Comprehensive evaluations of diurnal NO₂ measurements during DISCOVER-AQ 2011: Effects of resolution dependent representation of NO_x emissions

Jianfeng Li^{1, a}, Yuhang Wang^{1*}, Ruixiong Zhang¹, Charles Smeltzer¹, Andrew Weinheimer², Jay Herman³, K.
Folkert Boersma^{4, 5}, Edward A. Celarier^{6, 7, b}, Russell W. Long⁸, James J. Szykman⁸, Ruben Delgado³, Anne M.
Thompson⁶, Travis N. Knepp^{9, 10}, Lok N. Lamsal⁶, Scott J. Janz⁶, Matthew G. Kowalewski⁶, Xiong Liu¹¹,

Caroline R. Nowlan¹¹

- 7
- 8 ¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- 9 ²National Center for Atmospheric Research, Boulder, Colorado, USA
- ³University of Maryland Baltimore County JCET, Baltimore, Maryland, USA
- ⁴Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
- ⁵Wageningen University, Meteorology and Air Quality Group, Wageningen, the Netherlands
- 13 ⁶NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- ⁷Universities Space Research Association, Columbia, Maryland, USA
- ¹⁵ ⁸National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection
- 16 Agency, Research Triangle Park, NC, USA
- 17 ⁹NASA Langley Research Center, Virginia, USA
- 18 ¹⁰Science Systems and Applications, Inc., Hampton, Virginia, USA
- 19 ¹¹Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- 20
- ^anow at: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland,
- 22 Washington, USA
- 23 ^bnow at: Digital Spec, Tyson's Corner, VA, USA
- ^{*} *Correspondence to* Yuhang Wang (yuhang.wang@eas.gatech.edu)
- 25

26 Abstract

27	Nitrogen oxides ($NO_x = NO + NO_2$) play a crucial role in the formation of ozone and secondary inorganic and
28	organic aerosols, thus affecting human health, global radiation budget, and climate. The diurnal and spatial
29	variations of NO ₂ are functions of emissions, advection, deposition, vertical mixing, and chemistry. Their
30	observations, therefore, provide useful constraints in our understanding of these factors. We employ a Regional
31	chEmical and trAnsport model (REAM) to analyze the observed temporal (diurnal cycles) and spatial
32	distributions of NO ₂ concentrations and tropospheric vertical column densities (TVCDs) using aircraft in situ
33	measurements, surface EPA Air Quality System (AQS) observations, as well as the measurements of TVCDs by
34	satellite instruments (OMI: the Ozone Monitoring Instrument; and GOME-2A: Global Ozone Monitoring
35	Experiment – 2A), ground-based Pandora, and the Airborne Compact Atmospheric Mapper (ACAM) instrument,
36	in July 2011 during the DISCOVER-AQ campaign over the Baltimore-Washington region. The model
37	simulations at 36- and 4-km resolutions are in reasonably good agreement with the regional mean temporospatial
38	NO ₂ observations in the daytime. However, we find significant overestimations (underestimations) of model
39	simulated NO ₂ (O ₃) surface concentrations during nighttime, which can be mitigated by enhancing nocturnal
40	vertical mixing in the model. Another discrepancy is that Pandora measured NO ₂ TVCDs show much less
41	variation in the late afternoon than simulated in the model. The higher resolution 4-km simulations tend to show
42	larger biases compared to the observations due largely to the larger spatial variations of NO _x emissions in the
43	model when the model spatial resolution is increased from 36 to 4 km. OMI, GOME-2A, and the high-resolution
44	aircraft ACAM observations show a more dispersed distribution of NO ₂ vertical column densities (VCDs) and
45	lower VCDs in urban regions than corresponding 36- and 4-km model simulations, reflecting likely the spatial
46	distribution bias of NO _x emissions in the National Emissions Inventory (NEI) 2011.

47 **1 Introduction**

48 Nitrogen oxides ($NO_x = NO + NO_2$) are among the most important trace gases in the atmosphere due to their 49 crucial role in the formation of ozone (O_3) , secondary aerosols, and their role in the chemical transformation of 50 other atmospheric species, such as carbon monoxide (CO) and volatile organic compounds (VOCs) (Cheng et al., 51 2017; Cheng et al., 2018; Fisher et al., 2016; Li et al., 2019; Liu et al., 2012; Ng et al., 2017; Peng et al., 2016; 52 Zhang and Wang, 2016). NO_x is emitted by both anthropogenic activities and natural sources. Anthropogenic 53 sources account for about 77% of the global NO_x emissions, and fossil fuel combustion and industrial processes 54 are the primary anthropogenic sources, which contribute to about 75% of the anthropogenic emissions (Seinfeld 55 and Pandis, 2016). Other important anthropogenic sources include agriculture and biomass and biofuel burning. 56 Soils and lightning are two major natural sources. Most NO_x is emitted as NO, which is then oxidized to NO_2 by 57 oxidants, such as O_3 , the hydroperoxyl radical (HO₂), and organic peroxy radicals (RO₂).

58 The diurnal variations of NO₂ controlled by physical and chemical processes reflect the temporal patterns of 59 these underlying controlling factors, such as NO_x emissions, chemistry, deposition, advection, diffusion, and 60 convection. Therefore, the observations of NO_2 diurnal cycles can be used to evaluate our understanding of NO_x 61 related emission, chemistry, and physical processes (Frey et al., 2013; Jones et al., 2000; Judd et al., 2018). For 62 example, Brown et al. (2004) analyzed the diurnal patterns of surface NO, NO₂, NO₃, N₂O₅, HNO₃, OH, and O₃ 63 concentrations along the East Coast of the United States (U.S.) during the New England Air Quality Study 64 (NEAQS) campaign in the summer of 2002 and found that the predominant nighttime sink of NO_x through the 65 hydrolysis of N_2O_5 had an efficiency on par with daytime photochemical loss over the ocean surface off the New 66 England coast. Van Stratum et al. (2012) investigated the contribution of boundary layer dynamics to chemistry 67 evolution during the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign in 2008 in 68 Spain and found that entrainment and boundary layer growth in daytime influenced mixed-layer NO and NO₂

69	diurnal cycles on the same order of chemical transformations. David and Nair (2011) found that the diurnal
70	patterns of surface NO, NO ₂ , and O ₃ concentrations at a tropical coastal station in India from November 2007 to
71	May 2009 were closely associated with sea breeze and land breeze which affected the availability of NO _x through
72	transport. They also thought that monsoon-associated synoptic wind patterns could strongly influence the
73	magnitudes of NO, NO ₂ , and O ₃ diurnal cycles. The monsoon effect on surface NO, NO ₂ , and O ₃ diurnal cycles
74	was also observed in China by Tu et al. (2007) on the basis of continuous measurements of NO, NO ₂ , and O_3 at
75	an urban site in Nanjing from January 2000 – February 2003.

76 In addition to surface NO₂ diurnal cycles, the daily variations of NO₂ vertical column densities (VCDs) were 77 also investigated in previous studies. For example, Boersma et al. (2008) compared NO₂ tropospheric VCDs 78 (TVCDs) retrieved from OMI (the Ozone Monitoring Instrument) and SCIAMACHY (SCanning Imaging 79 Absorption SpectroMeter for Atmospheric CHartography) in August 2006 around the world. They found that the 80 diurnal patterns of different types of NO_x emissions could strongly affect the NO_2 TVCD variations between 81 OMI and SCIAMACHY and that intense afternoon fire activity resulted in an increase of NO₂ TVCDs from 82 10:00 LT (local time) to 13:30 LT over tropical biomass burning regions. Boersma et al. (2009) further 83 investigated the NO₂ TVCD change from SCIAMACHY to OMI in different seasons of 2006 in Israeli cities and 84 found that there was a slight increase of NO₂ TVCDs from SCIAMACHY to OMI in winter due to increased NO_x 85 emissions from 10:00 LT to 13:30 LT and a sufficiently weak photochemical sink and that the TVCDs from OMI 86 were lower than SCIAMACHY in summer due to a strong photochemical sink of NO_x.

All these above researches, however, exploited only NO₂ surface or satellite VCD measurements. Due to the availability of ground-based NO₂ VCD observations, some recent studies tried to investigate the diurnal relationships between NO₂ surface concentrations and NO₂ VCDs (Kollonige et al., 2018; Thompson et al., 2019). For example, Zhao et al. (2019) converted Pandora direct-sun and zenith-sky NO₂ VCDs to NO₂ surface

91	concentrations using concentration-to-partial-column ratios and found that the derived concentrations well
92	captured the observed NO ₂ surface diurnal and seasonal variations. Knepp et al. (2015) related the daytime
93	variations of NO2 TVCD measurements by ground-based Pandora instruments to the variations of coincident NO2
94	surface concentrations using a planetary boundary layer height (PBLH) factor over the periods July 2011 -
95	October 2011 at the NASA Langley Research Center in Hampton, Virginia and July 2011 at Padonia and
96	Edgewood sites in Maryland for the DISCOVER-AQ experiment, showing the importance of boundary-layer
97	vertical mixing on NO ₂ vertical distributions and the ability of NO ₂ VCD measurements to infer hourly
98	boundary-layer NO2 variations. DISCOVER-AQ, the Deriving Information on Surface conditions from Column
99	and Vertically Resolved Observations Relevant to Air Quality experiment (https://discover-aq.larc.nasa.gov/, last
100	access: April 6, 2019), was designed to better understand the relationship between boundary-layer pollutants and
101	satellite observations (Flynn et al., 2014; Reed et al., 2015). Figure 1 shows the sampling locations of the summer
102	DISCOVER-AQ 2011 campaign in the Baltimore-Washington metropolitan region. In this campaign, the NASA
103	P-3B aircraft flew spirals over six air quality monitoring sites (Aldino - rural/suburban, Edgewood -
104	coastal/urban, Beltsville - suburban, Essex - coastal/urban, Fairhill - rural, and Padonia - suburban) (Table S1)
105	and the Chesapeake Bay (Cheng et al., 2017; Lamsal et al., 2014), and measured 245 NO ₂ profiles in 14 flight
106	days in July (Zhang et al., 2016). During the same period, the NASA UC-12 aircraft flew across the Baltimore-
107	Washington region at an altitude about 8 km above sea level (ASL), using the Airborne Compact Atmospheric
108	Mapper (ACAM) to map the distributions of NO ₂ VCDs below the aircraft (Lamsal et al., 2017). Furthermore,
109	ground-based instruments were deployed to measure NO2 surface concentrations, NO2 VCDs, and other physical
110	properties of the atmosphere (Anderson et al., 2014; Reed et al., 2015; Sawamura et al., 2014). Satellite OMI and
111	GOME-2A (Global Ozone Monitoring Experiment – 2A) instruments provided NO ₂ TVCD measurements over
112	the campaign region at 13:30 and 9:30 LT, respectively. These concurrent measurements of NO ₂ VCDs, surface
113	NO ₂ , and vertically resolved distributions of NO ₂ during the DISCOVER-AQ 2011 campaign, therefore, provide

114 a comprehensive dataset to evaluate NO_2 diurnal and spatial variabilities and processes affecting NO_2

115 concentrations.

