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Abstract. In response to the Coronavirus Disease 2019 (COVID-19), California issued statewide stay-at-home orders, 

bringing about abrupt and dramatic reductions in air pollutant emissions. This crisis offers us an unprecedented opportunity 20 

to evaluate the effectiveness of emission reductions on air quality. Here we use the Weather Research and Forecasting model 

with Chemistry (WRF-Chem) in combination with surface observations to study the impact of the COVID-19 lockdown 

measures on air quality in southern California. Based on activity level statistics and satellite observations, we estimate the 

sectoral emission changes during the lockdown. Due to the reduced emissions, the population-weighted concentrations of 

fine particulate matter (PM2.5) decrease by 15% in southern California. The emission reductions contribute 68% of the PM2.5 25 

concentration decrease before and after the lockdown, while meteorology variations contribute the remaining 32%. Among 

all chemical compositions, the PM2.5 concentration decreases due to emission reductions is dominated by nitrate and primary 

components. For O3 concentrations, the emission reductions cause a decrease in rural areas but an increase in urban areas; 

the increase can be offset by a 70% emission reduction in anthropogenic volatile organic compounds (VOC). These findings 

suggest that a strengthened control on primary PM2.5 emissions and a well-balanced control on nitrogen oxides and VOC 30 

emissions are needed to effectively and sustainably alleviate PM2.5 and O3 pollution in southern California. 
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1 Introduction 

Anthropogenic emissions from various emission sources, including transportation, industrial, agricultural, residential, and 

commercial sectors, contribute to California's long-existing air pollution problems (e.g., Shirmohammadi et al., 2016; Hong 

et al., 2015; Warneke et al., 2013). The major pollutants include, but are not limited to, fine particulate matter (PM2.5), 35 

nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone (O3). Exposure to these pollutants has been correlated with an 

increased rate of morbidity and mortality (Wang et al., 2019). Mitigating the adverse effects of air pollution by reducing air 

pollutant emissions from major sectors has been and will continue to be a major public policy challenge. However, the effect 

of emission reductions from various sources on air quality improvement is subject to substantial uncertainties, because such 

effect cannot be directly measured and because the atmospheric chemistry processes are highly nonlinear and complicated 40 

(Zhao et al., 2019b; Zhao et al., 2015; Chen et al., 2013). The recent Coronavirus Disease 2019 (COVID-19) pandemic 

provides an unprecedented opportunity for a more robust understanding of the environmental impacts brought by the 

emission reductions.  

More than 200 countries and territories around the world have reported a total of about 53 million confirmed cases of the 

coronavirus COVID-19 that originated from Wuhan, China, and a death toll of more than 1300K (World Health 45 

Organization, 2020). California is one of the most affected states in the United States (U.S.) partly because its poor air 

quality makes Californians more susceptible to infectious diseases such as COVID-19 (Bashir et al., 2020; Chiara Copat, 

2020). In response to the emergence of COVID-19, statewide stay-at-home orders and related actions (e.g., closure of 

nonessential businesses) took effect on March 19, 2020 in California. These orders are expected to reduce vehicle traffic and 

industrial activities, thereby changing the air pollutant emissions and air quality in the state. It is essential to obtain a high-50 

spatiotemporal-resolution estimation of air pollution for better understanding of the atmospheric impacts caused by changes 

in anthropogenic activity associated with the COVID-19 pandemic.  

A number of studies emerged soon after the start of the COVID-19 pandemic and the subsequent lockdown to assess the 

impact of the pandemic on air quality over various regions around the world. For example, Archer et al. (2020) compared the 

observed concentrations at all available ground monitoring sites in U.S. between April of 2020 and the prior five years 55 

(2015–2019) and found statistically significant decreases in NO2 concentrations at more than 65% of the monitoring sites, 

with an average drop of 2 ppb. Pan et al. (2020) compared the surface air quality monitoring data in California during the 

period 20 March–5 May in 2020 with those in 2015–2019 and found that the PM2.5 in 2020 exhibited a notable decrease 

which could result from emission reductions associated with the COVID-19 lockdown. Similar findings, i.e., reduced PM2.5 

and NO2 concentrations are also reported for China (e.g., Chu et al., 2020; Le et al., 2020; Liu et al., 2020; Marlier et al., 60 

2020; Shi and Brasseur, 2020; Miyazaki et al., 2020b), India (e.g., Pathakoti et al., 2020; Sharma et al., 2020), and Europe 

(e.g., Chen et al., 2020; Menut et al., 2020; Sicard et al., 2020; Ordóñez et al., 2020) based on surface and/or satellite 

observations. For O3, the concentrations either increased or slightly decreased during the pandemic, depending on regions 

(Bekbulat et al., 2020; Huang et al., 2020; Pan et al., 2020; Zhao et al., 2020). Most of the above studies, however, are 
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limited to comparing observations with and without lockdown measures, which correspond to different time periods under 65 

different meteorological conditions.     

Meteorology plays significant roles in air pollution formation, transport, deposition and transformation (Wang et al., 2020a), 

which is a very important factor that affects concentrations of O3 and PM2.5 (Stewart et al., 2017). The changes in air quality 

due to meteorological variations may obscure the effects of emission changes during the COVID-19 lockdown. Using the 

Community Multi-scale Air Quality model, Wang et al. (2020a) showed that the benefits of emission reductions were 70 

overwhelmed by adverse meteorology over the North China Plain and severe air pollution events were thus not avoided. 

