
Anonymous Referee #1 

The manuscript addresses a topical and critical science question, i.e. how air pollution 

responded to the abrupt changes in the human activities during the COVID-19 pandemic. 

A series of WRF-Chem simulations and ground-based observations are employed to 

understand the emission-pollution relationship in Southern California. The authors’ effort 

of using observations of meteorology and pollution to evaluate and calibrate the 

WRF-Chem model is commendable. The finding about the dominant role of nitrate 

chemistry and primary PM emission in the observed PM2.5 reduction reinforce the 

importance of those two critical pathways for regional haze pollution in LA and lay out 

scientific foundation for future mitigation policy development. I recommend its publication 

with ACP, while I also have comments below for the authors to address. 

We appreciate the reviewer’s valuable comments, which have helped us improve the 

manuscript. We have carefully revised the manuscript according to these comments. 

Point-by-point responses are provided below. The reviewers’ comments are in black and 

our responses are in blue. 

 

1) The SI tables and figures contain very useful information about how the model is set up 

and the simulation results are evaluated. Since the main text only consists of three figures, 

I strongly suggest the authors move all SI tables and figures to the main text. 

R: Done. Thank you! 

 

2) For Fig. 3a,b, better to separate the urban and rural areas, as they are in different 



ozone formation regimes. A simple regional average would largely reduce the ozone 

sensitivity to NOx or VOC in your plot. 

R: Following the reviewer’s suggestion, we have added two panels showing the 

population-weighted concentrations of simulated MDA8 O3 over the urban and rural areas 

in Fig. 5 and Fig. 8 (Fig. 2 and Fig. 3 in the original manuscript). We do not show the urban 

and rural PM2.5 concentrations separately because the patterns of PM2.5 concentration 

changes are similar in these two settings. 

 

Figure 5: Effects of emission reductions and meteorology conditions on air pollutants. (a-d) 

Population-weighted concentrations of simulated air pollutant concentrations in southern California: (a) 

PM2.5 components; (b) NO2; (c) SO2; (d) MDA8 O3 over southern California; (e) MDA8 O3 over the urban 

areas of southern California; (f) MDA8 O3 over the rural areas of southern California. PreBase, PostBase, and 

PostLockdown have the same meanings as in Fig. 3. 

 

Figure 8: Simulated population-weighted PM2.5 and O3 concentrations under three sensitivity scenarios 

(VOC1.0, NOx0.3 and VOC0.3) during the lockdown period (March 19 to April 23) over southern California. 

(a) PM2.5 components, (b) MDA8 O3, (c) MDA8 O3 over the urban areas, and (d) MDA8 O3 over the rural 

(a) (b) (c)

(d) (e) (f)Urban Rural

(a) (b) (c) (d)Urban Rural



areas. The definitions of all scenarios are summarized in Table 1. 

 

3) Is the Miyazaki 2020c the same with Miyazaki 2020b? 

R: Thank you! We have removed Miyazaki 2020c. 

 

4) The present study assesses the meteorological influence on the pollution 

concentrations by contrasting the lockdown and pre-lockdown time periods. It is a 

relatively crude way to achieve that objective, as the underlying assumption is that the 

prelockdown meteorology represents the climatological conditions during that time of the 

year. A more robust method is to conduct ensemble simulations over multiple years or use 

multi-year averaged meteorological conditions to serve as a reference state in the model 

(e.g. Le et al., 2020). The uncertainty here needs to be acknowledged. 

R: Thank you for the suggestion. In fact, we did not assume that the pre-lockdown 

meteorology represents the climatological conditions since it was our intention to examine 

the relative contribution of meteorological variations to the changes in 

population-weighted air pollutant concentrations before and after the lockdown, instead of 

the changes relative to the climatological conditions. However, we acknowledge that it is 

more meaningful and informative to assess the meteorological effect by conducting 

ensemble simulations over multiple years or use multi-year averaged meteorological 

conditions to serve as a reference state (Le et al., 2020), which warrants further studies in 

the future. We have mentioned this in the revised manuscript (Lines 225-229). 

 

5) The results in Table S3 are based on hourly or daily data? Over what area? A recent 



study by Rooney et al. (2020, ACP, p14597–14616, Fig. 5) found WRF-Chem tends to 

overpredict the nighttime low in California. I wonder if the simulations presented here 

encounter the same issue. 

