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Abstract. Methane emissions in Canada have both anthropogenic and natural sources. Anthropogenic emissions are estimated to be 13 

4.1 Tg a-1 from 2010–2015 in the Canadian Greenhouse Gas Inventory. Natural emissions, which are mostly due to Boreal wetlands, 14 
are the largest methane source in Canada and highly uncertain, on the order of ~20 Tg a-1 in biosphere process models. Top-down 15 
constraints on Canadian methane emissions using atmospheric observations have been limited by the sparse coverage of both surface 16 
and satellite observations. Aircraft studies over the last several years have provided ‘snapshot’ emissions that have been conflicting 17 
with inventory estimates. Here we use surface data from the Environment and Climate Change Canada (ECCC) in situ network and 18 
space borne data from the Greenhouse Gases Observing Satellite (GOSAT) to determine 2010–2015 anthropogenic and natural 19 
methane emissions in Canada in a Bayesian inverse modelling framework. We use GEOS-Chem to simulate anthropogenic emissions 20 
comparable to the Canadian inventory and wetlands emissions using an ensemble of WetCHARTS v1.0 scenarios in addition to other 21 
minor natural sources. We conduct a comparative analysis of the monthly natural emissions and yearly anthropogenic emissions 22 
optimized by surface and satellite data independently. Mean 2010–2015 posterior emissions using ECCC surface data are 6.0 ± 0.4 23 
Tg a-1 for total anthropogenic and 10.5 ± 1.9 Tg a-1 for total natural emissions, where the error intervals represent the 1-σ spread in 24 
yearly posterior results. These results agree with our posterior using GOSAT data of 6.5 ± 0.7 Tg a-1 for total anthropogenic and 11.7 25 
± 1.2 Tg a-1 for total natural emissions. The seasonal pattern of posterior natural emissions using either dataset shows slower to start 26 
emissions in the spring and a less intense peak in the summer compared to the mean of WetCHARTS scenarios. We combine ECCC 27 
and GOSAT data to evaluate capabilities for sectoral and provincial level inversions and identify limitations. We estimate Energy + 28 
Agriculture emissions to be 5.1 ± 1.0 Tg a-1 which is 59% higher than the National GHG Inventory. We attribute 39% higher 29 
anthropogenic emissions to Western Canada than the prior. Natural emissions are lower across Canada with large downscaling in the 30 
Hudson Bay Lowlands. Inversion results are verified against independent aircraft data in Saskatchewan and surface data in Quebec 31 
which show better agreement with posterior emissions. This study shows a readjustment of the Canadian methane budget is necessary 32 
to better match atmospheric observations with higher anthropogenic emissions partially offset by lower natural emissions. 33 
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1 Introduction 34 

Methane is a significant greenhouse gas second to carbon dioxide in terms of its direct radiative forcing (Myhre et al., 2013). 35 

The mixing ratio of methane has increased from ~720 to ~1800 ppb since pre-industrial times (Hartmann et al., 2013). Present-36 

day global methane emissions are well known to be 550 ± 60 Tg a-1 (Prather et al., 2012), however recent trends in atmospheric 37 

methane since the 1990s are not well understood (Turner et al., 2019). Anthropogenic methane sources include oil and gas 38 

activities, livestock, rice cultivation, coal mines, landfills, and wastewater treatment. Natural methane emissions are dominated 39 

by wetlands, but also include seeps, termites and biomass burning (Kirschke et al., 2013). The main sink of methane is 40 

oxidation by the hydroxyl radical (OH) resulting in a lifetime of 9.1 ± 0.9 years (Prather et al., 2012). Improving constraints 41 

on national methane emissions is a requirement of mitigation policy (Nisbet et al., 2020). Here we use atmospheric methane 42 

observations from the Environment and Climate Change Canada (ECCC) surface network and satellite observations from the 43 

Greenhouse Gas Observing Satellite (GOSAT) to estimate Canadian methane emissions and disaggregate anthropogenic and 44 

natural sources. 45 

 46 

The growth rate of atmospheric methane levelled off from the 1990’s to early 2000’s. This hiatus continued until 2007 when 47 

methane concentrations began a renewed growth continuing to present time (Dlugokencky et al., 2009). Differing hypotheses 48 

have attempted to constrain the possible causes of these decadal trends. Associated increases with ethane have attributed recent 49 

growth to oil and gas (Hausmann et al., 2016). An increasing trend of isotopically lighter methane has been associated with 50 

increasing biogenic emissions from wetlands and agriculture (Nisbet et al., 2016), however decreasing biomass burning 51 

emissions may be masking increasing oil and gas emissions in the global isotopic ratios (Worden et al., 2017). Observations 52 

of methyl chloroform suggest decreasing OH may have resulted in the renewed growth (Rigby et al., 2017; Turner et al., 2017). 53 

Causal attribution of the methane growth rate has continued to be challenging partly because only a 3% source-sink imbalance, 54 

or ~20 Tg a-1, can result in the observed rate of increase. Hence changes in the relative contributions from anthropogenic and 55 

natural sources are key to understanding atmospheric methane. 56 

 57 

Atmospheric observations provide constraints on methane emissions. In the Canadian greenhouse gas inventory, anthropogenic 58 

emissions are estimated to be 4.1 Tg a-1 in 2015 with 68% of emissions originating from the Western Canadian provinces of 59 

Alberta (42%), Saskatchewan (17%) and British Columbia (9%). Sectoral contributions over the entire country are from three 60 

categories: Energy (49%), Agriculture (29%) and Waste (22%) (Environment and Climate Change Canada, 2017). Natural 61 

emissions, which are mostly due to Boreal wetlands, are highly uncertain, on the order of ~10-30 Tg a-1 from biosphere process 62 

modelling (Miller et al., 2014; Bloom et al., 2017). Studies constraining anthropogenic and/or natural methane emissions 63 

within Canada have included the use of surface in situ measurements (Miller et al., 2016; Atherton et al., 2017; Ishiziwa et al., 64 

2019), aircraft campaigns (Johnson et al., 2017; Baray et al., 2018) and satellites (Wecht et al., 2014; Turner et al., 2015; 65 

Maasakkers et al., 2020). These observations can determine emissions through mass balance methods or be used in conjunction 66 
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with a chemical transport model (CTM). Bayesian inverse modelling constrains prior knowledge of emissions based on the 67 

mismatch between modelled and observed concentrations. This requires reliable mapping of “bottom-up” inventory emissions 68 

for the “top-down” observational constraints to be useful (Jacob et al., 2016). Inverse modelling has been more challenging 69 

for Canada than the United States due to a) the sparsity of surface stations and satellite data (Sheng et al., 2018a), b) a factor 70 

of ~10 lower anthropogenic emissions (Maasakkers et al., 2019), c) large spatially-overlapping emissions from Boreal wetlands 71 

that are highly uncertain (Miller et al., 2014), and d) model biases in the high-latitudes stratosphere (Patra et al., 2011), 72 

compromising interpretation of observed methane columns. 73 

 74 

These observing system challenges have made Canadian methane emissions difficult to quantify, however studies have been 75 

showing a consistent story across different scales and measurement platforms. Miller et al. (2014, 2016) determined that the 76 

North American network can successfully constrain Canadian natural emissions and found Boreal wetlands to be lower in 77 

2008 when compared to prior fluxes in the WETCHIMP model. Aircraft campaigns over the Alberta oil and gas sector have 78 

found higher emissions than inventories in the Red Deer and Lloydminster regions (Johnson et al., 2017) and unconventional 79 

oil extraction in the Athabasca Oil Sands region (Baray et al., 2018). Atherton et al. (2017) conducted ground-based mobile 80 

measurements of gas production in British Columbia and determined higher emissions than reported, and Zavala-Araiza et al. 81 

(2018) conducted similar ground-based measurements in Alberta to show a profile of super-emitters dominating the fugitive 82 

methane profile similar to sites in the United States. Ishiziwa et al. (2019) constrained arctic wetlands fluxes to be similar in 83 

magnitude to the mean of the WetCHARTS inventory but with better identified seasonal and interannual variability. Satellite 84 

inversions over North America using the GEOS-Chem CTM and data from SCIAMACHY (Wecht et al., 2014) or GOSAT 85 

(Turner et al., 2015; Maasakkers et al., 2019) consistently require upscaling anthropogenic emissions in Western Canada and 86 

downscaling natural emissions in Boreal Canada to match observations, even with the use of updated Canadian fluxes in 87 

Maasakkers et al. (2019) for anthropogenic (Sheng et al., 2017) and wetlands (Bloom et al., 2017) sources. Inverse modelling 88 

studies that use both in situ and satellite observations are valuable for intercomparison and for identifying the limits of spatial 89 

and temporal discretization that are possible (Lu et al., 2020; Tunnicliffe et al., 2020). The Tropospheric Monitoring Instrument 90 

(TROPOMI) launched in 2017 with a data record beginning in 2018 and is expected to provide significant improvements in 91 

emissions monitoring through denser observational coverage at a similar precision to GOSAT (Hu et al., 2018). It is necessary 92 

to build a reliable historical record of Canadian methane emissions as anthropogenic emissions are sensitive to changes in 93 

policy and economic activity (Rogelj et al., 2018) and natural emissions in Boreal Canada may be sensitive to climate change 94 