Goldberg et al. (2020) reported that meteorological patterns were especially favorable for low NO2 in much of the United 

States in spring 2020, complicating comparisons with spring 2019; the meteorological variations between years can cause 

~15% difference in monthly mean column NO2. In view of this, modelling approach is necessary to accurately assess the 

impact of lockdown measures by excluding the possible effects of meteorological conditions and to examine the possible 75 

mechanisms responsible for the changes in the air pollutant concentrations. In addition, while previous studies have 

evaluated the air quality changes in different regions due to the emission reductions associated with the COVID-19 

lockdown, it remains unclear how the COVID-19 induced emission reductions and the concurrent meteorological variations 

influence air quality in California.  

The objective of this study is to investigate the air quality impact of the emission reductions in southern California in 80 

association with COVID-19 by employing high-resolution atmospheric modelling in combination with surface observations. 

Based on the statistics of activity levels together with constraints from satellite observations, we estimate the sectoral 

emission changes during the COVID-19 lockdown. We then conduct model simulations using the Weather Research and 

Forecasting model with Chemistry (WRF-Chem) for the periods before and during the COVID-19 lockdown to investigate 

the effects of reduced emissions and meteorology on air pollution, respectively. Understanding how air quality responds to 85 

the emission reductions during COVID-19 pandemic will provide important insight into the future development and 

optimization of effective air pollution control strategies in southern California. 

2 Method and Data 

2.1 Model configuration and emission estimation  

We simulate the impact of COVID-19 lockdown measures on air quality using the WRF-Chem version 3.9.1, which 90 

considers highly nonlinear and complex meteorological and atmospheric chemistry processes. The simulation period is 

February 18 to April 23, 2020, which includes about one month before and after the California governor issues the stay-at-

home (lockdown) order on March 19 (Pan et al., 2020). We apply the model to two nested domains: Domain 1 covers the 

western United States and its surrounding areas at a 12 km×12 km horizontal resolution; Domain 2 covers California with a 

4 km×4 km resolution (Fig. 1). We focus our analysis on southern California (the red rectangle in Fig. 1), the largest 95 

metropolitan area in California which is significantly affected by the lockdown measures. We classify model grids in 
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southern California into “urban” and “rural” areas to facilitate the analysis of O3 simulation results. To be classified as 

“urban”, an area in the U.S. needs to have a population density of 1,000 people per square mile (Ratcliffe et al., 2016), i.e., 

about 6000 people per 4 km×4 km model grid. As we focus our analysis on southern California, one of the most densely 

populated areas in the U.S., we use a higher population density threshold of 30,000 people per model grid to better 100 

distinguish areas with different photochemistry regimes (Fig. S1). We employ an extended Carbon Bond 2005 (CB05) 

(Yarwood et al., 2005) with chlorine chemistry (Sarwar et al., 2008) coupled with the Modal for Aerosol Dynamics in 

Europe/Volatility Basis Set (MADE/VBS) (Wang et al., 2015a; Ahmadov et al., 2012). MADE/VBS uses a modal aerosol 

size representation and an advanced secondary organic aerosol (SOA) module based on the VBS approach. The aqueous-

phase chemistry is based on the AQChem module used in the Community Multiscale Air Quality (CMAQ) model (Wang et 105 

al., 2015a). The chemical initial and boundary conditions were extracted from the output of the Whole Atmosphere 

Community Climate Model (WACCM) (Marsh et al., 2013). A 6-day spin-up period is used to minimize the influence of 

initial conditions on simulation results. The vertical resolution, meteorological initial and boundary conditions, and physical 

options are the same as our previous modeling studies based on WRF-Chem for California (Zhao et al., 2019a; Wang et al., 

2020b; Shi et al., 2019). 110 

We obtain anthropogenic emissions in California without the influence of COVID-19 lockdown measures from the 

California Air Resources Board (CARB) for 2012 that is the latest year in which the data are available (California Air 

Resources Board, 2018). We scale the 2012 emissions to the 2020 levels by employing the relative changes for 2012–2018 

in California from the “NEI trend report” (US Environmental Protection Agency, 2018a) and assuming that the trends 

continued during 2018–2020. The anthropogenic emissions outside California are derived from the National Emission 115 

Inventory (US Environmental Protection Agency, 2018b) in 2011 and are scaled to 2020 following the same method. The 

biogenic, wind-blown dust, sea-salt, and wildfire emissions are calculated online in WRF-Chem, as detailed in our previous 

studies (Zhao et al., 2019a; Wang et al., 2020b; Shi et al., 2019). 

In our baseline simulation (“Base” scenario in Table 1), we use the above emission inventories. To evaluate the effect of the 

COVID-19 response actions, we conduct another simulation (“Lockdown” scenario in Table 1) in which the CARB 120 

anthropogenic emission inventory after March 19 is adjusted to account for the emission changes due to the COVID-19 

lockdown. Because of the lack of detailed emission data which often take years to update, we rely on a number of key 

activity indicators to estimate the sector-specific relative changes in anthropogenic emissions (as summarized in Table 2), 

which are subsequently evaluated against satellite-derived emission estimate. For the transportation sector, we separately 

estimate the reduction rates for onroad, off-road, and aircraft emissions due to the COVID-19 lockdown. Specifically, we 125 

assume the reduction rates in gasoline and diesel vehicle emissions in the onroad sector to be the same as the reduction rates 

in gasoline and diesel production from the pre-lockdown period to the lockdown period, as documented by California Energy 

