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Abstract. In response to the Coronavirus Disease 2019 (COVID-19), California issued statewide stay-at-home orders, 

bringing about abrupt and dramatic reductions in air pollutant emissions. This crisis offers us an unprecedented opportunity 

to evaluate the effectiveness of emission reductions on air quality. Here we use the Weather Research and Forecasting model 

with Chemistry (WRF-Chem) in combination with surface observations to study the impact of the COVID-19 lockdown 20 

measures on air quality in southern California. Based on activity level statistics and satellite observations, we estimate the 

sectoral emission changes during the lockdown. Due to the reduced emissions, the population-weighted concentrations of 

fine particulate matter (PM2.5) decrease by 15% in southern California. The emission reductions contribute 68% of the PM2.5 

concentration decrease before and after the lockdown, while meteorology variations contribute the remaining 32%. Among 

all chemical compositions, the PM2.5 concentration decrease due to emission reductions is dominated by nitrate and primary 25 

components. For O3 concentrations, the emission reductions cause a decrease in rural areas but an increase in urban areas; 

the increase can be offset by a 70% emission reduction in anthropogenic volatile organic compounds (VOC). These findings 

suggest that a strengthened control on primary PM2.5 emissions and a well-balanced control on nitrogen oxides and VOC 

emissions are needed to effectively and sustainably alleviate PM2.5 and O3 pollution in southern California. 
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1 Introduction 30 

Anthropogenic emissions from various emission sources, including transportation, industrial, agricultural, residential, and 

commercial sectors, contribute to California's long-existing air pollution problems (e.g., Shirmohammadi et al., 2016; Hong 

et al., 2015; Warneke et al., 2013). The major pollutants include, but are not limited to, fine particulate matter (PM2.5), 

nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone (O3). Exposure to these pollutants has been correlated with an 

increased rate of morbidity and mortality (Wang et al., 2019). Mitigating the adverse effects of air pollution by reducing air 35 

pollutant emissions from major sectors has been and will continue to be a major public policy challenge. However, the effect 

of emission reductions from various sources on air quality improvement is subject to substantial uncertainties, because such 

effect cannot be directly measured and because the atmospheric chemistry processes are highly nonlinear and complicated 

(Zhao et al., 2019b; Zhao et al., 2015; Chen et al., 2013). The recent Coronavirus Disease 2019 (COVID-19) pandemic 

provides an unprecedented opportunity for a more robust understanding of the environmental impacts brought by the 40 

emission reductions.  

More than 200 countries and territories around the world have reported a total of about 53 million confirmed cases of the 

coronavirus COVID-19 that originated from Wuhan, China, and a death toll of more than 1300K (World Health 

Organization, 2020). California is one of the most affected states in the United States (U.S.) partly because its poor air 

quality makes Californians more susceptible to infectious diseases such as COVID-19 (Bashir et al., 2020; Chiara Copat, 45 

2020). In response to the emergence of COVID-19, statewide stay-at-home orders and related actions (e.g., closure of 

nonessential businesses) took effect on March 19, 2020 in California. These orders are expected to reduce vehicle traffic and 

industrial activities, thereby changing the air pollutant emissions and air quality in the state. It is essential to obtain a high-

spatiotemporal-resolution estimation of air pollution for better understanding of the atmospheric impacts caused by changes 

in anthropogenic activity associated with the COVID-19 pandemic.  50 

A number of studies emerged soon after the start of the COVID-19 pandemic and the subsequent lockdown to assess the 

impact of the pandemic on air quality over various regions around the world. For example, Archer et al. (2020) compared the 

observed concentrations at all available ground monitoring sites in U.S. between April of 2020 and the prior five years 

(2015–2019) and found statistically significant decreases in NO2 concentrations at more than 65% of the monitoring sites, 

with an average drop of 2 ppb. Pan et al. (2020) compared the surface air quality monitoring data in California during the 55 

period 20 March–5 May in 2020 with those in 2015–2019 and found that the PM2.5 in 2020 exhibited a notable decrease 

which could result from emission reductions associated with the COVID-19 lockdown. Similar findings, i.e., reduced PM2.5 

and NO2 concentrations are also reported for China (e.g., Chu et al., 2020; Le et al., 2020; Liu et al., 2020; Marlier et al., 