(Kirschke et al., 2013). 95 

 96 

In this study we use surface observations from the ECCC GHG monitoring network and satellite data from GOSAT to constrain 97 

anthropogenic and natural emissions in Canada. We use the GEOS-Chem CTM to simulate 2010–2015 methane 98 

concentrations. The model setup includes the use of an improved bottom-up inventory for Canadian oil and gas emissions 99 

(Sheng et al., 2017), the WetCHARTS extended ensemble for wetlands emissions (Bloom et al., 2017) and EDGAR v4.3.2 for 100 
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other anthropogenic sources. We perform an ensemble forward model analysis which compares six wetlands scenarios to the 101 

ECCC surface observation network to assess the influence of process model configurations on Canadian methane. A series of 102 

Bayesian inverse analyses are performed that use ECCC and GOSAT data independently and in a joint surface-satellite system. 103 

We constrain monthly natural emissions and yearly total anthropogenic emissions from 2010–2015 using ECCC and GOSAT 104 

data independently for intercomparison to produce aggregated-source emissions estimates.  We test the limitations of the 105 

ECCC and GOSAT joint observation system towards constraining emissions by inventory sector and according to provincial 106 

boundaries. We demonstrate where the observation system succeeds in providing strong constraints on major emissions sources 107 

and quantify the information content of the system to understand the limitations for resolving all minor Canadian emissions. 108 

2 Data and Methods 109 

We use the GEOS-Chem CTM v12-03 (http://acmg.seas.harvard.edu/geos/) to simulate methane fields from 2010–2015 on a 110 

2° x 2.5° global grid and compare to surface observations from the ECCC in situ GHG monitoring network and satellite 111 

observations from GOSAT within the Canadian domain. We test for bias in the global model representation of background 112 

methane using both surface and aircraft in situ data at Canada’s most westerly site Estevan Point (ESP) and using global 113 

GOSAT data. The sensitivity of simulated methane in Canada to the use of different wetlands flux parametrization is evaluated 114 

by comparing an ensemble of WetCHARTS v1.0 configurations to ECCC surface observations. The WetCHARTS ensemble 115 

mean along other GEOS-Chem prior emissions are used in the Bayesian inverse analysis which optimizes Canadian sources 116 

using ECCC surface data and GOSAT satellite data independently for comparative analysis. We show the limitations of the 117 

observing system towards subnational level discretization by combining ECCC and GOSAT data in a joint-inversion. Here we 118 

describe the observations, the model, and the inverse analysis in further detail. 119 

2.1 Observations 120 

2.1.1 In situ Surface Observations 121 

We use continuous measurements from eight sites in the ECCC greenhouse gas monitoring network from 2010–2015. Figure 122 

1 shows a map of the sites and Table 1 provides a descriptive list. The eight sites are Estevan Point, British Columbia (ESP), 123 

Lac La Biche, Alberta (LLB), East Trout Lake, Saskatchewan (ETL), Churchill, Manitoba (CHC), Fraserdale, Ontario (FRA), 124 

Egbert, Ontario (EGB), Chibougamau, Quebec (CHM) and Sable Island, Nova Scotia (SBL). All sites use Picarro cavity ring-125 

down spectrometers (G1301, G2301 or G2401) measuring dry-air mol fractions of methane with hourly-average precision 126 

better than 1 ppb. For model comparison the measurements are averaged over 4h from 12:00 to 16:00 local time for when the 127 

planetary boundary layer is well-mixed. The instruments are calibrated against World Meteorological Organization (WMO) 128 

certified standard gases. The western most site, ESP, measures methane continuously from a 40 m tower at a lighthouse station 129 

on the west coast of Vancouver Island. ESP is surrounded by forests to the north, east, and south and the Pacific Ocean to the 130 

west. ESP is used to evaluate boundary conditions and model bias in the methane background as it is the least sensitive to 131 
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Canadian emissions due to prevailing westerly winds. Sites LLB and ETL are the most sensitive to anthropogenic emissions 132 

in Western Canada. LLB measures continuously from a 50 m tower located in a region of peatlands and forest ~200 km NE 133 

of Edmonton and ~230 km S of Fort McMurray. ETL measures from a height of 105 m located ~150 km north of Prince Albert 134 

surrounded by Boreal forest. The sites in the Hudson Bay Lowlands (HBL) region, CHC and FRA, are the most sensitive to 135 

natural wetlands emissions as this area produces some of the largest methane fluxes in North America. CHC measures 136 

continuously from a 60 m tower in a small port town on the western edge of Hudson Bay surrounded by flat tundra. FRA 137 

measures from a 40 m tower and is located on the southern perimeter of James Bay surrounded by extensive wetlands coverage. 138 

The site CHM in Quebec is also sensitive to natural wetlands emissions and is excluded in the inverse analysis to be used to 139 

verify the posterior results. CHM is substituted by Chapais, Quebec ~50 km away from 2011 onwards. The remaining Central 140 

and Atlantic Canada sites EGB and SBL are sensitive to net outflow from Canadian sources, both natural and urban, and some 141 

emissions from the Eastern United States. EGB is in a small rural village ~80 km north of Toronto and measures from a 25 m 142 

tower.  SBL is on a remote uninhabited island 275 km ESE of Halifax, Nova Scotia and measures from a height of 25 m. 143 

 144 

Table 1: Descriptive list of ECCC in situ observation sites used in the analysis. 145 

 146 

Site Code Full Name, Province Latitude Longitude Elevation (asl) / 

Sampling Height (agl) (m) 

ESP Estevan Point, British Columbia 49.4° N 126.5° W 7 / 40 

LLB Lac La Biche, Alberta 55.0° N 112.5° W 548 / 50 

ETL East Trout Lake, Saskatchewan 54.4° N 105.0° W 500 / 105 

CHC Churchill, Manitoba 58.7° N 93.8° W 16 / 60 

FRA Fraserdale, Ontario 49.8° N 81.5° W 210 / 40 

EGB Egbert, Ontario 44.2° N 79.8° W 225 / 25 

SBL Sable Island, Nova Scotia 43.9° N 60.0° W 2 / 25 

CHM*† Chibougamau, Quebec 49.7° N 74.3° W 383 / 30 

CHA*† Chapais, Quebec 49.8° N 75.0° W 381 / 30 

*Chibougamau, Quebec is replaced by Chapais, Quebec ~50 km away from 2011 to 2015, overlapping in Fig.1 147 
† Site is used to evaluate the posterior inversion results, and is not used in the inversion itself 148 

 149 

2.1.2 GOSAT Satellite Observations 150 

The Greenhouse Gas Observing Satellite (GOSAT) was launched in January 2009 by the Japan Aerospace Exploration Agency 151 

(JAXA). GOSAT is in a low-Earth polar sun-synchronous orbit with an equator overpass around 13:00 local time. The 152 

TANSO-FTS instrument on-board GOSAT retrieves column-averaged dry air mol fractions of methane using short-wave 153 
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infrared (SWIR) solar backscatter in the 1.65 µm absorption band (Butz et al., 2011). Observation pixels in the default mode 154 

are 10 km in diameter separated by 260 km along the orbit track with repeated observations every 3 days. Target mode 155 

observations provide denser spatial coverage over areas of interest. There has been no observed degradation of GOSAT data 156 

quality since the beginning of data collection (Kuze et al., 2016). Here we use version 7 of the University of Leicester proxy 157 

methane retrieval over land from January 2010 to December 2015 (Parker et al., 2011, 2015; ESA CCI GHG project team, 158 

2018). The single-observation precision of GOSAT XCH4 data is 13 ppb, and the relative bias is 2 ppb when validated against 159 

the Total Column Carbon Observing Network (TCCON; Buchwitz et al., 2015). Figure 1 shows the GOSAT observations over 160 

Canada used in our analysis within the domain of 45° N–60° N latitude and 50° W–150° W longitude. The observations used 161 

have passed all quality assurance flags for a total of 45,936 observations from 2010–2015, or approximately ~7600 162 

observations per year. Our analysis excludes glint data over oceans, and cloudy conditions are accounted for by the quality 163 

assurance flags. We avoid using data above 60° N latitude due to higher uncertainty in the satellite retrieval and the model 164 

comparison (Maasakkers et al., 2019; Turner et al., 2015). 165 

 166 

 167 
Figure 1: ECCC surface (left) and GOSAT satellite (right) observations used in the inverse analysis. A descriptive list of the 168 

ECCC sites is shown in Table 1. GOSAT data shown is from a single year in 2013 and is filtered to the Canadian domain 169 

within 45°N–60°N latitude and 50°W–150°W longitude. There are ~600 GOSAT observations per month in this domain with 170 

a minimum Nov–Jan (112–248) and maximum Jul–Sep (872–1098), individual months are shown in the Supplement (Fig. S1). 171 

 172 
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2.2 Forward Model 173 

We use the GEOS-Chem CTM v12-03 at 2° × 2.5° grid resolution driven by 2009–2015 MERRA-2 meteorological fields from 174 

the NASA Global Modeling and Assimilation Office (GMAO).  Initial conditions from January 2009 are from a previous 175 

GOSAT inversion by Turner et al. (2015) which was shown to be unbiased globally when compared to surface and aircraft 176 

data. Bottom-up anthropogenic emissions in GEOS-Chem are from the 2013 ICF Canadian oil and gas inventory (Sheng et 177 

al., 2017) and the 2012 EDGAR v4.3.2 global inventory for other Canadian and global sources, and the gridded US 2012 EPA 178 

