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Abstract 14 

The rapid response to COVID-19 pandemic led to the unprecedented decreases of economic 15 

activities, thereby reducing the pollutant emissions. A random forest (RF) model was applied to 16 

determine the respective contributions of meteorology and anthropogenic emissions to the changes 17 

of air quality. The result suggested the strict lockdown measures significantly decreased primary 18 

components such as Cr (-67%) and Fe (-61%) in PM2.5
 (p < 0.01), whereas the higher relative 19 

humidity (RH) and NH3 level, and the lower air temperature (T) remarkably enhanced the 20 

production of secondary aerosol including SO4
2- (29%), NO3

- (29%), and NH4
+ (21%) (p < 0.05). 21 

Positive matrix factorization (PMF) result suggested that the contribution ratios of secondary 22 

formation (SF), industrial process (IP), biomass burning (BB), coal combustion (CC), and road dust 23 

(RD) changed from 36%, 27%, 21%, 12%, and 4% before COVID-19 outbreak to 44%, 20%, 20%, 24 
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9%, and 7%, respectively. The rapid increase of the contribution ratio derived from SF to PM2.5 25 

implied the intermittent haze events during COVID-19 period were characterized with secondary 26 

aerosol pollution, which was mainly contributed by the unfavorable meteorological conditions and 27 

high NH3 level. 28 

1. Introduction 29 

In December 2019, a cluster of pneumonia cases with unknown etiology were firstly reported 30 

in Wuhan and quickly spread around the world (Wu et al., 2020). The continuous global outbreak 31 

of coronavirus disease (COVID‐19), declared as a public health emergency of international concern 32 

by the World Health Organization, resulted in unprecedented public health responses in many 33 

countries including lockdown, travel restrictions, and quarantines (Griffiths and Woodyatt, 2020; 34 

Horowitz et al., 2020). On January 23, 2020, Chinese government imposed a lockdown in Wuhan 35 

and many surrounding cities in Hubei province in order to prevent the spread of epidemic. 36 

Afterwards, many similar measures including blocked roads, shutdown of factories, restricted 37 

citizen mobility, and checkpoints were soon extended to other cities throughout the entire country. 38 

During this period, energy production by coal‐fired power plants only remained two thirds levels of 39 

the same periods in preceding years (Chang et al., 2020). Besides, the transport volume have been 40 

reduced by more than 70% due to the COVID-19 outbreak (Chang et al., 2020). These drastic 41 

government-enforced lockdown measures substantially decreased the pollutant emissions, and at 42 

least partly improved local air quality. Feng et al. (2020) confirmed that the COVID-19 lockdown 43 

have led to more than 70% reduction of NOx emissions in many large cities over China. 44 

Correspondingly, the concentrations of PM2.5 and NO2 decreased by 35% and 60%, respectively 45 

(Shi and Brasseur, 2020). The natural experiment provided an unprecedented opportunity to explore 46 



the potential for emission reduction and the corresponding response of air quality. 47 

A growing body of studies assessed the response of PM2.5 and gaseous pollutants to COVID-19 48 

lockdown, and found these stringent restrictions resulted in the significant decreases of these 49 

pollutant (e.g., PM2.5, NO2, and CO) concentrations (Miyazaki et al., 2020; Marlia et al., 2020). 50 

However, some haze events still occurred during this period especially in East China. Huang et al. 51 

(2020) employed the chemical transport models (CTMs) to infer that these extraordinary findings 52 

might be attributable to enhanced secondary pollution. Understanding the formation mechanism of 53 

puzzle haze events depending on CTMs alone might be not very robust, it was highly imperative to 54 

perform more field observation to analyze the temporal variations of chemical compositions 55 

especially the secondary ions (e.g., SO4
2-, NO3

-) in PM2.5 before and after COVID-19 outbreak and 56 

then to validate these inferences.  57 

To date, only several field observations analyzed the temporal variations of chemical 58 

components in fine particles during COVID-19 lockdown period. Chang et al. (2020) observed a 59 

remarkably enhanced nitrate formation in Yangtze River Delta (YRD) counteracted the decreases 60 

of primary components in fine particles, which was in good agreement with the modelling result 61 

drawn by Huang et al. (2020). In contrast, Xu et al. (2020) found that the marked decreases of fine 62 

particle concentrations in Lanzhou during COVID-19 lockdown period was mainly contributed by 63 

the lower production rate for secondary aerosols. Under the condition of similar emission control 64 

measures, the polarized conclusion might be associated with the local meteorology. He et al. (2017) 65 

demonstrated that meteorology might explain more than 70% variances of daily average pollutant 66 

levels over China during 2014-2015. Besides, Zhang et al. (2020a) also revealed that the release of 67 

primary pollutants and the generation of reactive semi-volatile products partitioned between gas and 68 



aerosol phases were strongly dependent on the temperature and relative humidity (RH). Thus, in 69 

order to accurately assess the effects of lockdown measures on air quality and to reveal the key 70 

driver of the haze paradox, it was necessary to isolate the contribution of meteorology. Unfortunately, 71 

up to date, the respective contributions of emission and meteorology to chemical compositions in 72 

PM2.5 during COVID-19 period were not quantified yet in most pioneering studies (Chang et al., 73 

