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S1.1 Monthly GOSAT Data in the Canadian Domain 26 

Figure S1 shows the GOSAT data available per month using 2013 as an example year, this corresponds to the data coverage 27 

shown in Fig. 1 of the main text but highlights the variability in satellite observational coverage over a single year. GOSAT 28 

data shown passes all quality assurance flags and includes our domain filter to land data that is within 50°W to 150°W longitude 29 

and 45°N to 60°N latitude. The minimum in December observations (n=112) and neighbouring months is due to less solar 30 

radiation in the winter resulting in less retrievals. Fewer observations cause the inversion to favour the prior state of emissions. 31 

There are less methane emissions from Canadian wetlands in the coldest months of the winter, and the comparison between 32 

the prior, the posterior using GOSAT data, and the posterior using ECCC data shows very small differences in emissions 33 

estimates for these coldest months. 34 

 35 

 36 

Figure S1: GOSAT observations per month in the year 2013 corresponding to Fig. 1 in the main text (n=7656 observations 37 

for the entire year). Observations are filtered to land data that is within 50°W to 150° W longitude and 45°N to 60° N latitude. 38 
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S1.2 Sensitivity of Seasonal Emissions to Climatological Data 39 

We select four climatological stations shown in Table S1 to sample temperature and precipitation data from 2010–2015 in the 40 

four provinces where wetlands emissions are concentrated (Alberta, Saskatchewan, Manitoba, and Ontario). These stations are 41 

not exhaustive and are chosen for their proximity to the stations shown in Table 1. Station measurements are quality-controlled 42 

from the National Climate Data Archive from Environment and Climate Change Canada (Hutchinson et al., 2009). 43 

 44 

Table S1: Climatological sites used for air temperature and total precipitation measurements for the seasonality comparison. 45 

Site Name, Province Latitude Longitude 

Lac La Biche Climate, Alberta 54.8° N 112.0° W 

La Ronge, Saskatchewan 55.1° N 105.3° W 

Churchill Climate, Manitoba 58.7° N 94.1° W 

Moosonee, Ontario 51.3° N 80.6° W 

 46 

Figure S2 shows the mean 2010–2015 seasonal pattern of natural methane emissions constrained by ECCC and GOSAT data 47 

corresponding to Fig. 8 in the main text. These emissions are compared to monthly mean air temperature and precipitation 48 

averaged over the four climatological stations in Table S1. We consider air temperature a reasonable proxy for the surface skin 49 

temperature that is used in WetCHARTS. Surface skin temperature is itself a proxy for soil temperatures deeper beneath the 50 

surface where methane is produced (Miller et al., 2016). Hence both metrics may be lagging indicators for the peak of methane 51 

emissions. Both air temperature and precipitation show peaks in July which correspond well with the maxima of methane 52 

emissions in the prior from WetCHARTS. Methane emissions in the prior begin to accelerate from March to April, however 53 

for both months air temperature is below freezing. It is not likely that soil temperatures and subsurface soil temperatures would 54 

be above freezing in these months. Air temperature crosses from below 0° to above freezing one month later from April to 55 

May, which corresponds to where the posterior ECCC and GOSAT emissions begin to accelerate. Total precipitation shows 56 

the highest acceleration one month later from May to June. As the peak in July is passed, late-summer and autumn air 57 

temperatures are higher than the months opposite of the peak (August is warmer than June, September is warmer than May, 58 

October is warmer than April). This pattern is corroborated by the precipitation measurements. Air temperatures go below 59 

freezing from October to November. As shown by Zona et al. (2016), “zero-curtain” emissions may continue even when the 60 

soil is at freezing temperatures. This mechanism may be more likely to occur in the months after the peak if subsurface soils 61 

are slower to thaw in the spring and slower to freeze in the autumn. These simple climatological measurements and the 62 

described mechanisms suggested in other studies corroborate our posterior results of lower spring methane emissions and 63 

lower peak methane emissions in the summer. Our results suggest process models may benefit from better parameterization of 64 

possible lagging effects from air temperature and precipitation for Boreal Canada methane emissions. 65 
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 66 