116	Section 2 describes the measurement datasets in detail. The Regional chEmistry and trAnsport Model
117	(REAM), also described in section 2, is applied to simulate the NO ₂ observations during the DISCOVER-AQ
118	campaign in July 2011. The evaluations of the simulated diurnal cycles of surface NO ₂ concentrations, NO ₂
119	vertical profiles, and NO ₂ TVCDs are discussed in section 3 through comparisons with observations. In section 3,
120	we also investigate the differences between NO ₂ diurnal cycles on weekdays and weekends and their implications
121	for NO _x emission characteristics. To corroborate our evaluation of NO _x emissions based on NO ₂ diurnal cycles,
122	we further compare observed NO _y (reactive nitrogen compounds) concentrations with REAM simulation results
123	in section 3. Moreover, we assess the resolution dependence of REAM simulation results in light of the
124	observations and discuss the potential distribution biases of NO _x emissions by comparing the 36- and 4-km
125	REAM simulation results with OMI, GOME-2A, and high-resolution ACAM NO ₂ VCDs. Finally, we summarize
126	the study in section 4.

127 **2 Datasets and model description**

128 2.1 REAM

REAM has been widely applied in many studies (Cheng et al., 2017; Choi et al., 2008; Li et al., 2019; Zhang et al., 2018; Zhang et al., 2016; Zhao et al., 2009). The model has a horizontal resolution of 36 km and 30 vertical layers in the troposphere. Meteorology fields are from a Weather Research and Forecasting (WRF, version 3.6) model simulation with a horizontal resolution of 36 km. We summarize the physics parameterization schemes of the WRF simulation in Table S2. The WRF simulation is initialized and constrained by the NCEP coupled forecast system model version 2 (CFSv2) products (http://rda.ucar.edu/datasets/ds094.0/, last access: March 10,

135 20	015) (Saha et al., 2011)	. The chemistry mechanism	in REAM is based on C	EOS-Chem v11.01 with updated
---------------	--------------------------	---------------------------	-----------------------	------------------------------

aerosol uptake of isoprene nitrates (Fisher et al., 2016) and revised treatment of wet scavenging processes (Luo et

al., 2019). A $2^{\circ} \times 2.5^{\circ}$ GEOS-Chem simulation provides the chemical boundary and initial conditions.

138	Biogenic VOC emissions in REAM are from MEGAN v2.10 (Guenther et al., 2012). Anthropogenic
139	emissions on weekdays are from the National Emission Inventory 2011 (NEI2011) (EPA, 2014) from the Pacific
140	Northwest National Laboratory (PNNL), which has an initial resolution of 4 km and is re-gridded to REAM 36-
141	km grid cells (Figure 2). Weekday emission diurnal profiles are from NEI2011. The weekday to weekend
142	emission ratios and weekend emission diurnal profiles are based on previous studies (Beirle et al., 2003; Boersma
143	et al., 2009; Choi et al., 2012; de Foy, 2018; DenBleyker et al., 2012; Herman et al., 2009; Judd et al., 2018;
144	Kaynak et al., 2009; Kim et al., 2016). These studies suggested that weekend NO_x emissions were 20% - 50%
145	lower than weekday emissions, and the weekend NO _x emission diurnal cycles were different from weekdays;
146	therefore, we specify a weekend to weekday NO_x emission ratio of 2/3 in this study. The resulting diurnal
147	variations of weekday and weekend NO _x emissions over the DISCOVER-AQ 2011 region are shown in Figure 3.
148	The diurnal emission variation is lower on weekends than on weekdays.
149	To understand the effects of model resolutions on the temporospatial distributions of NO ₂ , we also conduct a
150	REAM simulation with a horizontal resolution of 4 km during the DISCOVER-AQ campaign. A 36-km REAM
151	simulation (discussed in section 3.2) provides the chemical initial and hourly boundary conditions. Meteorology
152	fields are from a nested WRF simulation (36 km, 12 km, 4 km) with cumulus parameterization turned off in the
153	4-km domain (Table S2). Figure 1 shows a comparison of the 4-km and 36-km REAM grid cells with
154	DISCOVER-AQ observations, and Figure 2 shows a comparison of NO _x emission distributions between the 4-km
155	and 36-km REAM simulations. The comparison of NO _x emission diurnal variations over the DISCOVER-AQ
156	2011 region between the 4-km and 36-km REAM is shown in Figure 3.

157 2.2 NO₂ TVCD measurements by OMI and GOME-2A

159	of around 13:30 LT was developed by the Finnish Meteorological Institute and the Netherlands Agency for
160	Aerospace Programs to measure solar backscattering radiation in the visible and ultraviolet bands (Levelt et al.,
161	2006; Russell et al., 2012). The radiance measurements are used to derive trace gas concentrations in the
162	atmosphere, such as O_3 , NO_2 , HCHO, and SO_2 (Levelt et al., 2006). OMI has a nadir resolution of 13 km \times 24 km
163	and provides daily global coverage (Levelt et al., 2006).
164	Two widely-used archives of OMI NO ₂ VCD products are available, NASA OMNO2 (v4.0)
165	(https://disc.gsfc.nasa.gov/datasets/OMNO2_003/summary, last access: September 26, 2020) and KNMI
166	DOMINO (v2.0) (http://www.temis.nl/airpollution/no2.html, last access: January 14, 2015). Although both use
167	Differential Optical Absorption Spectroscopy (DOAS) algorithms to derive NO2 slant column densities, they
168	have differences in spectral fitting, stratospheric and tropospheric NO ₂ slant column density (SCD) separation, a
169	priori NO2 vertical profiles, and air mass factor (AMF) calculation, etc. (Boersma et al., 2011; Bucsela et al.,
170	2013; Chance, 2002; Krotkov et al., 2017; Lamsal et al., 2021; Marchenko et al., 2015; Oetjen et al., 2013; van
171	der A et al., 2010; Van Geffen et al., 2015). Both OMNO2 and DOMINO have been extensively evaluated with
172	field measurements and models (Boersma et al., 2009; Boersma et al., 2011; Choi et al., 2020; Hains et al., 2010;
173	Huijnen et al., 2010; Ionov et al., 2008; Irie et al., 2008; Lamsal et al., 2014; Lamsal et al., 2021; Oetjen et al.,
174	2013). The estimated uncertainty of DOMINO TVCD product includes an absolute component of 1.0×10^{15}
175	molecules cm ⁻² and a relative AMF component of 25% (Boersma et al., 2011), while the uncertainty of OMNO2
176	TVCD product ranges from ~30% under clear-sky conditions to ~60% under cloudy conditions (Lamsal et al.,
177	2014; Oetjen et al., 2013; Tong et al., 2015). In order to reduce uncertainties in this study, we only use TVCD
178	data with effective cloud fractions < 0.2, solar zenith angle (SZA) < 80° , and albedo ≤ 0.3 . Both positive and

The OMI instrument onboard the sun-synchronous NASA EOS Aura satellite with an equator-crossing time

negative TVCDs are considered in the calculation. The data affected by row anomaly are excluded (Boersma etal., 2018; Zhang et al., 2018).

181	For AMF calculation, DOMINO used daily TM4 model results with a resolution of $3^{\circ} \times 2^{\circ}$ as a priori NO ₂
182	vertical profiles (Boersma et al., 2007; Boersma et al., 2011), while OMNO2 v4.0 used monthly mean values
183	from the Global Modeling Initiative (GMI) model with a resolution of $1^{\circ} \times 1.25^{\circ}$. The relatively coarse horizontal
184	resolution of the a priori NO ₂ profiles in the retrievals can introduce uncertainties in the spatial and temporal
185	characteristics of NO ₂ TVCDs at satellite pixel scales. For comparison purposes, we also use 36-km REAM
186	simulation results as the a priori NO ₂ profiles to compute the AMFs and NO ₂ TVCDs with the DOMINO
187	algorithm. The 36-km REAM NO ₂ data are first regridded to OMI pixels to calculate the corresponding
188	tropospheric AMFs, which are then applied to compute OMI NO2 TVCDs by dividing the tropospheric SCDs
189	from the DOMINO product by our updated AMFs.
190	The GOME-2 instrument onboard the polar-orbiting MetOp-A satellite (now referred to as GOME-2A) is an
191	improved version of GOME-1 launched in 1995 and has an overpass time of 9:30 LT and a spatial resolution of
192	80×40 km ² (Munro et al., 2006; Peters et al., 2012). GOME-2A measures backscattered solar radiation in the
193	range from 240 nm to 790 nm, which is used for VCD retrievals of trace gases, such as O ₃ , NO ₂ , BrO, and SO ₂
194	(Munro et al., 2006). We use the KNMI TM4NO2A v2.3 GOME-2A NO ₂ VCD product archived on
195	http://www.temis.nl/airpollution/no2col/no2colgome2_v2.php (last access: January 22, 2015) (Boersma et al.,
196	2007; Boersma et al., 2011). GOME-2A derived NO ₂ VCDs have been validated with SCIAMACHY and MAX-
197	DOAS measurements (Irie et al., 2012; Peters et al., 2012; Richter et al., 2011). As in the case of OMI, we use the
198	same criteria to filter the NO ₂ TVCD data and recalculate the tropospheric AMF values and GOME-2A TVCDs
199	using the daily 36-km REAM NO ₂ profiles (9:00 LT $-$ 10:00 LT).