2020; Huang et al., 2020; Xu et al., 2020). Moreover, the comparison of source contributions to 74 

chemical compositions between pre-lockdown and post-lockdown were scarcely performed. Such 75 

knowledge is critical to design effective PM2.5 mitigation strategies in the near future. 76 

As a heavily industrialized region, North China Plain (NCP) possesses many energy-intensive 77 

industries including coal-fired power plants, non-ferrous smelting industries, textiles, building 78 

materials, chemical engineering, and papermaking industries (Ren et al., 2011). Due to these 79 

intensive industrial emissions, NCP suffered from poor air quality and frequent aerosol pollution in 80 

the past decades (Zhang et al., 2018; Luo et al., 2017). Nevertheless, these strict lockdown measures 81 

during COVID-19 period inevitably led to the dramatic decreases of industrial emissions, and thus 82 

a study about the response of chemical compositions to emission reduction in the heavy-pollution 83 

city might be more sensible. 84 

Here, we selected the typical industrial city (Tangshan) in NCP to determine the concentrations 85 

of gaseous pollutants and chemical compositions in PM2.5 during January 1-March 31, 2020, and 86 

then to analyze their temporal variations before and after COVID-19 outbreak. Besides, a machine-87 

learning approach was applied to separate the contributions of emission reduction and meteorology 88 

to the temporal variabilities of chemical compositions and gaseous pollutants. Finally, the source 89 

apportionment was performed based on the meteorology-normalized datasets to compare the source 90 



difference for these pollutants before and after COVID-19 lockdown. 91 

2. Materials and methods 92 

2.1 Field observation 93 

Hourly gaseous pollutants and PM2.5 chemical compositions including water-soluble ions and 94 

trace elements were measured using on-line instruments during January 1-March 31, 2020 at a 95 

supersite in Tangshan. The supersite is located in a commercial region without short-distance 96 

industrial emissions (Figure 1). SO2, NO2, and CO concentrations were determined by the ultraviolet 97 

fluorescence analyzer (TEI, Model 43i from Thermo Fisher Scientific Inc., USA), 98 

chemiluminescence trace gas analyzer (TEI Model 42i from Thermo Fisher Scientific Inc., USA), 99 

and the correlation infrared absorption analyzer (TAPI, model: 300E, USA) (Li et al., 2017; Li et 100 

al., 2019). The mass concentration of PM2.5 was determined using an oscillating balance analyzer 101 

(TH-2000Z, China) (Wang et al., 2014). The NH3 concentration and water-soluble ions including 102 

sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), sodium ion (Na+), and chloridion (Cl-) were 103 

monitored with a Gas and Aerosol Collector combined with Ion Chromatography (GAC-IC, TH-104 

PKU-303, China) (Wang et al., 2014; Zheng et al., 2019). OC and EC were measured using an 105 

OC/EC analyzer (Model RT‐4, Sunset Laboratory Inc., Tigard, Oregon, USA). Nine trace elements 106 

including Hg, Pb, K, Ca, Cr, Cu, Fe, Ni, and Zn were determined by an online multi‐element 107 

analyzer (Model Xact 625, Cooper Environment Service, USA). The quality assurance of SO2, NO2, 108 

CO, and PM2.5 were conducted based on HJ 630-2011 specifications. For the quality assurance of 109 

NH3 and water-soluble ions, the concentration gradients of anion and cation standard solutions were 110 

set based on the pollution levels of target species, and correlation coefficients of the calibration 111 

curve must be higher than 0.99. Besides, a standard sample was collected each day and the relative 112 



standard deviation for the reproducibility test must be less than 5%. The online device agreed well 113 

with the result determined by filter sampling coupled with Inductively Coupled Plasma Mass 114 

Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-115 

AES). 116 

2.2 Deweathered model development 117 

The air pollutants were influenced by the combined effects of meteorological conditions and 118 

emissions. In order to quantify the contributions of anthropogenic emissions, the impacts of 119 

meteorological conditions should be removed. In our study, a random forest (RF) approach was 120 

employed to serve as the site-specific modeling platform (Chen et al., 2018). All of gaseous 121 

pollutants and chemical compositions in PM2.5 were regarded as the dependent variables. The 122 

meteorological parameters including wind speed (WS), wind direction (WD), air temperature (T), 123 

relative humidity (RH), precipitation (Prec), and air pressure (P), and time predictors (year, day of 124 

year (DOY), day of week (DOW), hour) served as the independent variables. The original dataset 125 

was randomly classified into a training dataset (90% of input dataset) for developing the RF model 126 

and the remained one was treated as the test dataset. After the building of the RF model, the 127 

deweathered technique was applied to predict the air pollutant level at a specific time point (e.g., 128 