R: The results in Table S3 (now Table 3) are based on hourly data for 82 sites distributed 

in southern California (the red rectangle in now Fig. 1). As shown in the following figures 

which represent the temperature during the nighttime and daytime, respectively, we didn’t 

find that WRF-Chem tends to overpredict the nighttime low temperature in our study. 

 

Figure: Comparison of NCDC temperature observations versus WRF-Chem simulations 

 

Anonymous Referee #3 

This manuscript investigated the air pollution during the COVID-19 lockdown period in 

Southern California. Using WRF-Chem modeling simulations, the authors found that 

PM2.5 concentrations decrease while O3 concentrations decrease/increase in rural/ urban 

areas. This study suggests for Southern California control on primary PM2.5 emissions and 

balanced control on both NOx and VOCs emissions are needed to improve the air quality. 

The text is concisely written and well documented. The topic is applicable for the 

Atmospheric Chemistry & Physics journal. However, the current manuscript misses 



detailed explanations and necessary analysis (please see the remarks below). First, it is 

not clear how the emissions under COVID lockdown are projected. The authors listed 

several data sources and then ‘scale’ the 2012 CARB emissions, but did not show the 

details. The current manuscript also only listed the relative changes of each species by 

sector, but not the total change. Second, the modeling study completely ignore the 

non-linear O3-NOx-VOCs chemistry. The VOC-sensitive or NOx-sensitive regimes in 

southern CA could change under large emissions perturbations (i.e. 70% off in this case). 

More rigorous analysis is needed to support the conclusions. Third, the authors leave a lot 

of important information in the supplementary material. In my opinion, some of them 

should be moved to the main article.  

In summary, the current manuscript shows important results but need further work. Major 

revisions as indicated in the comments and remarks below are needed before 

consideration of publication in ACP. 

We thank the reviewer for the valuable comments. We have carefully revised the 

manuscript according to these comments. In particular, we have added the details about 

how the emissions under COVID lockdown are projected (see our responses to the 

reviewer’s comments on Line 117-120, 122-123, and 226 below, as well as Lines 122-141 

and 266-270 in the revised manuscript and Lines 35-50 in the SI). We have also added 

the total emission changes in Table S2 (now Table 2). We have considered the 

nonlinearity in O3 chemistry when we design and interpret the sensitivity scenarios (see 

our responses to the reviewer’s comments on Line 251-252 and Line 266-267). Finally, 

we have moved most of the tables and figures in the Supplementary Material to the main 



text. More detailed point-by-point responses are provided below. The reviewers’ 

comments are in black and our responses are in blue. 

 

Detailed comments: 

 

Line 25: ‘decrease’ should be ‘decreases’ 

R: Done. Thank you! (See Line 27).  

 

Line 116: Table S2 is important, and needs to be moved into the main article. The author 

should also show the change of the total emissions because these sectors have different 

contributions. A figure could be added to the revised manuscript.  

R: Thank you for your comments. We have added the total emission changes in Table S2 

(now Table 2). We have also added the following figure (Fig. S2) to show the emission 

changes with and without the lockdown. 

Table 2. The percentage of changes in air pollutant emissions during the COVID-19 

lockdown relative to a hypothetical scenario without the lockdown in southern California.  

 
VOC CO NOX SOX PM10 PM2.5 NH3 

Onroad transportation -50% -51% -39% -35% -44% -42% -51% 

Off-road transportation -30% -30% -30% -30% -30% -30% -30% 

Aircraft -70% -70% -70% -70% -70% -70% -70% 

Power plants -7% -7% -7% -7% -7% -7% -7% 

Industrial -15% -15% -15% -15% -15% -15% -15% 

Residential 10% 10% 10% 10% 10% 10% 10% 

Commercial -15% -15% -15% -15% -15% -15% -15% 

Agriculture 0% 0% 0% 0% 0% 0% 0% 

Total -21.1% -35.7% -28.3% -18.5% -9.7% -15.0% -16.1% 

 



 

Figure S2: Air pollutant emissions in southern California with (red) and without (blue) the 

COVID-19 lockdown. 

 

Line 117-120: How the authors estimate the emission changes from the fuel consumption? 

