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Abstract. Our quantitative understanding of natural tropospheric ozone concentrations is limited by the paucity of reliable 

measurements before the 1980s. We utilize the existing measurements to compare the long-term ozone changes that occurred 15 

within the marine boundary layer at northern and southern mid-latitudes. Since 1950 ozone concentrations have increased by 

a factor of 2.1 ± 0.2 in the northern hemisphere (NH) and are presently larger than in the southern hemisphere (SH), where 

only a much smaller increase has occurred. These changes are attributed to increased ozone production driven by anthropogenic 

emissions of photochemical ozone precursors that increased with industrial development. The greater ozone concentrations 

and increases in the NH are consistent with the predominant location of anthropogenic emission sources in that hemisphere. 20 

The available measurements indicate that this interhemispheric gradient was much smaller, and was likely reversed in the 

natural troposphere with higher concentrations in the SH. Six Earth System Model (ESM) simulations indicate similar total 

NH increases (1.9 with a standard deviation of 0.3), but they occurred more slowly over a longer time period, and the ESMs 

do not find higher pre-industrial ozone in the SH. Several uncertainties in the ESMs may cause these model-measurement 

disagreements: the assumed natural nitrogen oxide emissions may be too large, the relatively greater fraction of ozone injected 25 

by stratosphere-troposphere exchange to the NH may be overestimated, ozone surface deposition to ocean and land surfaces 

may not be accurately simulated, and model treatment of emissions of biogenic hydrocarbons and their photochemistry may 

not be adequate. 

1 Introduction 

Ozone (O3) is a species of central importance to tropospheric chemistry. Foremost, it is the primary precursor of the hydroxyl 30 

radical (Levy, 1971), which drives much of tropospheric photochemistry. This photochemistry oxidizes many air pollutants 

(e.g., carbon monoxide, hydrocarbons, oxides of nitrogen and sulfur dioxide, among others) yielding less toxic (e.g., carbon 
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dioxide and water) or more soluble species (e.g., nitric and sulfuric acids) that precipitation rapidly removes from the 

atmosphere. Thus, the hydroxyl radical, and thereby its ozone precursor, effectively cleans the atmosphere. However, ozone 

also has harmful environmental impacts; it is an air pollutant that adversely affects human, crop and ecosystem health, and it 35 

acts as a greenhouse gas, thus contributing to climate change (Monks et al., 2015). A comprehensive understanding of the 

distribution of ozone concentrations and ozone sources and sinks, both in time and in space, is needed for formulating effective 

policies for regulating ozone concentrations. 

Ozone has both natural and anthropogenic (i.e., photochemical air pollution) sources that are balanced by deposition and in 

situ chemical loss processes. The magnitude of these sources and sinks vary widely throughout the troposphere. In regions 40 

relatively isolated from photochemical precursor emissions, production and loss rates are slow compared to atmospheric 

transport. Thus, ozone concentrations are the product of local sources and sinks, modulated by transport of ozone-rich or 

ozone-poor air from other regions of the troposphere. Simulating these complex and interrelated photochemical, physical and 

transport processes is challenging, and significant shortcomings in global chemical transport model results have been 

identified, including in simulations of long-term changes (e.g., Staehelin et al., 2017 and references therein) and seasonal 45 

cycles (Parrish et al., 2016). 

Published analyses of long-term changes in tropospheric ozone have an inconsistency that has not been widely discussed. 

Parrish et al. (2012, 2014) find that tropospheric ozone concentrations increased by about a factor of 2 between 1950 and 2000 

at mid-latitudes in the northern hemisphere (NH). However, comparisons of ozone concentrations between hemispheres (e.g., 

Figure 1 of Cooper et al., 2014) indicate that ozone has changed little in the southern hemisphere (SH), and that present-day 50 

ozone is higher in the NH, but by a factor of less than 2. For example, Derwent et al. (2016) report mean ozone mixing ratios 

of 38.9 ± 0.4 ppb (1989-2014) and 32.0 ± 0.7 ppb (1990-2010) at two NH marine boundary layer (MBL) sites, and 25.0 ± 0.2 

ppb (1982-2010) at a comparable SH site. A simple hypothesis can resolve this inconsistency - before the natural ozone 

distribution was perturbed by anthropogenic emissions of ozone precursors, the ozone gradient was reversed compared to that 

of today, with concentrations higher in the SH than the NH at mid-latitudes. The primary goal of this paper is to test this 55 

hypothesis through comparison of measured long-term ozone changes at mid-latitudes in the two hemispheres, thereby 

quantifying the pre-industrial and present-day interhemispheric ozone gradients.  