2020/01/01 12:00). The differences of original pollutant concentrations and deweathered pollutant 129 

concentrations were regarded as the concentrations contributed by meteorology. Some statistical 130 

indicators including R2 value, RMSE, and MAE were regarded as the major criteria to evaluate the 131 

modelling performance. In our study, the RF model with the R2 value lower than 0.50 was treated 132 

as the unreliable result and cannot reflect the impacts of emission and meteorology on air pollutants 133 

accurately because more than 50% variability of the training model cannot be appropriately 134 



explained. After the model evaluation, only the species with the cross-validation R2 values larger 135 

than 0.50 were selected to assess the respective contributions of emission and meteorology to their 136 

concentrations. 137 

2.3 Source apportionment 138 

Positive matrix factorization (PMF 5.0) model version was used to perform the PM2.5 source 139 

apportionment. The deweathered gaseous pollutants and chemical compositions in PM2.5 were 140 

incorporated into the model. The objective of PMF is to resolve the issues of chemical mass balance 141 

between measured concentration of each species and its source contributions by decomposing the 142 

input matrix into factor contribution and factor profile. The detailed equation is shown in Eq. (1)-143 

(2). Briefly, the basic principle of PMF is to calculate the least object function Q when the gik must 144 

be a positive-definite matrix based on Eq. (2) (Chen et al., 2014; Sharma et al., 2016). 145 
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where xij and eij represent the concentration and uncertainty of jth species, respectively. gik 148 

represents the contribution ratio of kth source to ith sample, fkj represents the ratio of jth species in 149 

kth source, and eij indicates the residual of jth species in the i sample. The uncertainties associated 150 

with factor profiles were evaluated using three error calculation methods including bootstraps (BS) 151 

method, displacement (DISP) analysis, and the combination method of DISP and BS (BS-DISP). 152 

For the BS method, 100 runs were performed and the result has been believed to be valid since all 153 

of the factors showed a mapping of above 90%. DISP analysis also confirmed that the solution was 154 

considered to be stable because the observed drop in the Q value was less than 0.1% and no factor 155 



swap occurred. For the BS-DISP analysis, the solution has been verified to be useful because the 156 

observed drop in the Q value was less than 0.5%. Furthermore, both of the results from BS and BS-157 

DISP did not suggest any asymmetry or rotational ambiguity for all of the factors (Manousakas et 158 

al., Brown et al., 2015). 159 

3. Results and discussion 160 

3.1 The concentration changes of gaseous pollutants and PM2.5 chemical compositions 161 

Figure 2, Figure 3, Figure 4, and Figure 5 show the temporal variations of gaseous pollutants 162 

and chemical compositions in PM2.5 from January 1-March 31, which could be divided into two 163 

periods including before and after COVID-19 outbreak. In this study, January 23 was regarded as 164 

the breakpoint because China's government imposed a lockdown in Wuhan and surrounding cities. 165 

Before COVID-19 outbreak, the average observed concentrations of SO2, NO2, CO, 8-h O3, and 166 

NH3 during January 1-22 were 34 μg/m3, 64 μg/m3, 2.0 mg/m3, 19 μg/m3, and 14 ppb, respectively. 167 

After COVID-19 lockdown, the mean concentrations of these gaseous pollutants changed to 25 168 

μg/m3, 39 μg/m3, 1.6 mg/m3, 49 μg/m3, and 18 ppb, respectively. Overall, CO, SO2, and NO2 169 

concentrations decreased by 18%, 27%, and 39%, respectively (p < 0.05). However, the NH3 and 170 

O3 concentration increased by 35% (p < 0.05) and 160% (p < 0.01).  171 

As shown in Figure 2, the chemical compositions in PM2.5 also showed dramatic changes during 172 

January 1-March 31 due to the impact of COVID-19 lockdown. The observed SO4
2-, PM2.5, Na+, 173 

and Cl- concentrations decreased by 6% (p > 0.05), 13% (p > 0.05), 29% (p < 0.05), and 48% (p < 174 

0.01), respectively, while observed NO3
- (2%) and NH4

+ (7%) levels showed slight increases (p > 175 

0.05). In Shanghai, Chen et al. (2020) revealed that SO4
2-, and NH4

+ concentrations displayed 176 

significant decreases after COVID-19 outbreak due to the obvious decreases of precursor 177 



concentrations (e.g., SO2, NOx). However, both of observed NO3
- and NH4

+ concentrations in 178 

Tangshan even showed slight increases though the NO2 concentration suffered from remarkable 179 

decrease. It was assumed that the adverse meteorological conditions might be beneficial to the 180 

pollutant accumulation (Zheng et al., 2019; Zhang et al., 2019b). Besides, the concentrations of nine 181 

trace elements were also determined. The observed values of Fe (25%), Ca (39%), Pb (41%), Cr 182 

(41%), and Zn (48%) suffered from dramatic decreases (p < 0.05), while the K (0%), Ni (1%), and 183 

Hg (8%) concentrations still displayed slight increases (p > 0.05). As a whole, the temporal 184 

variability of these elements in Tangshan before and after COVID-19 lockdown was in agreement 185 

with the result in Beijing (He et al., 2017). However, the K concentration in Beijing showed rapid 186 

decrease after COVID-19 outbreak, which was not in coincident with our study (He et al., 2017). It 187 

suggested that the slight increase of K in Tangshan might be linked with the unfavorable 188 

meteorological conditions (He et al., 2017). The observed concentrations of OC (-19%) and EC (-189 

39%) also suffered from rapid decreases after COVID-19 lockdown (Figure 4) (p < 0.05), which 190 

was in good agreement with the sea-salt ions (e.g., Na+, Cl-) and most trace elements (e.g., Zn, Pb). 191 