2020; Shi and Brasseur, 2020; Miyazaki et al., 2020b), India (e.g., Pathakoti et al., 2020; Sharma et al., 2020), and Europe 

(e.g., Chen et al., 2020; Menut et al., 2020; Sicard et al., 2020; Ordóñez et al., 2020) based on surface and/or satellite 60 

observations. For O3, the concentrations either increased or slightly decreased during the pandemic, depending on regions 

(Bekbulat et al., 2020; Huang et al., 2020; Pan et al., 2020; Zhao et al., 2020). Most of the above studies, however, are 
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limited to comparing observations with and without lockdown measures, which correspond to different time periods under 

different meteorological conditions.     

Meteorology plays significant roles in air pollution formation, transport, deposition and transformation (Wang et al., 2020a), 65 

which is a very important factor that affects concentrations of O3 and PM2.5 (Stewart et al., 2017). The changes in air quality 

due to meteorological variations may obscure the effects of emission changes during the COVID-19 lockdown. Using the 

Community Multi-scale Air Quality model, Wang et al. (2020a) showed that the benefits of emission reductions were 

overwhelmed by adverse meteorology over the North China Plain and severe air pollution events were thus not avoided. 

Goldberg et al. (2020) reported that meteorological patterns were especially favorable for low NO2 in much of the United 70 

States in spring 2020, complicating comparisons with spring 2019; the meteorological variations between years can cause 

~15% difference in monthly mean column NO2. In view of this, modelling approach is necessary to accurately assess the 

impact of lockdown measures by excluding the possible effects of meteorological conditions and to examine the possible 

mechanisms responsible for the changes in the air pollutant concentrations. In addition, while previous studies have 

evaluated the air quality changes in different regions due to the emission reductions associated with the COVID-19 75 

lockdown, it remains unclear how the COVID-19 induced emission reductions and the concurrent meteorological variations 

influence air quality in California.  

The objective of this study is to investigate the air quality impact of the emission reductions in southern California in 

association with COVID-19 by employing high-resolution atmospheric modelling in combination with surface observations. 

Based on the statistics of activity levels together with constraints from satellite observations, we estimate the sectoral 80 

emission changes during the COVID-19 lockdown. We then conduct model simulations using the Weather Research and 

Forecasting model with Chemistry (WRF-Chem) for the periods before and during the COVID-19 lockdown to investigate 

the effects of reduced emissions and meteorology on air pollution, respectively. Understanding how air quality responds to 

the emission reductions during COVID-19 pandemic will provide important insight into the future development and 

optimization of effective air pollution control strategies in southern California. 85 

2 Method and Data 

2.1 Model configuration and emission estimation  

We simulate the impact of COVID-19 lockdown measures on air quality using the WRF-Chem version 3.9.1, which 

considers highly nonlinear and complex meteorological and atmospheric chemistry processes. The simulation period is 

February 18 to April 23, 2020, which includes about one month before and after the California governor issues the stay-at-90 

home (lockdown) order on March 19 (Pan et al., 2020). We apply the model to two nested domains: Domain 1 covers the 

western United States and its surrounding areas at a 12 km×12 km horizontal resolution; Domain 2 covers California with a 

4 km×4 km resolution (Fig. S1). We focus our analysis on southern California (the red rectangle in Fig. S1), the largest 

metropolitan area in California which is significantly affected by the lockdown measures. We employ an extended Carbon 
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Bond 2005 (CB05) (Yarwood et al., 2005) with chlorine chemistry (Sarwar et al., 2008) coupled with the Modal for Aerosol 95 

Dynamics in Europe/Volatility Basis Set (MADE/VBS) (Wang et al., 2015a; Ahmadov et al., 2012). MADE/VBS uses a 

modal aerosol size representation and an advanced secondary organic aerosol (SOA) module based on the VBS approach. 