Global atmospheric chemistry model simulations indicate that a reversal of the interhemispheric ozone gradient is plausible. 

Wang and Jacob (1980) used a global three-dimensional model of tropospheric chemistry to investigate pre-industrial ozone 

levels and discussed uncertainties and potential difficulties. Of particular importance was the level of the pre-industrial NOx 60 

emissions. Figure 1 examines the dependence of the interhemispheric ozone gradient upon the assumed magnitude of the 

natural NOx emissions through five simulations of the global Lagrangian chemistry-transport model (STOCHEM-CRI). The 

base case assumes no NOx emissions to the troposphere; under these conditions photochemical ozone production is small, 

with the required NOx precursor provided only by formation from nitric acid entering the troposphere through stratosphere-

troposphere exchange. A reversed ozone gradient arises from the faster surface deposition of ozone to land surfaces in the 65 

northern hemisphere. Biomass burning emissions in the second simulation contain a wide range of trace gases, but with NOx 
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emissions excluded, ozone levels increase somewhat but the reversed gradient is not significantly affected. As pre-industrial 

NOx emissions (from lightning, soil emissions, and biomass burning) are added step-wise (third through fifth simulations), 

ozone levels rise and the reversed gradient is gradually eroded at mid-latitudes.  

Comparisons of observed ozone concentrations with simulations by modern global atmospheric chemistry models provides 70 

useful tests of the models, and hopefully useful guidance for their improvement. One fruitful comparison arises from analysis 

of measurement records to establish, as accurately as possible, the long-term ozone changes that occurred in the background 

troposphere as industrial development proceeded, particularly at northern mid-latitudes. Challenges for this analysis include 

the sparseness of the measurement record and uncertainty regarding the accuracy of measurements made by different 

researchers using a variety of techniques at different locations. The Task Force of Hemispheric Transport of Air Pollutants 75 

(HTAP, 2010; Parrish et al., 2012; 2014) quantified long-term ozone changes at northern mid-latitude sites, predominately in 

Europe. As part of the Tropospheric Ozone Assessment Report (https://igacproject.org/activities/TOAR), Tarasick et al. (2019) 

critically reviewed the record of historical ozone measurements throughout the global troposphere. Parrish et al. (2020a) have 

recently synthesized the HTAP and TOAR analyses. A second goal of this work is to compare these observational analyses 

with results from recent earth system model (ESM) simulations.  80 

In this work, the interhemispheric comparison of long-term tropospheric ozone changes is limited to the MBL, since the 

available measurements from the SH were all collected in the MBL; there are no higher elevation SH sites with extensive 

records. Nevertheless, long-term changes of ozone in the MBL do reflect the concurrent changes in the free troposphere, 

because entrainment of ozone from the free troposphere is the primary source of ozone to the MBL. Parrish et al. (2012; 2014; 

2020b) demonstrate that long-term ozone changes are similar from the surface to the mid-troposphere based upon comparisons 85 

of observed concentrations at baseline-representative sites in the MBL, at mountain top sites, and in the free troposphere from 

balloon borne sondes and aircraft.  

High quality measurements from two MBL sites - Cape Grim, Australia in the SH and Mace Head, Ireland in the NH – 

provide the primary basis for our analysis. These measurements extend from the 1980s to the present and are selected for 

baseline conditions, thus representing the background troposphere. (By baseline conditions, we mean measurements collected 90 

during periods when air is transported to the measurement site from the marine environment, thereby avoiding confounding 

influences from nearby continental areas - see discussion in Chapter 1 of HTAP, 2010). Two different strategies are employed 

to extend each of these ozone records back to 1950. Before the 1970s, limited MBL measurements are also available from 

other sites in both hemispheres that provide support for the ozone changes derived for the 1950 to 1980 period. These 

measurements were conducted at coastal sites relatively isolated from nearby influences, so they are expected to be directly 95 

comparable to the two primary data sets. Post-1980 data from other MBL sites in both hemispheres provide comparisons for 

the more recent Cape Grim and Mace Head data.  
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2 Methods 

The analysis in this paper is based on the results of published observational and model simulation studies that allow 

quantification of long-term ozone changes from 1950 to the present in the MBL at mid-latitudes in both hemispheres. No 100 

continuous ozone measurement record covering the entire period from pre-industrialization to the present exists in either 

hemisphere; thus, we use less direct approaches to construct long-term ozone records from the available observations. Herein 

we consistently express ozone concentrations as mole fractions (i.e., mixing ratios) in units of nmol O3/mole air (referred to as 

ppb). Quantitative results are given with indicated uncertainties, which are 95% confidence limits unless stated otherwise. 