3.2 The impact of emission reduction on air quality 192 

Although the observed concentrations of air pollutants can be applied to analyze the impact of 193 

COVID-19 lockdown, the role of emission reduction on air quality might be not clearly revealed 194 

because the meteorological factors were also important variables influencing the air pollutant 195 

concentrations. In order to accurately reflect the response of air quality to emission reduction during 196 

COVID-19 lockdown period, the meteorological conditions were isolated by machine-learning 197 

model. In our study, we developed a random forest model to remove the impacts of meteorological 198 

conditions on air pollutants. Based on the results in Figure S1, Figure S2, Figure S3and , Figure S4, 199 



and Figure S5, the RF models for all most of the species showed the better performance because all 200 

of thetheir R2 values were higher than 0.50 and the slope of all of the fitting curve were also close 201 

to the R2 values. However, some other species such as Ag, Cd, and Mg2+ showed the worse 202 

predictive performances, and thus these data cannot be utilized to distinguish the impacts of 203 

meteorology and emission on the concentrations of these species. Based on the cross validation R2 204 

value, the species with R2 value higher than 0.50 were applied to assess the contributions of 205 

meteorology and emission to the concentrations. The deweathered concentrations of gaseous 206 

pollutants and chemical compositions in PM2.5 are depicted in Figure 2, Figure 3, Figure 4, and 207 

Figure 5. Compared with the period before COVID-19, the deweathered NH3, SO2, CO, and NO2 208 

concentrations decreased by 27%, 31%, 32%, and 42% after COVID-19 lockdown period outbreak, 209 

respectively (p < 0.05), while the deweathered 8-h O3 concentration increased by 80% (p < 0.01). 210 

Meanwhile, the normalized-meteorology NH4
+, NO3

-, SO4
2-, Cl-, PM2.5, and Na+ and concentrations 211 

decreased by 14%, 27%, 35%, 35%, 38%, and 47%, respectively. For trace elements, deweathered 212 

Cu, K, Ni, Ca, Pb, Fe, Cr, and Zn levels reduced by 15%, 23%, 27%, 54%, 59%, 61%, 67%, and 213 

69%, respectively (p < 0.05). Nevertheless, the deweathered Hg concentration still kept stable 214 

increase by the rate of 6% compared with the period before COVID-19 outbreak (p > 0.05). 215 

The deweathered concentrations for most of the pollutants showed significant decreases after 216 

COVID-19 outbreak compared with the period before COVID-19 (Figure 2, Figure 3, Figure 4, 217 

Figure 5). It was assumed that many cities proposed the lockdown measures, which significantly 218 

minimized industrial, transportation, and commercial activities. Among all of the pollutants, the 219 

deweathered Zn, Cr, Fe, Pb, and Ca experienced more than 50% decrease rates due to the lockdown 220 

measures. It was well known that Zn, Cr, and Fe originated mainly from metallurgical industry (Sun 221 
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et al., 2018; Zhu et al., 2018), while Pb might be derived from coal-fired power plants (Cui et al., 222 

2019; Meng et al., 2020). During the COVID-19 outbreak, most of the industries have been shut 223 

down and energy production by coal‐fired power plants was reduced by one third (Chang et al., 224 

2020). Based on the adjustment factor estimated by Doumbia et al. (2020), the contributions of 225 

industrial activity and power sector have decreased by 40% after COVID-19 outbreak, which was 226 

close to the decrease ratios of Zn, Cr, Fe, and Pb concentrations. It should be noted that the 227 

deweathered Ca concentration also decreased by more than 50%. It was well documented that the 228 

Ca was often associated with the dust resuspension (Chang et al., 2018). In fact, the Ca was known 229 

as one of the most abundant elements in the upper continental crust, which likely originated from 230 

the fugitive dust (Chang et al., 2018; Shen et al., 2016). More than 70% reduction of vehicle 231 

transportation and domestic flights facilitated the rapid decrease of Ca concentration (Chang et al., 232 

2020). Although the observed K concentration did not show marked decrease after the COVID-19 233 

lockdown, the deweathered K level suffered from rapid decrease (-22%) (p < 0.05). It was widely 234 

acknowledged that K was considered to be a key fingerprint of biomass burning (Zheng et al., 235 

2020a), and thus the result suggested that the open biomass burning was also restricted during the 236 

period. Both of the deweathered concentrations of OC (-22%) and EC (-45%) also experienced 237 

remarkable decreases. In our study, both of OC and EC concentrations showed significant 238 

correlation with K level (p < 0.05), indicating that the restriction of biomass burning also led to the 239 

decreases of OC and EC. Besides, PM2.5 and some water-soluble ions including deweathered SO4
2- 240 

and NO3
- concentrations experienced marked decreases after COVID-19 lockdown, which was in 241 

good agreement with their gaseous precursors. It might be attributable to the rapid decreases of 242 

precursor emissions. Zheng et al. (2020b) verified that the SO2 emission in the industrial sector and 243 