200 2.3 Pandora ground-based NO₂ VCD measurements

201 Pandora is a small direct sun spectrometer, which measures sun and sky radiance from 270 to 530 nm with a 202 0.5 nm resolution and a 1.6° field of view (FOV) for the retrieval of the total VCDs of NO₂ with a precision of about 5.4×10^{14} molecules/cm² (2.7×10^{14} molecules/cm² for NO₂ SCD) and a nominal accuracy of 2.7×10^{15} 203 204 molecules cm⁻² under clear-sky conditions (Herman et al., 2009; Lamsal et al., 2014; Zhao et al., 2020). There 205 were 12 Pandora sites operating in the DISCOVER-AQ campaign (Figure 1). Six of them are the same as the P-206 3B aircraft spiral locations (Aldino, Edgewood, Beltsville, Essex, Fairhill, and Padonia) (Table S1 and Figure 1). 207 The other six sites are Naval Academy (Annapolis Maryland) (USNA – ocean), University of Maryland College 208 Park (UMCP - urban), University of Maryland Baltimore County (UMBC - urban), Smithsonian Environmental 209 Research Center (SERC - rural/coastal), Oldtown in Baltimore (Oldtown - urban), and Goddard Space Flight 210 Center (GSFC – urban/suburban) (Table S1 and Figure 1). In this study, we exclude the USNA site as its 211 measurements were conducted on a ship ("Pandora(w)" in Figure 1), and there were no other surface 212 observations in the corresponding REAM grid cell. Including the data from the USNA site has a negligible effect 213 on the comparisons of observed and simulated NO₂ TVCDs. In our analysis, we ignore Pandora measurements 214 with SZA > 80° (Figure S1) and exclude the data when fewer than three valid measurements are available within 215 an hour to reduce the uncertainties of the hourly averages due to the significant variations of Pandora 216 observations (Figure S2).

Since Pandora measures total NO₂ VCDs, we need to subtract stratosphere NO₂ VCDs from the total VCDs to compute TVCDs. As shown in Figure S3, stratosphere NO₂ VCDs show a clear diurnal cycle with an increase during daytime due in part to the photolysis of reactive nitrogen reservoirs such as N₂O₅ and HNO₃ (Brohede et al., 2007; Dirksen et al., 2011; Peters et al., 2012; Sen et al., 1998; Spinei et al., 2014), which is consistent with the significant increase of stratospheric NO₂ VCDs from GOME-2A to OMI. In this study, we use the GMI model simulated stratospheric NO₂ VCDs in Figure S3 to calculate the Pandora NO₂ TVCDs. The small

223 discrepancies between the GMI stratospheric NO₂ VCDs and satellite products do not change the pattern of

224 Pandora NO₂ TVCD diurnal variations or affect the conclusions in this study.

225 2.4 ACAM NO₂ VCD measurements

226	The ACAM instrument onboard the UC-12 aircraft consists of two thermally spectrometers in the
227	ultraviolet/visible/near-infrared range. The spectrometer in the ultraviolet/visible band (304 nm - 520 nm) with a
228	resolution of 0.8 nm and a sampling of 0.105 nm can be used to detect NO_2 in the atmosphere. The native ground
229	resolution of UC-12 ACAM NO ₂ measurements is 0.5 km \times 0.75 km at a flight altitude of about 8 km ASL and a
230	nominal ground speed of 100 m s ⁻¹ during the DISCOVER-AQ 2011 campaign (Lamsal et al., 2017), thus
231	providing high-resolution NO ₂ VCDs below the aircraft.
232	In this study, we mainly use the ACAM NO ₂ VCD product described by Lamsal et al. (2017), which applied
233	a pair-average co-adding scheme to produce NO ₂ VCDs at a ground resolution of about 1.5 km (cross-track) \times
234	1.1 km (along-track) to reduce noise impacts. In their retrieval of ACAM NO ₂ VCDs, they first used the DOAS
235	fitting method to generate differential NO ₂ SCDs relative to the SCDs at an unpolluted reference location. Then
236	they computed above/below-aircraft AMFs at both sampling and reference locations based on the vector

they computed above/below-aircraft AMFs at both sampling and reference locations based on the vector
linearized discrete ordinate radiative transfer code (VLIDORT) (Spurr, 2008). In the computation of AMFs, the a

238 priori NO₂ vertical profiles were from a combination of a high-resolution (4-km) CMAQ (the Community

239 Multiscale Air Quality Modeling System) model outputs in the boundary layer and a GMI simulation $(2^{\circ} \times 2.5^{\circ})$

results elsewhere in the atmosphere. Finally, the below-aircraft NO₂ VCDs at the sampling locations were

241 generated by dividing below-aircraft NO₂ SCDs at the sampling locations by the corresponding below-aircraft

AMFs. The below-aircraft NO₂ SCDs were the differences between the total and above-aircraft NO₂ SCDs. The

total NO₂ SCDs were the sum of DOAS fitting generated differential NO₂ SCDs and NO₂ SCDs at the reference

location, and the above-aircraft NO₂ SCDs were derived based on above-aircraft AMFs, GMI NO₂ profiles, and

245	OMNO2 stratospheric NO ₂ VCDs (Lamsal et al., 2017). The ACAM NO ₂ VCD product had been evaluated via
246	comparisons with other independent observations during the DISCOVER-AQ 2011 campaign, such as P-3B
247	aircraft, Pandora, and OMNO2, and the uncertainty of individual below-aircraft NO2 VCD is about 30% (Lamsal
248	et al., 2017). To keep the consistency of ACAM NO ₂ VCDs, we exclude NO ₂ VCDs measured at altitudes < 8 km
249	ASL, which accounts for about 6.8% of the total available ACAM NO $_2$ VCD data. We regrid the 1.5 km \times 1.1
250	km ACAM NO ₂ VCDs to the 4-km REAM grid cells (Figure 1), which are then used to evaluate the distribution
251	of NO ₂ VCDs in the 4-km REAM simulation. As a supplement in section 3.7, we also assess the 4-km REAM
252	simulation by using the UC-12 ACAM NO ₂ VCDs produced by the Smithsonian Astrophysical Observatory
253	(SAO) algorithms, archived on https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-
254	<u>2011?UC12=1#LIU.XIONG/</u> (last access: December 31, 2019) (Liu et al., 2015a; Liu et al., 2015b). This product
255	is an early version of the SAO algorithm used to produce the Geostationary Trace gas and Aerosol Sensor
256	Optimization (GeoTASO) and the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne
257	Simulator (GCAS) airborne observations in later airborne campaigns (Nowlan et al., 2016; Nowlan et al., 2018).

258 2.5 Surface NO₂ and O₃ measurements

259	The measurement of NO_x is based on the chemiluminescence of electronically excited NO_2^* , produced from
260	the reaction of NO with O_3 , and the strength of the chemiluminescence from the decay of NO_2^* to NO_2 is
261	proportional to the number of NO molecules present (Reed et al., 2016). NO ₂ concentrations can be measured
262	with this method by converting NO ₂ to NO first through catalytic reactions (typically on the surface of heated
263	molybdenum oxide (MoO _x) substrate) or photolytic processes (Lamsal et al., 2015; Reed et al., 2016). However,
264	for the catalytic method, reactive nitrogen compounds other than NO _x (NO _z), such as HNO ₃ , peroxyacetyl nitrate
265	(PAN), and other organic nitrates, can also be reduced to NO on the heated surface, thus causing an
266	overestimation of NO2. The magnitude of the overestimation depends on the concentrations and the reduction

efficiencies of interference species, both of which are uncertain. The photolytic approach, which employs
broadband photolysis of ambient NO₂, offers more accurate NO₂ measurements (Lamsal et al., 2015).

269	There were 11 NO _x monitoring sites operating in the DISCOVER-AQ region during the campaign (Figure
270	1), including those from the EPA Air Quality System (AQS) monitoring network and those deployed for the
271	DISCOVER-AQ campaign. Nine of them measured NO ₂ concentrations by a catalytic converter. The other two
272	sites (Edgewood and Padonia) had NO2 measurements from both catalytic and photolytic methods. Different
273	stationary catalytic instruments were used during the campaign: Thermo Electron 42C-Y NO _y analyzer, Thermo
274	Model 42C NO _x analyzer, Thermo Model 42I-Y NO _y analyzer, and Ecotech Model 9843/9841 T-NO _y analyzers.
275	In addition, a mobile platform — NATIVE (Nittany Atmospheric Trailer and Integrated Validation Experiment)
276	with a Thermo Electron 42C-Y NO _y analyzer installed, was also deployed in the Edgewood site. The photolytic
277	measurements of NO_2 in Edgewood and Padonia were from Teledyne API model 200eup photolytic NO_x
278	analyzers. We scale catalytic NO ₂ measurements using the diurnal ratios of NO ₂ photolytic measurements to NO ₂
279	from the corresponding catalytic analyzers (Figure 4). Figure 4 shows the lowest photolytic/catalytic ratios in the
280	afternoon, which reflects the production of nitrates and other reactive nitrogen compounds from NO_x in the
281	daytime. When photolytic measurements are available, we only use the photolytic observations in this study;
282	otherwise, we use the scaled catalytic measurements.

Nineteen surface O₃ monitoring sites were operating in the DISCOVER-AQ region during the campaign
(Figure 1). They measured O₃ concentrations by using a Federal Equivalent Method (FEM) based on the UV
absorption of O₃ (<u>https://www.arb.ca.gov/aaqm/qa/qa-manual/vol4/chapter6o3.pdf</u>, last access: April 6, 2019)
with an uncertainty of 5 ppb.

287 2.6 Aircraft measurements of NO₂ vertical profiles

In this study, we mainly use the NO₂ concentrations measured by the National Center for Atmospheric Research (NCAR) 4-channel chemiluminescence instrument (P-CL) onboard the P-3B aircraft for the evaluation of REAM simulated NO₂ vertical profiles. The instrument has a NO₂ measurement uncertainty of 10% – 15% and a 1-second, 1-sigma detection limit of 30 pptv.

NO₂ measurements from aircraft spirals provide us with NO₂ vertical profiles. Figure 1 shows the locations of the aircraft spirals during the DISCOVER-AQ campaign, except for the Chesapeake Bay spirals over the ocean. There were only six spirals available over the Chesapeake Bay, which have ignorable impacts on the following analyses. Therefore, we do not use them in this study. The rest 239 spirals in the daytime for July 2011 are used to compute the average profiles of NO₂ for the six inland sites (Figure 1).

The aircraft measurements were generally sampled from about a height of 300 m AGL in the boundary layer to 3.63 km AGL in the free troposphere. We bin these measurements to REAM vertical levels. In order to make up the missing observations between the surface and 300 m, we apply quadratic polynomial regressions by using aircraft data below 1 km and coincident NO_2 surface measurements.

In addition to using NO₂ concentrations from the NCAR 4-channel instrument to evaluate REAM simulated NO₂ vertical profiles, we also use P-3B NO, NO₂, and NO_y concentrations measured by the NCAR 4-channel instrument and NO₂, total peroxyacyl nitrates (Σ PNs), total alkyl nitrates (Σ ANs) (include alkyl nitrates and hydroxyalkyl nitrates), and HNO₃ concentrations measured by the thermal dissociation-laser induced fluorescence (TD-LIF) technique (Day et al., 2002; Thornton et al., 2000; Wooldridge et al., 2010) to evaluate the concentrations of NO_y from REAM (Table 1). All these P-3B measurements are vertically binned to REAM grid cells for comparisons with REAM results. In addition, below the P-3B spirals, four NO_y observation sites at

- 308 Padonia, Edgewood, Beltsville, and Aldino were operating to provide continuous hourly NO_y surface
- 309 concentrations during the campaign, which we also use to evaluate REAM simulated NO_y surface concentrations
- in this study. We summarize the information of available observations at the 11 inland Pandora sites in Table S1.