The aqueous-phase chemistry is based on the AQChem module used in the Community Multiscale Air Quality (CMAQ) 

model (Wang et al., 2015a). The chemical initial and boundary conditions were extracted from the output of the Whole 

Atmosphere Community Climate Model (WACCM) (Marsh et al., 2013). A 6-day spin-up period is used to minimize the 100 

influence of initial conditions on simulation results. The vertical resolution, meteorological initial and boundary conditions, 

and physical options are the same as our previous modeling studies based on WRF-Chem for California (Zhao et al., 2019a; 

Wang et al., 2020b; Shi et al., 2019). 

We obtain anthropogenic emissions in California without the influence of COVID-19 lockdown measures from the 

California Air Resources Board (CARB) for 2012 that is the latest year in which the data are available (California Air 105 

Resources Board, 2018). We scale the 2012 emissions to the 2020 levels by employing the relative changes for 2012–2018 

in California from the “NEI trend report” (US Environmental Protection Agency, 2018a) and assuming that the trends 

continued during 2018–2020. The anthropogenic emissions outside California are derived from the National Emission 

Inventory (NEI) (US Environmental Protection Agency, 2018b) in 2011 and are scaled to 2020 following the same method. 

The biogenic, wind-blown dust, sea-salt, and wildfire emissions are calculated online in WRF-Chem, as detailed in our 110 

previous studies (Zhao et al., 2019a; Wang et al., 2020b; Shi et al., 2019). 

In our baseline simulation (“Base” scenario in Table S1), we use the above emission inventories. To evaluate the effect of 

the COVID-19 response actions, we conduct another simulation (“Lockdown” scenario in Table S1) in which the CARB 

anthropogenic emission inventory after March 19 is adjusted to account for the emission changes due to the COVID-19 

lockdown. Because of the lack of detailed emission data which often take years to update, we rely on a number of key 115 

activity indicators to estimate the sector-specific relative changes in anthropogenic emissions (as summarized in Table S2), 

which are subsequently evaluated against satellite-derived emission estimate. For the transportation sector, we use weekly 

production of gasoline, diesel, and jet fuel in California obtained from the “Weekly Fuels Watch Reports” of the California 

Energy Commission (California Energy Comission, 2020b) to estimate the emission changes from gasoline vehicles, diesel 

vehicles, and aircraft. The changes in emissions from the industrial, residential, and commercial sectors are assumed to be 120 

proportional to the changes in electricity consumption by the corresponding sector, as summarized in the “Energy Insights 

Reports” of the California Energy Commission (California Energy Comission, 2020a). The changes in emissions from power 

plants are estimated as a function of the total electricity demand in California (California Energy Comission, 2020a). Having 

estimated the emission changes using the preceding bottom-up method, we compare the changes in nitrogen oxides (NOx) 

emissions with a top-down satellite-based emission inventory—an extended calculation of the Tropospheric Chemistry 125 

Reanalysis version 2 (TCR-2) (Miyazaki et al., 2020a). This data product has been obtained from the assimilation of multiple 

satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI (Ozone Monitoring Instrument), TROPOMI 

(TROPOspheric Monitoring Instrument), MLS (Microwave Limb Sounder), and MOPITT (Measurement Of Pollution In 
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The Troposphere) satellite instruments. The reanalysis calculation for the COVID-19 time period was conducted at 0.56° 

horizontal resolution using a global chemical transport model MIROC-CHASER (Watanabe et al., 2011) and an ensemble 130 

Kalman filter technique that optimizes chemical concentrations of various species and emissions of NOx, SO2, and CO. The 

extended reanalysis data for 2020 have already been used by Miyazaki et al. (2020c) to study air quality response to the 

Chinese COVID-19 lockdown measures. Here we use the NOx emission product which has a sufficiently high quality on the 

spatiotemporal scales of interest for this study. Using this product, we first calculate NOx emissions in a hypothetical 

scenario without considering the COVID-19 effect, based on emission trends in prior years (2017–2019), and subsequently 135 

quantify the emission changes due to the COVID-19 using the difference between the hypothetical and real-world emissions 

(see details in Fig. S2). The estimated NOx reduction ratios induced by the COVID-19 lockdown measures averaged during 

March 19 to April 23 in southern California are 28.3% and 27.2% based on the bottom-up and top-down methods, 

respectively, indicating a generally good agreement between these two methods. That said, we acknowledge that, since more 

detailed data to support a more accurate estimation are not yet available, the estimates of the sector-specific relative changes 140 

in emissions inevitably involve some degree of uncertainty, which can be improved in the future work.  