Figure S2: Mean seasonal pattern of 2010-2015 methane emissions from the prior (gray), posterior constrained with ECCC 67 

data (blue), posterior constrained with GOSAT data (green). This is compared to the seasonal pattern of monthly mean air 68 

temperature (orange, right axis) and precipitation (pink, left axis) from station measurements listed in Table S1. Both air 69 

temperature and precipitation show an asymmetry about the July peak, with higher temperature and precipitation in the fall 70 

months than the spring.  71 

S1.3 Sensitivity of GOSAT-Constrained Emissions to GEOS-Chem Column Bias Corrections 72 

We test the sensitivity of the posterior GOSAT-constrained methane emissions in our analysis to the use of latitude-dependent 73 

and seasonal bias corrections in the GEOS-Chem simulated total column of methane. The latitude-dependent bias correction 74 

has a magnitude less than 3.5 ppb for our domain of interest (45 to 60°N). On a global basis the seasonal bias correction has 75 

an amplitude of ±4 ppb with a maximum in June and a minimum in December. Figure S3 shows the sensitivity of posterior 76 

monthly emissions to these bias corrections using 2013 as an example. We show four versions of the posterior methane 77 

emissions using GOSAT data: GOSAT11 (green) is the base case which applies the latitude-dependent bias correction and the 78 

seasonal bias correction, GOSAT10 (purple) applies the latitude-dependent bias correction and does not apply the seasonal 79 

correction, GOSAT01 (orange) does not apply the latitude-dependent bias correction and applies the seasonal correction, and 80 

GOSAT00 (light blue) uses neither bias correction. The range of emissions from all four examples is 9.7 – 10.7 Tg a-1, which 81 

are all consistent with the ECCC emissions of 10.0 Tg a-1 and lower than the prior emissions of 14.3 Tg a-1. Not applying the 82 

latitude-dependent bias correction results in a decrease in the resulting emissions and maintains the same seasonal pattern. Not 83 

applying the seasonal bias correction results in a change in the temporal distribution of emissions that better matches the 84 
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August peak in the posterior with ECCC data. Emissions are lower than the base case in the spring and higher than the base 85 

case in autumn. This change enhances the autumn-shift in emissions that has been described in S1.1. While this may be more 86 

consistent with our interpretations, it is not clear whether the difference is due to emissions or transport biases. Stanevich et 87 

al. (2019) showed that the latitude dependent bias is most likely due to excessive polar stratospheric transport at high latitudes. 88 

If the seasonal bias is indeed due to mischaracterized natural emissions, it is not clear why the bias would be equally large in 89 

December (–4 ppb) as June (+4 ppb) on a global basis. The magnitude of natural emissions in December is much lower than 90 

June and emissions mischaracterization would not itself produce an equally large bias as the largely overestimated summertime 91 

emissions. Our analysis with ECCC data shows most of the adjustments to wetlands are in the peak of summer with some 92 

extension into the autumn. These results show that the bias corrections produce minor differences in the magnitude and 93 

seasonal pattern of emissions. 94 

 95 

Figure S3: Sensitivity of 2013 posterior GOSAT constrained methane emissions to bias corrections used in the GEOS-Chem 96 

simulated total column of methane. For comparison, the prior in 2013 (gray) and the posterior in 2013 constrained by ECCC 97 

data (blue) are shown. The digits in the GOSAT label represent the binary use of bias corrections (1 = applied, 0 = not applied). 98 

The first digit corresponds to the use of the latitude bias correction, the second digit corresponds to the use of the monthly bias 99 

correction, hence GOSAT11 is the base case that applies both bias corrections and GOSAT00 is the case with no bias 100 

corrections applied. 101 

S1.4 Diagnostics of Sectoral and Provincial Inversions 102 

In this analysis we first evaluate the correlations and/or independence of the state vector elements from the posterior error 103 

covariance matrix Ŝ as follows (Heald et al., 2004): 104 
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 105 