Commission’s “Weekly Fuels Watch Reports” (California Energy Commission, 2020b). We then estimate the reduction rates 

in total emissions from the onroad sector based on the relative fractions of gasoline and diesel vehicle emissions reported by 

the CARB emission inventory. Since the off-road sector involves few gasoline vehicles, we assume the reduction rates in 130 
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off-road emissions to be the same as the reduction rate in diesel production. For the aircraft sector, we assume the reduction 

rates in aircraft emissions to be the same as the reduction rate in jet fuel production from the “Weekly Fuels Watch Reports” 

(California Energy Commission, 2020b). The changes in emissions from the industrial, residential, and commercial sectors 

are assumed to be proportional to the changes in electricity consumption by the corresponding sector, as summarized in the 

“Energy Insights Reports” of the California Energy Commission (California Energy Comission, 2020a). The changes in 135 

emissions from power plants are estimated as a function of the total electricity demand in California (California Energy 

Comission, 2020a). We also checked the emission change of power plants measured by the Continuous Emission Monitoring 

System (CEMS). There are certain differences between the emission reduction rates estimated based on the CESM and 

electricity demand, but the difference only results in a less than 1% difference in the total emissions of any pollutant (from 

0.05% to 1%), which is expected to have a limited effect on the simulation results of mean air pollutant concentrations in 140 

southern California (see details in the Supplementary text and Fig. S3). Having estimated the emission changes using the 

preceding bottom-up method, in order to prove the reliability of our bottom-up emissions, we compare the changes in 

nitrogen oxides (NOx) emissions with a top-down satellite-based emission inventory—an extended calculation of the 

Tropospheric Chemistry Reanalysis version 2 (TCR-2) (Miyazaki et al., 2020a). This data product has been obtained from 

the assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI (Ozone Monitoring 145 

Instrument), TROPOMI (TROPOspheric Monitoring Instrument), MLS (Microwave Limb Sounder), and MOPITT 

(Measurement Of Pollution In The Troposphere) satellite instruments. The reanalysis calculation for the COVID-19 time 

period was conducted at 0.56° horizontal resolution using a global chemical transport model MIROC-CHASER (Watanabe 

et al., 2011) and an ensemble Kalman filter technique that optimizes chemical concentrations of various species and 

emissions of NOx, SO2, and CO. The extended reanalysis data for 2020 have already been used by Miyazaki et al. (2020b) to 150 

study air quality response to the Chinese COVID-19 lockdown measures. Here we use the NOx emission product which has a 

sufficiently high quality on the spatiotemporal scales of interest for this study. Using this product, we first calculate NOx 

emissions in a hypothetical scenario without considering the COVID-19 effect. Here the hypothetical emission trend in 2020 

is averaged from those trends from the top-down NOx emission inventory in the prior years (2017-2019). We subsequently 

quantify the emission changes due to the COVID-19 using the difference between the hypothetical and real-world emissions 155 

(see details in Fig. 2). The estimated NOx reduction ratio induced by the COVID-19 lockdown measures averaged during 

March 19 to April 23 in southern California is 27.2% based on the top-down method, which is in good agreement with the 

28.3% (see Table 2) reduction estimated based on the bottom-up method. That said, we acknowledge that, since more 

detailed data to support a more accurate estimation are not yet available, the estimates of the sector-specific relative changes 

in emissions inevitably involve some degree of uncertainty, which can be improved in the future work.  160 

2.2 Observational data and model evaluation 

We use a series of meteorology and air quality observations to evaluate the model performance and help analyze the 

influence of the COVID-19 lockdown. For meteorology, we use observational data obtained from the National Climatic Data 
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Center (NCDC), where hourly or 3-hour observations of wind speed at 10 m (WS10), temperature at 2 m (T2), and water 

vapor mixing ratio at 2 m (Q2) are available for 82 sites distributed southern California (the red rectangle in Fig. 1). We 165 

compare the WRF-Chem meteorological simulations with these measurements and apply a number of statistical indices 

defined in Emery et al. (2001) to quantitatively evaluate the model performance, as summarized in Table 3. In general, the 

model simulations agree fairly well with surface meteorological observations. The performance statistics for WS10, T2 and 

Q2 are all within the benchmark ranges proposed by Emery et al. (2001). 

For air quality, we achieve hourly observations of PM2.5, O3, NO2 and SO2 from CARB (California Air Resources Board, 170 

2020) and use them to evaluate the air quality simulations of WRF-Chem (see the Results and Discussion section). The 

observational data are available at 42 sites for PM2.5, 63 sites for O3, 48 sites for NO2, and 12 sites for SO2, in southern 

California (the red rectangle in Fig. 1) during the simulation period. We do not evaluate the model performance in simulating 

the chemical composition of PM2.5 because the composition data from major observational networks had not been available 

by the time we completed the present study. Nevertheless, our previous studies using almost the same model configurations 175 

showed a fairly good agreement with PM2.5 composition observations during January, April, July, and October, 2012 (Zhao 

et al., 2019a; Wang et al., 2020b). 

3 Results and Discussion 

3.1 Evaluation of the simulated results with surface observations 

In this study, we simulated the major air pollutants using WRF-Chem under two scenarios, Base and Lockdown (Table 1). 180 

To evaluate the model performance with regard to the temporal variations in air pollutants, we compared the simulated 

concentrations of PM2.5, maximum daily 8-h average (MDA8) O3, NO2 and SO2 with observational data from CARB in 

southern California.  