NOx emission in the transportation sector in Hebei province have decreased by 19% and 13%, 244 

respectively. The deweathered Na+ concentration showed the rapid decrease after COVID-19 245 

lockdown, which suggested that the Na+ in the PM2.5 of Tangshan was probably derived from waste 246 

incineration rather than sea-salt aerosol (Deshmukh et al., 2016). 247 

Although most of pollutant concentrations suffered from remarkable decreases, the decrease 248 

ratios of deweathered NH3 and NH4
+ concentrations after COVID-19 outbreak were far lower than 249 

those of many other gaseous pollutants and water-soluble ions. It was attributable to the fact that 250 

ambient NH3 was mainly sourced from the fertilizer application and livestock, which did not show 251 

significant decrease during the COVID-19 period (Kang et al., 2016; Zheng et al., 2020b; Doumbia 252 

et al., 2020). Although the transportation volume suffered from dramatic decrease, the contribution 253 

of transportation to NH3 was generally less than 5% (Kang et al., 2016). Furthermore, the 254 

contribution of urban waste source slightly increased after COVID-19 outbreak, offsetting the effect 255 

of traffic outage (Zhang et al., 2020b). Besides, it should be noted that the normalized-meteorology 256 

8-h O3 and Hg concentrations still remained the stable increase. Liu et al. (2020) have confirmed 257 

that uncoordinated decreases of NOx and VOCs emissions (decrease ratio: NOx > VOCs) dominated 258 

the 8-h O3 increase in urban areas because most of urban areas belonged to VOC-limited region. 259 

Besides, the excessive decrease of PM2.5 from primary emission significantly increased the HO2 260 

radical concentration on the surface of aerosol, thereby promoting the O3 formation (Shi and 261 

Brasseur, 2020). The minor increase of deweathered Hg level was attributable to that the coal 262 

combustion for domestic heating was not restricted during the COVID-19 lockdown period (Zhou 263 

et al., 2018). Based on the updated global anthropogenic emission adjustment factor during COVID-264 

19, the contribution of residential sector to air pollutants did not decrease after COVID-19 lockdown 265 



(Doumbia et al., 2020). 266 

3.3 The role of meteorology and potential chemical reactions on air quality 267 

Compared with the observed values, the deweathered concentrations of most pollutants were 268 

significantly reduced. Meanwhile, the deweathered decrease ratios of pollutants were significantly 269 

higher than those of observed values (Figure 6). The result suggested the meteorology conditions 270 

during the COVID-19 lockdown period were not favorable to the pollutant dispersion, as evidenced 271 

by some recent studies (Chang et al., 2020; Huang et al., 2020). In our study, six meteorological 272 

parameters including WS, WD, T, RH, Prec, and P have been integrated into the random forest 273 

model to assess the response of each species to different meteorological variables. The variable 274 

importance of each meteorological to all of the species are shown in Figure 7, Figure 8, Figure 9, 275 

and Figure 10. 276 

Among all of the gaseous pollutants, the meteorological conditions played the significantly 277 

positive roles on NH3 (62%) and 8-h O3 concentrations (80%) (Figure 6). As shown in Figure 7, T 278 

was the most important factor for the rapid elevation of NH3 concentration after COVID-19 279 

lockdown. It was assumed that the higher T enhanced the emissions of NH3 from soil and urban 280 

wastes and promoted the volatilization of NH3 from aerosol NH4
+ pools (Zhang et al., 2020). In our 281 

study, the hourly mean air temperature have increased from 0℃ before COVID-19 outbreak to 5℃ 282 

after COVID-19 lockdown, which strongly supported the inference. For 8-h O3 concentration 283 

(Figure 7), T was also treated as the most important variable. On the one hand, the higher T generally 284 

enhanced biogenic isoprene emissions, which was the most abundant biogenic VOC and showed 285 

the highest ozone formation potential (Liu and Wang, 2020). On the other hand, high T often 286 

increased chemical reaction rates and accelerated the O3 formation (Shi et al., 2020). Besides, WS 287 



also played an important role on the 8-h O3 concentration. Shi et al. (2020) have demonstrated that 288 

weaker winds often slowed down the advection and convection of NOx and VOCs, which was 289 

beneficial to O3 formation. 290 

Besides, the contributions of meteorological conditions to some secondary ions (e.g., SO4
2- 291 

(29%), NO3
- (29%), and NH4

+ (21%)) were remarkably higher than those to other ions and some 292 

trace elements, suggesting that the chemical reactions and formation pathways of these species were 293 

more sensitive to meteorological variations. Deshmukh et al. (2016) confirmed that the high RH 294 

promoted the aqueous-phase oxidation of SO2 and the production of sulfate. Tian et al. (2019) also 295 

demonstrated that RH-dependent heterogeneous reactions significantly contributed to the sulfate 296 

generation and the high RH enhanced gas- to aqueous-phase dissolution of NH3 and HNO3.These 297 

pioneering experiments suggested that secondary aerosols were often formed under the condition of 298 

high RH. Very recently, Chang et al. (2020) observed that the nitrate concentration in YRD 299 

experienced unusual increase during COVID-19 period, while Xu et al. (2020) obtained the opposite 300 

result in Lanzhou. It was assumed that the persistent increase of T and decrease of RH in Lanzhou 301 

during this period was not beneficial to the generation of secondary aerosol, while the high RH in 302 

YRD significantly elevated local nitrate level. Although air temperature in Tangshan suffered from 303 

increase after COVID-19 lockdown, RH displayed rapid increase from 47% to 57% during this 304 

period. Moreover, the increased O3 could promote the secondary aerosol formation and partially 305 

offset the decreased PM2.5 compositions triggered by the primary emission reduction (Liu et al., 306 