𝑟𝑖𝑗 =
ŝ𝑖𝑗

√ŝ𝑖𝑖 √ŝ𝑗𝑗
            (1s) 106 

 107 

The error-normalized posterior correlation matrix r provides information on the independence of the state vector elements. 108 

This is corroborated by the averaging kernel matrix A which shows which state vector elements contain independent pieces of 109 

information, with the trace of A providing the total degrees of freedom for signal for the inversion. To further evaluate the 110 

signal-to-noise ratio of the observation-constrained state vector elements and their independence from each other we use an 111 

eigenanalysis. The Jacobian matrix K is normalized about the observational and prior error covariance matrices as follows 112 

(Rodgers, 2000): 113 

 114 

Ǩ = So
–1/2KSa

1/2
           (2s) 115 

 116 

The singular value decomposition of Ǩ gives its rank which is the number of singular values greater than one. The singular 117 

values also correspond to the signal-to-noise ratio of state vector elements and hence quantify the strength of the observational 118 

constraints on individual emissions categories. 119 

 120 

Figure S4 shows this series of diagnostics for the sectoral (5 state vector element) inversion and Figure S5 shows the same 121 

analysis for the provincial (16 state vector element) inversion. Figure S4 (top) shows the error-normalized correlation matrix 122 

for the sectoral inversion. The most important result is that the primary source of natural emissions, wetlands (purple line), is 123 

not correlated with the primary source of anthropogenic emissions, energy (blue line). Within the anthropogenic category 124 

however, we see that energy is strongly correlated with agriculture, showing that these two elements cannot be distinguished 125 

by the observation system. For natural emissions, other natural sources are weakly correlated with wetlands and are not 126 

completely independent. Emissions from waste are shown to be independent and can be distinguished from the other sources. 127 

The averaging kernel matrix corroborates this result, and shows the three independent pieces of information are energy, 128 

wetlands and waste, with partial information content from other natural sources and a lack of information on agriculture. The 129 

singular values show strong constraints on wetlands with a signal-to-noise ratio of 37.3, and strong constraints on energy with 130 

a signal-to-noise ratio of 5.2. Waste sources are 2.2, other natural are 1.2 and agriculture is below the noise at 0.4. These 131 

diagnostics demonstrate that a joint ECCC in situ and GOSAT satellite inversion system can successfully provide constraints 132 

on and distinguish the three major categories of methane emissions in Canada: wetlands, energy and waste. Emissions from 133 

agricutlure cannot be distinghised in this system and should be aggregated with energy, this is likely because of the strong 134 

spatial overlap between these emissions in Western Canada and the lower signal from lower magnitude agriculture emissions. 135 

Emissions from other natural sources (biomass burning, seeps, and termites) also are at the noise and should be aggregated 136 
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with wetlands. This is because minor natural sources are much lower in magnitude (0.8 Tg a-1 out of 14.8 Tg a-1) and also show 137 

spatial overlap with wetlands. 138 

 139 

Figure S5 shows the diagnostics on the provincial (16 state vector element) inversion. This choice of state vector elements 140 

challenges the observing system and results in a largely underdetermined solution. These diagnostics allow us to identify where 141 

the limitations of the ECCC + GOSAT observing system are. The posterior error correlation matrix r shows the provincial 142 

emissions are somewhat correlated a) between anthropogenic/natural emissions of the same province and b) with neighboring 143 

provinces in the same category of emissions. For example, AB anthropogenic emissions (solid orange line) show a small 144 

inverse correlation with AB natural emissions (dashed-x orange line). The solid orange line also shows a small correlation 145 