The analysis presented here is based on MBL ozone observations that fall into two categories: recent (1982 to 2017) 105 

continuous measurements, and older (1956 to 1984) measurements made over limited time periods. Table 1 gives the locations, 

elevation, and years of measurements for these data sets. The primary analysis is based on the continuous, recent measurements 

from Mace Head and Cape Grim. The Mace Head data are those selected as representative of the unpolluted NH MBL (i.e., 

baseline conditions) as discussed by Derwent et al. (2018a); Table 1 in Appendix A of their Supplementary Data gives the 

monthly means, which are considered here. The annual mean Cape Grim data were downloaded from the TOAR data archive 110 

(Schultz et al., 2017; https://join.fz-juelich.de/access/, last accessed 20 April 2020); they were selected for baseline conditions 

as described in the TOAR data header. Parrish et al. (2020b) discuss a time series of baseline selected, seasonal mean ozone 

mixing ratios derived from measurements at sites in the Pacific MBL at the US west coast; these data provide a comparison 

for the Mace Head data. The US Pacific MBL monthly mean data are given in Table S1 of the Supporting Information. For 

the analysis here, annual means at Mace Head and the US Pacific MBL are derived from the tabulated monthly means for each 115 

year with all 12 months of data available. Data from all times of day are included for the Cape Grim, Mace Head and US 

Pacific MBL data sets.  

The older measurements are multi-year means taken from Tarasick et al. (2019). We utilize the results accepted into their 

record (their Tables 4 and 6) from mid-latitude MBL sites (included in Table 1) in both hemispheres. In figures showing the 

results, the mean of the measurements made over multiple years are plotted at the center of the measurement period. Tarasick 120 

et al. (2019) conclude that some of these results are of questionable reliability, a conclusion that is considered in the discussion 

of these data. The TOAR effort did not attempt baseline filtering for these ozone records, so any impact of local or regional 

pollution-related influences remains unquantified.  

The measurement programs providing the two primary data sets were initiated too late (1982 and 1988 at Cape Grim and 

Mace Head, respectively) to directly characterize ozone changes from 1950 to the present. Southern mid-latitude long-term 125 

ozone changes have been small (e.g., Cooper et al., 2014; Tarasick et al., 2019), so a standard linear regression fit to the Cape 

Grim annual means extrapolated back to 1950 is the most suitable method to derive an ozone trend over the entire period; 

Table 2 gives the parameters of this fit. Long-term ozone changes at northern mid-latitudes have been much larger than in the 

SH (e.g., Cooper et al., 2014), so a simple extrapolation approach is not appropriate; here we quantify the long-term ozone 

change at Mace Head from the analysis developed during the HTAP study (HTAP, 2010; Parrish et al. 2012; 2014).  130 
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The HTAP analysis utilized the sparse record of early measurements made at baseline representative sites throughout Europe 

to quantify long-term ozone changes on that continent. These measurements extend back to 1950, with two summer 

measurement periods from the 1930s. The long-term ozone change quantification is based on relative ozone changes, which 

are derived by dividing each time series of seasonal means at each measurement site by the year 2000 intercept of a fit to those 

means. Parrish et al. (2014) found that the relative long-term changes are the same within statistical confidence limits at all 135 

baseline-representative European sites, but with some seasonal differences. Later analysis (Parrish et al., 2020b) showed that 

those seasonal differences are not significant, and that the relative long-term ozone changes are the same, within statistical 

confidence limits, for all seasons. Figure 2a shows the 757 relative seasonal means available from all seasons at six baseline-

representative European sites. Even though the relative ozone concentrations have substantial scatter, the large number of data 

allow precise polynomial fits to the overall time series. The fits included in Figure 2a are a linear regression over 1950 to 2000, 140 

a cubic (i.e., 3rd order) polynomial over 1950 to 2010, and a 4th order polynomial over 1934-2010. The three fits give similar 

changes over the 1950 to 2000 period: factors of 2.23, 2.16 and 2.08 for the linear, cubic and 4th order polynomial fits 

respectively. Each of these three factors agree with the 1950 to 2000 relative change of 2.1 ± 0.2 derived in a synthesis of the 

HTAP and TOAR analyses (Parrish et al., 2020a). Parrish et al. (2014) also show that simulations by three CMIP5 global 

chemistry climate models agree that relative means in all seasons at all European baseline-representative sites exhibit similar 145 

relative long-term changes; simulations from one model are shown in Figure 2b and from the other two models in Figure S1. 