2.2 Observational data and model evaluation 

We use a series of meteorology and air quality observations to evaluate the model performance and help analyze the 

influence of the COVID-19 lockdown. For meteorology, we use observational data obtained from the National Climatic Data 

Center (NCDC), where hourly or 3-hour observations of wind speed at 10 m (WS10), temperature at 2 m (T2), and water 145 

vapor mixing ratio at 2 m (Q2) are available for 82 sites distributed southern California (the red rectangle in Fig. S1). We 

compare the WRF-Chem meteorological simulations with these measurements and apply a number of statistical indices 

defined in Emery et al. (2001) to quantitatively evaluate the model performance, as summarized in Table S3. In general, the 

model simulations agree fairly well with surface meteorological observations. The performance statistics for WS10, T2 and 

Q2 are all within the benchmark ranges proposed by Emery et al. (2001). 150 

For air quality, we achieve hourly observations of PM2.5, O3, NO2 and SO2 from CARB (California Air Resources Board, 

2020) and use them to evaluate the air quality simulations of WRF-Chem (see the Results and Discussion section). The 

observational data are available at 42 sites for PM2.5, 63 sites for O3, 48 sites for NO2, and 12 sites for SO2, in southern 

California (the red rectangle in Fig. S1) during the simulation period. We do not evaluate the model performance in 

simulating the chemical composition of PM2.5 because the composition data from major observational networks had not been 155 

available by the time we completed the present study. Nevertheless, our previous studies using almost the same model 

configurations showed a fairly good agreement with PM2.5 composition observations during January, April, July, and 

October, 2012 (Zhao et al., 2019a; Wang et al., 2020b). 
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3 Results and Discussion 

3.1 Evaluation of the simulated results with surface observations 160 

In this study, we simulated the major air pollutants using WRF-Chem under two scenarios, Base and Lockdown (Table S1). 

To evaluate the model performance with regard to the temporal variations in air pollutants, we compared the simulated 

concentrations of PM2.5, maximum daily 8-h average (MDA8) O3, NO2 and SO2 with observational data from CARB in 

southern California.  

Before the COVID-19 lockdown (February 18 to March 18), results from model simulation under the Base scenario (PreBase) 165 

capture the magnitude and temporal evolution of the four key air pollutants reasonably well, with normalize mean biases 

(NMBs) of 11.7%, 4.5%, -14.4% and 7.8% for PM2.5, MDA8 O3, NO2, SO2, respectively (Fig. 1). During the COVID-19 

lockdown period (March 19 to April 23), compared to the simulations for the Base scenario (PostBase) which overestimates 

the surface concentrations with NMBs of 28.1%, 1.6%, 21.4% and 39.2% for PM2.5, MDA8 O3, NO2, SO2, respectively, the 

simulated results using the adjusted emission inventory (PostLockdown) not only agree better with surface observations for all 170 

the four air pollutants (with NMBs of 10.6%, 1.0%, -12.6% and -13.1% for PM2.5, MDA8 O3, NO2, SO2, respectively), but 

also show generally closer NMBs to those during the pre-lockdown period (Fig.  1). The improvement in model performance 

is observed for both urban and rural areas. In the urban areas, the NMB for PM2.5 drops from 25.8% under the Base scenario 

to 3.9% under the Lockdown scenario, getting closer to the NMB of 4.0% during the pre-lockdown period. The 

corresponding NMB in rural areas drops from 29.7% to 15.1%, also getting closer to 17.8% during the pre-lockdown period 175 

(Figs. 1e,g). Regarding MDA8 O3, although the differences between the Base and Lockdown scenarios are quite small (Fig. 

1b), the NMB is slightly improved from -1.5% (PostBase) to -0.2% (PostLockdown) in urban areas and from 3.2% to 1.5% in 

rural areas (Figs. 1f,h). 