Inventory for the United States (Maasakkers et al., 2016). For wetlands, six configurations from the 2010–2015 extended 179 

ensemble of WetCHARTS (Bloom et al., 2017) are used in the ensemble forward model analysis (Section 3.2) and the 180 

ensemble mean is used as the prior for the inverse analysis (Sections 3.3–3.4). Figure 2 shows the spatial distribution of the 181 

prior methane emissions in Canada from the major anthropogenic and natural sources. The two largest sources are from the 182 

ICF oil and gas inventory, (Sheng et al., 2017) and wetlands emissions from the ensemble mean of the WetCHARTS inventory 183 

(Bloom et al., 2017), with significant emissions from livestock and waste emissions from EDGAR. Oil and gas are 54% of the 184 

anthropogenic total and wetlands are 94% of the natural total. The prior emissions estimates in this simulation are summarized 185 

in Table 2, which organizes emissions by Canadian source categories and are compared to sector attribution in the National 186 

GHG Inventory (Environment and Climate Change Canada, 2017).  Our totals for Energy, Agriculture and Waste are 2.4, 1.0, 187 

and 0.9 Tg a-1 respectively compared to 2.0, 1.2 and 0.9 Tg a-1 in the National Inventory. In the absence of a spatially 188 

disaggregated Canadian inventory for methane, we consider these prior estimates reasonably similar for the purpose of 189 

comparing our posterior emissions to the National Inventory, however we cannot compare the spatial pattern of emissions 190 

which may show less agreement. Emissions from the United States and the rest of the world are included in the model but not 191 

optimized in the inversions. Loss of methane from oxidation due to OH is computed using archived 3-D monthly fields of OH 192 

from a previous GEOS-Chem full-chemistry simulation (Wecht et al., 2014).  193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 
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 206 

Table 2: Mean 2010–2015 prior estimates of Canadian methane emissions used in GEOS-Chem arranged according to 207 

categories in the National GHG Emissions Inventory (Environment and Climate Change Canada, 2017). 208 

 209 

Category Source Typea Emissions (Tg a-1)a Total (Tg a-1)a Inventory (Tg a-1)b 

 

Energy 

Oil 0.52 

2.42 2.00 

Anthropogenic 

Gas 1.81 

Coal 0.09 

Agriculture Livestock 1.00 1.00 1.20 

Waste 

Landfills 0.66 

0.94 0.92 Wastewater 0.19 

Other Anthropogenic 0.09 

Natural 

Wetlands - 14.0 14.0 - 

Other 

Natural 

Biomass Burning 0.28 

0.84 - Seeps 0.28 

Termites 0.28 
aEmissions inputs for GEOS-Chem. These are shown for the individual source types and summed over the categories 210 

Energy, Agriculture and Waste. In Canada, oil and gas are from Sheng et al. (2017), coal, livestock, landfills, wastewater and 211 

other anthropogenic are from EDGAR v4.3.2, wetlands are from Bloom et al. (2017). Biomass burning is from QFED 212 

(Darmenov and da Silva, 2013) and termite emissions are from Fung et al. (1991). Seeps and other global sources are 213 

described in Maasakkers et al. (2019). 214 

 215 
bEmissions from the National GHG Emissions Inventory (Environment and Climate Change Canada, 2017) that correspond 216 

to the Energy, Agriculture and Waste categories. These are used in the discussion of results but are not included in the 217 

inverse model. 218 
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 219 
Figure 2: Prior estimates of anthropogenic and natural methane emissions. Colour bars are in log scale in units of kg CH4 220 

km-2 a-1. Most anthropogenic emissions fall under the energy category (A) which are oil and gas in the ICF inventory (Sheng 221 

et al., 2017) plus minor emissions from coal in EDGAR 4.3.2. Livestock (B) and waste (C) are from EDGAR. Natural 222 

emissions are primarily wetlands from the WetCHARTS inventory (D; Bloom et al., 2017). 223 

2.3 Inverse Model Methodology 224 

We optimize emissions in the inverse analysis by minimizing the Bayesian cost function J (x) (Rodgers, 2000). 225 

 226 

J (x) = ½ (x – xa)TSa
-1(x – xa) + ½ (y – F(x))TSo

-1(y – F(x))       (1) 227 

 228 

Where x is the vector of emissions being optimized, xa is the vector of prior emissions (Table 2), F(x) is the simulation of 229 

methane concentrations corresponding to the observation vector y of ECCC surface and/or GOSAT data. Sa is the prior error 230 
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covariance matrix and So is the observational error covariance matrix. The observational error matrix includes both instrument 231 

and model transport error. The GEOS-Chem model relating methane concentrations to emissions F(x) is essentially linear and 232 

can be represented by the Jacobian matrix K such that F(x) = Kx + b, where b is the model background. The background 233 

includes initial conditions from Turner et al. (2015) and methane from global emissions that are held constant in the inversion. 234 

Possible bias in the background is evaluated in detail in Section 3.1 and shown to be minimal. The K matrix is of n by m size 235 

where n is the number of state vector elements being optimized and m is the number of ECCC surface and/or GOSAT 236 

observations being used. The K matrix is constructed using the forward mode of GEOS-Chem and the tagged tracer output for 237 

Canadian sources which describes the sensitivity of concentrations to emissions dy/dx in ppb Tg-1.  238 

 239 

GEOS-Chem continuously simulates global emissions with a global source-sink imbalance of +13 Tg a-1 in the budget as 240 

described in Maasakkers et al. (2019). We show in Section 3.1 that this configuration of the model reliably reproduces the 241 

global growth rate in atmospheric methane with adjustments only needed for 2014 and 2015 primarily due to differences in 242 

tropical wetland emissions (Maasakkers et al., 2019). A high resolution inversion over North America over the 2010–2015 243 

time-period using the same prior has shown adjustments to US emissions near the Canadian border are also relatively minimal, 244 

(Maasakkers et al., 2020), so we treat US emissions as constant. This gives a well-represented background for methane which 245 

is checked using global GOSAT data and in situ data at Canadian background site ESP. Hence, we can attribute the model-246 

observation mismatch (y – F(x)) using observations limited to Canada to Canadian emissions which are optimized in the 247 

inversion. Here we show three inversions with a different number of state vector elements: a) the monthly inversion (n = 78) 248 

optimizes monthly natural emissions in Canada and yearly anthropogenic emissions from 2010–2015, b) the sectoral inversion 249 

(n = 5) optimizes emissions according to the major inventory categories in Table 2 done individually for each year, and c) the 250 

provincial inversion (n = 16) optimizes emissions according to subnational boundaries which is also repeated for each year. 251 

The monthly inversion provides high temporal resolution to constrain the seasonality of natural emissions, assuming the spatial 252 

distribution is correct. The sectoral inversion provides direct constraints on inventory categories, and the provincial inversion 253 

provides higher spatial resolution for subnational attribution. Substituting F(x) = Kx in eq. 1 and subtracting the background 254 

b, the analytical solution of the cost function dJ(x)/dx = 0 yields the optimal posterior solution x̂ (Rodgers, 2000): 255 

 256 

x̂ = xa + SaKT (KSaKT + So)-1 (y – Kxa)         (2) 257 

 258 

The analytical solution provides closed-form error characterization, the posterior error covariance Ŝ of the posterior solution 259 

x̂ is given by: 260 

 261 

Ŝ = (KTSo
–1K + Sa

–1) –1           (3) 262 

 263 

The averaging kernel matrix A is used to evaluate the surface and satellite observing systems and is given by: 264 
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 265 

A = In – ŜSa
–1            (4) 266 

 267 

where In is the identity matrix of length n corresponding to the number of state vector elements. The averaging kernel matrix 268 

A describes the sensitivity of the posterior solution x̂ to the true state x (A = dx̂/dx). The trace of A provides the degrees of 269 

freedom for signal (DOFS), which is the number of pieces of information of the state vector that is gained from the inversion 270 

(DOFS ≤ n). The diagonal values of A provide information on which Canadian state vector elements can be constrained by 271 

ECCC surface and GOSAT satellite observations above the noise, and higher DOFS closer to n correspond to better constrained 272 

sources in total. As a further diagnostic of the inversion we conduct a singular value decomposition of the prewhitened Jacobian 273 

Ǩ = So
-1/2KSa

1/2 (Rodgers, 2000). The number of singular values greater than one is the effective rank of Ǩ, which shows the 274 

independence of the state vector elements and the number of pieces of information above the noise that are resolved in the 275 

inversion (Heald et al., 2004). The comparison between this eigenanalysis and the DOFS are discussed in the Supplement and 276 

is used to inform the limitations of the observation system. 277 

 278 

We construct the prior error covariance matrix Sa based on aggregated error estimates for source categories and regions. We 279 

use 50% error standard deviation for the aggregated anthropogenic emissions which includes the Sheng et al. (2017) oil and 280 

gas inventory other EDGAR sources, 60% for wetlands emissions from the Bloom et al. (2017) WetCHARTS inventory and 281 

100% for non-wetlands natural sources. We assume no correlation between state vector elements so that Sa is diagonal. 282 

Anthropogenic emissions have been shown to be spatially uncorrelated (Maasakkers et al., 2016) however wetlands show 283 

spatial correlation (Bloom et al., 2017). Here we optimize broadly aggregated categories, so our method assumes the spatial 284 

pattern of each state vector element is correct, however correlations between state vector elements in the eigenanalysis are 285 

used to assess the limitations of source discretization in the observing systems. 286 