Figures S1-S8 of Parrish et al. (2014) illustrate the normalization process and analysis for these same measurement and model 

results for separate seasons. Figure 2 indicates that to estimate the long-term ozone change at Mace Head (or any other baseline 

representative site in western Europe), one needs only to quantify the year 2000 mean ozone at the site, and then calculate the 

product of that intercept with the polynomial fit.  150 

The European historical ozone data considered by Parrish et al. (2014) and included in Figure 2a lacked quantified 

uncertainties. However, the accuracy of relative long-term ozone changes derived from these data is supported by the critical 

evaluation of Tarasick et al. (2019), which found no significant, systematic inaccuracy in the historical data analyzed by Parrish 

et al. (2012; 2014). Parrish et al. (2020a; their Figure 1) show that the seasonal and annual mean long-term changes derived as 

described above provide good fits to all of the historical European data identified by Tarasick et al. (2019). The observations 155 

in Figure 2a do show substantial scatter about the fits, with a root-mean-square deviation (RMSD) of 8.9% of the year 2000 

intercept for the cubic fit. To be representative of the historical data, this RMSD must be referenced to the smaller magnitude 

of the historical data; the corresponding RMSD is then ~16% when referenced to the year 1960 intercept. Tarasick et al. (2019) 

estimate a relative uncertainty of 0.7-1.2 at approximately 90% confidence intervals for the methods employed to collect the 

historical data; this corresponds to a relative standard deviation of ~15%, assuming a normal distribution of measurement 160 

errors. Thus, the historical data included in Figure 2a are judged to be as accurate and precise as can be expected from the 

historical measurement methods. 

The model results that we compare to the measurements are from three sources: six ESMs (identified in Figure S2 and S3) 

that took part in the CMIP6 exercise, three CCMs (identified in Figure S4) that took part in the CMIP5 exercise, and the 
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STOCHEM-CRI model described by Derwent et al. (2018b). Table S2 references descriptions of the CMIP6 ESMs, and Parrish 165 

et al. (2014) give more details and references for the simulation results of the CMIP5 CCMs. Surface concentrations of ozone 

at Mace Head and Cape Grim were obtained from the six CMIP6 models that had made data available on the Earth System 

Grid Federation (ESGF) at the time of writing. Ozone concentrations were also obtained from these same models for the model 

level that included the site elevation for 8 additional NH and 2 additional SH baseline sites. All ESM results are from the 

coupled historical simulations over the 1850 to 2014 period from all available ensemble members of each CMIP6 model. 170 

STOCHEM-CRI is a global Lagrangian chemistry-transport model with a detailed description of tropospheric chemistry which 

makes it suitable for studies of low NOx and isoprene chemistry (Jenkin et al., 2019) and the pre-industrial atmosphere (Khan 

et al., 2015). STOCHEM-CRI is driven by meteorological fields from the UK Meteorological Office Unified Model taken 

from an archive for 1998, further details of which are given in Collins et al. (1997); ozone sources in this model are dominated 

by stratosphere-troposphere exchange, which was set to 745 Tg O3 yr-1.  175 

3 Results  

The sparse records of available baseline ozone measurements made in the mid-latitude MBL of both hemispheres are compared 

in Figure 3. The symbols after 1980 are annual means of baseline selected data from three representative long-term 

measurement records – Cape Grim in the SH and Mace Head and the U.S. Pacific MBL in the NH. The seven symbols before 

1980, two in the SH and five in the NH, represent relatively short (2 to 16 years), year-round records evaluated in TOAR 180 

(Tarasick et al., 2019). The map in Figure 3 identifies the site locations, and Table 1 gives site and data record information. 

We quantify the MBL baseline ozone mixing ratios as accurately as possible from these limited data, to allow a comparison 

of long-term changes between the two hemispheres.  