Subsequently, we evaluated the spatial distributions of simulated PM2.5 and MDA8 O3 concentrations using observational 

data averaged during the pre-lockdown and lockdown periods in southern California (Fig. S3). The Base scenario can 180 

simulate the spatial patterns of PM2.5 and MDA8 O3 reasonably well (Figs. S3a-b and d-e), but it overestimates the 

observations of PM2.5 concentrations during the lockdown period (PostBase, Fig. S3b). The simulated distributions of PM2.5 

concentrations under the Lockdown scenario (PostLockdown) match the observations better than those for the Base scenario 

(PostBase) (Figs. S3b-c); the hot spots occurring over the Los Angeles County become less polluted and more consistent with 

the surface observations after considering the emission reductions associated with the COVID-19 lockdown (Figs. S3b-c). 185 

3.2 Effects of anthropogenic emission reductions and meteorology conditions on air pollutants 

Both observations and simulations in Fig. 1 show significant changes in air pollutant concentrations during the COVID-19 

lockdown relative to the pre-lockdown period, resulting from a combination of emission reductions and meteorology 

variations. Our model simulations allow us to quantify the relative contributions of these two factors. Figures 2a-d illustrate 

population-weighted concentrations of simulated PM2.5 components, MDA8 O3, NO2 and SO2 in southern California under 190 
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the Base and Lockdown scenarios. The concentration differences between the two scenarios during the lockdown period 

(PostLockdown−PostBase) represent the effect of anthropogenic emission reductions. The differences between the lockdown and 

pre-lockdown periods under the Base scenario (PostBase and PreBase) can be regarded as meteorology related variations. 

Figures 2e-h and S4 further show the spatial distribution of the concentration changes caused by anthropogenic emission 

reductions and meteorology variations. 195 

The simulated population-weighted NO2 concentrations during the lockdown decrease by 4.3 ppb (from 10.7 to 6.4 ppb) 

relative to the pre-lockdown period, of which the anthropogenic emission reductions and meteorology conditions contribute 

2.4 ppb (56%) and 1.9 ppb (44%), respectively (Fig. 2c). The decrease in NO2 concentrations as a result of the anthropogenic 

emission reductions (27%) is similar to the reduction ratio in NOx emission (28%), indicating that the NOx emission 

reductions can be almost fully transferred to ambient concentrations. According to our emission estimation, over 80% of the 200 

NOx reductions is attributed to the substantially lowered traffic intensity due to the stay-at-home order. The population-

weighted concentrations of SO2 also show a decreasing trend (Fig. 2d). Compared with NO2, the decrease in SO2 

concentrations due to emission reductions is smaller (17%), partly because power generators and heavy industry (the main 

sources of SO2) are less affected by the COVID-19 lockdown (see Table S2). 

Coinciding with the decrease in NO2 and SO2, the simulated population-weighted PM2.5 concentrations decrease by 1.8 205 

μg/m3 from 8.7 μg/m3 during the pre-lockdown period (PreBase) to 6.9 μg/m3 during the lockdown period (PostLockdown). The 

emission reductions contribute 1.2 μg/m3 (67%) of the above decrease, which translates into a 15% reduction in population-

weighted PM2.5 concentrations from the levels without the lockdown (i.e., PostBase) (Fig. 2a). The decrease occurs almost 

everywhere across the domain (Fig. 2e), consistent with the results in the last section that PM2.5 concentrations are lowered 

in both urban and rural areas as a result of the emission reductions (Figs. 1e,g). The concentration decrease is higher in urban 210 

areas than in rural areas (Figs.2e and 1e,g), with the most significant decline occurring in urban areas of the Los Angeles 

County (Fig. 2e). In contrast, the meteorology variations can increase the PM2.5 concentrations in some regions (mainly the 

inland regions) and decrease them in others (mainly the coastal regions) (Fig. 2f). The net effect is to reduce the population-

weighted concentration by 0.6 μg/m3 since the concentration decrease happens to occur in more densely populated regions 