Before the COVID-19 lockdown (February 18 to March 18), results from model simulation under the Base scenario (PreBase) 

capture the magnitude and temporal evolution of the four key air pollutants reasonably well, with normalize mean biases 185 

(NMBs) of 11.7%, 4.5%, -14.4% and 7.8% for PM2.5, MDA8 O3, NO2, SO2, respectively (Fig. 3). During the COVID-19 

lockdown period (March 19 to April 23), compared to the simulations for the Base scenario (PostBase) which overestimates 

the surface concentrations with NMBs of 28.1%, 1.6%, 21.4% and 39.2% for PM2.5, MDA8 O3, NO2, SO2, respectively, the 

simulated results using the adjusted emission inventory (PostLockdown) not only agree better with surface observations for all 

the four air pollutants (with NMBs of 10.6%, 1.0%, -12.6% and -13.1% for PM2.5, MDA8 O3, NO2, SO2, respectively), but 190 

also show generally closer NMBs to those during the pre-lockdown period (Fig.  3). The improvement in model performance 

is observed for both urban and rural areas. In the urban areas, the NMB for PM2.5 drops from 25.8% under the Base scenario 

to 3.9% under the Lockdown scenario, getting closer to the NMB of 4.0% during the pre-lockdown period. The 

corresponding NMB in rural areas drops from 29.7% to 15.1%, also getting closer to 17.8% during the pre-lockdown period 

(Figs. 3e,g). Regarding MDA8 O3, although the differences between the Base and Lockdown scenarios are quite small (Fig. 195 
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3b), the NMB is slightly improved from -1.5% (PostBase) to -0.2% (PostLockdown) in urban areas and from 3.2% to 1.5% in 

rural areas (Figs. 3f,h). 

Subsequently, we evaluated the spatial distributions of simulated PM2.5 and MDA8 O3 concentrations using observational 

data averaged during the pre-lockdown and lockdown periods in southern California (Fig. 4). Figure S4 shows the 

scattergrams of the simulated and observed monthly average PM2.5 and MDA8 O3 concentrations in southern California.  The 200 

Base scenario can simulate the spatial patterns of PM2.5 and MDA8 O3 reasonably well (Figs. 4a-b and d-e), but it 

overestimates the observations of PM2.5 concentrations during the lockdown period (PostBase, Figs. 4b and S4b). The 

simulated distributions of PM2.5 concentrations under the Lockdown scenario (PostLockdown) match the observations better 

than those for the Base scenario (PostBase) (Figs. 4b-c and S4b-c); the hot spots occurring over the Los Angeles County 

become less polluted and more consistent with the surface observations after considering the emission reductions associated 205 

with the COVID-19 lockdown (Figs. 4b-c).  

3.2 Effects of anthropogenic emission reductions and meteorology conditions on air pollutants 

Both observations and simulations in Fig. 3 show significant changes in air pollutant concentrations during the COVID-19 

lockdown relative to the pre-lockdown period, resulting from a combination of emission reductions and meteorology 

variations. Our model simulations allow us to quantify the relative contributions of these two factors. Figures 5a-f illustrate 210 

population-weighted concentrations of simulated PM2.5 components, NO2, SO2, MDA8 O3 in southern California, and MDA8 

O3 over the urban and rural areas of southern California under the Base and Lockdown scenarios. We use population-

weighted concentrations because they are more relevant to the health impacts of air pollutants (PM2.5 and O3), the mitigation 

of which is an ultimate goal of controlling air pollution. Figure S5 shows the mean concentrations of simulated PM2.5 

components, MDA8 O3, NO2, and SO2 in southern California.  215 

The simulations of the Base and Lockdown scenarios during the lockdown period (PostBase and PostLockdown) have the same 

model configurations and inputs (same large-scale meteorological conditions) except for different emission inventories. The 

concentration differences between the two scenarios during the lockdown period (PostLockdown−PostBase) represent the effect 

of anthropogenic emission reductions. Strictly speaking, while the large-scale meteorological fields are the same in PostBase 

and PostLockdown, the different emission inputs could cause small differences in regional meteorology fields through the 220 

interactions between air pollutants and meteorology. Such a meteorology perturbation is considered to be part of the 

emission reduction effect because it is fundamentally caused by emission reductions. The simulations of the Base scenario 

during the lockdown and pre-lockdown periods (PostBase and PreBase) both use the emission inventories without considering 

the COVID-19 induced emission reductions. The differences between PostBase and PreBase can be regarded as the impact of 

meteorology variations. Here our intention is to examine the relative contribution of meteorological variations to the 225 

population-weighted air pollutant concentrations before and after the lockdown, instead of the changes relative to the 

climatological conditions. However, we acknowledge that it is more meaningful and informative to assess the meteorological 

effect by conducting ensemble simulations over multiple years or use multi-year averaged meteorological conditions to serve 
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as a reference state (Le et al., 2020), which warrants further studies in the future. Figures 6 and 7 further show the spatial 

distribution of the concentration changes caused by anthropogenic emission reductions and meteorology variations. 230 

The simulated population-weighted NO2 concentrations during the lockdown decrease by 4.3 ppb (from 10.7 to 6.4 ppb) 

relative to the pre-lockdown period, of which the anthropogenic emission reductions and meteorology conditions contribute 