The year 2000 annual mean mixing ratios at Mace Head and the U.S. Pacific MBL are 39.8 ± 0.6 ppb and 32.9 ± 1.1 ppb, 

respectively (Parrish et al., 2020b). The difference in these annual means represents significant zonal variation in MBL ozone 185 

concentrations between the eastern North Pacific and eastern North Atlantic Oceans. Since the NH MBL data reported by 

Tarasick et al. (2019) are all from European measurements, we will primarily focus on the Mace Head data in this analysis. 

The Mace Head measurements agree closely with other North Atlantic MBL sites; year 2000 annual mean mixing ratios are 

38.5 ± 0.5 and 37.3 ± 1.3 ppb at Storhofdi, Iceland and Tudor Hill, Bermuda, respectively (Parrish et al., 2016). The long-term 

trends derived for the two representative NH sites before 2010 (i.e., beginning in 1988) are consistent with each other: 0.31 ± 190 

0.10 ppb yr-1 at Mace Head, and 0.27 ± 0.08 ppb yr-1 at the U.S. Pacific MBL (Cooper et al., 2014). 

Baseline selected measurements at Cape Grim extend back to 1982. Parrish et al. (2016) show that these data agree closely 

with those at other southern mid-latitude MBL sites - year 2000 annual mean mixing ratios of 25.0 ± 0.2 ppb at Cape Grim 

compared to 23.1 ± 0.4 ppb and 23.7 ± 0.4 ppb at Cape Point, South Africa and Ushuaia, Argentina, respectively. These results 

from three continents demonstrate the zonal similarity of tropospheric ozone concentrations at southern mid-latitudes. Thus, 195 

we take the Cape Grim data record to be representative of the entire southern mid latitude MBL. The solid green line in Figure 
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2 indicates the linear fit over the entire data record, with a small, but statistically significant, long-term trend of 0.041 ± 0.019 

ppb yr-1, which is a factor of ~7 smaller than at the two NH sites. To guide the discussion of changes that may have occurred 

before the beginning of these measurements, this linear fit is extrapolated back to 1950. This extrapolation may overestimate 

the earlier changes, as it is not known when the increase began. However, this trend is small enough that this uncertainty has 200 

negligible impact on the following discussion.  

As is apparent from Figure 3, no single site measurement record covers the complete 1950 to 2010 period or includes annual 

means before 1950 at northern mid-latitudes. However, the quantification of the common relative long-term ozone change 

over western Europe from all available baseline sites (Figure 2) allows estimation of the long-term ozone change at Mace Head 

for that period; the cubic fit (green curve) illustrated in Figure 2 multiplied by the Mace Head year 2000 mean ozone (given 205 

above) yields the brown polynomial curve in Figure 3 (coefficient values given in Table 2). The long-term changes in ozone 

derived for Mace Head are given by that curve with the shading indicating the confidence limits derived from the propagation 

of the confidence limits of the Mace Head year 2000 mean and the overall relative increase of baseline ozone over Europe of 

a factor of 2.1 ± 0.2 (Parrish et al., 2020a). 

The means of the older (1960-1980) data included Figure 3 do not differ significantly between the two hemispheres; they 210 

are 23.5 ± 1.8 and 22.5 ± 2.2 ppb (where standard deviations are indicated) for the two SH and five NH data sets, respectively. 

These limited data indicate that the large interhemispheric gradient apparent in today’s measurements was not present in the 

1960-1980 period. Figure 3 shows that the extrapolation of the Cape Grim data agrees closely with the SH data from Macquarie 

Is. and Hermanus, in accord with the small trends and zonal similarity of tropospheric ozone concentrations at southern mid-

latitudes. The mean of the five NH points, all from European measurements, is smaller than the 27.2 ppb value of the brown 215 

curve in 1970, and this curve is above all of the pre-1980 MBL measurements as well as the more recent US Pacific MBL 

data; this indicates that this curve, derived for Mace Head, provides an upper limit for NH mid-latitude baseline ozone in the 

MBL. It should be noted that Tarasick et al. (2019) judge four (Norderney, Cagliari, Westerland and Hermanus) of these seven 

earlier data sets to be of questionable reliability; however, exclusion of these data does not significantly change the overall 

agreement of the 1960-1980 data with the derived changes in either the NH or SH.  220 

4 Discussion 

The ozone measurements illustrated in Figure 3 lead to the conclusion that tropospheric ozone concentrations were higher 

in the SH than the NH before industrial development. Three lines of reasoning support this deduction. First, the sparse 

measurement record at baseline sites indicates that ozone concentrations in the NH increased by a factor of 2.1 ± 0.2 between 