311 **3 Results and discussion**

312 3.1 Evaluation of WRF simulated meteorological fields

313 We evaluate the performances of the 36-km and nested 4-km WRF simulations using temperature, potential 314 temperature, relative humidity (RH), and wind measurements from the P-3B spirals (Figure 1) and precipitation 315 data from the NCEP (National Centers for Environmental Prediction) Stage IV precipitation dataset. Generally, 316 P-3B spirals range from ~300 m to ~3.63 km in height above the ground level (AGL). As shown in Figure S4, 317 both the 36-km and nested 4-km WRF simulations simulate temperature well with $R^2 = 0.98$. Both WRF simulations show good agreement with P-3B measurements in U-wind (36-km: $R^2 = 0.77$; 4-km: $R^2 = 0.76$), V-318 319 wind (36-km: $R^2 = 0.79$; 4-km: $R^2 = 0.78$), wind speed (36-km: $R^2 = 0.67$; 4-km: $R^2 = 0.67$), and wind direction 320 (Figures S4 and S5). We further compare the temporal evolutions of vertical profiles for temperature, potential 321 temperature, RH, U-wind, and V-wind below 3 km from the P-3B observations with those from the 36-km and 322 nested 4-km WRF simulations in Figure S6. Both WRF simulations well capture the temporospatial variations of 323 P-3B observed vertical profiles except that RH below 1.5 km is significantly underestimated during 9:00 - 17:00324 LT in both WRF simulations. The evaluations above suggest that WRF simulated wind fields are good and 325 comparable at 4-km and 36-km resolutions, but potential dry biases exist in both WRF simulations.

The NCEP Stage IV precipitation dataset provides hourly precipitation across the contiguous United States (CONUS) with a resolution of ~4 km based on the merging of rain gauge data and radar observations (Lin and Mitchell, 2005; Nelson et al., 2016). The Stage IV dataset is useful for evaluating model simulations, satellite

329	precipitation estimates, and radar precipitation estimates (Davis et al., 2006; Gourley et al., 2011; Kalinga and
330	Gan, 2010; Lopez, 2011; Yuan et al., 2008). We obtain the Stage IV precipitation data for July 2011 from the
331	NCAR/UCAR Research Data Archive (<u>https://rda.ucar.edu/datasets/ds507.5/,</u> last access: December 28, 2019).
332	As shown in Figures S7 and S8, generally, both the 36-km and nested 4-km WRF simulations generally predict
333	much less precipitation (in precipitation amount and duration) compared to the Stage-IV data in July 2011 around
334	the DISCOVER-AQ campaign region, especially for the nested 4-km WRF simulation, consistent with the
335	aforementioned underestimated RH and dry bias in WRF simulations. The precipitation biases in the WRF model
336	will affect REAM simulations of trace gases, leading to high biases of soluble species due to underestimated wet
337	scavenging. Clouds interfere with satellite observations. Therefore, the precipitation bias does not affect model
338	evaluations with satellite measurements of NO2. Aircraft measurements were also taken in non-precipitating days.
339 340	3.2 Effect of boundary layer vertical mixing on the diurnal variations of surface NO ₂ concentrations 3.2.1 36-km model simulation in comparison to the surface observations
341	Figures 5a and 5b show the observed and 36-km REAM simulated diurnal cycles of surface NO_2 and O_3
342	concentrations on weekdays in July 2011 in the DISCOVER-AQ region. REAM with WRF-YSU simulated
343	vertical diffusion coefficient (k_{zz}) values significantly overestimates NO ₂ concentrations and underestimates O ₃
344	concentrations at night, although it captures the patterns of the diurnal cycles of surface NO ₂ and O ₃ : an O ₃ peak
345	and a NO ₂ minimum around noontime. Here, YSU denotes the Yonsei University planetary boundary layer (PBL)
346	scheme (Shin and Hong, 2011) used by our WRF simulations (Table S2). At night, the reaction of $O_3 + NO \rightarrow O_2$
347	+ NO ₂ produces NO ₂ but removes O ₃ . Since most NO _x emissions are in the form of NO, the model biases of low
348	O_3 and high NO_2 occur at the same time. Since there are no significant chemical sources of O_3 at night, mixing of
349	O_3 rich air above the surface is the main source of O_3 supply near the surface. Therefore, the nighttime model

biases with WRF-YSU simulated k_{zz} data in Figure 5 indicate that vertical mixing may be underestimated at night.

352 During the DISCOVER-AQ campaign, WRF simulated vertical wind velocities are very low at night and 353 have little impact on vertical mixing (Figure S9a). The nighttime vertical mixing is mainly attributed to turbulent 354 mixing. However, Hu et al. (2012) found that the YSU scheme underestimated nighttime PBL vertical turbulent 355 mixing in WRF, which is consistent with Figure 6 showing that WRF-YSU k_{zz} -determined mixed-layer heights 356 (MLHs) are significantly lower than lidar observations in the late afternoon and at night at the UMBC site during 357 the DISCOVER-AQ campaign (Knepp et al., 2017). Here, the k_{zz} -determined MLH refers to the mixing height 358 derived by comparing k_{zz} to its background values (Hong et al., 2006) but not the PBLH outputs from WRF. 359 UMBC is an urban site (Table S1), surrounded by a mixture of constructed materials and vegetation. The UMBC 360 lidar MLH data were derived from the Elastic Lidar Facility (ELF) attenuated backscatter signals by using the 361 covariance wavelet transform (CWT) method and had been validated against radiosonde measurements (N 362 (Number of data points) = 24; $R^2 = 0.89$; bias (ELF – radiosonde) = 0.03 ± 0.23 km), Radar wind profiler 363 observations (N = 659; $R^2 = 0.78$; bias = -0.21 ± 0.36 km), and Sigma Space mini-micropulse lidar data (N = 364 8122; $R^2 = 0.85$; bias = 0.02 \pm 0.22 km) from the Howard University Beltsville Research Campus (HUBRC) in 365 Beltsville, Maryland (38.058° N, 76.888° W) in the daytime during the DISCOVER-AQ campaign (Compton et 366 al., 2013). It is noteworthy that although CWT is not designed to detect the nocturnal boundary layer (NBL), it 367 does consider the residue layer (RL) and distinguish it from MLH in the early morning after sunrise, which is 368 similar to nighttime conditions. Therefore, CWT can detect nighttime MLHs, although with large uncertainties 369 due to the hard-coded assumption of RL = 1 km in the algorithm and insufficient vertical resolution of the 370 technique. In addition, the sunrise and sunset time in July 2011 is about 5:00 LT and 19:30 LT 371 (https://gml.noaa.gov/grad/solcalc/sunrise.html, last access: May 27, 2021), respectively. Figure 6 shows that 372 WRF-YSU k_{zz} -determined MLHs are significantly lower than ELF observations after sunrise at 5:00 – 8:00 LT

373 and before sunset at 18:00 - 20:00 LT. Even if we do not consider MLHs at night (19:30 - 5:00 LT), we can still 374 conclude that WRF-YSU underestimates vertical mixing in the early morning after sunrise and the late afternoon 375 before sunset, enabling a reasonable assumption that WRF-YSU also underestimates nighttime vertical mixing. 376 Moreover, the nighttime MLHs in Figure 6 are comparable to those measured by the Vaisala CL51 ceilometer at 377 the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, 378 Virginia (Knepp et al., 2017). Finally, we want to emphasize that different definitions of NBL can result in 379 significantly different NBL heights (Breuer et al., 2014). In this study, we follow Knepp et al. (2017) to use 380 MLHs derived from aerosol backscatter signals as the measure of vertical pollutant mixing within the boundary 381 layer, which is simulated by k_{77} in REAM.

382 To improve nighttime PBL vertical turbulent mixing in REAM, we increase k_{zz} below 500 m during 18:00 – 5:00 LT to 5 m s⁻² if the WRF-YSU computed $k_{zz} < 5$ m s⁻², which significantly increases the k_{zz} -determined 383 384 MLHs at night (Figure 6), leading to the decreases of simulated surface NO_2 and the increases of surface O_3 concentrations at night (Figure 5). The assigned value of 5 m s⁻² is arbitrary. Changing this value to 2 or 10 m s⁻² 385 386 can also alleviate the biases of model simulated nighttime surface NO_2 and O_3 concentrations (Figure S10). 387 Considering the potential uncertainties of nighttime NO_x emissions, an alternative solution to correct the model 388 nighttime simulation biases is to reduce NO_x emissions, which can decrease the consumption of O_3 through the 389 process of NO_x titration mentioned above ($O_3 + NO \rightarrow O_2 + NO_2$). Our sensitivity tests (not shown) indicate that 390 it is necessary to reduce NO_x emissions by 50-67% to eliminate the model nighttime simulation biases, but we 391 cannot find good reasons to justify this level of NO_x emission reduction only at night.

The updated REAM simulation of surface NO₂ diurnal pattern in Figure 5a is in good agreement with previous studies (Anderson et al., 2014; David and Nair, 2011; Gaur et al., 2014; Reddy et al., 2012; Zhao et al., 2019). Daytime surface NO₂ concentrations are much lower compared to nighttime, and NO₂ concentrations

395	reach a minimum around noontime. As shown in Figure S11, under the influence of vertical turbulent mixing, the
396	surface-layer NO _x emission diurnal pattern is similar to the surface NO ₂ diurnal cycle in Figure 5a, emphasizing
397	the importance of turbulent mixing on modulating surface NO ₂ diurnal variations. The highest boundary layer
398	(Figure 6) due to solar radiation leads to the lowest surface-layer NO_x emissions (Figure S11) and, therefore, the
399	smallest surface NO ₂ concentrations occur around noontime (Figure 5a). Transport, which is mainly attributed to
400	advection and turbulent mixing, is another critical factor affecting surface NO ₂ diurnal variations (Figure S11).
401	The magnitudes of transport fluxes (Figure S11) are proportional to horizontal and vertical gradients of NO_x
402	concentrations and are therefore generally positively correlated to surface NO ₂ concentrations. However, some
403	exceptions exist, reflecting different strengths of advection (U, V, and W) and turbulent mixing (k_{zz}) at different
404	times. For example, in the early morning, NO ₂ surface concentrations peak at $5:00 - 6:00$ LT (Figure 5a), while
405	transport fluxes peak at $7:00 - 8:00$ LT (Figure S11). The delay of the peak is mainly due to lower turbulent
406	mixing at $5:00 - 6:00$ LT than other daytime hours in the model (Figure 6). Chemistry also contributes to surface
407	NO_2 diurnal variations mainly through photochemical sinks in the daytime and N_2O_5 hydrolysis at nighttime.
408	Chemistry fluxes in Figure S11 are not only correlated to the strength of photochemical reactions and N_2O_5
409	hydrolysis (chemistry fluxes per unit NO _x) but are also proportional to NO _x surface concentrations. Therefore,
410	chemistry fluxes in Figure S11 cannot directly reflect the impact of solar radiation on photochemical reactions. It
411	can, however, still be identified by comparing afternoon chemistry contributions: from 13:00 to 15:00 LT,
412	surface-layer NO _x emissions and NO ₂ concentrations are increasing (Figures S11 and 5a); however, chemistry
413	losses are decreasing as a result of the reduction of photochemical sinks with weakening solar radiation. The
414	contributions of vertical mixing and photochemical sinks to NO ₂ concentrations can be further corroborated by
415	daytime variations of NO ₂ vertical profiles and TVCDs discussed in sections 3.3 and 3.4.