2020). Similar to secondary ions, both of OC and EC were also sensitive to RH. It was supposed 307 

that high RH could increase the secondary organic aerosol (SOA) levels, which accounted for the 308 

major fraction of OC (Zheng et al., 2020).  309 



In addition, some trace elements such as Fe, Ni, and Cr were also significantly affected by the 310 

meteorological conditions. As shown in Figure 9, these element concentrations were mainly 311 

sensitive to WD. It was assumed that the neighboring industrial points including cement plants and 312 

coal-fired power plants could influence the concentrations of trace elements via long/short-range 313 

transport, which was strongly dependent on WD. Following WD, RH was also an important factor 314 

for the variation of these trace elements. Under the condition of high RH, Fe and Cr could catalyze 315 

the heterogeneous generation of sulfate and nitrate on the mineral/soot surface (Hu et al., 2015).  316 

Unlike the trace elements, water-soluble ions and OC were less sensitive to WD. Major water-317 

soluble ions in PM2.5 including SO4
2-, NO3

-, and NH4
+ were mainly derived from secondary 318 

formation rather than the direct emission (Feng et al., 2020a; Zhang et al., 2020a), and thus they 319 

were not very sensitive to WD. 320 

3.4 The enhanced secondary aerosol formation during COVID-19 lockdown period 321 

   The deweathered chemical compositions suggested that the sulfate and nitrate chemistry 322 

changed slightly after COVID-19 outbreak. The oxidation ratio of sulfate (SOR, the ratio of sulfate 323 

concentration and the sum of sulfate and SO2 concentrations) decreased from 0.26 to 0.22, while 324 

the oxidation ratio of nitrate (NOR, the ratio of nitrate concentration and the sum of nitrate and NO2 325 

concentrations) increased from 0.22 to 0.25 (Table 1). The decreased SOR after COVID-19 outbreak 326 

indicated that the decrease rate of sulfate is higher than that of SO2. In contrast, the increased NOR 327 

during COVID-19 lockdown period revealed that the decrease rate of nitrate is lower than that of 328 

NO2. The increased NOR after COVID-19 outbreak suggested the consecutive nitrate production, 329 

though the NO2 NOx emission experienced tremendous reduction, which was in good agreement 330 

with the result observed by Chang et al. (2020). It was assumed that the persistently higher observed 331 



NH3 concentration during this period promoted the ammonium nitrate formation though the lower 332 

NOx emission (Zhang et al., 2020b), which also partially explained the abnormal increases of 333 

observed concentrations of secondary ions after COVID-19 outbreak. In general, NH3 firstly tends 334 

to react with H2SO4 to form ammonium sulfate, and then the excess NH3 participated in the reaction 335 

with HNO3 (Chen et al., 2019; Zhang et al., 2019a). However, sulfate concentration suffered from 336 

more dramatic decrease compared with SO2, which might be associated with the aerosol acidity 337 

during COVID-19 lockdown period. The ratio of NH4
+ and the sum of SO4

2-, NO3
-, and Cl- named 338 

C/A was regarded as an indicator to reflect the aerosol acidity. In our study, the C/A value decreased 339 

from 0.33 to 0.28 after COVID-19 outbreak, implicating that the aerosol acidity even showed slight 340 

increase during the COVID-19 lockdown period. It was well known that the higher aerosol acidity 341 

might prohibit the conversion from SO2 to sulfate (Liu et al., 2020; Shao et al., 2019), which yielded 342 

the lower SOR.  343 

3.5 The impact of COVID-19 lockdown on source apportionment 344 

The emission control measures inevitably triggered the variation of source apportionment (Liu 345 

et al., 2017; Meng et al., 2020). In the present study, Positive matrix factorization (PMF 5.0) was 346 

employed to identify the major sources of PM2.5 in Tangshan before and after COVID-19 outbreak. 347 

About 3-9 factor solutions were examined, and a five-factor solution obtained the lowest Q (robust) 348 

and Q (true) values. Additionally, the PMF analysis and error diagnostics also suggested the result 349 

was robust (Table S2, Table S3, and Table S4).  350 

The source apportionment profiles in pre-COVID and post-COVID resolved by PMF are 351 

depicted in Figure 11. For pre-COVID, the first factor contributed 36% to the total species. The 352 

factor was characterized with high levels of NH4
+ (41%), SO4

2- (35%), and NO3
- (33%). SO4

2- and 353 



NO3
- were generally produced by oxidation of SO2 and NOx, respectively. The NH4

+ was often 354 

formed through the heterogeneous reaction of NH3 and sulfate or HNO3. Thus, the factor was 355 

regarded as the secondary formation (SF). The second factor was characterized with high loadings 356 

of Zn (47%), Cr (42%), Fe (42%), and Pb (31%). Cr and Fe were mainly originated from fuel 357 

combustion and metallurgical industry such as chrome plating and steel production(Liu et al., 358 

2018a), while Pb and Zn was derived from the roasting, sintering and smelting process for the 359 

extraction of Pb/Zn ores (Wu et al., 2012). Therefore, the factor 2 was treated as the industrial 360 

process (IP) source. The predominant species in factor 3 included Na+ (42%), K (40%), OC (35%), 361 

and EC (33%). K was often regarded as the fingerprint of biomass burning (BB) (Chen et al., 2017; 362 