EPA uses the MOVES model to calculate the mobile emissions based on vehicle travel 

mileage, vehicle types, road types, and other factors. Which method is used here? Also in 

Table S2, the authors estimate the different reduction rates for onroad and off-road 

transportation. How it is computed? 

R: Thanks for your comments. In our study, we obtain anthropogenic emissions in 

California without the influence of COVID-19 lockdown measures from the California Air 

Resources Board (CARB). In the CARB emission inventory, emissions from the 

transportation sector were estimated using the EMission FACtor (EMFAC) model. The 

EMFAC and MOVES models use a similar concept to estimate emissions based on 

vehicle activities, base emission rates, and a series of adjustment factors (Vallamsundar 

et al., 2011). Differences between MOVES and EMFAC are mainly reflected in how 

vehicle activities are quantified, how emission rates are measured, and how vehicle 



activities and emission rates are paired spatially and temporally.  

For the lockdown period, we are not able to estimate the changes in transportation 

emissions using the EMFAC model because the detailed input data needed by the model 

are not available during this period. Thus, we use a simplified method to obtain the 

reduction rates for onroad and off-road sources due to the COVID-19 lockdown. 

Specifically, we assume the reduction rates in gasoline and diesel vehicle emissions in the 

onroad sector to be the same as the reduction rates in gasoline and diesel production 

from the pre-lockdown period to the lockdown period, as documented by California 

Energy Commission’s “Weekly Fuels Watch Reports” (California Energy Commission, 

2020b). We then estimate the reduction rates in total emissions from the onroad sector 

based on the relative fractions of gasoline and diesel vehicle emissions reported by the 

CARB emission inventory. Since the off-road sector involves few gasoline vehicles, we 

assume the reduction rates in off-road emissions to be the same as the reduction rate in 

diesel production.  

 

We have added the above description of how the emission changes in Lines 124-133. 

 

Vallamsundar, S. and Lin, J., MOVES versus MOBILE: comparison of greenhouse gas and criterion 

pollutant emissions. Transportation research record, 2233(1), 27-35, 2011. 

 

Line 122-123: The assumption that the changes in power plant emissions are proportional 

to electricity demand in CA may ignore the impacts from interstate electricity transmission 

and the different responses from coal burning power plants, renewable energy sources 

such as wind and solar which might not change their outputs. EPA has the CEMS 



program which is monitoring the power plant emissions of CO2, NOx, and SO2, which are 

more reliable for the modeling study. 

R: We thanks the reviewer for the constructive suggestions. We checked the change of 

CO2, NOx, and SO2 emissions from power plants measured by the CEMS. The time series 

of SO2 and CO2 emissions in southern California during the pre-lockdown and lockdown 

periods are shown in the following figures (NOx emissions are not available during this 

period). We can see that the CEMS-based SO2 emissions have a strong day-to-day 

variation, making it difficult to achieve an accurate estimate of the COVID-19 related 

emission changes. The average SO2 emission decreases by 39% between the 

pre-lockdown and lockdown periods defined in this study, larger than the reduction rate 

estimated based on electricity demand (7%). However, it is noted that the above 

CEMS-based reduction rate is also subject to large uncertainty due to the strong 

fluctuation of emission rates.  

We then examined the potential impact of this difference on our results. As reported in the 

CARB emission inventory (CARB, 2021), the emissions of VOC, CO, NOx, and PM10 from 

power plants account for less than 1% of the total emissions, and the emissions of SO2, 

NH3, and PM2.5 all account for less than 3%. For this reason, the different emission 

reduction rates estimated based on the CEMS and electricity demand will translate into 

less than 1% difference in the total emissions of any pollutant (ranged from 0.05% to 1%) , 

which is expected to have a limited effect on the simulation results of mean air pollutant 

concentrations in southern California.  

We have added the above description in Lines 137-141 in the revised manuscript and 



Lines 35-50 in the SI. 

 

 

Figure S3: The power plant emissions of SO2 and CO2 in southern California measured by 

the CEMS before and during the COVID-19 lockdown. 