 287 

We construct the diagonal observation error matrix So which captures instrument and model error using the relative residual 288 

error method (Heald et al., 2004). In this approach the vector of observed-modelled differences ∆ = yGEOS-Chem – yobservations is 289 

calculated and the mean observed-modelled difference ∆   =  yGEOS-Chem – yobservations  is attributed to the emissions that will 290 

be optimized. Hence, the standard deviation in the residual error ∆’ = ∆ – ∆  represents the observational error and is used as 291 

the diagonal elements of So. For our Canadian inversion we find positive model-observation biases in the warmer months 292 

(April to September) and negative biases in the colder months (October to March).We calculate the relative residual error for 293 

growing and non-growing seasons separately, such that ∆’ is partitioned into ∆’g (October to March) and ∆’ng (April to 294 

September) which is then used to calculate the diagonal elements of So. For surface observations the mean observational error 295 

is 65 ppb. Since the instrument error is <1 ppb for afternoon mean methane measurements, the observational error is entirely 296 

attributed to transport and representation error of surface methane in the model grid pixels. For satellite observations the mean 297 
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observational error is 16 ppb where the instrument error is 11 ppb, showing most of the observational error is from the 298 

instrument rather than the forward model representation of the total column. Column-averaged methane concentrations are 299 

less sensitive to surface emissions resulting in the lower model error (Lu et al., 2020). 300 

3 Results and Discussion 301 

3.1 Evaluation of Bias in the Global Model 302 

The left panel of Figure 3 shows the comparison of monthly mean GEOS-Chem surface methane concentrations and methane 303 

measured at the ECCC station ESP from 2009 to 2015. ESP is located at the west coast of Vancouver Island (Fig. 1); this site 304 

is used as an evaluation of background methane and tests the bias in the global model as it is the least sensitive to Canadian 305 

emissions due to westerly prevailing winds. The model reliably reproduces surface observations at this station and the growth 306 

rate in background methane due to the source-sink imbalance of +13 Tg a-1 in the model global budget (Maasakkers et al., 307 

2019) with a small mean model-observation bias of 5.3 ppb. The right panel of Figure 3 shows the comparison of modelled 308 

methane to NOAA aircraft profiles at the same site. Aircraft profiles occur approximately once a month continuously over the 309 

study period. The data is not averaged here and is directly compared to GEOS-Chem simulated grid boxes at the pressure level 310 

of the measurement. The reduced mean axis (RMA) regression shows a slope of 0.86 and a coefficient of regression r2 = 0.67 311 

which shows a reasonable model representation of the measurements. These statistics are consistent with previous inversions 312 

using GEOS-Chem that showed relatively unbiased conditions against NOAA surface stations globally (Turner et al., 2015; 313 

Maasakkers et al., 2019). A high resolution inversion over North America over the same 2010–2015 time-period using the 314 

same prior have shown adjustments to US emissions near the Canadian border are relatively minimal (Maasakkers et al., 2020), 315 

so we treat US emissions as constant in the inversion. The acceptable reproducibility of background methane at this site allows 316 

us to attribute much larger differences observed at other sites, up to a maximum of ~1000 ppb in the summer (Figure 6), to 317 

Canadian emissions which are optimized using Canadian observations while holding other global emissions constant. 318 

 319 

 320 
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 321 
 322 

Figure 3: Time-series comparison (left) from 2009–2015 of surface GEOS-Chem simulated methane (red) and measured in 323 

situ methane (black) at site ESP off the west coast of British Columbia. Comparison to NOAA aircraft profiles (right) from 324 

2009–2015 at the same site using a reduced major axis (RMA) regression along with the 1:1 line (black). 325 

 326 

The GEOS-Chem simulation of column averaged methane shows three global biases previously discussed in the literature: (1) 327 

a latitude-dependent bias, (2) a seasonal bias and (3) a background change for 2014 and 2015 due to differences in the global 328 

source-sink imbalance in these two years (Turner et al., 2015; Saad et al., 2018; Maasakkers et al., 2019; Stanevich et al., 329 

2019). We apply these corrections to the simulated column of methane on a global basis to produce an unbiased background 330 

for our target Canadian domain (45° N to 60°N, 50° W to 150° W). The latitude-dependent bias (1) is likely due to excessive 331 

polar stratospheric transport (Stanevich et al., 2019). We correct for this bias by fitting the model-GOSAT difference for global 332 

2° × 2.5° grid cells according to a second-order polynomial as shown in Figure 4: 333 

 334 

ξ = (2.2θ2 – 34θ) × 10–3 – 2.7          (5) 335 

 336 

where ξ is the resulting bias correction in ppb and θ is latitude in degrees. The correction in this work for the latitude bins of 337 

our target domain (45° N to 60° N) is between 0.3 to 2.9 ppb. This correction is lower than what has been shown previously 338 

(Turner et al., 2015; Maasakkers et al., 2019) and we attribute this improvement to our use of a 2°x2.5° gridded simulation 339 

instead of a 4°x4.5° as recommended by Stanevich et al. (2019) to reduce transport errors. A seasonally oscillating bias (2) 340 

remains after this correction. The seasonal bias has an amplitude of ± 4 ppb with repeating maxima in June and minima in 341 

December. It is not clear whether this seasonal bias is due to emissions and/or transport errors. In our base case we remove the 342 

seasonal bias on a monthly basis following Maasakkers et al. (2019) and show a sensitivity test without the correction for our 343 

inversion of monthly natural emissions in Canada (Supplement 1.3). Inversion results using GOSAT data with and without 344 

bias corrections in the model simulation of total column methane do not show major differences (Fig. S3). These scenarios all 345 
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show agreement with the posterior emissions adjustments determined using ECCC in situ data – which is a useful benchmark 346 

since modelled methane at the surface is not subject to any bias corrections. The background change (3) that appears in the 347 

simulated methane column from 2014 onwards is corrected for in Maasakkers et al. (2019) by optimizing emissions, emissions 348 

trends and trends in OH using a global inversion. In that work correction factors do not appear over Canada and the United 349 

States that would significantly influence the global change in atmospheric methane, and the main adjustment in 2014 and 2015 350 

were to tropical wetlands emissions and OH. Here we treat this as a background change and apply a uniform correction to the 351 

simulated column since emissions outside of Canada and changes in OH are treated as fixed in our Canada-focused inversion. 352 

The background change (3) is 5 ppb in 2014 and 10 ppb in 2015. The right panel of Figure 4 shows the latitude dependent bias 353 

correction and the left panel shows the resulting global time-series of GEOS-Chem total column methane from 2010–2015 354 

after corrections are applied. The global GEOS-Chem – GOSAT differences in the methane column can be limited globally to 355 

within 10 ppb without including the seasonal bias correction, and within 5 ppb with its inclusion. This shows a steady 356 

background in methane for the entire time period from 2010–2015 so global emissions do not affect the optimization of 357 

Canadian emissions. While biases within 10 ppb have been treated as acceptable for methane inversions (Buchwitz et al., 358 

2015), we evaluate our GOSAT inversion results against inversions with independent ECCC in situ measurements that do not 359 

require any bias corrections in the model (Section 3.3) to produce more robust emissions estimates. 360 

 361 

 362 
 363 

Figure 4: Time series (left) from 2010–2015 of the difference between GEOS-Chem simulated total column methane and 364 

GOSAT observations after applying bias corrections, showing a consistent global background for methane. Data used in the 365 

inversion for Canada is from 45° N to 60° N (purple line) and shows acceptable differences within 5 ppb over the entire 366 

global latitude band. To produce the left figure, the latitude-dependent bias (right) is shown with the polynomial correction 367 

that is applied (gray dash) that is within a magnitude of 0.3 to 2.9 ppb for the same latitude. 368 

 369 
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3.2 Evaluation of WetCHARTS Extended Ensemble for Wetlands Emissions in Canada 370 

Wetlands are the largest methane source in Canada with uncertainties in the magnitude, seasonality, and spatial distribution of 371 

emissions. Our inverse analysis constrains the magnitude and seasonality of emissions with observations. Ideally, the prior 372 

emissions in the model should be the best possible representation of emissions to reduce error in the optimization problem 373 

(Jacob et al., 2016). Table 2 shows 2010–2015 mean wetlands emissions in Canada to be 14.0 Tg a-1 from the mean of the 374 

WetCHARTS v1.0 inventory (Bloom et al., 2017). These emissions are more than three times the total of anthropogenic 375 

emissions 4.4 Tg a-1. The much larger signal from wetlands emissions poses a difficulty for constraining anthropogenic 376 

emissions (Miller et al., 2014). In this section, we evaluate our use of the mean of the WetCHARTS v1.0 extended ensemble 377 

by running a series of forward model runs using alternate ensemble members in GEOS-Chem and comparing model output to 378 