2.4 ppb (56%) and 1.9 ppb (44%), respectively (Fig. 5b). The decrease in NO2 concentrations as a result of the anthropogenic 

emission reductions (27%) is similar to the reduction ratio in NOx emission (28%), indicating that the NOx emission 

reductions can be almost fully transferred to ambient concentrations. According to our emission estimation, over 80% of the 235 

NOx reductions is attributed to the substantially lowered traffic intensity due to the stay-at-home order. Note that the soil 

NOx emissions are not taken into account in our WRF-Chem simulation. According to Guo et al. (2020), the total soil NOx 

emissions in California account for only about 1.1% of the state's total anthropogenic NOx emissions (California Air 

Resources Board, 2017). The soil NOx emissions in southern California are even generally lower compared with other parts 

of the state (Guo et al., 2020). Since our study focuses on the impact of anthropogenic emission reductions on air quality 240 

during the COVID-19 lockdown period, the absence of soil NOx emissions has little impact on our main results and will not 

change the main findings of this study. The population-weighted concentrations of SO2 also show a decreasing trend (Fig. 

5c). Compared with NO2, the decrease in SO2 concentrations due to emission reductions is smaller (17%), partly because 

power generators and heavy industry (the main sources of SO2) are less affected by the COVID-19 lockdown (see Table 2). 

Coinciding with the decrease in NO2 and SO2, the simulated population-weighted PM2.5 concentrations decrease by 1.8 245 

μg/m
3
 from 8.7 μg/m

3
 during the pre-lockdown period (PreBase) to 6.9 μg/m

3
 during the lockdown period (PostLockdown). The 

emission reductions contribute 1.2 μg/m
3
 (67%) of the above decrease, which translates into a 15% reduction in population-

weighted PM2.5 concentrations from the levels without the lockdown (i.e., PostBase) (Fig. 5a). The decrease occurs almost 

everywhere across the domain (Fig. 6a), consistent with the results in the last section that PM2.5 concentrations are lowered 

in both urban and rural areas as a result of the emission reductions (Figs. 3e,g). The concentration decrease is higher in urban 250 

areas than in rural areas (Figs. 6a and 3e,g), with the most significant decline occurring in urban areas of the Los Angeles 

County (Fig. 6a). In contrast, the meteorology variations can increase the PM2.5 concentrations in some regions (mainly the 

inland regions) and decrease them in others (mainly the coastal regions) (Fig. 6b). The net effect is to reduce the population-

weighted concentration by 0.6 μg/m
3 

since the concentration decrease happens to occur in more densely populated regions 

(Fig. 5a). 255 

The concentrations of PM2.5 are affected by emissions of multiple pollutants through both primary emissions and chemical 

reactions. To further explore the reasons behind the PM2.5 concentration changes, we examine the changes in individual 

chemical components, as shown in Fig. 5a and Fig. 7. Following the emission changes (from PostBase to PostLockdown), all 

major PM2.5 components experience a concentration decrease almost throughout the domain (Fig. 7), since the emissions of 

essentially all pollutants are reduced to some extent due to the lockdown measures (Table 2). The population-weighted 260 

concentrations of nitrate decrease the most (0.42 μg/m
3
), followed by “Others” (0.32 μg/m

3
, including all other components 

besides the key components listed here), organic matter (OM, 0.16 μg/m
3
), ammonium (0.15 μg/m

3
), black carbon (BC, 0.10 
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μg/m
3
), and sulfate (from 0.07 μg/m

3
) (Fig. 5a). The largest decrease in nitrate is tied to the substantial reduction in NOx 

emissions, which is further explained by a larger reduction ratio in transportation emissions (by 30–70%) compared with 

other emission sources (Table 2). In addition, the decreases in “Others”, EC, and primary OM (a fraction of the total OM) 265 

are attributable to the reductions in primary PM2.5 emissions. In our emission estimates, the sector-specific relative emission 

changes of EC, primary OM, and “Others” are assumed to be the same as the total primary PM2.5, as summarized in Table 2. 

For the total emissions of all sectors, the reduction in EC, primary OM, and “Others” are 22.7%, 15.8%, and 13.5%, 

respectively, slightly different from the reduction in total primary PM2.5 since different chemical components have different 

sectoral distributions. The overall concentration decrease in these primary chemical components even exceeds that of nitrate; 270 

this clearly indicates an important role of primary PM2.5 components in improving PM2.5 air quality during the lockdown 

period, although the primary PM2.5 emissions have only been reduced by 15%. 

The simulated population-weighted O3 concentrations increase noticeably from 38 ppb in the pre-lockdown period (PreBase) 

to 42 ppb (PostLockdown) during the lockdown, and the effects of meteorological changes (i.e. PostBase−PreBase) play a dominant 

role in the variation of O3. The O3 level is strongly affected by ambient conditions like temperature and solar radiation 275 

(Wang et al., 2015b). As the temperature gets warmer and the radiation gets stronger over time, the O3 concentrations are 

elevated in most areas during the COVID-19 lockdown, compared to the pre-lockdown period (Fig. 6d). The emission 

reductions cause an O3 decrease in rural areas but a slight increase in the urban areas (Fig. 6c and Figs. 3f,h), which is 

consistent with previous findings (Zhao et al., 2019a; Wang et al., 2020b; Martien et al., 2003; Qin et al., 2004). In urban 

areas where NOx emissions are high, a volatile organic compounds (VOC)-limited regime is seen, while in rural areas, a 280 

NOx-limited regime is observed (Martien et al., 2003; Qin et al., 2004). It follows that the decrease in NOx emissions leads to 

opposite changes in O3 concentrations in urban and rural areas. The increase and decrease in different areas largely offset 

each other, resulting in a negligible change in population-weighted O3 concentrations (0.07 ppb) (Fig. 5d) and a slight 

decrease in area-averaged O3 concentrations over the modelling domain (0.77 ppb) (Figs. 6c and S5b). Last but not least, the 

small sensitivity of O3 to emission reductions is also partly explained by the fact that 75% of the ambient O3 concentration is 285 

background O3 (Zhao et al., 2019a; Wang et al., 2020b). 