 

Line 134-137: I am concerned about the approach using the top-down NOx emissions 

here. Usually there are substantial differences between the top-down emission products 

and bottom-up emission inventories, so it is hard to replace only NOx in the bottom-up 

emissions with a top-down estimate. Second, I don’t understand how the COVID NOx 

emissions are calculated. Figures S2 says ‘NOx emission changes due to the COVID-19, 

which is quantified using the difference between the real-world NOx emissions and the 

emissions in a hypothetical scenario without considering the COVID-19’. So the real-world 



NOx emissions are from the top-down products while the scenario without considering the 

COVID-19 is from the CARB emissions in 2012- 2018 extrapolated to 2020? If that is the 

case, the authors should prove that the bottom-up CARB emissions and top-down 

emission estimates are consistent spatially and quantitatively. More explanation is needed 

here. Lastly, adjust the NOx emissions are very important to this modeling study, so Figure 

S2 should be moved to the main article.  

R: We did not replace the NOx emissions in the bottom-up inventory with the top-down 

estimates. Instead, we estimated the COVID-19 related emission reductions based on the 

top-down and bottom-up NOx inventories separately, and subsequently compared the two 

to prove the reliability of our bottom-up emissions.  

In the lines the reviewer refers to, both the “real-world NOx emissions” and the “emissions 

in a hypothetical scenario” are derived from the top-down NOx emission inventory based 

on satellite measurements. Here we try to explain the method more clearly with the 

following conceptual figure. In the figure, t1 is a reference time (February 1 in this work) 

and t2 is a time during the lockdown period. The COVID-19 induced emission changes 

during the lockdown period (t2) are calculated from the difference between the real-world 

emissions (red solid line) and the hypothetical emissions without considering the 

COVID-19 (red dashed line). We introduce the hypothetical scenario because the 

emissions at t1 and t2 would be different due to natural variability, even if the COVID-19 

lockdown did not take place. The hypothetical emission change between t1 and t2 in 2020 

is estimated using the average emission changes in the corresponding periods during the 

prior three years (2017–2019).  



We have moved Figure S2 to the main text (now Figure 2) and added the above 

descriptions in Lines 152-156. 

 

Figure: The concept of the estimation of NOx emission (ENOx) reductions due to the 

COVID-19 based on the top-down emission inventory. 

 

Line 137-138: I am more confused. FigS2 did show changes before and after 03/19. But 

as Goldberg (2020 mentioned in the introduction, this change may be caused by the 

natural variability of NOx (NO2 observed by satellite) due to change of temperature. 

Second, I am curious how the anomaly is calculated. To remove the seasonality, usually 

multi-year climatology is calculated first then the anomaly can be estimated. After reading 

the manuscript, I don’t think the authors use this method. Detailed explanation is needed 

here. 

R: The NOx data analyzed in Goldberg et al. (2020) are the column-integrated density of 

NO2, which depends strongly on meteorological conditions. In contrast, Fig. S2 (now Fig. 

2) shows NOx emissions derived from a state-of-the-art technique that combines satellite 

data and a global chemical transport model (Miyazaki et al., 2020a). Compared with NO2 



column density, NOx emissions are much less affected by meteorology. 

As explained in the last comments, the emission changes due to the COVID-19 (i.e., the 

anomaly) are calculated from the difference between the real-world emissions and the 

hypothetical emissions without considering the COVID-19 based on the top-down NOx 

inventory. The hypothetical emissions do represent the climatological conditions since 

they are calculated based on the average emission changes in the prior three years 

(2017-2019). 

 

Line 173-174: What is the criteria to define rural and urban here? 

R: According to Ratcliffe et al. (2016), to be classified as “urban”, an area in the U.S. 

needs to have a population density of 1,000 people per square mile, i.e., about 6000 

people per 4 km×4 km model grid. As we focus our analysis on southern California, one of 

the most densely populated areas in the U.S., we use a higher population density 

threshold of 30,000 people per model grid to better distinguish areas with different 

photochemistry regimes. We have described the criteria and included the following figure 

in the revised manuscript (Lines 96-101 and Fig. S1). 

 

Figure S1: The population density in the area this study focuses on.  



   

Line 180: Figure S3 shows the spatial performance of WRF-Chem, which should be 

moved to the main article. The figure is too smart to read. Can the authors add a scatter 

plot to show the model performance? It looks like WRF-Chem overestimate the PM2.5 and 

O3 in LA basin during the post-lockdown periods, so it is not surprising the emission 

reductions can improve the model performance. 