ECCC in situ observations. 379 

 380 

The WetCHARTS extended ensemble for 2010–2015 contains an uncertainty dataset of 18 possible global wetlands 381 

configurations as described in Bloom et al. (2017). These depend on three processing parameters which are: three CH4:C 382 

temperature-dependent respiration fractions (q10 = 1, 2, and 3; where 1 is the highest temperature dependency), two inundation 383 

extent models (GLWD vs. GLOBCOVER; where GLWD corresponds to higher inundation in Canada) and three global scaling 384 

factors for global emissions to amount to 124.5, 166 or 207.5 Tg CH4 yr-1 (3×2×3=18). We find using the scaling factors 385 

corresponding to 124.5 and 207.5 Tg CH4 yr-1 within GEOS-Chem results in an imbalance in the global budget beyond what 386 

is observed in our measurements and degrades the representation of background methane, so we limit the extended ensemble 387 

to six members which depend on three temperature parameterizations and two inundation scenarios (3×2=6). Figure 5 shows 388 

the magnitude and spatial distribution of wetlands emissions in the six scenarios. The total wetlands emissions within Canada 389 

show nearly an order of magnitude difference between ensemble members from 3.9 Tg a-1 to 32.4 Tg a-1. Compared to the rest 390 

of North America, Boreal Canada shows the largest variability between ensemble members, with the Southeast United States 391 

as the second most uncertain (Sheng et al., 2018b).  392 

 393 

We use ECCC in situ observations to better constrain the range of wetlands methane emissions in the ensemble members. All 394 

six configurations are used in GEOS-Chem to produce a series of forward model runs for a subrange of years between 2013–395 

2015. Figure 6 shows GEOS-Chem simulated methane concentrations using the six WetCHARTS configurations and compares 396 

to four ECCC in situ measurement sites in Canada (LLB, ETL, FRA, EGB). This subset of available data is representative of 397 

sites sensitive to both anthropogenic and natural emissions. Most of Canadian anthropogenic emissions are from Western 398 

Canada (Fig. 2), which we use sites LLB and ETL to evaluate (Fig. 1), and a significant amount of Canadian natural emissions 399 

are from region surrounding the Hudson’s Bay Lowlands, which we use sites FRA and EGB to evaluate. Methane 400 

concentrations from GEOS-Chem show large differences when compared to ECCC observations, ranging from +1050 to –150 401 

ppb. The boundary-condition site ESP (Fig. 3) showed a mean bias of 5.3 ppb for all of 2010–2015. Since there is no similar 402 
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mismatch in the global representation of methane, these biases up to 1050 ppb can therefore be attributed to misrepresented 403 

local Canadian emissions plus associated transport and representation error. Two types of biases with opposite signs appear 404 

from this comparison. The first type is a positive summertime bias where the modelled methane concentrations significantly 405 

exceed the observations; this bias is more pronounced in sites FRA (Fig. 6-C) and EGB (Fig. 6-D), which are in Ontario and 406 

sensitive to the Hudson Bay Lowlands. The bias is also visible in the western sites LLB (Fig. 6-A) and ETL (Fig. 6-B) to a 407 

lesser extent. As we use a smaller magnitude of wetlands methane emissions corresponding to the ensemble members in Figure 408 

5 (from 32.4 Tg a-1 to 3.9 Tg a-1), this summertime bias decreases proportionately. Therefore, we can attribute these large 409 

positive summertime biases to growing season wetlands emissions that are overestimated in the process model configurations. 410 

The second type of bias is a year-long negative bias that appears most in site LLB (Fig. 6-A) and is magnified with the use of 411 

lower-magnitude wetlands emissions. This suggests the presence of year-round anthropogenic emissions in Western Canada 412 

that are underestimated in the prior, or that winter-time wetland emissions could also be underestimated in WetCHARTS due 413 

to the lack of explicit soil water and temperature dependencies. The inverse modelling results in the next section attribute this 414 

bias to anthropogenic emissions. 415 

 416 

Miller et al. (2016) conducted a study constraining North American Boreal wetlands emissions from the WETCHIMP 417 

inventory modelled in WRF-STILT by comparing to observations in 2008. Their study included the use of three of the ECCC 418 

stations described here (CHM, FRA and ETL). The model comparison to observations in that study showed a similar pattern 419 

of modelled methane exceeding observations in the summer and a low bias at ETL. They suggested wetlands emissions were 420 

overestimated in most model configurations and that the wetlands bias may be masking underestimated anthropogenic 421 

emissions. These conclusions are corroborated by the 2013–2015 comparison shown here, we show high wetlands emissions 422 

configurations in WetCHARTS produce a high bias that exceed measured summertime methane concentrations, and the use 423 

of lower wetlands configurations reveal a year-long low bias apparent in Western Canada. Our results suggest the combined 424 

use of higher inundation extent and lower temperature dependencies (GLWD and q10 = 3), or the use of lower inundation 425 

extent and higher temperature dependencies (GLOBCOVER and q10 = 1) best reproduce observations near the mean of the 426 

range of emissions, although the ensemble forward model analysis is unable to specify more detailed process model constraints. 427 

 428 

The forward model analysis in this section is a direct evaluation of wetlands configurations. This approach allows us manually 429 

tune wetlands scenarios and diagnose the sensitivity of the modelled-observed differences to the process modelling parameters. 430 

The inverse analysis shown subsequently is a statistical optimization that applies scaling factors to emissions based on the 431 

same model-observation differences. The inverse analysis can be viewed analogously as an automatic approach. These results 432 

show the challenge with optimizing Canadian methane emissions when wetlands emissions are largely uncertain. Our approach 433 

of optimizing anthropogenic and natural emissions simultaneously in an inversion is useful because attempting to constrain 434 

either emissions category, anthropogenic or natural, obfuscates the analysis on the other. We exploit the different pattern of 435 

anthropogenic and natural emissions in time and space (Fig. 6). Natural emissions peak in the summertime and are concentrated 436 

https://doi.org/10.5194/acp-2020-1195
Preprint. Discussion started: 7 January 2021
c© Author(s) 2021. CC BY 4.0 License.



17 
 

in Boreal Canada, while anthropogenic emissions are persistent year-round and are concentrated in Western Canada (Fig. 2). 437 

Hence when optimizing the model-observation mismatch in a Bayesian inverse framework, some elements of the observation 438 

vector will correspond to high biases from summertime observations in Boreal Canada and some elements will correspond to 439 

low biases in Western Canada. As the choice of prior for the inversion we use the mean of the WetCHARTS configurations 440 

(14.0 Tg a-1) which corresponds to the middle of the range shown shaded in red in Figure 6. The 60% range of uncertainty in 441 

the prior error covariance matrix Sa appropriately excludes the extreme scenarios in Fig. 5 and 6. 442 

 443 
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 444 
 445 

Figure 5: Ensemble members from the WetCHARTS v1.0 inventory (Bloom et al., 2017) with totals for wetland methane 446 

emissions within Canada for each configuration shown in Tg CH4 a-1. Ensemble members vary according to the use of three 447 

CH4:C q10 temperature dependencies and two inundation extent scenarios (GLWD vs. GLOBCOVER) for 3×2=6 scenarios. 448 

https://doi.org/10.5194/acp-2020-1195
Preprint. Discussion started: 7 January 2021
c© Author(s) 2021. CC BY 4.0 License.



19 
 

 449 
Figure 6: Time series of 2013–2015 modelled and observed methane concentrations. Monthly-mean methane from ECCC in 450 

situ observations (black) are shown and compared to six GEOS-Chem simulations differing in the use of WetCHARTS 451 

ensemble members for wetlands emissions. The six configurations are labelled GCXY where first digit (X=1,2,3) corresponds 452 

to the CH4:C q10 temperature dependency, which decreases the sensitivity of emissions to temperature with increasing value. 453 

The second digit (Y=3,4) corresponds to the model used for inundation extent (3 = GLWD, 4 = GLOBCOVER) where 454 

GLOBCOVER produces lower emissions in Canada. Emissions configurations are those shown in Fig. 5 in order of magnitude 455 

from red to purple lines, with the shaded red showing the range of concentrations. Sites are LLB, Alberta (A), ETL, 456 

Saskatchewan (B), FRA, Northern Ontario (C) and EGB, Southern Ontario (D).   457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 
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3.3 Comparative analysis of inversions using ECCC in situ and GOSAT satellite data 468 

We optimize 2010–2015 emissions in Canada using an n = 78 state vector element inversion setup with GOSAT and ECCC 469 

data independently. Elements 1–72 of the inversion are monthly total natural emissions (wetlands + other natural) from 2010–470 

2015 and elements 73–78 are yearly total anthropogenic emissions (energy + agriculture + waste) for the same years. These 471 

categories correspond to the emissions shown in Table 2. We do not optimize emissions according to clustered grid boxes like 472 

other satellite inversions using GEOS-Chem (Wecht et al., 2014; Turner et al., 2015; Maasakkers et al., 2019) and instead 473 

scale the amplitudes of these two aggregated categories. This approach is a trade-off of time for space, giving up finer spatial 474 

resolution for finer temporal resolution. This is useful for optimizing Canadian methane emissions since a) anthropogenic 475 

emissions are largely concentrated in Western Canada and require less spatial discretization over the entire country and b) 476 

natural emissions are the largest source and have an uncertain seasonality – as shown in the previous section – and require 477 

finer temporal discretization. The limitations of this method are that natural emissions are very unlikely to be spatially 478 

homogenous and vary due to hydrological differences even at the microtopographic level (Bubier et al., 1993). Perfectly 479 

resolving Canadian emissions sources in time and space is challenged by the sparsity and precision of the observing system 480 

and the model representation of the observations. We show the limitations of the combined ECCC and GOSAT observing 481 

system towards resolving subnational emissions in more detail in the subsequent section. 482 

 483 

Figure 7 (top) shows 2010-2015 posterior emissions using this 78 state vector approach with ECCC in situ data (blue) and 484 