3.3 Effects of anthropogenic NOx and VOC emission reductions on ozone concentration 

Our modelling results showed an increase in O3 in urban areas due to the emission reductions in association with the 

lockdown during the COVID-19 pandemic. The O3 concentrations are most significantly affected by emissions of NOx and 

VOC (Stewart et al., 2017). To further explore the drivers of the O3 changes and potential approaches to effectively reduce 290 

O3 concentrations, we conduct three sensitivity experiments involving NOx and VOC emission perturbations, as summarized 

in Table 1. Figure 8 illustrates population-weighted concentrations of simulated PM2.5 components and MDA8 O3 after the 

COVID-19 lockdown under these sensitivity scenarios. Figure 9 shows the spatial distribution of the differences in MDA8 

O3 between the sensitivity scenarios and the Base scenario. The first sensitivity experiment is the VOC1.0 scenario which is 
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the same as “Lockdown” except that the VOC emissions are kept at the level of the “Base” scenario (Table 1). This scenario, 295 

in combination with the Base and Lockdown scenarios, can be used to evaluate the response of O3 concentrations if the 

COVID-19 induced emission reductions of NOx and VOC were implemented in sequence. Without the control of VOC 

emissions in VOC1.0 (Fig. 9a), the increase in urban O3 concentration relative to the Base scenario becomes larger than the 

Lockdown scenario (Fig. 6c). This confirms our analysis in the last section that the NOx emission control elevates urban O3 

concentrations under the VOC-limited regime and meanwhile indicates that the VOC control is conducive to O3 decrease. To 300 

assess the potential effects of strengthened NOx and VOC control measures, we conduct two other sensitivity experiments 

named NOx0.3 and VOC0.3, which are the same as “Lockdown” except that the anthropogenic NOx (for the NOx0.3 scenario) 

and VOC (for the VOC0.3 scenario) emissions are further reduced to 30% of those in the “Base” scenario. As a 70% 

reduction is close to the maximum reductions in NOx and VOC emissions that could be achieved through the full 

implementation of technologically and economically feasible control measures (Amann et al., 2020), we select an emission 305 

ratio of 0.3 (70% reduction) to represent the potential impact of highly stringent control policies in the future. Figs. 8a,b 

show that strengthened NOx control further reduces the population-weighted concentrations of PM2.5, while further reduction 

of anthropogenic VOC helps to decrease the concentration of MDA8 O3. Differences in O3 concentration clearly illustrate 

different spatial distribution patterns for urban and suburb areas (Figs. 9b, c). For the suburbs with high O3 values, reducing 

anthropogenic NOx and VOC is conducive to the decline of O3 (Fig. 8d). For urban areas, however, strengthened control 310 

with anthropogenic NOx reduced by 70% (NOx0.3) results in even more O3 increase in the central urban area (Figs. 9b and 

8c). Amplified ozone pollution has also been reported by Sicard et al. (2020) based on their observational studies in four 

Southern European cities and Wuhan, China associated with NOx reductions in response to COVID-19. To control O3 

concentrations in urban areas, VOC control may be an effective method. While a NOx emission reduction might cause an 

increase in O3 concentration, a VOC reduction generally leads to a monotonous reduction of O3 concentrations regardless of 315 

the O3 formation regime, as indicated by the classical O3 EKMA isopleth (Figure 6-1 of National Research Council (1991) or 

Figure 3.2.1 of  Donahue (2018)) as well as some recent studies in southern California (Fujita et al., 2013; Collet et al., 2018; 

Qian et al., 2019). We find that in the VOC0.3 scenario, there is almost no O3 concentration increase relative to the Base 

scenario, in contrast to a significant urban O3 increase in the Lockdown scenario (Fig. 9c). This means that a 70% reduction 

in anthropogenic VOC can offset the increases in O3 caused by the 28.3% NOx reduction during the lockdown. Note that we 320 

are specifically looking at the extent of VOC emission reductions that are needed to offset the 28.3% NOx reduction caused 

by the lockdown, which minimizes the complexity due to the nonlinear O3 responses when the NOx emissions are changing 

simultaneously. Furthermore, Wang et al. (2019) found that 75% of the average O3 concentration in California was due to 

distant emissions outside the western United States. Many other studies also revealed that the background O3 dominates over 

the contribution from local emissions in the western U.S. (Huang et al., 2015; Oltmans et al., 2008; Fiore et al., 2014; Emery 325 

et al., 2012; Zhang et al., 2011). Therefore, cooperating with other regions and countries in emission reductions may be 

another way to control O3 in urban areas of the southern California.  
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4 Conclusion and policy implications 

In this study, we investigated the air quality impact of the emission reductions in southern California in association with 

COVID-19 by employing WRF-Chem to conduct high-resolution atmospheric modeling during February 18 to April 23, 330 

2020.  