with the anthropogenic emissions of nearby provinces BC and SK. For the natural emissions, the dashed lines corresponding 146 

to natural emissions within a province in most cases extends into the provinces to the east and west. These correlations are not 147 

as large as the case of Energy and Agriculture emissions in Fig. S4, and show a more moderate influence of nearby provinces 148 

on the optimized emissions. The primary limitation of the provincial inversion is the inability to distinguish provinces with a 149 

very small magnitude of emissions. This is shown in the averaging kernel matrix, which has a degrees of freedom for signal 150 

of 7.9 out of 16 elements. The 6 regions that are best constrained are AB anthropogenic, ON anthropogenic, AB natural, SK 151 

natural, MB natural, and ON natural, with partial constraints on BC anthropogenic, SK anthropogenic, QC anthropogenic, BC 152 

natural, QC natural and NOR natural. The singular vectors corroborate this result and show that there are 8 regions that are 153 

above the noise and 8 that are at or below the noise. The best constraints on anthropogenic emissions are in Alberta, with a 154 

signal to noise ratio as good as 15.1 (solid blue line), followed by Ontario (2.5-2.8). 155 

 156 

These diagnostics show that the ECCC+GOSAT observing system for Canada is limited in its ability to characterize 157 

agricultural emissions, and somewhat limited in its ability to characterize non-wetlands natural emissions. Hence we present 158 

Energy+Agriculture and Wetlands+Other Natural together for our conclusions. More precise and more dense measurements 159 

at a finer scale would better disaggregate these sources, although the use of the precise in situ data is primarly limited by the 160 

model error (Section 2.3 of the main text). In the provincial inversion, the observing system provides good constraints on 161 

anthropogenic emissions from AB and ON and is capable of distinguishing these emissions from natural sources in the same 162 

province. However, anthropogenic sources from other provinces with much lower emissions cannot be distinguished. Natural 163 

emissions can be characterized from the provinces that are most responsible for wetlands emissions (AB, SK, MB, ON), 164 

however the observing system struggles in Atlantic and Northern Canada where the surface and satellite observations we use 165 

are limited. The emissions adjustments to state vector elements beneath the noise are due to aliasing with other sources and 166 

compensation effects due to interprovincial transport. We limit out conclusions to simple interpretations, we use the limited 167 

provincial inversion for spatial attribution to show higher posterior anthropogenic emissions are primarily from the total in 168 

Western Canada (BC+AB+SK+MB), and not emissions in Central Canada (ON+QC). 169 
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170 

 171 

 172 

Figure S4: Diagnostics of the sectoral inversion used to evaluate the independence and information content of the 5 state 173 

vector elements. The error-normalized posterior correlation matrix (top) shows the correlations between elements. The 174 

averaging kernel matrix (middle) shows where the independent pieces of information are (DOFS = 3.3). The singular vector 175 

decomposition of the pre-whitened jacobian (bottom) quantifies the signal-to-noise ratio of the significant elements – these 176 

are the singular values listed above one (4 in total). The singular vector below noise (agriculture) is shown as a dashed line. 177 
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178 

179 

 180 

Figure S5: Similar to Fig. S4 for the 16 state vector provincial inversion. The DOFS from the averaging kernel matrix are 181 

7.9, which are consistent with the number of singular values greater than unity in the pre-whitened jacobian matrix (8 in 182 

total). Note the difference in meaning of dashed lines between panels: in the top two panels, solid and dashed-x lines of the 183 

same colour correspond to anthropogenic and natural emissions of the same province to help visualize the capability for 184 
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disentangling intra-province emissions. In the bottom panel, the singular vectors below the noise (corresponding to singular 185 

values less than one) are shown as light-dashed lines, these show which emissions are not constrained by observations. 186 