R: Following the reviewer’s suggestion, we have moved Figure S3 to the main text (now 

Fig. 4) and added the following scatter plot in SI. As the reviewer pointed out, without 

considering the emission reduction, the simulation overestimates the PM2.5 and O3 

concentrations during the post-lockdown period in the Los Angeles basin (the relatively 

high PM2.5 concentrations and low O3 concentrations in Fig. 4b and e). The PM2.5 

simulation results are generally improved after considering the emission reduction, though 

certain biases still exist (Fig. S4c). 

 

Figure S4: Scattergrams of the simulated and observed monthly average PM2.5 and MDA8 

O3 concentrations in southern California. (a-c) are for PM2.5 and (d-f) are for MDA8 O3. (a, 

(a) (b) (c)

(d) (e) (f)



d) are for the pre-lockdown period (February 18 to March 18) under the Base scenario 

(PreBase); (b, e) are for the lockdown period (March 19 to April 23) under the Base scenario 

(PostBase); (c, f) are for the lockdown period under the Lockdown scenario (PostLockdown). 

 

Line 190: Why use the population-weighted concentrations here? As mentioned above, 

the population-weighted concentrations will have more weights on populous LA basin 

area, where the baseline model did not have good performance. 

R: We used population-weighted concentrations because they are more relevant to the 

health impacts of air pollutants (PM2.5 and O3), the mitigation of which is an ultimate goal 

of controlling air pollution. We have also added Fig. S5 to show the mean concentrations 

in southern California in SI. We have mentioned this in the revised manuscript (Lines 

212-215). 

 

Line 198: Are the soil NO emissions taken into account in WRF-Chem? With different 

meteorology, the natural NO emissions can play a role here. 

R: The soil NOx emissions haven’t been taken into account in our WRF-Chem simulation. 

According to Guo et al. (2020), the total soil NOx emissions in California account for about 

1.1% of the state's total anthropogenic NOx emissions (CARB, 2017). Soil NOx fluxes are 

highly variable across the state, depending on land-use patterns. California can be divided 

into three broad soil NOx emission zones: the high emission zone in the Central Valley 

covered by cropland, the low emission zone in the southeast region dominated by 

shrubland, and the intermediate emission zone covered by grassland and forest for the 



rest of the state. Most areas over southern California belong to the low and intermediate 

emission zones, so soil NOx emissions are generally low in the regions our study focuses 

on.  

In addition, our study focuses on the impact of emission reductions on air quality during 

the COVID-19 lockdown period, which is quantified by comparing the concentrations in 

two scenarios between which the only difference is anthropogenic emissions (i.e., 

PostLockdown and PostBase). The meteorological conditions in the two scenarios are almost 

the same, leading to roughly the same soil emissions. Therefore, even if the soil NOx 

emissions affect air quality in the Base scenario to some extent, they are expected to play 

a very small role in the impact of emission reductions on air quality during the lockdown 

period and wouldn’t change the results and findings of this study. We have added the 

preceding descriptions in the revised manuscript (Lines 236-242). 

 

Line 201-201: As mentioned above, need to update Table S2 to show the contribution 

to the total emissions. 

R: We have added the total emission changes in Table S2 (now Table 2). We have also 

added Fig. S2 in SI to show the emission changes with and without the lockdown. 

 

Line 205: Again, the population-weighted concentration changes are mainly determined 

by the populous areas such as LA basin. Can the authors also show changes in mean 

concentrations? 

R: Following the reviewer’s suggestion, we have added the following figure which shows 



changes in mean concentrations. 

 

Figure S5: Mean concentrations of simulated air pollutant concentrations in southern 

California: (a) PM2.5 components; (b) MDA8 O3; (c) NO2; (d) SO2. PreBase, PostBase, and 

PostLockdown have the same meanings as in Fig. 3. 

 

Line 208-214: Fig2 e-f, how to separate the meteorological impacts and emissions 

impacts? The differences between ‘Base’ and ‘Lockdown’ contains impacts from both 

factors. 