(Fig. 2a). 215 

The concentrations of PM2.5 are affected by emissions of multiple pollutants through both primary emissions and chemical 

reactions. To further explore the reasons behind the PM2.5 concentration changes, we examine the changes in individual 

chemical components, as shown in Fig. 2a and Fig. S4. Following the emission changes (from PostBase to PostLockdown), all 

major PM2.5 components experience a concentration decrease almost throughout the domain (Fig. S4), since the emissions of 

essentially all pollutants are reduced to some extent due to the lockdown measures (Table S2). The population-weighted 220 

concentrations of nitrate decrease the most (0.42 μg/m3), followed by “Others” (0.32 μg/m3, including all other components 

besides the key components listed here), organic matter (OM, 0.16 μg/m3), ammonium (0.15 μg/m3), black carbon (BC, 0.10 

μg/m3), and sulfate (from 0.07 μg/m3) (Fig. 2a). The largest decrease in nitrate is tied to the substantial reduction in NOx 

emissions, which is further explained by a larger reduction ratio in transportation emissions (by 30–70%) compared with 
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other emission sources (Table S2). In addition, the decreases in “Others”, EC, and primary OM (a fraction of the total OM) 225 

are attributable to the reductions in primary PM2.5 emissions. The overall decrease in these primary chemical components 

even exceeds that of nitrate; this clearly indicates an important role of primary PM2.5 components in improving PM2.5 air 

quality during the lockdown period, although the primary PM2.5 emissions have only been reduced by 15%. 

The simulated population-weighted O3 concentrations increase noticeably from 38 ppb in the pre-lockdown period (PreBase) 

to 42 ppb (PostLockdown) during the lockdown, and the effects of meteorological changes (i.e. PostBase−PreBase) play a dominant 230 

role in the variation of O3. The O3 level is strongly affected by ambient conditions like temperature and solar radiation 

(Wang et al., 2015b). As the temperature gets warmer and the radiation gets stronger over time, the O3 concentrations are 

elevated in most areas during the COVID-19 lockdown, compared to the pre-lockdown period (Fig. 2h). The emission 

reductions cause an O3 decrease in rural areas but a slight increase in the urban areas (Fig. 2g and Figs. 1f,h), which is 

consistent with previous findings (Zhao et al., 2019a; Wang et al., 2020b; Martien et al., 2003; Qin et al., 2004). In urban 235 

areas where NOx emissions are high, a volatile organic compounds (VOC)-limited regime is seen, while in rural areas, a 

NOx-limited regime is observed (Martien et al., 2003; Qin et al., 2004). It follows that the decrease in NOx emissions leads to 

opposite changes in O3 concentrations in urban and rural areas. The increase and decrease in different areas largely offset 

each other, resulting in a negligible change in population-weighted O3 concentrations (0.07 ppb) (Fig. 2b) and a slight 

decrease in area-averaged O3 concentrations over the modelling domain (0.77 ppb) (Fig. 2g). Last but not least, the small 240 

sensitivity of O3 to emission reductions is also partly explained by the fact that 75% of the ambient O3 concentration is 

background O3 (Zhao et al., 2019a; Wang et al., 2020b). 

3.3 Effects of anthropogenic NOx and VOC emission reductions on ozone concentration 

Our modelling results showed an increase in O3 in urban areas due to the emission reductions in association with the 

lockdown during the COVID-19 pandemic. The O3 concentrations are most significantly affected by emissions of NOx and 245 

VOC (Stewart et al., 2017). To further explore the drivers of the O3 changes and potential approaches to effectively reduce 

O3 concentrations, we conduct three sensitivity experiments involving NOx and VOC emission perturbations, as summarized 

in Table S1. Figure 3 illustrates population-weighted concentrations of simulated PM2.5 components and MDA8 O3 after the 

COVID-19 lockdown under these sensitivity scenarios and the spatial distribution of the differences in MDA8 O3 between 

the sensitivity scenarios and the Base scenario. The first sensitivity experiment is the VOC1.0 scenario which is the same as 250 

“Lockdown” except that the VOC emissions are kept at the level of the “Base” scenario (Table S1). It is used to evaluate the 

relative contribution of VOC and NOx reductions to COVID-19 induced O3 concentration changes. Without the control of 