Based on the statistics of activity levels, we first adjusted the emission inventory considering the emission reductions during 

the COVID-19 lockdown. The adjusted emission inventory is shown to be consistent with the emission inventory based on 

satellite observations. The simulated magnitude and temporal evolution of the concentrations of the key air pollutants, 

including PM2.5, NO2, SO2, and MDA8 O3 using the adjusted emission inventory agree better with surface observations than 335 

simulation results without considering the COVID-19 induced emission reductions. Due to the reduced emissions, the 

population-weighted concentrations of NO2 and PM2.5 decreased by 27% and 15%, respectively, in southern California in the 

five weeks after the stay-at-home orders. Emission reductions and meteorological variations contributed about two-thirds 

and one-third, respectively, to the total decrease in population-weighted PM2.5 concentrations before and after the lockdown. 

For O3 concentration, however, the COVID-19 related emission reductions caused a decrease in suburb areas but a slight 340 

increase in the urban areas. In order to further explore the effects of anthropogenic NOx and VOC emission reductions on O3 

concentration, we conducted sensitivity experiments by strengthening VOC and NOx controls. Our results showed that 

strengthened control with NOx reduced by 70% (NOx0.3) results in even more O3 increase in the central urban area and 

anthropogenic VOC control may be an effective method to reduce O3 concentrations in urban areas. A 70% reduction in 

anthropogenic VOC can effectively offset all the increases in O3 caused by NOx reduction during the lockdown.  345 

Using the COVID-19 as an unprecedented experiment with substantial emission reductions from multiple sectors, especially 

transportation, this study helps to elucidate the complex and nonlinear response of chemical compositions to air pollution 

control measures and thus provides important insight into the development and optimization of effective air pollution control 

strategies in southern California. We find that the reduced NOx emission (~28%) has been almost fully transferred to the 

reduction in ambient concentration of NO2 (~27%). This further translates into a remarkable reduction in nitrate, which 350 

makes the largest contribution to PM2.5 concentration decrease among all individual chemical components. Therefore, to 

alleviate the PM2.5 pollution, measures focusing on sectors such as transportation, which is among the main sources of NOx 

emission, could be effective. Moreover, we find that a moderate 15% reduction of primary PM2.5 emissions has resulted in a 

substantial reduction in ambient PM2.5 concentrations, with the total concentration decreases in all primary PM2.5 

components exceeding that of nitrate. Therefore, a strengthened control on primary PM2.5 emissions could be an effective 355 

strategy to sustainably mitigate PM2.5 pollution. For O3, reduction of NOx can effectively reduce the high O3 concentrations 

in suburban areas, but may cause an increase of urban concentrations. A 70% VOC emission reduction is found to fully 

offset the urban O3 increase caused by the lockdown. Therefore, the reduction in NOx emissions needs to be accompanied by 

a well-balanced reduction in VOC emissions to avoid the side effect on urban O3 pollution. 

 360 
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Figure 1: Simulation domains of this study. The red rectangle denotes the area of southern California where most analyses in this 

study focus on. 
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Figure 2: Satellite-derived NOx emission estimates in southern California. (a) Daily NOx emissions from February 1 to April 23, 

2020. The red line represents the average emissions during the period after March 19. (b) NOx emission changes due to the 555 

COVID-19 (i.e., the anomaly), which is quantified using the difference between the real-world NOx emissions and the emissions in 

a hypothetical scenario without considering the COVID-19. The emissions in the hypothetical scenario is estimated based on 

emission trends in prior years (2017–2019), using February 1 as a reference. The difference between two blue dashed lines 

represents the average reductions of NOx emissions induced by the COVID-19 lockdown measures that took effect on March 19. 

The local valley between February 24 and March 3 is caused by retrieval uncertainties caused by unfavorable meteorology 560 

conditions and is thus excluded when we estimate the average NOx emissions before the lockdown.  
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Figure 3: Time series of observed and simulated concentrations of major pollutants. (a-d) Time series of (a) PM2.5, (b) MDA8 O3, 

(c) NO2, and (d) SO2 averaged across all observational stations from CARB over southern California. (e-f) Time series of (e) PM2.5 565 
and (f) MDA8 O3 across all stations over the urban areas of southern California. (g-h) The same as (e-f) but for the rural areas. 

Black lines are surface observations from the CARB network. Blue, green, and red lines are simulated air pollutant concentrations 

during the pre-lockdown period (February 18 to March 18) under the Base scenario (PreBase), during the lockdown period (March 

19 to April 23) under the Base scenario (PostBase), and during the lockdown period under the Lockdown scenario (PostLockdown). 

The definitions of the Base and Lockdown scenarios are summarized in Table 1. Normalized mean bias (NMB) is given by  570 
             

 
        

 
    , where N is the number of sites, Varm and Varo are modeled and observed concentrations, 

respectively. 
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Figure 4: Overlay plots of the simulated (contour) and observed (circles) PM2.5 and MDA8 O3 concentrations in southern 

California. (a-c) are for PM2.5 and (d-f) are for MDA8 O3. (a, d) are for the pre-lockdown period (February 18 to March 18) under 575 

the Base scenario (PreBase); (b, e) are for the lockdown period (March 19 to April 23) under the Base scenario (PostBase); (c, f) are 

for the lockdown period under the Lockdown scenario (PostLockdown). 
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Figure 5: Effects of emission reductions and meteorology conditions on air pollutants. (a-d) Population-weighted concentrations of 580 

simulated air pollutant concentrations in southern California: (a) PM2.5 components; (b) NO2; (c) SO2; (d) MDA8 O3 over 

southern California; (e) MDA8 O3 over the urban areas of southern California; (f) MDA8 O3 over the rural areas of southern 

California. PreBase, PostBase, and PostLockdown have the same meanings as in Fig. 3. 