GOSAT satellite data (green). Error bars are from the diagonal elements of the posterior error covariance matrix Ŝ. Posterior 485 

anthropogenic emissions averaged over the 6 year period are 6.0 ± 0.4 Tg a-1 (1σ year-to-year variability) using ECCC data 486 

and 6.5 ± 0.7 Tg a-1 using GOSAT data. Posterior estimates are 36% and 48% higher than the prior of 4.4 Tg a-1 for ECCC 487 

and GOSAT results, respectively. There does not appear to be a significant year-to-year trend above the noise for the 488 

anthropogenic emissions optimized by either dataset. The posterior anthropogenic emissions using ECCC and GOSAT data 489 

show agreement with each other in each year but 2011, where the GOSAT derived emissions are statistically higher. The error 490 

from the diagonal of the posterior error covariance matrix Ŝ may be overly optimistic, particularly for GOSAT data. This is 491 

due to the observational error covariance matrix So being treated as diagonal when realistically there are correlations between 492 

GOSAT observations that are difficult to quantify (Heald et al., 2004). Our results for anthropogenic emissions show agreement 493 

with top-down aircraft estimates of methane emissions in Alberta that are higher than bottom-up inventories (Johnson et al., 494 

2017; Baray et al., 2018) and previous satellite inverse-modelling studies over North America that upscale emissions in 495 

Western Canada (Turner et al., 2015; Maasakkers et al., 2019; Maasakkers et al., 2020; Lu et al., 2020). We show source 496 

attribution through a sectoral and subnational scale analysis of anthropogenic emissions in the subsequent section. 497 

 498 

Inversion results for monthly natural emissions from 2010–2015 are also shown in Figure 7 (bottom). The total of posterior 499 

natural emissions averaged over the 6 year period is 10.5 ± 1.9 Tg a-1 using ECCC data and 11.7 ± 1.2 Tg a-1 using GOSAT 500 
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data. The prior for natural emissions is 14.8 Tg a-1 from the mean of the WetCHARTS extended ensemble (14.0 Tg a-1) plus 501 

other natural (biomass burning + termites + seeps = 0.8 Tg a-1). There is some interannual variability in the prior due to higher 502 

emissions in 2010 and 2015. Posterior results averaged over the six years are 29% lower than the prior using ECCC data and 503 

21% lower using GOSAT data, with both posterior results showing agreement with each other. These results are within the 504 

uncertainty range of the WetCHARTS extended ensemble, and we show the magnitude of emissions from the larger uncertainty 505 

dataset (3.9 to 32.4 Tg a-1) can be better constrained with both ECCC and GOSAT observations. While our results show lower 506 

natural emissions in all years, a linear fit to the posterior annual emissions using ECCC data shows a trend of increasing natural 507 

emissions at a rate of ~1.0 Tg a-1 per year from 2010–2015. The posterior with GOSAT data does not corroborate this result, 508 

the overall emissions trend using GOSAT data is not robust and shows a decreasing trend of ~0.2 Tg a-1 per year. The lack of 509 

corroboration of trends between ECCC and GOSAT data may be reflective of the lower overall sensitivity of total column 510 

methane to these surface fluxes (Sheng et al., 2017; Lu et al., 2020) or the inability of this inverse system to constrain trends 511 

sufficiently. Poulter et al. (2017) estimated global wetlands emissions using biogeochemical process models constrained by 512 

inundation and wetlands extend data. They estimated mean annual emissions over all of Boreal North America to be 25.1 ± 513 

11.3 Tg a-1 in  2000–2006, 26.1 ± 11.8 Tg a-1 in 2007–2012 and 27.1 ± 12.5 Tg a-1 which suggests a small increasing trend. 514 

Observational constraints over longer timescales are necessary to investigate the possibility of trends in Canadian natural 515 

methane emissions. Improvements to the observation network and a better understanding of climate sensitivity in 516 

WetCHARTS are necessary to understand how wetlands methane emissions will evolve in future climates. 517 

 518 

Figure 8 shows the 2010–2015 average seasonal pattern of natural emissions in the prior and posterior results. The seasonality 519 

of natural methane emissions in the prior shows a sharp peak in July with a narrow methanogenic growing season. The posterior 520 

with ECCC data shows a peak 1-month later in August in most years instead of July, with lower than prior emissions in the 521 

spring months before the peak (March to May) and similar emissions to the prior in the autumn months after the peak 522 

(September to November).  Posterior emissions with GOSAT show a peak in July and corroborates the pattern of slower-to-523 

begin spring emissions and the lower intensity summer peak seen from the ECCC inversion. The posterior results show the 524 

seasonality of emissions is not symmetrical around the temperature peak in July. August emissions are higher than June, 525 

September emissions are higher than May, and October emissions are higher than April. This pattern around July is present in 526 

the prior emissions from WetCHARTS, however the inversion results constrained by ECCC or GOSAT observations intensify 527 

the relative difference between emissions before and after July. Miller et al. (2016) found a similar seasonal pattern of 528 

emissions in the Hudson Bay Lowlands using an inverse model constrained by 2007–2008 in situ data. They found a less 529 

narrow and less intense peak of summertime emissions with higher autumn over spring emissions. Warwick et al. (2016) used 530 

a forward model and isotopic measurements of δ13C-CH4 and δD-CH4 from 2005–2009 to show northern wetlands emissions 531 

should peak in August-September with a later spring kick-off and later autumn decline. This is further corroborated by Arctic 532 

methane measurements (Thonat et al., 2017) and high latitude eddy covariance measurements (Peltola et al., 2019; Treat et al., 533 

2018; Zona et al., 2016) that show a larger contribution from the nongrowing season. Our inverse model results using ECCC 534 
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and GOSAT data both show agreement with slower to start emissions in the spring and a less intense summertime peak for 535 

Canadian wetlands emissions. 536 

 537 

Several mechanisms have been proposed to describe a larger relative contribution from cold season methane emissions. 538 

Pickett-Heaps et al. (2011) attributed a delayed spring onset in the HBL to the suppression of emissions by snow cover. The 539 

temperature dependency in WetCHARTS is based on surface skin temperature (Bloom et al., 2017), however subsurface soil 540 

temperatures may continue to sustain methane emissions while the surface is below freezing. When subsurface soil 541 

temperatures are near 0°C, this “zero curtain” period can further continue to release methane for an extended period (Zona et 542 

al., 2016). Subsurface soils may remain unfrozen at a depth of 40 cm even until December (Miller et al., 2016). Alternatively, 543 

field studies in the 1990’s suggested the seasonality of emissions may be more influenced by hydrology than temperature, with 544 

large differences between peatlands sites (Moore et al., 1994). The WetCHARTS extended ensemble inundation extent variable 545 

is constrained seasonally by precipitation. While this does not directly constrain water table depth and wetland extent it 546 

provides an aggregate constraint on hydrological variability (Bloom et al., 2017). We show the mean seasonal pattern of both 547 

air temperature and precipitation from climatological measurements in subarctic Canada are similarly asymmetrical about the 548 

July peak (Fig. S2 in the Supplement). August is warmer and wetter than June, September is warmer and wetter than May, and 549 

October is wetter and warmer than April – with wetness being more persistent into the autumn than air temperature. Our 550 

inversion results showing a delayed spring start in the seasonal pattern of natural methane emissions in Canada may suggest a 551 

lag in the response of methane emissions to temperature and precipitation. This may be due to lingering subsurface soil 552 

temperatures and/or more complex parametrization necessary for hydrology. 553 

 554 

The overall agreement between ECCC and GOSAT inversions shows robustness in the results. While the same model, prior 555 

emissions and inversion procedure are used for assimilating ECCC and GOSAT data, the two datasets are produced with very 556 

different measurement methodologies (in situ vs. remote sensing) and sample different parts of the atmosphere (surface 557 

concentrations or the total vertical column). The posterior error intervals shown from Ŝ reflect assumptions about the treatment 558 

of observations and may insufficiently account for correlations, however the comparative analysis provides a useful sensitivity 559 

test of the posterior emissions since the datasets reflect different treatment of these assumptions. 560 

 561 
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  562 

 563 
Figure 7: Comparative analysis of inversion results optimizing annual total Canadian anthropogenic emissions (top) and 564 

monthly total natural emissions (bottom) in an n = 78 state-vector element setup. The posterior emissions determined using 565 

ECCC in situ (blue) and GOSAT satellite (green) data are compared to the prior (gray). Error bars are from the diagonal 566 

elements of the posterior error covariance matrix. 567 

 568 

 569 

 570 
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 571 

 572 
Figure 8: Mean 2010–2015 seasonal pattern of natural methane emissions in Tg month-1. The annual total emissions are 14.8 573 

Tg a-1 (prior, gray), 10.5 ± 1.9 Tg a-1 (posterior ECCC, blue) and 11.7 ± 1.2 Tg a-1 (posterior GOSAT, green). The posterior 574 

results are within the uncertainty range provided by the WetCHARTS extended ensemble (3.9–32.4 Tg a-1 for Canada). 575 

 576 

3.4 Joint-inversions combining ECCC in situ and GOSAT satellite data 577 

We combine the ECCC and GOSAT datasets in two policy-themed inversions: (1) optimizing emissions according to the 578 

sectors in the national inventory (n = 5 state vector elements; corresponding to the categories in Table 2) and (2) optimizing 579 

emissions by provinces split into anthropogenic and natural totals (n = 16) and show the results in Figure 9. These inversions 580 

are under-determined and show the limitations of the ECCC+GOSAT observing system towards constraining very small 581 

magnitude emissions in Canada. We conduct the inversions for each year from 2010–2015 individually and present the average 582 

from these six samples. Since these two policy inversions use a low number of state vector elements, they are vulnerable to 583 

both aggregation error and overfitting of the well-constrained state vector elements and do not necessarily benefit from using 584 

a larger data vector from all six years. We discuss the diagnostics and information content for these inversions in detail in 585 