416 Figure 5c shows the diurnal variation on weekends is also simulated well in the improved 36-km model. The 417 diurnal variation of surface NO₂ concentrations (REAM: 1.5 - 10.2 ppb; observations: 2.1 - 9.8 ppb) is lower

- 418 than on weekdays (REAM: 2.4 12.2 ppb; observations: 3.3 14.5 ppb), reflecting lower magnitude and
- 419 variation of NO_x emissions on weekends (Figure 3). Figure 5d also shows an improved simulation of surface O_3
- 420 concentrations at nighttime due to the improved MLH simulation (Figure 6).
- 421 3.2.2 4-km model simulation in comparison to the surface observations

422 The results of 4-km REAM simulations with original WRF-YSU k_{zz} (not shown) are very similar to Figure 5 423 since WRF simulated nocturnal vertical mixing is insensitive to the model horizontal resolution. Applying the 424 modified nocturnal mixing in the previous section also greatly reduced the nighttime NO₂ overestimate and O_3 425 underestimate in the 4-km REAM simulations. All the following analyses are based on REAM simulations with 426 improved nocturnal mixing. Figure 7 shows that mean surface NO₂ concentrations simulated in the 4-km model 427 are higher than the 36-km results over Padonia, Oldtown, Essex, Edgewood, Beltsville, and Aldino (Table S1), 428 leading to generally higher biases compared to the observations in the daytime. A major cause is that the 429 observation sites are located in regions of high NO_x emissions (Figure 2). At a higher resolution of 4 km, the high 430 emissions around the surface sites are apparent compared to rural regions. At the coarser 36-km resolution, 431 spatial averaging greatly reduces the emissions around the surface sites. On average, NO_x emissions (molecules 432 $km^{-2} s^{-1}$) around the six surface NO₂ observations sites are 67% higher in the 4-km than the 36-km REAM 433 simulations (Table S1). The resolution dependence of model results will be further discussed in the model 434 evaluations using the other in situ and remote sensing measurements.

435 3.3 Diurnal variations of NO₂ vertical profiles

Figures 8a and 8c show the temporal variations of P-3B observed and 36-km REAM simulated NO₂ vertical profiles in the daytime on weekdays during the DISCOVER-AQ campaign. 36-km REAM reproduces well the observed characteristics of NO₂ vertical profiles in the daytime ($R^2 = 0.89$), which are strongly affected by

433	vertical mixing and photochemistry (Zhang et al., 2010). when vertical mixing is weak in the early morning
440	(6:00 - 8:00 LT), NO ₂ , released mainly from surface NO _x sources, is concentrated in the surface layer, and the
441	vertical gradient is large. As vertical mixing becomes stronger after 8:00 LT, NO ₂ concentrations below 500 m
442	decrease significantly, while those over 500 m increase from $6:00 - 8:00$ LT to $12:00 - 14:00$ LT. It is
443	noteworthy that MLHs and NO _x emissions are comparable between $12:00 - 14:00$ LT and $15:00 - 17:00$ LT
444	(Figures 3 and 6); however, NO ₂ concentrations at $15:00 - 17:00$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $12:00 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significantly higher than at $100 - 100$ LT are significant than at $100 -$
445	14:00 LT in the whole boundary layer, reflecting the impact of the decreased photochemical loss of NO_x in the
446	late afternoon. In fact, photochemical losses affect all the daytime NO ₂ vertical profiles, which can be easily
447	identified by NO ₂ TVCD process diagnostics discussed in section 3.4 (Figure 9).
448	Figures 8b and 8d also show the observed and 36-km REAM simulated vertical profiles on weekends

Similar to Figures 5 and 7, observed and simulated concentrations of NO₂ are lower on weekends than on weekdays. Some of the variations from weekend profiles are due to a lower number of observations (47 spirals) on weekends. The overall agreement between the observed vertical profiles and 36-km model results is good on weekends ($R^2 = 0.87$). At 15:00 – 17:00 LT, the model simulates a larger gradient than what the combination of aircraft and surface measurements indicates. It may be related to the somewhat underestimated MLHs in the late afternoon in the model (Figure 6).

On weekdays, most simulated vertical profiles at the 4-km resolution (Figure 8e) are similar to 36-km results in part because the average NO_x emissions over the six P-3B spiral sites are about the same, 4% lower in the 4km than the 36-km REAM simulations (Table S1). A clear exception is the 4-km REAM simulated vertical profile at 15:00 - 17:00 LT when the model greatly overestimates boundary layer NO_x mixing and concentrations. The main reason is that WRF simulated vertical velocities (*w*) in the late afternoon are much larger in the 4-km simulation than the 36-km simulation (Figure S9), which can explain the simulated fully mixed

461	boundary layer at 15:00 – 17:00 LT. Since it is not designed to run at the 4-km resolution and it is commonly
462	assumed that convection can be resolved explicitly at high resolutions, the Kain-Fritsch (new Eta) convection
463	scheme is not used in the nested 4-km WRF simulation (Table S2); it may be related to the large vertical
464	velocities in the late afternoon when thermal instability is the strongest. Appropriate convection parameterization
465	is likely still necessary for 4-km simulations (Zheng et al., 2016), which may also help alleviate the
466	underestimation of precipitation in the nested 4-km WRF simulation as discussed in section 3.1.

The same rapid boundary-layer mixing due to vertical transport is present in the 4-km REAM simulated weekend vertical profile (Figure 8f), although the mixing height is lower. Fewer spirals (47) and distinct transport effect due to different NO₂ horizontal gradients between the 4-km and 36-km REAM simulations (discussed in detail in Section 3.6) may cause the overestimation of weekend profiles in the 4-km REAM simulation.

471 3.4 Daytime variation of NO₂ TVCDs

472 We compare satellite, P-3B aircraft, and model-simulated TVCDs with Pandora measurements, which 473 provide continuous daytime observations. The locations of Pandora sites are shown in Table S1 and Figure 1. 474 Among the Pandora sites, four sites are located significantly above the ground level: UMCP (~20 m), UMBC 475 (~30 m), SERC (~40 m), and GSFC (~30 m). The other sites are 1.5 m AGL. To properly compare Pandora to 476 other measurements and model simulations, we calculate the missing TVCDs between the Pandora site heights 477 and ground surface by multiplying the Pandora TVCDs with model-simulated TVCD fractions of the corresponding columns. The resulting correction is 2-21% $\left(\frac{1}{1-missing TVCD \ percentage}\right)$ for the four sites 478 479 significantly above the ground surface, but the effect on the averaged daytime TVCD variation of all Pandora 480 sites is small (Figure S12). In the following analysis, we use the updated Pandora TVCD data.

The weekday diurnal variations of NO₂ TVCDs from satellites, Pandora, 4- and 36-km REAM, and the P-3B
aircraft are shown in Figure 10a. We calculate aircraft derived TVCDs by using equation (1):

483
$$TVCD_{aircraft}(t) = \frac{\sum c_{aircraft}(t) \times \rho_{REAM}(t) \times V_{REAM}(t)}{A_{REAM}}$$
(1),

484 where t is time; $c_{aircraft}(v/v)$ denotes aircraft NO₂ concentrations (mixing ratios) at each level at time t; ρ_{REAM} 485 (molecules / cm^3) is the density of air from 36-km REAM at the corresponding level; V_{REAM} (cm^3) is the volume of the corresponding 36-km REAM grid cell; A_{REAM} (cm²) is the surface area (36 × 36 km²). In the calculation, we 486 487 only use NO₂ concentrations below 3.63 km AGL because few aircraft measurements were available above this 488 height in the campaign. Missing tropospheric NO₂ above 3.63 km AGL in the aircraft TVCD calculation has little 489 impact on our analyses, as 36-km REAM model simulation shows that $85\% \pm 7\%$ of tropospheric NO₂ are 490 located below 3.63 km AGL during 6:00 – 17:00 LT in the DISCOVER-AQ region, which is roughly consistent 491 with the GMI model results with 85% - 90% tropospheric NO₂ concentrated below 5 km (Lamsal et al., 2014). It 492 should be noted that only six P-3B spirals are available during the campaign, less than the samplings of 11 inland 493 Pandora sites.

494 The 4-km REAM simulated NO₂ TVCDs are mostly higher than the 36-km results and the observations in 495 daytime on weekdays (Figure 10a). However, since the standard deviations of the data are much larger than the 496 model difference, the 4- and 36-km model results generally show similar characteristics relative to the 497 observations. REAM simulation results are in reasonable agreement with Pandora, P-3B aircraft, and satellite 498 daytime NO₂ TVCDs, except that NASA-derived OMI (OMNO2) TVCDs are somewhat lower than other 499 datasets, which may be partly due to biased a priori vertical profiles from the GMI model in the NASA retrieval 500 in the campaign (Lamsal et al., 2014; Lamsal et al., 2021). TVCDs derived by using the DOMINO algorithm and 501 36-km REAM NO₂ vertical profiles are in agreement with those from KNMI, which indicates that the TM4

502 model from KNMI provides reasonable estimates of a priori NO₂ vertical profiles on weekdays in the
503 DISCOVER-AQ region in summer.