 

 585 

Figure 6: Spatial distributions of the emission reductions and meteorology conditions effects on air pollutants. (a, c) emission 

reductions and (b, d) meteorology variations on (a,b) PM2.5 and (c, d) MDA8 O3 concentrations. 

= 
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Figure 7: The same as Figs. 6 but for NO2, SO2, and different PM2.5 chemical components. 590 
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Figure 8: Simulated population-weighted PM2.5 and O3 concentrations under three sensitivity scenarios (VOC1.0, NOx0.3 and 

VOC0.3) during the lockdown period (March 19 to April 23) over southern California. (a) PM2.5 components, (b) MDA8 O3, (c) 

MDA8 O3 over the urban areas, and (d) MDA8 O3 over the rural areas. The definitions of all scenarios are summarized in Table 1. 

 595 

Figure 9: Spatial distribution of the differences in MDA8 O3 between the three sensitivity scenarios and the Base scenario: (a) 

VOC1.0 minus Base; (b) NOx0.3 minus Base; (c) VOC0.3 minus Base. The definitions of all scenarios are summarized in Table 1. 

(a) (b) (c) (d)Urban Rural

(a)
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Figure 10: Time series of simulated and observed PM2.5 concentrations (a, c) and MDA8 O3 concentrations (b, d) under several 

sensitivity scenarios averaged across the CARB observational stations over the urban (a, b) and rural (c, d) areas of southern 600 

California during the lockdown period (March 19 to April 23). Black lines are surface observations from CARB networks. Blue, 

red, cyan, magenta, and green lines are simulated results for the Base, Lockdown, VOC1.0, NOx0.3, and VOC0.3 scenarios. The 

definitions of all scenarios are summarized in Table 1. 

 

Table 1. Summary of model scenarios developed in this study. 605 

Scenario Definition 

Base 
This scenario uses the default CARB emission inventory without considering the emission reductions induced by the 

COVID-19 lockdown. It provides a baseline for evaluating the effect of COVID-19 lockdown on air quality. 

Lockdown 
This scenario adjusts the CARB emission inventory to account for the emission reductions due to the COVID-19 

lockdown. The difference between “Base” and “Lockdown” represents the effect of the COVID-19 lockdown. 

VOC1.0 

This scenario is the same as “Lockdown” except that the VOC emissions are kept at the level of the “Base” scenario. 

It is used to evaluate the relative contribution of VOC and NOx reductions to COVID-19 induced O3 concentration 

changes. 

NOx0.3 
This scenario is the same as “Lockdown” except that the NOx emissions are further reduced to 30% of those in the 

“Base” scenario. It is used to assess the potential effects of strengthened NOx control measures. 

VOC0.3 
This scenario is the same as “Lockdown” except that the VOC emissions are further reduced to 30% of those in the 

“Base” scenario. It is used to assess the potential effects of strengthened VOC control measures. 
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Table 2. The percentage of changes in air pollutant emissions during the COVID-19 lockdown relative to a hypothetical scenario 

without the lockdown in southern California. 

 
VOC CO NOX SOX PM10 PM2.5 NH3 

Onroad transportation -50% -51% -39% -35% -44% -42% -51% 

Off-road transportation -30% -30% -30% -30% -30% -30% -30% 

Aircraft -70% -70% -70% -70% -70% -70% -70% 

Power plants -7% -7% -7% -7% -7% -7% -7% 

Industrial -15% -15% -15% -15% -15% -15% -15% 

Residential 10% 10% 10% 10% 10% 10% 10% 

Commercial -15% -15% -15% -15% -15% -15% -15% 

Agriculture 0% 0% 0% 0% 0% 0% 0% 

Total -21.1% -35.7% -28.3% -18.5% -9.7% -15.0% -16.1% 

 610 

Table 3. Evaluation of meteorological simulation results as compared to observational data from the National Climatic Data 

Center. 

Variable Index Value Ref
a
 Variable Index Value Ref

a
 

Wind speed (m/s) Mean observation 3.92 
 

Temperature (K) Mean observation 287.48 
 

 Mean simulation 3.69   Mean simulation 287.21  

 
Mean Bias -0.22 ≤ ±0.5 

 
Mean Bias -0.28 ≤ ±0.5 

 Gross error 1.43 ≤2  Gross error 1.76 ≤2 

 IOA
b
 0.76 ≥0.6  IOA 0.93 ≥0.8 

Wind direction (deg) Mean observation 243.45  Humidity (g/kg) Mean observation 6.41  

 Mean simulation 232.90   Mean simulation 6.16  

 Mean Bias 1.48 ≤ ±10  Mean Bias -0.25 ≤ ±1 

 Gross error 44.53 ≤30  Gross error 0.83 ≤2 

     IOA 0.84 ≥0.6 

a The reference values are taken from Emery et al. (2001). 

b IOA = Index of Agreement. 

 615 