 187 

A possible solution to improving the resolution of the solution is to combine all six years of data to constrain finer scale 188 

emissions for the sectoral and provincial inversions. In the presented approach inversions were completed on a yearly basis 189 

for six years to produce an average result for 2010–2015. We used the year to year variance as a representation of noise in 190 

the system and real yearly variability in the state (due to emissions and/or transport). In principle using more years of data 191 

provides a better signal to noise ratio. However, due to the way our state vector elements are defined in the sectoral and 192 

provincial inversions, the inverse approach is sensitive to aggregation error and overfitting the fewer number of well-defined 193 

state vector elements. Overfitting can be diagnosed using the reduced chi-squared metric: 194 

 195 

𝜒𝜈
2 =

𝜒2

𝑣
≅  

∑
(𝑦−𝐾𝑥)2

𝑆𝑜

𝑚
           (3s) 196 

 197 

Where 𝜒𝜈
2 is the chi-square per degree of freedom ν. Here, the χ2 is equal to the ratio of the square of the innovation, SO is the 198 

diagonal element of the observational error covariance matrix corresponding to the same observation, m is the number of 199 

rows of the observation vector and n is the number of state vector elements. A value of 𝜒𝜈
2 less than one indicates overfitting. 200 

We calculate a value of 0.65 for the total vector containing ECCC and GOSAT data which shows evidence of overfitting. 201 

Hence using a larger amount of data for the same number of state vector elements would exasperate the issue. 202 

 203 

We further test the improvement from combining 6 years of data against independent measurements. To evaluate the 204 

differences between using a repeated 1-year approach and a 6-year approach we use independent observations from NOAA 205 

ETL aircraft measurements and ECCC CHA in situ surface measurements. Table S2 lists the metrics of agreement that were 206 

in Figure 10 and compares them to the results using all 6 years of data simultaneously.  For the sectoral inversion, using 6 207 

years of data provides a small improvement in the slope (0.96 vs. 0.91), no improvement in the R2 (0.20) and degrades the 208 

mean bias (–4.3 ppb vs. –0.4 ppb) when comparing to NOAA ETL. Similarly with ECCC CHA data, using 6 years of data 209 

for the sectoral inversion provides an improvement in the slope (1.01 vs. 0.98), a slightly worse R2 (0.43 vs. 0.44) and 210 

largely degrades the mean bias comparison (–10.6 ppb vs. –5.9 ppb). For the provincial inversion evaluation at NOAA ETL, 211 

using 6 years of data slightly degrades the slope (0.83 vs. 0.86), gives an improvement in the R2 (0.27 vs. 0.22), and degrades 212 

the mean bias (–3.2 ppb vs. –0.5 ppb). The same comparison at ECCC CHA degrades agreement in the slope (0.87 vs. 0.91), 213 

improves the R2 (0.51 vs. 0.47), and improves the mean bias (–4.1 ppb vs. –4.9 ppb). These results show that using 6 years 214 

of data for the subnational inversions does not improve agreement against independent data and in many cases degrades the 215 

mean bias. The inversion converges on a solution within our defined prior error matrix SO with only one year of data. These 216 
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tests show that using one year of data at a time and calculating the average and variance of the repeated results is reasonable 217 

considering the limits of the observation system towards resolve low magnitude emissions. 218 

 219 

Table S2: Sensitivity test against independent observations 220 

  NOAA Aircraft Observations ETL ECCC Surface Observations CHA 

  Slope R2 Mean Bias (ppb) Slope R2 Mean Bias (ppb) 