504	We find evident decreases of NO ₂ TVCDs from GOME-2A to OMI in Figure 10a, which is consistent with
505	Pandora, REAM results, and previous studies that showed decreasing NO ₂ TVCDs from SCIAMACHY to OMI
506	due to photochemical losses in summer (Boersma et al., 2008; Boersma et al., 2009). P-3B aircraft TVCDs also
507	show this decrease feature but have large variations due in part to the limited aircraft sampling data.
508	Pandora NO ₂ TVCD data have different characteristics from REAM simulated and P-3B aircraft measured
509	TVCDs at 5:00 – 7:00 LT and 14:00 – 18:00 LT (Figure 10a). At 5:00 – 7:00 LT, Pandora data show a significant
510	increase of NO ₂ TVCDs, but REAM and aircraft TVCDs generally decrease except for 4-km REAM TVCDs
511	with a slight increase from 6:00 – 7:00 LT on weekdays. At 14:00 LT – 18:00 LT, Pandora TVCDs have little
512	variations, but REAM and aircraft TVCDs increase significantly. The relatively flat Pandora TVCDs in the late
513	afternoon compared to REAM and P-3B aircraft measurements are consistent with Lamsal et al. (2017), which
514	found that Pandora VCDs were 26% - 30% lower than UC-12 ACAM measurements from 16:00 LT to 18:00 LT
515	during the DISCOVER-AQ campaign. We show the simulated effects of emission, chemistry, transport, and dry
516	deposition on NO _x TVCDs in Figure 9. The simulated early morning slight decrease of NO ₂ TVCDs is mainly
517	due to the chemical transformation between NO_2 and NO favoring the accumulation of NO under low- O_3 and
518	low-HO ₂ /RO ₂ conditions, thus NO TVCDs increase significantly, but NO ₂ TVCDs continue decreasing slowly
519	during the period. The increase in the late afternoon is primarily due to the decrease of photochemistry-related
520	sinks. The reasons for the discrepancies of NO2 TVCDs between Pandora and REAM results during the above
521	two periods are unclear. Large SZAs in the early morning and the late afternoon (Figure S1) lead to the higher
522	uncertainties of Pandora measurements (Herman et al., 2009), although we have excluded Pandora measurements
523	with SZA > 80° . In addition, Pandora is a sun-tracking instrument with a small effective FOV and is sensitive to

524	local conditions within a narrow spatial range which may differ significantly from the average properties of 36-
525	and 4-km grid cells depending upon the time of the day (Figure S13) (Herman et al., 2009; Herman et al., 2018;
526	Herman et al., 2019; Judd et al., 2018; Judd et al., 2019; Judd et al., 2020; Lamsal et al., 2017; Reed et al., 2015).
527	As we mentioned above, ~85% tropospheric NO ₂ are located below 3.63 km in the DISCOVER-AQ 2011 region
528	based on the 36-km REAM simulation results. The Pandora FOV of 1.6° is approximately equivalent to a nadir
529	horizontal extension of only 0.1 km (2 × 3.63 km × $tan \frac{1.6}{2} = 0.1$ km) at 3.63 km AGL and 30 m at 1.0 km
530	AGL. Therefore, Pandora measures different air columns of NO ₂ at different times of the day, especially in the
531	morning and afternoon when SZA is large, as shown in Figure S13. Considering the potential spatial
532	heterogeneity of boundary-layer NO ₂ , it is possible that the morning (east), noontime (nadir), afternoon (west)
533	NO ₂ VCDs are significantly different from each other. Unlike Pandora, satellites and aircraft are far from the
534	ground surface and cover large areas; therefore, the impact of SZA on their NO ₂ VCD measurements is
535	insignificant compared to Pandora measurements. Another possible reason is that Pandora instruments had few
536	observations in the early morning, and the resulting average may not be representative (Figure S2).

537 To further understand the daytime variation of NO₂ TVCDs, we examine P-3B aircraft data derived and 538 REAM simulated NO₂ VCD variations for different height bins (Figure 11). NO₂ VCDs below 3.63 km AGL 539 display a "U"-shaped pattern from 5:00 LT to 17:00 LT. In the morning, as vertical mixing becomes stronger 540 after sunrise, high-NO_x air in the lower layer is mixed with low-NO_x air in the upper layer. The increase of NO_x 541 vertical mixing above 300 m is sufficient to counter the increase of photochemical loss in the morning. 542 Conversely, the NO₂ VCDs below 300 m decrease remarkably from sunrise (about 6:00 LT) to around noontime 543 due to both vertical mixing and the increase of photochemical strength. From 13:00 LT to 16:00 LT, NO₂ VCDs 544 increase slowly, reflecting a relative balance among emissions, transport, chemistry, and dry depositions. The 545 sharp jump of the VCDs from 16:00 LT to 17:00 LT is mainly due to dramatically reduced chemical loss. And 4546 km REAM simulated NO₂ VCDs at 0.30-3.63 km at 16:00-17:00 LT are much higher than 36-km results partly
547 because of the rapid vertical mixing in the 4-km REAM simulation (Figures 8 and S9).

Similar to NO₂ surface concentrations and vertical profiles in Figures 7 and 8, the NO₂ TVCD variation is also smaller on weekends than on weekdays, but the day-night pattern is similar (Figure 10). Although the 4-km REAM NO₂ TVCDs are generally higher than the 36-km results and observations in the daytime, considering their large standard deviations, NO₂ TVCDs from both simulations are comparable to satellite products, Pandora, and P-3B aircraft observations most of the time on weekends. The exception is that Pandora TVCDs have different variation patterns in the early morning and late afternoon from REAM simulations, similar to those found on weekdays.

555 3.5 Model comparisons with NO_v measurements

556 NO_y is longer-lived than NO_x , and NO_y concentrations are not affected by chemistry as much as NO_x . We 557 obtain two types of NO_v concentrations from the P-3B aircraft in the DISCOVER-AQ campaign: one is NO_v 558 concentrations directly measured by the NCAR 4-channel instrument, corresponding to the sum of NO, NO₂, 559 Σ PNs, Σ ANs, HNO₃, N₂O₅, HNO₄, HONO, and the other reactive nitrogenic species in REAM (all the other 560 species are described in Table 1); the other one, which we name as "derived-NO_v", is the sum of NO from the 561 NCAR 4-channel instrument and NO₂ (NO₂ LIF), Σ PNs, Σ ANs, and HNO₃ measured by the TD-LIF technique, 562 corresponding to NO, NO₂, Σ PNs, Σ ANs, and HNO₃ in REAM (Table 1). On average, P-3B derived-NO_y 563 concentrations (2.88 \pm 2.24 ppb) are 17% higher than coincident P-3B NO_v concentrations (2.46 \pm 2.06 ppb) with 564 $R^2 = 0.75$, generally reflecting consistency between these two types of measurements. As shown in Table 1, on 565 weekdays, the 36-km REAM NO_v concentrations are 45% larger than P-3B with $R^2 = 0.33$, and the 36-km 566 REAM derived-NO_v concentrations are 8% larger than P-3B with $R^2 = 0.41$. 4-km REAM show similar results, 567 suggesting that REAM simulations generally reproduce the observed NO_v and derived-NO_v concentrations within

568	the uncertainties, although the average values from REAM are somewhat larger than the observations due in part
569	to the underestimate of precipitation in the WRF model simulations resulting in underestimated wet scavenging
570	of HNO ₃ in REAM. The concentrations of weekday NO, NO ₂ , and \sum PNs from REAM simulations are also
571	comparable to the observations. However, weekday \sum ANs concentrations are 68% lower in the 36-km REAM
572	than observations, suggesting that the chemistry mechanism in REAM may need further improvement to better
573	represent isoprene nitrates. It is noteworthy that, since \sum ANs only account for a small fraction (~11%) in
574	observed derived-NO _y , the absolute difference between REAM simulated and P-3B observed \sum ANs
575	concentrations is still small compared to HNO ₃ . Weekday HNO ₃ concentrations are significantly higher in
576	REAM simulations (36-km: 57%, 0.65 ppb; 4-km: 74%, 0.86 ppb) than P-3B observations, which is the main
577	reason for the somewhat larger NO _y and derived-NO _y concentrations in REAM compared to P-3B observations.
578	The higher HNO ₃ concentrations in REAM may be related to the underestimation of precipitation in the
579	corresponding WRF simulations, as discussed in section 3.1 (Figures S7 and S8), leading to the underestimated
580	wet scavenging of HNO ₃ , especially for the 4-km REAM simulation.
581	We also examine the weekday diurnal variations of derived-NO _y vertical profiles from P-3B and REAM
582	simulations in Figure S14. Generally, both 36- and 4-km REAM simulations capture the variation characteristics
583	of observed vertical profiles, which are similar to those for NO_2 in Figure 8. REAM derived- NO_y concentrations
584	are comparable to P-3B observations at most vertical levels on weekdays. Some larger derived-NO _y
585	concentrations in the model results can be partially explained by larger HNO ₃ concentrations in REAM, such as
586	those below 1 km at $9:00 - 11:00$ LT for the 36-km REAM and those below 2.0 km at $12:00 - 17:00$ LT for the
587	4-km REAM (Figure S15).

Figure 12 shows the comparison of the diurnal cycles of surface NO_y concentrations observed at Padonia,
Edgewood, Beltsville, and Aldino during the DISCOVER-AQ campaign with those from the REAM simulations.