1950 and 2000 (Figure 2 and Parrish et al., 2020a), yet present NH ozone concentrations are less than a factor of 2 greater than 225 

those in the SH, indicating that ozone concentrations must necessarily have been lower in the NH than the SH in 1950. Second, 

the brown and green curves in Figure 3 intersect in about 1962, indicating that the NH ozone concentrations were lower than 

those in the SH in earlier years. Third, that curve intersection indicates that the MBL ozone concentrations were similar in both 
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hemispheres in the 1960s, and the few available measurements from that period are all consistent with that similarity; however, 

multiple considerations indicate that anthropogenic precursor emissions had already substantially increased NH hemisphere 230 

ozone concentrations by that time. By 1962 the brown curve in Figure 3 had increased by ~20% from 1950 levels, and global 

model calculations (see discussion below) also find that NH ozone concentrations had increased significantly before the 1960s. 

Further, extremely elevated ozone concentrations (several 100 ppb) were observed in Los Angeles as early as the 1950s 

(Haagen-Smit, 1954). The emissions responsible for those urban ozone enhancements were primarily from on-road vehicles, 

which were common to all U.S. urban areas. Those U.S. emissions, and similar emissions in other countries at northern mid-235 

latitudes, are expected to have impacts throughout the NH mid-latitude troposphere. Thus, although the measurement record 

is sparse, observations and the wider considerations discussed above are all consistent with the conclusion that in the pre-

industrial troposphere, mid-latitude ozone concentrations were higher in the SH than the NH. The cause of the greater increases 

in the NH and reversal of the natural interhemispheric ozone gradient is attributed to the increased emissions of ozone 

precursors that accompanied industrial development, and those increased emissions were predominantly located in the NH.  240 

Differences in ozone sinks and/or sources between hemispheres can account for larger natural ozone concentrations in the 

SH compared to the NH. The loss rate of ozone to ocean surfaces is slow, but is much faster over continents due to surface 

deposition to vegetation and to reaction with natural hydrocarbons emitted from forests. The fractional coverage of 

midlatitudes by land is ~50% in the NH, but only 6 to 7% in the SH, implying significantly slower ozone losses in that 

hemisphere. Molecular hydrogen may provide an analogy to ozone. Its average concentration is higher in the SH (Simmonds 245 

et al., 2000); this distribution is attributed to greater uptake by soils in the NH, despite there being active photochemical sources 

and sinks of hydrogen in both hemispheres and evidence for significant anthropogenic pollution sources concentrated in the 

NH. However, for hydrogen the greater NH pollution source is not large enough to reverse the natural interhemispheric gradient 

of hydrogen.  

Comparisons between observations and global model simulations provide a basis to elucidate the causes of the changing 250 

interhemispheric ozone gradient, as well as to assess model performance. Figure 4 compares the observational-derived long-

term changes from Figure 3 with time series of annual mean surface ozone at Mace Head and Cape Grim simulated by six 

ESMs that participated in the 6th Coupled Model Intercomparison Project (CMIP6, Eyring et al., 2016). Figure S2 shows those 

same model simulations for the entire 1850-2014 simulation period with each of the six models identified. In Figure 4 the 

simulated concentrations in recent years (after ~1990) all agree within ~5 ppb with the observations in both hemispheres. 255 

Section S1 of the Supporting Information gives further discussion of this agreement at 10 NH and 3 SH baseline sites, and 

includes comparisons with simulations by three CMIP5 models.  

The ESM simulations generally agree that long-term changes in SH ozone have been small, but they do not reproduce the 

rapid increase in ozone that occurred in the NH between 1950 and 2000. At Cape Grim the mean model trend over the 1982-

2014 period of observations is 0.082 ppb yr-1, with model results varying from 0 to 4 times the observed trend of 0.041 ± 0.019 260 

ppb yr-1. In a comparison of simulations by four of these same ESMs, Griffiths et al. (2020) found similarly good agreement 

at Cape Grim, as well as three other remote background sites, but did not compare those simulations with any northern mid-
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latitude observations. The modeled 1950 to 2000 increases at northern mid-latitudes correspond to a mean factor of 1.3 with a 

standard deviation of 0.1, while observations indicate a 2.1 ± 0.2 factor increase. It is notable that the overall modeled northern 

mid-latitude ozone increase since pre-industrial times is a factor of 1.9 with a standard deviation of 0.3, as judged from the 265 

mean model ratio over the entire 1850 to 2000 period; this value agrees more closely with the observed 1950 to 2000 ratio of 