Section 1.4 of the Supplement. The error bars are the 1σ standard deviation of the six yearly results and therefore represent 586 

both noise in the inversion procedure and year-to-year differences in the state (emissions and/or transport). Here we do not 587 

apply a weighting factor to either dataset, the observations are treated equivalently for the cost function in eq. (1). While there 588 

are about 5 times more GOSAT observations than ECCC observations for use in our analysis, the in situ observations have 589 
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larger observational error in Sa (due to model error) are much more sensitive to surface fluxes which offset overweighing the 590 

larger amount of GOSAT data. As further diagnostics we show the inversions using GOSAT and ECCC individually (Table 591 

S3 and S4) which show general agreement between the datasets. We also use a singular value decomposition eigenanalysis 592 

(Heald et al., 2004) to evaluate the independence of the state vector elements and to demonstrate which sectoral categories and 593 

provinces can be reliably constrained above the noise in the system  (Fig. S4 and S5 in the Supplement). 594 

 595 

Figure 9 (top) shows the sectoral inversion corresponding to categories in the national inventory (Table 2). The prior emissions 596 

with 50% error estimates (60% for wetlands) are 2.4 Tg a-1 (Energy), 1.0 Tg a-1 (Agriculture), 0.9 Tg a-1 (Waste), 14.0 Tg a-1 597 

(Wetlands) and 0.8 Tg a-1 (Other Natural). The posterior emissions are 3.6 ± 0.9 Tg a-1 (Energy), 1.5 ± 0.4 Tg a-1 (Agriculture), 598 

0.6 ± 0.3 Tg a-1 (Waste), 9.4 ± 1.1 Tg a-1 (Wetlands), and 1.7 ± 0.9 Tg a-1 (Other Natural). The degrees of freedom for signal 599 

and singular value decomposition (Fig. S4) show 3–4 independent pieces of information can be retrieved, which are 600 

differentiated in the figure by solid and hatched bars. The singular value decomposition shows strong source signals 601 

corresponding to wetlands and energy with signal-to-noise ratios of ~37 and ~5, respectively. These are the two largest 602 

emissions sources in Canada and show the inverse system can successfully disentangle the major anthropogenic and natural 603 

contributors. Emissions from waste have a signal-to-noise ratio of ~2 and can be constrained despite the low magnitude of 604 

emissions. This is likely due to waste emissions being more concentrated in Central Canada and away from the influence of 605 

large energy and agriculture emissions in Western Canada. Emissions from other natural sources are at the noise limit and 606 

show a moderate correlation with wetlands, which shows that these two sources are not completely independent. Agriculture 607 

emissions are below the noise in the system and highly correlated with energy emissions. This is likely due to the high spatial 608 

overlap of energy and agriculture emissions in Western Canada. As a result of these limitations, we present the total of energy 609 

and agriculture as 5.1 ± 1.0 Tg a-1 and the total of wetlands and other natural as 11.1 ± 1.4 Tg a-1. Our results for total natural 610 

and total anthropogenic emissions are consistent with the results from the previous monthly inversion, with the added benefit 611 

of identifying which sectors are responsible for the higher anthropogenic emissions at the cost of lower temporal resolution. 612 

Waste emissions are 36% lower than the prior and 35% lower than the National GHG Inventory. The total for energy and 613 

agriculture is 49% higher than the prior and 59% higher than the total in the inventory. These results show that energy and/or 614 

agriculture are the sectors that are responsible for the higher anthropogenic emissions. 615 

 616 

Figure 9 (bottom) shows the provincial inversion corresponding to the six largest emitting provinces (BC British Columbia, 617 

AB Alberta, SK, Saskatchewan, MB Manitoba, ON Ontario, QC Quebec) and two aggregated regions (ATL Atlantic Canada, 618 

NOR Northern Territories). These regions are further subdivided into total anthropogenic and total natural methane emissions, 619 

with below detection limit anthropogenic emissions from Atlantic Canada and Northern Territories. This inversion especially 620 

challenges the limitations of the ECCC+GOSAT observation system, as only about 8 of 16 independent pieces of information 621 

are retrieved. This means that half of the posterior provincial emissions are below the noise, and we are unable to constrain 622 

province-by-province emissions. The singular value decomposition identifies which regions are well constrained (Fig. S5). 623 
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For the anthropogenic emissions AB and ON are strongly constrained. For the natural emissions AB, ON, SK and MB are well 624 

constrained. BC shows correlation between its own anthropogenic and natural emissions and cannot be completely 625 

disaggregated. As a result, we group elements together in Western Canada (BC + AB + SA + MB) and Central Canada (ON + 626 

QC) for interpretation. The total for Western Canada anthropogenic emissions is 4.6 ± 0.6 Tg a-1 which is 39% higher than the 627 

prior of 3.3 Tg a-1. The total for Central Canada is 0.8 ± 0.2 Tg a-1 which is 11% lower than the prior of 0.9 Tg a-1
. 628 

 629 

Each of our top-down inversion results show higher total anthropogenic emissions than bottom-up estimates. This is consistent 630 

regardless of the observation vector incorporating ECCC data, GOSAT data or ECCC+GOSAT data. The subnational scale 631 

emissions are limited in their ability to provide full characterization of minor emissions across Canada but can successfully 632 

constrain major emissions for source attribution. The sectoral inversion attributes higher anthropogenic emissions to energy 633 

and/or agriculture and applies a small decrease to waste emissions. The provincial inversion attributes higher anthropogenic 634 

emissions to Western Canada and a small decrease to Central Canada.  These results suggest that anthropogenic emissions in 635 

Canada are underestimated primarily because of higher emissions from Western Canada energy and/or agriculture. This 636 

interpretation is consistent with previous satellite inverse modelling studies over North America that apply positive scaling 637 

factors to grid box clusters in Western Canada to match observations (Maasakkers et al., 2019; Turner et al., 2015; Wecht et 638 

al., 2014). Aircraft studies in Alberta have also shown higher emissions from oil and gas in Alberta than bottom up estimates 639 

(Baray et al., 2018; Johnson et al., 2017). Atherton et al. (2017) estimated higher emissions from natural gas in north-eastern 640 

British Columbia using mobile surface in situ measurements (Atherton et al., 2017). Zavala-Araiza et al. (2018) showed a 641 

significant amount of methane emissions in Alberta from equipment leaks and venting go unreported due to current reporting 642 

requirements and in some regions a small number of sites may be responsible for most methane emissions. Our inverse 643 

modelling results from 2010–2015 suggest a consistent presence of under-reported or unreported emissions which require a 644 

policy adjustment to reporting practices. 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 
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 653 

  654 
 655 

Figure 9: Joint-inversions combining 2010–2015 ECCC in situ and GOSAT satellite data showing how the combined 656 

observing system remains limited towards resolving all Canadian sources. Inversions are done for each year and we present 657 

the six-year average with error bars showing the 1σ standard deviation of the yearly results. Hatched bars indicate sources that 658 

are not well-constrained, these are defined as state vector elements with averaging kernel sensitivities less than 0.8 which are 659 
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affected by aliasing with other sources (See Supplemental Fig. S4 and S5). The top panel shows the sectoral inversion 660 

according to the categories in the National GHG inventory (Energy, Agriculture, Waste) and two natural categories (Wetlands 661 

and Other Natural). As an example, the diagnostics in Figure S4 shows Agriculture emissions are beneath the noise and cannot 662 

be distinguished from Energy. The bottom panel shows the subnational regional inversion according to provinces (BC British 663 

Columbia, AB Alberta, SK, Saskatchewan, MB Manitoba, ON Ontario, QC Quebec) and aggregated regions (ATL Atlantic 664 

Canada, NOR Northern Territories) further subdivided according to total anthropogenic and total natural emissions. The 665 

diagnostics in Fig. S5 show more than half of the regions are at or below the noise. For anthropogenic emissions, the best 666 

constraints are on provinces AB and ON. For natural emissions, the best constraints are on AB, SK, MB and ON. 667 

3.5 Comparison to Independent Aircraft and In situ Data 668 

We test the robustness of the optimized emissions from each of the three inversions shown (monthly natural, sectoral, and 669 

provincial) by comparing to independent measurements not used in the inversions. Prior and posterior simulated methane 670 

concentrations are compared to measurements from NOAA ESRL aircraft profiles at East Trout Lake, Saskatchewan (Mund 671 

et al., 2017) and ECCC surface measurements in sites Chapais and Chibougamau in Quebec, Canada. The surface data was 672 

averaged to daily afternoon means (12:00 to 16:00 local time) in the same manner as the surface measurements used in the 673 

inversion. Aircraft data from the NOAA ESRL profiles coincide spatially with the surface measurements at ETL through a 674 

joint analysis program with Environment and Climate Change Canada and have occurred on a regular basis approximately 675 

once a month from 2005 until present time. Aircraft measurements reach ~7000 m above the surface with samples at multiple 676 

altitudes accomplished using a programmable multi-flask system that is further discussed in Mund et al. (2017), however we 677 

limit the comparison to the lowest 1 km above ground since higher altitude measurements are mostly background. The aircraft 678 

data is not averaged however the flights occur around the same time in the early afternoon. 679 