Zheng et al., 2019b), whereas the Na+ was generally regarded as the tracer of waste incineration 363 

(Alam et al., 2019; Durlak et al., 1997). Hence, the factor 3 was treated as the BB source. Tangshan 364 

suffered from remarkable increasing usage of biomass fuels for domestic heating in winter, which 365 

promoted the emissions of K and Na+ (Chen et al., 2017). The most abundant species in factor 4 366 

were Hg (75%), Pb (68%), K (36%), Cu (35%), Cl- (33%), and SO4
2- (27%). Pb, Hg, and Cu were 367 

typical marker elements for coal combustion, and around 56% of Pb and 47% of Hg were released 368 

from coal combustion (Cheng et al., 2015; Zhu et al., 2020). In northern China, the coal-based 369 

domestic heating was one of the most important sector of coal consumption (Liu et al., 2018b). Dai 370 

et al. (2019) also verified that the residential coal combustion was major source of primary sulfate. 371 

Thus, the factor 4 was regarded as the coal combustion (CC) source. The last factor was 372 

distinguished by high loadings of Fe (46%), Ni (45%), and Ca (38%). Fe and Ca were main elements 373 

enriched in upper crust, and Ni was enriched in the brake wear and tyre wear dusts (Dehghani et al., 374 

2017; Urrutia-Goyes et al., 2018). Thus, these elements in this factor were mainly sourced from 375 



traffic-related road dust (RD). 376 

After COVID-19 outbreak, the chemical compositions in PM2.5 were also classified into five 377 

sources including SF, IP, BB, CC, and RD. However, the contribution ratios of these sources varied 378 

greatly after the implementation of serious lockdown measures. The contribution ratio of IP 379 

experienced the largest decrease from 27% to 20%, whereas the apportionment of SF showed the 380 

marked increase from 36% to 44%. The contributions of other three sources only suffered from 381 

slight variations. The rapid decrease of IP contribution might be associated with the shutdown of 382 

many industries during COVID-19 period (Zheng et al., 2020), while the obvious increase of SF 383 

contribution was attributable to more heterogeneous or aqueous reactions of precursors (Chang et 384 

al., 2020). For nearly all of the species, the contribution ratios of IP suffered from remarkable 385 

decreases after COVID-19 outbreak. Since COVID-19 lockdown, The the contribution ratios of SF 386 

to SO4
2-, NO3

-, and NH4
+ increased from 35%, 33%, and 41% to 48%, 44%, and 52%, respectively. 387 

However, the contribution ratios of SF for other species remained relatively stable. It was assumed 388 

that SO4
2-, NO3

-, and NH4
+ were mainly produced from secondary formation of precursors (Jiang et 389 

al., 2019; Yao et al., 2020), while other species especially the trace elements were mainly derived 390 

from the primary emission (Wu et al., 2020b). Although the COVID-19 pandemic led to the 391 

shutdown of many coal-fired power plants and industries and decreased the CC emissions from 392 

these sectors (Kraemer et al., 2020), the government-enforced home order might increase the 393 

electricity consumption (Venter et al., 2020), which offset the decreases of CC contributions to 394 

industrial activities. Therefore, the contribution ratios of CC did not experience dramatic variation 395 

after COVID-19 outbreak. 396 

4. Conclusions and implications 397 



The lockdown measures led to the shutdown of many industries, in turn resulting in the 398 

significant decreases of primary components in PM2.5. We employed RF model to determine the 399 

respective contributions of meteorology and emission reduction on the variations of gaseous 400 

pollutants and PM2.5 chemical compositions during COVID-19 lockdown period. The deweathered 401 

levels of some trace elements (e.g., Pb (-59%), Zn (-69%)) derived from industrial emissions 402 

experienced more than 50% decrease rates due to the stringent lockdown measures. However, the 403 

higher relative humidity (RH) and lower air temperature (T) significantly prohibited the decreases 404 

of water-soluble ion concentrations because they were beneficial to the heterogeneous or aqueous 405 

reaction of sulfate and nitrate. Trace elements were very sensitive to wind direction (WD) due to 406 

the long-range transport of anthropogenic emissions. Besides, the contributions of secondary 407 

formation to PM2.5 increased from 36% to 44% after COVID-19 outbreak. The finding also 408 

explained that the opposite change trends of the secondary aerosols in East and West China found 409 

by previous studies was not only attributable to the large difference in meteorological conditions, 410 

but also the discrepancy of NH3 concentration. 411 

In the future work, it is necessary to seek multi-pollutants (e.g., VOC, NOx) emission control 412 

measures to reduce the concentrations of primary and secondary components simultaneously since 413 

adverse meteorological conditions coupled with slightly higher oxidation capability especially in 414 

winter still caused the haze formation. Our results also highlight that more NH3 emission control 415 

measures are urgently needed because the excess NH3 could exacerbate the generation of secondary 416 

aerosols. Besides, the generation of primary pollutants was very sensitive to RH and WD. Thus, the 417 

primary pollutant emissions from the industries in the upwind direction should be strictly restricted. 418 