2.1 ± 0.2, which we interpret as a good approximation for the factor of total ozone increase during northern mid-latitude 

industrialization. This closer agreement is in accord with the analysis of Staehelin et al. (2017) that also found smaller model 

simulated ozone increases at northern mid-latitudes over the post-1950 period. They suggest that this discrepancy may be 

attributable to problems in quantifying changes in the historical emissions of ozone precursors from anthropogenic sources, 270 

and discuss evidence for a significant impact from such problems.  

The ESMs also do not simulate lower pre-industrial mid-latitude ozone in the NH; the 1850 mean NH/SH ratio is 1.13 with 

a standard deviation of 0.11, with only one of the six ESMs finding a ratio (slightly) less than unity. The full range of the five 

pre-industrial STOCHEM-CRI scenarios (with natural NOx emissions between 0.5 and 18 Tg N yr-1) from Figure 1 are also 

indicated in Figure 4; the scenarios that gave the largest ozone concentrations, i.e., those with the largest pre-industrial NOx 275 

emissions, generally agree with the ESM simulations, but those with lower NOx emissions give lower ozone concentrations 

with SH ozone higher than NH ozone. The absence of a reversed ozone gradient in the ESM simulations may indicate that the 

assumed natural NOx emissions are too large. For reference, the natural NOx emissions assumed in three of the six ESMs 

considered here are ~11 to 14 Tg N yr-1 (Figure 1 of Griffiths et al., 2020), which are near the larger of the pre-industrial 

STOCHEM-CRI scenarios. If the natural NOx emissions are too large, then the model calculated radiative forcing of ozone is 280 

too small.  

Other processes that affect ozone also differ significantly between hemispheres; thus, uncertainties in their parametrizations 

may also contribute to ESMs simulating higher pre-industrial ozone in the NH. Stratosphere-troposphere exchange (STE) is 

an important natural ozone source. A recent review of the tropospheric ozone budget (Archibald et al., 2020a) suggests that 

the stronger Brewer-Dobson circulation in the NH produces a larger STE ozone flux in that hemisphere (~57% of total). 285 

However, Škerlak, et al., (2015) find that deep tropopause folds, which are most efficient for transporting stratospheric ozone 

into the lower troposphere, are more frequent in the SH. The absolute and relative magnitudes of ozone loss to land and ocean 

surfaces differ strongly between hemispheres. Luhar et al. (2018) give a new parameterization scheme that reduces deposition 

to oceanic surfaces by a factor of ~3 compared to earlier work; incorporation of this new result into ESMs would raise SH 

ozone relative to the NH. The surface deposition of ozone to land surfaces occurs predominately in the NH, and its 290 

representation in current models is regarded as insufficient (Clifton et al., 2020). Another concern is the model treatment of 

the chemistry of natural hydrocarbons (e.g., isoprene and terpenes) emitted in large quantities from temperate forests that are 

predominately located in the NH. At the low NOx concentrations believed to have dominated the pre-industrial continental 

boundary layer, this chemistry constitutes an important ozone sink, while at the higher modern-day NOx concentrations, it is 

an ozone source. Understanding the NOx concentration dependence of this complex natural hydrocarbon chemistry is still an 295 
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active area of research (e.g., Jenkin et al., 2015). The magnitude of the pre-industrial emissions of these natural hydrocarbons 

is also quite uncertain (Mickley et al., 2001), and the CMIP6 models use a variety of estimation approaches.  

In addition to the above-discussed model uncertainties that most directly affect the ozone gradient, Wild et al. (2020) identify 

key areas in model simulations that require improvement for accurate simulation of the tropospheric ozone distribution; these 

include the atmospheric water vapor distribution and the drivers of variability in global OH, which differ significantly between 300 

models. Derwent et al. (2020) identify key improvements required in the representation of the atmospheric chemistry of the 

pre-industrial troposphere in ESMs and other global chemistry-transport models. Additional improvements to the treatment of 

the atmospheric chemistry of natural and anthropogenic ozone precursors, especially NOx, and of ozone loss processes are 

likely required to accurately treat the balance of ozone production and loss in both the present day and pre-industrial 

troposphere, a requirement necessary to accurately model the interhemispheric ozone gradient and fully understand the 305 

radiative forcing of tropospheric ozone.  
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 490 