R: The simulations of the Base scenario during the lockdown and pre-lockdown periods 

(PostBase and PreBase) both use the emission inventories without considering the 

COVID-19 induced emission reductions. The differences between PostBase and PreBase 

can be regarded as the impact of meteorology variations. 

The simulations of the Base and Lockdown scenarios during the lockdown period 

(PostBase and PostLockdown) have the same model configurations and inputs (same large 

scale meteorological conditions) except for different emission inventories. The 

concentration differences between the two scenarios during the lockdown period 

(PostLockdown − PostBase) represent the effect of anthropogenic emission reductions. Strictly 



speaking, while the large-scale meteorological fields are the same in PostBase and 

PostLockdown, the different emission inputs could cause small differences in regional 

meteorology fields through the interactions between air pollutants and meteorology. Such 

a meteorology perturbation is considered to be part of the emission reduction effect 

because it is fundamentally caused by emission reductions. 

We have added the above description in Lines 216-225. 

 

Line 226: What are the reductions in the primary PM2.5 emissions for other PM2.5? 

R: The sector-specific relative changes of “other PM2.5” (primary PM2.5 except for EC and 

primary OM) emissions are assumed to be the same as the total primary PM2.5, as 

summarized in Table S2 (now Table 2). For the total emissions of all sectors, the 

reduction in “other PM2.5” emissions is 13.5%, slightly smaller than the reduction in total 

primary PM2.5 since different chemical components have different sectoral distributions. 

We have mentioned this in the revised manuscript (Lines 266-270). 

 

Line248: Again, Table S1 should be moved to the main article so the readers can figure 

out the differences among these sensitivity experiments. Also, why the authors select 

coefficient 0.3 for the last two experiments? Is it estimated from the future regulations in 

CA? 

R: We have moved Table S1 to the main manuscript (now Table 1). 

We select an emission ratio of 0.3 (70% reduction) to represent the potential impact of 

highly stringent control policies in the future. According to Amann et al. (2020), a 70% 



reduction is close to the maximum reductions in NOx and VOC emissions that could be 

achieved through the full implementation of technologically and economically feasible 

control measures. 

We have added the above description in Lines 303-306. 

 

Line 251-252: This statement ignored the non-linear chemistry of ozone. 

R: We have revised this sentence to “This scenario, in combination with the Base and 

Lockdown scenarios, can be used to evaluate the response of O3 concentrations if the 

COVID-19 induced emission reductions of NOx and VOC were implemented in sequence.” 

in Lines 295-297. 

 

Line 266-267: Same concern here, it is dangerous to use the reduction from NOx0.3 and 

VOC0.3 runs to conclude that the VOCs reduction can offset the NOx reduction because 

the nonlinear ozone chemistry is ignored here. With change of NOx and VOCs, the ozone 

production efficiency will change as well. I doubt in these two runs, the ozone chemistry 

could shift into different regimes. Further analysis such as ozone isopleth diagram is 

needed here. 

R: Thank you for your comment. In fact, we have considered the nonlinearity in O3 

chemistry when we design and interpret these sensitivity scenarios. The VOC0.3 scenario 

is the same as the Lockdown scenario except that the anthropogenic VOC emissions are 

further reduced to 30% of those in the Base scenario. While a NOx emission reduction 

might cause an increase in O3 concentration, a VOC reduction generally leads to a 



monotonous reduction of O3 concentrations regardless of the O3 formation regime, as 

indicated by the classical O3 EKMA isopleth (Figure 6-1 of National Research Council 

(1991) or Figure 3.2.1 of Donahue (2018)) as well as some recent studies in southern 

California (Fujita et al., 2013; Collet et al., 2018; Qian et al., 2019). We find that in the 

VOC0.3 scenario, there is almost no O3 concentration increase relative to the Base 

scenario, in contrast to a significant urban O3 increase in the Lockdown scenario (Fig. 9c). 

This means that a 70% reduction in anthropogenic VOC can offset the increases in O3 

caused by the 28.3% NOx reduction during the lockdown. Note that we are specifically 

looking at the extent of VOC emission reductions that are needed to offset the 28.3% NOx 

reduction caused by the lockdown, which minimizes the complexity due to the nonlinear 

O3 responses when the NOx emissions are changing simultaneously. We have included 

the above explanations in the revised manuscript (Lines 314-323). 