 680 

Figure 10 shows the comparison using reduced-major axis (RMA) regressions with the coefficient of determination (R2), the 681 

slope and the mean-bias shown as metrics to evaluate the agreement. Surface data in CHA, Quebec shows better posterior 682 

agreement with observations according to all metrics for each of the three inversions. The R2 of the prior is 0.36 and improves 683 

to a range of 0.44–0.52 for the posterior results, the slope is 1.17 in the prior and improves to a range of 0.91–1.13 and the 684 

mean bias is –16.4 ppb in the prior and improves to –11.4 and –4.9 ppb. Since this site in Quebec is particularly sensitive to 685 

the Hudson Bay Lowlands, the agreement in all metrics suggests our posterior emissions can better represent wetlands 686 

emissions in this region. This includes the reduced peak seasonality of natural emissions in the monthly inversion, the reduction 687 

of wetlands emissions in the sectoral inversion or the reduction of natural emissions primarily in Central Canada in the 688 

provincial inversion. Aircraft data in Saskatchewan shows improvement in the R2 and mean bias metrics but slightly degrades 689 

the slope in one case. The R2 of the prior is 0.14 and improves to a range of 0.20–0.33, the mean bias of the prior is –6.8ppb 690 

and improves to –0.4 and –1.4 ppb. The slope of the prior is 1.15 which slightly degrades to 0.83 in the monthly inversion and 691 

improves to a range of 0.86–0.91 in the provincial and sectoral inversions. The high resolution aircraft measurements are more 692 

https://doi.org/10.5194/acp-2020-1195
Preprint. Discussion started: 7 January 2021
c© Author(s) 2021. CC BY 4.0 License.



29 
 

susceptible to representation error at this 2°x2.5° grid resolution. Furthermore, the time-series comparison to surface data at 693 

East Trout Lake (Fig. 6) shows overall lower sensitivity to summertime wetlands emissions than Fraserdale and Egbert, and 694 

lower sensitivity to anthropogenic emissions from Alberta than Lac La Biche. Hence the modelled methane concentrations at 695 

the aircraft measurement points are adjusted less by the change in posterior emissions. However, improvement in the R2 and 696 

mean bias metrics show there is still a better representation of the variance in the data which suggests the posterior emissions 697 

reduce bias due to peak emission episodes. 698 

 699 

 700 

 701 
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 702 
Figure 10: Evaluation of inversion results with reduced-major axis (RMA) regressions using independent data. The top four 703 

panels show the comparison to ECCC surface observations at Chapais and Chibougamau in Quebec, Canada and the bottom 704 

four panels show the comparison to NOAA aircraft profiles at East Trout Lake, Saskatchewan. The agreement of observations 705 

with prior simulated methane concentrations (blue) are compared to posterior concentrations using optimized emissions from 706 

the monthly inversion (green), the sectoral inversion (magenta), and the provincial inversion (orange). The coefficient of 707 

determination (R2), slope and mean bias are shown as metrics of agreement.  708 
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4 Conclusions  709 

We conduct a Bayesian inverse analysis to optimize anthropogenic and natural methane emissions in Canada using 2010–2015 710 

ECCC in situ and GOSAT satellite observations in GEOS-Chem. Methane concentrations are simulated on a 2°x2.5° grid 711 

using recently updated prior emissions inventories for energy and wetlands emissions in Canada. Modelled background 712 

conditions for the Canadian domain are shown to be unbiased in the comparison to surface in situ data at the western most site 713 

in Canada, Estevan point, with agreement within 6 ppb. A forward model analysis shows much larger biases between –100 714 

ppb and +1050 ppb at surface sites throughout Canada demonstrating the presence of misrepresented local emissions. We 715 

show large positive biases (overestimation of emissions) in the summertime are observed at sites sensitive to wetlands 716 

emissions, these biases are reduced by using lower magnitude wetlands emissions scenarios with lower CH4:C temperature 717 

sensitivities or lower inundation extent. We also show the opposite case of negative biases (underestimation of emissions) 718 

observed year-round at sites in Western Canada. The forward model analysis is consistent with the results of the inverse 719 

analysis that reduce emissions from natural sources and increase emissions from anthropogenic sources to minimize the 720 

mismatch between modelled and observed methane. 721 

 722 

We show three approaches for using ECCC and GOSAT data towards inverse modelling of Canadian methane emissions. 723 

These approaches differ according to the temporal and spatial resolution of the solution. We show: (1) a high time-resolution 724 

inversion that solves for natural emissions each month from 2010–2015 and anthropogenic emissions as yearly totals, (2) a 725 

sectoral inversion that solves for emissions according to categories in the national inventory, (3) a provincial inversion that 726 

solves for total anthropogenic and natural emissions at the subnational level. The monthly inversion provides information on 727 

the seasonality of natural emissions (which are ~95% wetlands) but does not provide more depth into anthropogenic emissions 728 

beyond yearly scaling. The sectoral inversion provides more information on the categories of anthropogenic emissions that are 729 

misrepresented in the prior but without spatial detail. The provincial inversion provides the highest level of spatial 730 

discretization but is largely underdetermined due to the limitations of the observing system towards characterizing very low 731 

magnitude emissions from smaller contributing provinces. 732 

 733 

Inversion results (1) show mean 2010–2015 posterior emissions for total anthropogenic sources in Canada are 6.0 ± 0.4 Tg a-734 
1 using ECCC data and 6.5 ± 0.7 Tg a-1 using GOSAT data. Annual mean natural emissions are 10.5 ± 1.9 Tg a-1 using ECCC 735 

data and 11.7 ± 1.2 Tg a-1 using GOSAT data. Both inverse modelling estimates are higher than the prior for anthropogenic 736 

emissions 4.4 Tg a-1 and lower than the prior for natural emissions 14.8 Tg a-1. Inversion results using both datasets show a 737 

change in the seasonal profile of natural methane emissions where emissions are slower to begin in the spring and show a less 738 

intense peak in the summer. The agreement between two datasets assembled with different measurement methodologies that 739 

sample different parts of the atmosphere is a robust result that lends weight to our conclusions. Our results corroborate recent 740 

studies showing a less-intense and less-narrow summertime peak in North American Boreal wetlands emissions with a higher 741 
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relative contribution from the cold season (Miller et al., 2016; Zona et al., 2016; Warwick et al., 2016; Thonat et al., 2017; 742 

Treat et al., 2018; Peltola et al., 2019). These top-down studies using atmospheric observations show biosphere process models 743 

can better account for a more complex response to peak surface soil temperatures. 744 

 745 

We also conduct combined ECCC+GOSAT inversions that aim to resolve finer resolution emissions corresponding to (2) the 746 

sectors of the national inventory and corresponding to (3) provincial boundaries. These policy-themed inversions challenge 747 

the capabilities of the ECCC+GOSAT observation system and show the system is not capable of resolving many minor 748 

emissions in Canada. The degrees of freedom for signal for these inversions are 3–4 out of 5 state vector elements for the 749 

sectoral inversion and 8 out of 16 for the provincial inversion. The limitation of this inverse approach towards constraining 750 

sectoral or regional scale emissions in Canada is due to the low magnitude of these emissions, their overlapping nature in 751 

concentrated regions, and the sparsity of data available to distinguish them apart. Grouping correlated sectors together, we 752 

determine 5.1 ± 1.0 Tg a-1 for energy and agriculture which is 59% higher than the inventory, 0.6 ± 0.3 Tg a-1 for waste which 753 

is 35% lower than the inventory. For provincial emissions, we show Western Canada is 4.6 ± 0.6 Tg a-1 which is 39% higher 754 

than the prior and Central Canada is 0.8 ± 0.2 which is 11% lower. Both regions show lower natural emissions. These results 755 

show that the higher anthropogenic emissions in the posterior results can be attributed to energy and/or agriculture primarily 756 

in Western Canada where most of Canadian anthropogenic emissions are concentrated. Our results are consistent with other 757 

top-down studies that show higher than reported anthropogenic emissions in Western Canada (Wecht et al., 2014; Turner et 758 

al., 2015; Atherton et al., 2017; Johnson et al., 2017; Baray et al., 2018; Maasakkers et al., 2019). This may be due to oil and 759 

gas emissions that are under-reported or unreported due to current reporting requirements (Zavala-Araiza et al., 2018). These 760 

top-down studies show a need for policy readjustment in reporting practices for Canadian anthropogenic methane emissions. 761 

 762 

This study shows the value of using complementary surface and satellite datasets in an inverse analysis. We emphasize the 763 

value of comparative analysis using the datasets independently versus as joint inversions, as minor emissions are too low in 764 

magnitude for the observational precision to distinguish finer scale discretization above the noise. The comparative analysis 765 

has the added benefit of evaluating the datasets against each other and the assumptions that are specific to using either surface 766 

or satellite data. The capabilities for combining and intercomparing datasets is expected to improve, with the launch of 767 

Copernicus Sentinel-5p satellite (TROPOMI) in 2017 and continued expansions on in situ observation networks. The ability 768 

for next generation observations to constrain subnational level emissions in Canada will depend on instrument and model 769 

precision, as well as the emissions magnitudes and spatiotemporal overlap of the targets. These technical capabilities should 770 

be weighed alongside policy needs for improved methane monitoring. 771 

 772 
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