 

Figure 1. Pre-industrial latitude dependence of zonal surface annual mean ozone mixing ratios calculated by the STOCHEM-CRI 
for progressively larger assumed NOx emission scenarios. The base case assumes a pre-industrial methane mixing ratio of 718 ppb, 
together with 506 Tg yr-1 isoprene and 126 Tg yr-1 terpene emissions. The shaded regions indicate mid-latitudes. The assumed natural 
NOx emissions are 0.6 Tg N yr-1 for stratosphere-troposphere exchange, 5.0 Tg N yr-1 for lightning, 5.6 Tg N yr-1 for soils and 6.8 Tg 495 
N yr-1 for biomass burning. 
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 500 

Figure 2. Normalized, seasonal mean ozone measured (a) and simulated (b) at the six baseline representative European sites 
considered by Parrish et al. (2014). The simulations are from the GISS-E2-R model. Each graph includes cubic (beginning in 1950 - 
green curve) and 4th order polynomial (gold curve) fits to all seasonal means; (a) also includes a linear fit (1950-2000 – black line). 	  

a

b
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Figure 3. Long-term changes in annual mean baseline ozone mixing ratios measured at mid-latitude, low elevation coastal sites 505 
indicated on the map in the northern (brown symbols) and southern (green symbols) hemispheres. The symbols for the longer-term, 
more recent data sets (Mace Head and Cape Grim) represent individual annual means; the symbols for the data from the 1960s and 
1970s (Tarasick et al., 2019) represent averages over the variable periods (see Table 1) of available data. The derivation of the brown 
solid curve is described in the text; the shaded area about the curve indicates estimated confidence limits for the curve. The green 
solid line is a standard linear regression to the Cape Grim data, with extrapolation back to 1950. 510 
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Figure 4. Comparison of modeled and measured long-term changes in annual mean ozone mixing ratios at Mace Head and Cape 
Grim from 1850-1860 (left) and after 1950 (right). The fits to the measurements (heavy solid line and curve on the right) are the 
same as those in Figure 3. The thinner solid (for Mace Head) and dotted (for Cape Grim) curves are results from six ESMs that 515 
participated in the CMIP6 exercise. The two symbols on the left show the range of annual mean pre-industrial mid-latitude (30° to 
60°) surface ozone calculated by the STOCHEM-CRI model for the 5 simulations discussed in the text. 
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Table 1. Ozone data sets and analyses utilized in this work. 

Monitoring Site Lat./Long. Elev. (m) Dates Reference 

Southern Hemisphere  

Cape Grim, Australia 40.7S, 144.7E 100 1982–2017 TOAR data base 

Hermanus  34.4S, 19.3E 10 1970-1975 Tarasick et al., 2019 

Macquarie Is.  54.5S, 159.0E  0 1970-1971 Tarasick et al., 2019 

Northern Hemisphere  

Mace Head, Ireland 53.2N, 9.5W 20 1988–2017 Derwent et al., 2018a 

Arkona 54.7N, 13.4E  40 1956-1984  Tarasick et al., 2019 

Norderney  53.7N, 7.2E 20 1969-1975  Tarasick et al., 2019 

Cagliari  39.2N, 9.1E 20 1970-1975 Tarasick et al., 2019 

Westerland 54.9N, 8.3E 10 1971-1975 Tarasick et al., 2019 

U.S. Pacific Coast MBL 38-48N, 123-124W 0-240 1988–2016 This work 

 520 

 

 

 

Table 2. Coefficients of polynomials (a + bt + ct2 +dt3, where t = year - 2000) that define the long-term ozone changes given 

by the cubic polynomial fit in Figure 2a and the solid curves in Figures 3 and 4.  525 

Western Europe* a (%) b (% yr-1) c (10-2 % yr-2) d (10-4 % yr-3) 

(all sites) 100 ± 0. 9 0.40± 0.11 -3.4 ± 0. 9 -4.1 ± 1.8 

Site a (ppb) b (ppb yr-1) c (10-2 ppb yr-2) d (10-4 ppb yr-3) 

Cape Grim, Australia 24.9 ± 0.2 0.041 ± 0.019 --- --- 

Mace Head, Ireland 39.8 ± 0.6 0.160 ± 0.043 -1.35 ± 0.38 -1.64 ± 0.73 

* % unit indicates percentage of year 2000 intercept of annual means 
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