In addition, the present study still suffered from some uncertainties. At first, only six 419 



meteorological factors were incorporated into the RF model to quantify the contributions of 420 

emission and meteorology of air pollutants. Especially, the missing of solar radiation could affect 421 

the accuracy of 8-h O3 estimation. Besides, solar radiation could change the concentrations of 422 

hydroxyl radicals, thereby affecting the NO3
- formation. In the future work, the solar radiation 423 

should be integrated into the model. In addition, some temporal indicators such as hour and DOY 424 

were applied to reflect the COVID-19 lockdown intensity because hourly emission inventory during 425 

this period was not available, which should be integrated into the RF model after the development 426 

of real-time emission inventory 427 
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Figure 1 The topographic map of China indicating the location of Tangshan (a), sampling site (b), 

and some key industrial points (b). The population density of Tangshan is also depicted in (b). The 

red circle in Fig. (b) represents the industrial points, and the pink pentagram denotes the sampling 

site. 



Figure 2 Observed and deweathered weekly concentrations and changes of gaseous pollutants 

during January 1st-March 31th. The black solid line and dotted line represent the decrease ratio of 

observed concentration and simulated concentration from Pre-COVID to Post-COVID, respectively. 

The white background denotes the changes of gaseous pollutants before COVID-19, while the faint 

yellow one represents the chemical components after COVID-19 outbreak. 



Figure 3 Observed and deweathered weekly concentrations and changes of PM2.5 and water-soluble 

ions during January 1st-March 31th. The black solid line and dotted line represent the decrease ratio 

of observed concentration and simulated concentration from Pre-COVID to Post-COVID, 

respectively. The white background denotes the changes of gaseous pollutants before COVID-19, 

while the faint yellow one represents the chemical components after COVID-19 outbreak. 

 



Figure 4 Observed and deweathered weekly concentrations and changes of trace elements during 

January 1st-March 31th. The black solid line and dotted line represent the decrease ratio of observed 

concentration and simulated concentration from from Pre-COVID to Post-COVID, respectively. 

The white background denotes the changes of gaseous pollutants before COVID-19, while the faint 

yellow one represents the chemical components after COVID-19 outbreak. 

 



Figure 5 Observed and deweathered weekly concentrations and changes of organic carbon (OC) 

and elemental carbon (EC) during January 1st-March 31th. The black solid line and dotted line 

represent the decrease ratio of observed concentration and simulated concentration from from Pre-

COVID to Post-COVID, respectively. The white background denotes the changes of gaseous 

pollutants before COVID-19, while the faint yellow one represents the chemical components after 

COVID-19 outbreak. 

 



Figure 6 The changes of observed concentrations of multiple components between pre-lockdown 

(week 1-3) and post-lockdown (week 4-13) against the changes derived from the emission and 

meteorological changes. The gaseous pollutants, water-soluble ions and carbonaceous aerosols, and 

trace metals are shown in (a), (b), (c), respectively. 

 

 



Figure 7 Relative importance of the predictors for the prediction of gaseous pollutants. The match 

in the figure denotes the variable importance in RF models for various species. DOY, WD, P, RH, 

Hour, T, DOW, WS, Prec, and Year represent day of year, wind direction, air pressure, relative 

humidity, hour of the day, air temperature, day of week, wind speed, precipitation, and study year. 



Figure 8 Relative importance of the predictors for the prediction of water-soluble ions in PM2.5. 

The match in the figure denotes the variable importance in RF models for various species. DOY, 

WD, P, RH, Hour, T, DOW, WS, Prec, and Year represent day of year, wind direction, air pressure, 

relative humidity, hour of the day, air temperature, day of week, wind speed, precipitation, and study 

year. 

 



Figure 9 Relative importance of the predictors for the prediction of trace elements in PM2.5. The 

match in the figure denotes the variable importance in RF models for various species. DOY, WD, P, 

RH, Hour, T, DOW, WS, Prec, and Year represent day of year, wind direction, air pressure, relative 

humidity, hour of the day, air temperature, day of week, wind speed, precipitation, and study year. 



Figure 10 Relative importance of the predictors for the prediction of OC and EC in PM2.5. The 

match in the figure denotes the variable importance in RF models for various species. DOY, WD, P, 

RH, Hour, T, DOW, WS, Prec, and Year represent day of year, wind direction, air pressure, relative 

humidity, hour of the day, air temperature, day of week, wind speed, precipitation, and study year. 



Figure 11 The comparison of source apportionment for PM2.5 chemical compositions before (a) and 

after (b) COVID-19 outbreak. In our study, five major sources were distinguished based on PMF 

model. The color bar denotes the contributions of these sources to each species. SF, IP, BB, CC, and 

RD represent secondary formation, industrial process, biomass burning, coal combustion, road dust, 

respectively. 

 



Table 1 SOR, NOR, and C/A values in Pre-COVID and Post-COVID (SOR = SO4
2-/(SO4

2-+SO2), 

NOR=NO3
-/(NO3

-+NO2), C/A=NH4
+/(SO4

2-+NO3
-+Cl-)). 

 SOR NOR C/A 

Pre-COVID 0.26 0.22 0.33 

Post-COVID 0.22 0.25 0.28 

 

 

 



 