- Generally, the REAM simulations reproduce the observed surface NO_y diurnal cycles except for the spikes around 17:00 – 20:00 LT due to still underestimated MLHs (Figure 6). 4-km simulation results have a higher bias than 36-km results relative to the observations in the daytime, similar to the comparisons of NO_2 surface concentrations and TVCDs in Figures 7 and 10 due to higher emissions around the observation sites in 4- than
- 594 36-km simulations (Table S1 and Figure 2).
- 595 3.6 Resolution dependence of NO_x emission distribution

596 We show previously that the 4-km REAM simulated NO₂ and NO_y surface concentrations and NO₂ TVCDs 597 are higher than observations in the daytime in comparison to the corresponding 36-km REAM results (Figures 7, 598 10, and 12). An examination of monthly mean NO₂ surface concentrations and TVCDs for July 2011 also shows 599 that 4-km simulation results are significantly higher than the 36-km results over the 11 inland Pandora sites in the 600 daytime (Figure 13). The process-level diagnostics in Figure 9 indicate that the mean contribution of NO_x emissions to NO_x Δ TVCDs in the 4-km simulation is 1.32×10^{15} molecules cm⁻² h⁻¹ larger than that in the 36-km 601 602 simulation between 9:00 LT and 16:00 LT, while the absolute mean contributions of chemistry and transport 603 (they are negative in Figure 9, so we use absolute values here) in the 4-km simulation are 0.26×10^{15} and $0.87 \times$ 604 10^{15} molecules cm⁻² h⁻¹ larger than the 36-km simulation, respectively. The contributions of dry deposition to 605 $NO_x \Delta TVCDs$ are negligible compared to other factors in both simulations (Figure 9). Therefore, the 34% higher 606 NO_x emissions over the 11 inland Pandora sites (Table S1 and Figure 3) is the main reason for the larger daytime 607 NO₂ surface concentrations and TVCDs in the 4-km than the 36-km REAM simulations (Figure 13). The significantly different contribution changes between NO_x emissions $(1.32 \times 10^{15} \text{ molecules cm}^{-2} \text{ h}^{-1} \text{ or about one}$ 608 third) and chemistry (0.26×10^{15} molecules cm⁻² h⁻¹ or about 8%) reflect potential chemical nonlinearity (Li et al., 609 610 2019; Silvern et al., 2019; Valin et al., 2011) and transport effect. Different transport contributions between the 4-611 km and the 36-km REAM are mainly caused by their different NO_x horizontal gradients (Figures 2, 14, and 15), 612 while the impact of wind fields is small since we do not find significant differences in horizontal wind

613	components between the two simulations except for some lower wind speeds below 1000 m for the 36-km WRF
614	simulation compared to the nested 4-km WRF simulation (Figure S16). Our sensitivity tests with the WRF
615	Single-Moment 3-class (WSM3) simple ice scheme (not shown) can improve the wind speed comparison below
616	1000 m between the 36-km and nested 4-km WRF simulations but still produce similar NO _x simulation results as
617	WSM6 shown here. Therefore, the somewhat lower wind speeds below 1000 m in the 36-km WRF simulation are
618	not the reason for the difference between the 4-km and 36-km REAM simulations. The impact of transport on the
619	two REAM simulations can be further verified by the comparison of NO ₂ TVCDs over the six P-3B spiral sites
620	between the two simulations (Figure S17). Mean NO_x emissions over the six P-3B spiral sites are close (relative
621	difference $< 4\%$) between the two simulations (Table S1 and Figure S17). From 9:00 to 12:00 LT, the
622	contributions of NO _x emissions to NO _x Δ TVCDs are 2.50 × 10 ¹⁵ and 2.49 × 10 ¹⁵ molecules cm ⁻² h ⁻¹ for the 36-km
623	and 4-km REAM simulations, respectively, and the contributions of chemistry are also close between the two
624	simulations (36-km: -2.62 \times 10 ¹⁵ molecules cm ⁻² h ⁻¹ ; 4-km: -2.69 \times 10 ¹⁵ molecules cm ⁻² h ⁻¹). However, the
625	contributions of transport are -0.39 \times 10 ¹⁵ and 0.03 \times 10 ¹⁵ molecules cm ⁻² h ⁻¹ for the 36-km and 4-km REAM
626	simulations, respectively, leading to larger NO ₂ TVCDs in the 4-km REAM simulation than the 36-km REAM
627	from 9:00 – 12:00 LT (Figure S17c). Since horizontal wind fields over the six P-3B spiral sites are comparable
628	between two simulations (Figures S4, S5, S6, and S16) and larger NO _x horizontal gradients are found near the P-
629	3B spiral sites for the 4-km REAM (Figure 2), we attribute the different transport contributions between the two
630	simulations to a much larger NO _x emission gradient around the measurement locations in 4-km than 36-km
631	emission distributions.

We re-grid the 4-km REAM results into the grid cells of the 36-km REAM, which can significantly reduce the impact of different NO_x emission distributions and associated transport on the two simulations. Compared to the original 4-km REAM results, the re-gridded surface NO_2 concentrations and TVCDs over the 11 inland Pandora sites are much closer to the 36-km REAM results (Figure 13). After re-gridding the 4-km REAM results into 36-km REAM grid cells, we also find more comparable NO_y surface concentrations between the re-gridded 4-km results and the 36-km REAM results (Figure S18). The remaining discrepancies between the re-gridded results and the 36-km REAM results may be due to chemical nonlinearity and other meteorological effects, such as larger vertical wind in the 4-km REAM (Figure S9) and their different k_{zz} values in the PBL. Although other factors, such as chemical nonlinearity and vertical diffusion, may affect the 36-km and 4-km REAM simulations differently, the difference between 4- and 36-km simulations of reactive nitrogen is largely due to that of NO_x emissions.

643 The 4- and 36-km simulation difference depends on the location of the observations. In some regions, the 644 NO_x emission difference between 4- and 36-km simulations is small. The comparison of NO_y measurements from 645 P-3B spirals with coincident REAM results in Table 1 suggests that the 4-km and 36-km REAM simulations 646 produce similar NO_v (relative difference $\sim 4\%$) and derived-NO_v (relative difference $\sim 6\%$) concentrations on 647 weekdays, and both simulation results are comparable to the observations. The NO_v similarity over the P-3B 648 spiral sites between the 36-km and 4-km REAM simulations is consistent with the comparable NO_x emissions 649 over (relative difference < 4%) the six P-3B spiral sites between the two simulations (Table S1). The differences 650 between the 4-km model simulation results and P3-B observations are larger on weekends than on weekdays 651 (Table 1) due to the limited weekend sampling since model simulated monthly mean values show similar 652 differences between the 4-km and 36-km REAM simulations on weekends as on weekdays (not shown).

653 3.7 Evaluation of 36- and 4-km NO_x distribution with OMI, GOME-2A, and ACAM measurements

The evaluation of model simulations of surface, aircraft, and satellite observations tends to point out a high bias in 4- than 36-km model simulations. We note that this comparison is based on the averages of multiple sites. NO_x emissions at individual sites are not always higher in the 4-km than 36-km REAM, such as SERC, Fairhill, and Essex, with much higher 36-km NO_x emissions than 4-km NO_x emissions (Table S1). We conduct

658	individual-site comparisons of surface NO ₂ concentrations, surface NO _y concentrations, NO ₂ vertical profiles,
659	derived-NO _y vertical profiles, and NO ₂ TVCDs of the 36-km REAM and the 4-km REAM results relative to the
660	corresponding observations in Figures S19 – S23. The 36-km simulation results can be larger, smaller, or
661	comparable to the 4-km simulation results, and both simulations can produce higher, lower, or similar results as
662	the observations for different variables at different sites. The varying model biases depending on the observation
663	site reflect the different spatial distributions of NO _x emissions between the 36- and 4-km REAM simulations
664	(Figure 2) and suggest potential distribution biases of NO _x emissions in both simulations.

665	Here we examine the 4-km model simulated NO ₂ VCDs with high-resolution ACAM measurements onboard
666	the UC-12 aircraft in Figures 14 and S24, respectively. The spatial distributions of ACAM and 4-km REAM NO_2
667	VCDs are generally consistent with $R^2 = 0.35$ on weekdays and $R^2 = 0.50$ on weekends. The domain averages of
668	ACAM and 4-km REAM NO $_2$ VCDs are 4.7 \pm 2.0 and 4.6 \pm 3.2 \times 10^{15} molecules cm^{-2} on weekdays and 3.0 \pm
669	1.7 and 3.3 \pm 2.7 \times 10 ¹⁵ molecules cm ⁻² on weekends, respectively. The spatial distributions of ACAM and 4-km
670	REAM NO ₂ VCDs are highly correlated with the spatial distribution of 4-km NEI2011 NO _x emissions. All three
671	distributions capture two strong peaks around Baltimore and Washington, D.C. urban regions and another weak
672	peak in the northeast corner of the domain (Wilmington city in Delaware) (Figures 14 and S24). However,
673	Figures 14 and S24 clearly show that NO ₂ VCDs from the 4-km REAM simulation are more concentrated in
674	Baltimore and Washington, D.C. urban regions than ACAM, which are also reflected by the higher NO ₂ VCD
675	standard deviations of the 4-km REAM results than ACAM. Several Pandora sites are in the highest NO ₂ VCD
676	regions where the 4-km REAM generally produces larger NO ₂ VCDs than ACAM, which explains why the NO ₂
677	TVCDs over the 11 Pandora sites from the 4-km REAM simulation are higher than the observations (Figure 10)
678	and the 36-km REAM results (Figure 13) around noontime. Horizontal transport cannot explain the NO ₂ VCD
679	distribution biases in the 4-km REAM simulation due to the following reasons. Firstly, horizontal wind fields are
680	simulated as well by the nested 4-km WRF simulation as the 36-km WRF compared to P-3B measurements, as

681	discussed in section 3.1. Secondly, the prevailing northwest wind in the daytime (Figure S5) should move NO_x
682	eastward, but we find no significant eastward shift of NO2 VCDs compared to NOx emissions in both ACAM and
683	4-km REAM distributions (Figure 14). Therefore, we attribute the distribution inconsistency between ACAM and
684	the 4-km REAM to the distribution biases of NEI2011 NO _x emissions at the 4-km resolution since the average
685	below-aircraft NO ₂ VCDs between ACAM and the 4-km REAM are about the same.

686 It is noteworthy that the number of data points used to calculate grid cell mean NO₂ VCDs varies 687 significantly across the domain, as shown in Figures 14f and S24f. To mitigate potential sampling errors, we only 688 consider the grid cells with ≥ 10 data points on weekdays in Figure S25. Whether we scale NO₂ VCDs using the 689 corresponding domain averages (Figure S25) or not (not shown), the 4-km REAM generally shows more 690 concentrated NO₂ VCDs in Baltimore and Washington, D.C. urban regions but more dispersed NO₂ VCDs in 691 rural areas than ACAM, consistent with our discussion above. In addition, about 91% of ACAM NO₂ VCD data 692 are measured from 8:00 - 16:00 LT, and only using ACAM NO₂ VCDs between 8:00 and 16:00 LT for the above 693 comparison does not affect our results shown here. Moreover, to minimize the effect of overestimated afternoon 694 vertical mixing (Figure 8) on the 4-km REAM simulation results, we also examine the comparison between 695 ACAM NO₂ VCDs from 9:00 – 14:00 LT with coincident 4-km REAM results, which produces similar results as 696 shown here. Finally, considering the NO_x lifetime difference between morning and noontime, we also analyze the 697 NO_2 VCD data at 11:00 – 14:00 LT, and similar results are found.

We also evaluate the NO₂ VCD distributions from the 4-km REAM simulation on weekdays and weekends
 with ACAM NO₂ VCDs below the U-12 aircraft obtained from https://www-air.larc.nasa.gov/cgi-

700 <u>bin/ArcView/discover-aq.dc-2011?UC12=1#LIU.XIONG/</u> in Figures S26 and S27. Although the domain mean

ACAM NO₂ VCDs in Figures S26 and S27 are higher than coincident 4-km REAM results due to the different

retrieval method from Lamsal et al. (2017), such as different above-aircraft NO₂ VCDs and different a priori NO₂

vertical profiles, we can still find clear distribution inconsistencies between the 4-km REAM and ACAM NO₂
VCDs. The 4-km REAM NO₂ VCDs are more concentrated in the Baltimore and Washington, D.C. urban regions
than this set of ACAM data, which is consistent with the conclusions derived from the ACAM dataset retrieved
by Lamsal et al. (2017).