VOC emissions in VOC1.0 (Fig. 3c), the increase in urban O3 concentration relative to the Base scenario becomes larger 

than the Lockdown scenario (Fig. 2g). This confirms our analysis in the last section that the NOx emission control elevates 

urban O3 concentrations under the VOC-limited regime and meanwhile indicates that the VOC control is conducive to O3 255 

decrease. To assess the potential effects of strengthened NOx and VOC control measures, we conduct two other sensitivity 
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experiments named NOx0.3 and VOC0.3, which are the same as “Lockdown” except that the anthropogenic NOx (for the 

NOx0.3 scenario) and VOC (for the VOC0.3 scenario) emissions are further reduced to 30% of those in the “Base” scenario. 

Figs. 3a,b show that strengthened NOx control further reduces the population-weighted concentrations of PM2.5, while further 

reduction of anthropogenic VOC helps to decrease the concentration of MDA8 O3. Differences in O3 concentration clearly 260 

illustrate different spatial distribution patterns for urban and suburb areas (Figs. 3d, e). For the suburbs with high O3 values, 

reducing anthropogenic NOx and VOC is conducive to the decline of O3. For urban areas, however, strengthened control 

with anthropogenic NOx reduced by 70% (NOx0.3) results in even more O3 increase in the central urban area (Fig. 3d). 

Amplified ozone pollution has also been reported by Sicard et al. (2020) based on their observational studies in four 

Southern European cities and Wuhan, China associated with NOx reductions in response to COVID-19. To control O3 265 

concentrations in urban areas, VOC control may be an effective method. We find that a 70% reduction in anthropogenic 

VOC (VOC0.3 scenario) can offset all the increases in O3 caused by NOx reduction during the lockdown (Fig. 3e). 

Furthermore, Wang et al. (2019) found that 75% of the average O3 concentration in California was due to distant emissions 

outside the western United States. Many other studies also revealed that the background O3 dominates over the contribution 

from local emissions in the western U.S. (Huang et al., 2015; Oltmans et al., 2008; Fiore et al., 2014; Emery et al., 2012; 270 

Zhang et al., 2011). Therefore, cooperating with other regions and countries in emission reductions may be another way to 

control O3 in urban areas of the southern California.  

4 Conclusion and policy implications 

In this study, we investigated the air quality impact of the emission reductions in southern California in association with 

COVID-19 by employing WRF-Chem to conduct high-resolution atmospheric modeling during February 18 to April 23, 275 

2020.  

Based on the statistics of activity levels, we first adjusted the emission inventory considering the emission reductions during 

the COVID-19 lockdown. The adjusted emission inventory is shown to be consistent with the emission inventory based on 

satellite observations. The simulated magnitude and temporal evolution of the concentrations of the key air pollutants, 

including PM2.5, NO2, SO2, and MDA8 O3 using the adjusted emission inventory agree better with surface observations than 280 

simulation results without considering the COVID-19 induced emission reductions. Due to the reduced emissions, the 

population-weighted concentrations of NO2 and PM2.5 decreased by 27% and 15%, respectively, in southern California in the 

five weeks after the stay-at-home orders. Emission reductions and meteorological variations contributed about two-thirds 

and one-third, respectively, to the total decrease in population-weighted PM2.5 concentrations before and after the lockdown. 

For O3 concentration, however, the COVID-19 related emission reductions caused a decrease in suburb areas but a slight 285 

increase in the urban areas. In order to further explore the effects of anthropogenic NOx and VOC emission reductions on O3 

concentration, we conducted sensitivity experiments by strengthening VOC and NOx controls. Our results showed that 

strengthened control with NOx reduced by 70% (NOx0.3) results in even more O3 increase in the central urban area and 
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anthropogenic VOC control may be an effective method to reduce O3 concentrations in urban areas. A 70% reduction in 

anthropogenic VOC can effectively offset all the increases in O3 caused by NOx reduction during the lockdown.  290 

