5.
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Figure 10. SSA differences POLDER-GRASP-M vs. POLDER-SRON for three different samplings: all available data, data available over

AERONET sites that provide Inversion L2.0 data, data available at the times and locations of Inversion L2.0 data. The vertical coloured lines

at the top show distribution means and the short horizontal lines extending from the middle show 2σ ranges. The dashed vertical line shows

zero difference. Number of collocated data are indicated in the figure as well. This analysis suggests that an evaluation with AERONET

would underestimate the actual difference between the two products. In all cases, data was collocated within 3 hours and a minimum AOD >

0.25 was required.
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Figure 11. Difference in satellite product SSA as a function of AOD (averaged over both products). Two vertical axes are used: the left-hand

side is used for individual data points (sub-sampled), the right-hand axis is used for the grey-scale distribution (9,25,50,75,91% quantiles)

and the median difference (blue line). Data were collocated within 3 hours.
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Figure 12. Comparison of different pairs of satellite SSA, over land (red) and ocean (blue), for different thresholds of minimum AOD (0.0,

0.25, 0.5, and 0.75). The data were collocated within 3 hours.
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Figure 13. Intercomparison of SSA satellite products after multi-year averaging, as a function of minimum AOD and number of collocated

observations (thicker lines group cases with the same minimum AOD but increasing number of observations). Bias uses a dashed line, and

RMSE a solid line. Cover is defined as fraction of surface area covered by data. FL-MOC is not present due to scarcity of observations. The

data were collocated within 3 hours.

Figure A1. A regular spatio-temporal grid in time, longitude and latitude. Such a grid is used for the aggregation operation that is at the heart

of the collocation procedure used in this paper. Grid-boxes may either contain data or be empty. Note that data may refer to any combination

of observations, e.g. AOD at multiple wavelengths or AOD and AAOD at 550 nm. However, the dataset is homogenous. Reproduced from ?.
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Figure A2. A list of data. Such a list is the primary data format used for both
::
the

:
observations and model data in this paper. Note that data

may refer to any combination of observations, e.g. AOD at multiple wavelengths or AOD and AAOD at 550 nm. However, the dataset is

homogenous. Reproduced from ?.
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