 Prior 1.15 0.14 –6.8 1.17 0.36 –16.4 

Sectoral 
Posterior (1 yr) 0.91 0.20 –0.4 0.98 0.44 –5.9 

Posterior (6 yr) 0.96 0.20 –4.3 1.01 0.43 –10.6 

Provincial 
Posterior (1 yr) 0.86 0.22 –0.5 0.91 0.47 –4.9 

Posterior (6 yr) 0.83 0.27 –3.2 0.87 0.51 –4.1 

 221 

We show a comparison of emissions estimates and methods to derive errors for the sectoral inversion in Table S3 and for the 222 

provincial inversion in Table S4. The tables compare two error estimates to three sensitivity tests. They show the error estimates 223 

from the diagonal elements of the posterior error covariance matrix Ŝ and compares to the 1σ variance in the repeated yearly 224 

inversions. In both the sectoral and the provincial inversions, the error estimates from the diagonal elements of Ŝ often show 225 

a more optimistic estimate of the uncertainties. This is likely due to spatial and temporal correlations in the daily-mean ECCC 226 

in situ observations and correlations in the GOSAT data that are difficult to quantify in the absence of a full OSSE study. We 227 

compare the 1σ variance from repeated yearly inversions from 2010–2015 to the relative change in posterior emissions from 228 

using only ECCC data, only GOSAT data, and using 6 years of ECCC+GOSAT data simultaneously. The 1σ yearly variance 229 

captures these differences except for state vector elements that were shown to be below the noise and highly correlated with 230 

other emissions in Figure S4 and S5. The lack of improvement against the comparison to independent data in Table S2 suggests 231 

that this may be suggestive of overfitting. We consider the agreement between the independent use of ECCC and GOSAT data 232 

to be a reliable sensitivity test to check the robustness of our results.  233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 
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 244 

Table S3: Sensitivity analysis of the Sectoral (5 state vector) inversion. The error estimates from the posterior error 245 

covariance matrix are compared to the yearly variance and the change in emissions using alternative observation vectors. 246 

 Prior 

(Tg a-1) 

Posterior 

(Tg a-1) 

Posterior Ŝ 

Relative Error (%) 

1σ Yearly Variance 

Relative Error (%) 

ECCC-only 

(% change) 

GOS-only 

(% change) 

6-year 

(% change) 

Energy 2.4 3.6 ±11 ±25 +6 –7 –21 

Agriculture 1.0 1.5 ±29 ±27 –0 –16 +57 

Waste 0.9 0.6 ±31 ±47 –1 +84 –33 

Wetlands 14.0 9.4 ±4 ±12 –4 +4 +3 

Other Natural 0.8 1.7 ±20 ±56 –37 –6 +78 

 247 

 248 

Table S4: Sensitivity analysis of the Provincial (16 state vector) inversion. As per S3 error estimates from the posterior error 249 

covariance matrix are compared to the yearly variance and the change in emissions using alternative observation vectors. 250 

 Prior 

(Tg a-1) 

Posterior 

(Tg a-1) 

Posterior Ŝ 

Relative Error (%) 

1σ Yearly Variance 

Relative Error (%) 

ECCC-only 

(% change) 

GOS-only 

(% change) 

6-year 

(% change) 

BCA 0.5 0.8 ±24 ±41 –26 –11 +117 

ABA 2.3 3.2 ±5 ±14 –6 +5 –2 

MBA 0.3 0.3 ±44 ±40 +11 +1 +4 

SKA 0.2 0.2 ±49 ±26 –3 +5 +33 

ONA 0.5 0.4 ±20 ±25 –1 +27 +2 

QCA 0.4 0.3 ±51 ±42 –11 +17 +23 

ATLA 0.0 0.0 ±52 ±4 +1 +3 –9 

NORA 0.0 0.0 ±50 ±1 0 0 +1 

BCN 0.4 0.5 ±35 ±53 –7 +13 –80 

ABN 2.4 1.9 ±14 ±34 +59 –30 –26 

MBN 1.6 0.7 ±31 ±46 +7 +4 –4 

SKN 1.5 1.4 ±21 ±33 +13 –9 –13 

ONN 3.5 0.9 ±38 ±57 +9 +13 –18 

QCN 1.6 1.2 ±38 ±38 +15 –30 –37 

ATLN 0.7 0.8 ±40 ±27 –36 +24 +58 

NORN 0.7 1.9 ±14 ±35 –45 –3 +73 
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