Using the COVID-19 as an unprecedented experiment with substantial emission reductions from multiple sectors, especially 

transportation, this study helps to elucidate the complex and nonlinear response of chemical compositions to air pollution 

control measures and thus provides important insight into the development and optimization of effective air pollution control 

strategies in southern California. We find that the reduced NOx emission (~28%) has been almost fully transferred to the 

reduction in ambient concentration of NO2 (~27%). This further translates into a remarkable reduction in nitrate, which 295 

makes the largest contribution to PM2.5 concentration decrease among all individual chemical components. Therefore, to 

alleviate the PM2.5 pollution, measures focusing on sectors such as transportation, which is among the main sources of NOx 

emission, could be effective. Moreover, we find that a moderate 15% reduction of primary PM2.5 emissions has resulted in a 

substantial reduction in ambient PM2.5 concentrations, with the total concentration decreases in all primary PM2.5 

components exceeding that of nitrate. Therefore, a strengthened control on primary PM2.5 emissions could be an effective 300 

strategy to sustainably mitigate PM2.5 pollution. For O3, reduction of NOx can effectively reduce the high O3 concentrations 

in suburban areas, but may cause an increase of urban concentrations. A 70% VOC emission reduction is found to fully 

offset the urban O3 increase caused by the lockdown. Therefore, the reduction in NOx emissions needs to be accompanied by 

a well-balanced reduction in VOC emissions to avoid the side effect on urban O3 pollution. 

 305 

Data Availability Statement 

The data from the California Air Resources Board (CARB) monitoring stations used in the present study can be obtained 

from https://www.arb.ca.gov/aqmis2/aqdselect.php. The meteorology observational data obtained from the National Climatic 

Data Center (NCDC) can be freely downloaded from ftp://ftp.ncdc.noaa.gov/pub/data/noaa/. Other data needed to support 

the findings of this study are in the manuscript and the Supplementary Information. 310 
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Figure 1: Time series of observed and simulated concentrations of major pollutants. (a-d) Time series of (a) PM2.5, (b) MDA8 O3, 

(c) NO2, and (d) SO2 averaged across all observational stations from CARB over southern California. (e-f) Time series of (e) PM2.5 

and (f) MDA8 O3 across all stations over the urban areas of southern California. (g-h) The same as (e-f) but for the rural areas. 465 
Black lines are surface observations from the CARB network. Blue, green, and red lines are simulated air pollutant concentrations 

during the pre-lockdown period (February 18 to March 18) under the Base scenario (PreBase), during the lockdown period (March 

19 to April 23) under the Base scenario (PostBase), and during the lockdown period under the Lockdown scenario (PostLockdown). 

The definitions of the Base and Lockdown scenarios are summarized in Table S1. Normalized mean bias (NMB) is given by  =
∑ (𝑽𝒂𝒓𝒎 − 𝑽𝒂𝒓𝒐)
𝑵
𝒊=𝟏 ∑ 𝑽𝒂𝒓𝒐

𝑵
𝒊=𝟏⁄ , where N is the number of sites, Varm and Varo are modeled and observed concentrations, 470 

respectively. 
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Figure 2: Effects of emission reductions and meteorology conditions on air pollutants. (a-d) Population-weighted concentrations of 475 
simulated air pollutant concentrations in southern California: (a) PM2.5 components; (b) MDA8 O3; (c) NO2; (d) SO2. PreBase, 

PostBase, and PostLockdown have the same meanings as in Fig. 1.  (e-h) Spatial distributions of the effects of (e, g) emission reductions 

and (f, h) meteorology variations on (e, f) PM2.5 and (g, h) MDA8 O3 concentrations. 

(a) (b) (c) (d)

(e) (f)

(g) (h)
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Figure 3: Simulated PM2.5 and O3 concentrations under three sensitivity scenarios during the lockdown period (March 19 to April 480 
23). (a-b) Population-weighted concentrations of (a) PM2.5 components and (b) MDA8 O3 under three sensitivity scenarios 

(VOC1.0, NOx0.3 and VOC0.3) and the Lockdown scenario. (c-e) Spatial distribution of the differences in MDA8 O3 between the 

three sensitivity scenarios and the Base scenario: (c) VOC1.0 minus Base; (d) NOx0.3 minus Base; (e) VOC0.3 minus Base. The 

definitions of all scenarios are summarized in Table S1. 
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