707	The potential distribution bias of the NEI2011 NO _x emissions at 36-km resolution is analyzed by comparing
708	the 36-km REAM simulated NO ₂ TVCDs with those retrieved by OMI and GOME-2A, as shown in Figures 15
709	(OMI, 13:00 LT) and S28 (GOME-2A, 9:30 LT). Both KNMI and our retrievals based on the 36-km REAM NO ₂
710	vertical profiles show that OMI and GOME-2A NO ₂ TVCDs have lower spatial variations than the corresponding
711	36-km REAM simulation results. OMI and GOME-2A retrievals have lower NO ₂ TVCDs around the Baltimore
712	and Washington, D.C. urban regions and higher values in relatively rural regions than the 36-km REAM. The
713	distribution bias of the 36-km REAM NO ₂ TVCDs is also identified on weekends through their comparison with
714	OMI and GOME-2A retrievals (not shown). The good agreement between simulated and observed wind suggests
715	that the model horizontal transport error cannot explain such an urban-rural contrast between satellite
716	observations and 36-km REAM simulation results. However, two caveats deserve attention. Firstly, the 36-km
717	REAM cannot resolve urban areas as detailed as the 4-km REAM (Figure 14), and urban and rural regions may
718	coexist in one 36-km grid cell. Secondly, the OMI and GOME-2A pixels can be much larger than 36-km REAM
719	grid cells, possibly leading to more spatially homogenous distributions of satellite NO ₂ TVCD data.

720 3.8 Implications for NO_x emissions

The analysis of section 3.7 indicates that the NEI2011 NO_x emission distributions at 36- and 4-km
resolutions are likely biased for the Baltimore-Washington region. The distribution bias of NO_x emission
inventories is corroborated by the comparison of the NO_x emission inventory derived from the CONsolidated
Community Emissions Processor Tool, Motor Vehicle (CONCEPT MV) v2.1 with that estimated by the Sparse

725	Matrix Operator Kernel Emissions (SMOKE) v3.0 model with the Motor Vehicle Emissions Simulator (MOVES)
726	v2010a (DenBleyker et al., 2012). CONCEPT with finer vehicle activity information as input produced a wider-
727	spread but less-concentrated running exhaust NO _x emissions compared to MOVES in the Denver urban area for
728	July 2008 (DenBleyker et al., 2012). In addition, Canty et al. (2015) found that CMAQ 4.7.1, with on-road
729	emissions from MOVES and off-road emissions from the National Mobile Inventory Model (NMIM),
730	overestimated NO2 TVCD over urban regions and underestimated NO2 TVCDs over rural areas in the
731	northeastern U.S. for July and August 2011 compared to the OMNO2 product. The urban-rural contrast was also
732	found in Texas during the 2013 DISCOVER-AQ campaign in the studies of Souri et al. (2016) and Souri et al.
733	(2018), implying distribution uncertainties in NO_x emissions, although these studies and Canty et al. (2015)
734	focused more on polluted regions with overestimated NO _x emissions in their conclusions. The emission
735	distribution bias may also explain why Anderson et al. (2014) have different results from our simulated
736	concentrations in Table 1. In their study, they compared in-situ observations with a nested CMAQ simulation
737	with a resolution of 1.33 km. It is difficult to build up a reliable emission inventory for the whole U.S. at very
738	high resolutions with currently available datasets due to the significant inhomogeneity of NO _x emissions (Marr et
739	al., 2013), but we can still expect significant improvements in the temporal-spatial distributions of NO_x emissions
740	in the near future as GPS-based information start to be used in the NEI estimates (DenBleyker et al., 2017).
741	Here, we emphasize that our study is not necessarily contradictory to recent studies concerning the
742	overestimation of NEI NO _x emissions (Anderson et al., 2014; Canty et al., 2015; McDonald et al., 2018; Souri et

al., 2016; Souri et al., 2018; Travis et al., 2016). Different types of observations in different periods and locations

744 are analyzed for various purposes. This study focuses more on the spatial distribution of NO_x emissions in

745 NEI2011, while previous studies are concerned more about the NO_x emission magnitudes in highly polluted sites,

although the spatial distribution issue was also mentioned in some of the studies. If we limit our analyses to those

observations in Figures 7, 10, and 12 and the 4-km REAM, we would also conclude an overestimation of NEI

NO_x emissions. Considering the significant heterogeneity of NO_x emissions, the spatial distribution of NO_x emissions is a critical factor in evaluating NO_x emissions and improving emission estimation and air quality models, which deserves more attention in future studies, especially when chemical and transport models are moving to higher and higher resolutions.

752 **4 Conclusions**

We investigate the diurnal cycles of surface NO₂ concentrations, NO₂ vertical profiles, and NO₂ TVCDs using REAM model simulations on the basis of the observations from air quality monitoring sites, aircraft, Pandora, OMI, and GOME-2A during the DISCOVER-AQ 2011 campaign. We find that WRF simulated nighttime k_{zz} -determined MLHs are significantly lower than ELF lidar measurements. Increasing nighttime mixing from 18:00 – 5:00 LT in the REAM simulations, we significantly improve REAM simulations of nighttime surface NO₂ and O₃ concentrations.

759 The REAM simulation reproduces well the observed regional mean diurnal cycles of surface NO_2 and NO_y 760 concentrations, NO₂ vertical profiles, and NO₂ TVCDs on weekdays. Observed NO₂ concentrations in the 761 boundary layer and TVCDs on weekends are significantly lower than on weekdays. By specifying a weekend to 762 weekday NO_x emission ratio of 2:3 and applying a less variable NO_x emission diurnal profile on weekends than 763 weekdays, REAM can simulate well the weekend observations. Two issues are also noted. First, Pandora TVCDs 764 show different variations from aircraft-derived and REAM-simulated TVCDs in the early morning and late 765 afternoon, which may be due to the uncertainties of Pandora measurements at large SZAs and the small effective 766 FOV of Pandora. Second, the weekday OMI NO₂ TVCDs derived by NASA are somewhat lower than the KNMI 767 OMI product, P-3B aircraft-derived TVCDs, Pandora, and REAM results; the difference may be caused by the a 768 priori vertical profiles used in the NASA retrieval.

769	While a higher-resolution simulation is assumed to be superior at a priori, the large observation dataset
770	during DISCOVER-AQ 2011 offers the opportunity of a detailed comparison of 4-km and 36-km model
771	simulations. Through the comparison, we find two areas that have not been widely recognized. The first is not
772	using convection parameterization in high-resolution WRF simulations since convection can be resolved
773	explicitly and most convection parameterizations are not designed for high-resolution simulations. We find that
774	4-km WRF tends to overestimate boundary-layer mixing and vertical transport in the late afternoon, leading to a
775	high model bias in simulated NO ₂ vertical profiles compared to P-3B aircraft observations. The reasons for this
776	late-afternoon bias in 4-km WRF simulations and model modifications to mitigate this bias need further studies.
777	A second issue is related to the spatial distribution of NO _x emissions in NEI2011. In general, the 4-km
778	simulation results tend to have a high bias relative to the 36-km results on the regional mean observations.
779	However, for individual sites, relative to the 36-km model simulations, the 4-km model results can show larger,
780	smaller, or similar biases compared to the observations depending upon observation location. Based on process
781	diagnostics and analyses, we find that the bias discrepancies between the 36-km and 4-km REAM simulations are
782	mainly attributed to their different NO _x emissions and their spatial gradients at different sites. The comparison of
783	4-km ACAM NO ₂ VCD measurements from the UC-12 aircraft with coincident 4-km REAM results shows that
784	4-km REAM NO ₂ VCDs are more concentrated in urban regions than the ACAM observations. OMI and GOME-
785	2A data also show less spatially varying NO ₂ TVCD distributions with lower NO ₂ TVCDs around the Baltimore-
786	Washington urban regions and higher TVCDs in surrounding rural areas than corresponding 36-km REAM
787	simulation results. Further model analysis indicates that the 36- and 4-km VCD discrepancies are due primarily to
788	the distribution bias of NEI2011 NO _x emissions at 36- and 4-km resolutions. Our results highlight the research
789	need to improve the methodologies and datasets to improve the spatial distributions in emission estimates.

790 Data availability

- 791 The DISCOVER-AQ 2011 campaign datasets are archived on https://www-air.larc.nasa.gov/cgi-
- bin/ArcView/discover-aq.dc-2011 (last access: March 14, 2021). EPA air quality monitoring datasets are from
- https://www3.epa.gov/airdata/ (last access: June 23, 2015). The NASA OMI NO₂ product is from
- 794 https://disc.gsfc.nasa.gov/datasets/OMNO2_003/summary (last access: September 26, 2020). The KNMI OMI
- NO₂ product is from http://www.temis.nl/airpollution/no2.html (last access: January 14, 2015). We obtain the
- 796 KNMI GOME-2A NO₂ VCD archives from http://www.temis.nl/airpollution/no2col/no2colgome2_v2.php (last
- access: January 22, 2015). The GMI MERRA-2 simulation results are from
- 798 https://portal.nccs.nasa.gov/datashare/dirac/gmidata2/users/mrdamon/Hindcast-
- 799 Family/HindcastMR2/2011/stations/ (last access: May 14, 2019). We obtain the UC-12 ACAM NO₂ VCD
- 800 product by X. Liu from https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-
- 2011?UC12=1#LIU.XIONG/ (last access: December 31, 2019). The Stage IV precipitation data is downloaded
- from https://rda.ucar.edu/datasets/ds507.5/ (last access: December 28, 2019). The NCEP CFSv2 6-hourly product
- 803 is available at http://rda.ucar.edu/datasets/ds094.0/ (last access: March 10, 2015). REAM simulation results for
- this study and the UC-12 ACAM NO₂ VCD product by Lamsal et al. (2017) are available upon request.

805 Author contribution

- JL and YW designed the study. JL, RZ, and CS updated the REAM model. JL conducted model simulations.
- 807 KFB developed the DOMINO algorithm, CS applied the algorithm to REAM vertical profiles, and JL updated the
- retrieval algorithm and did the retrieval by using REAM NO₂ vertical profiles. AW, JH, EAC, RWL, JJS, RD,
- 809 AMT, TNK, LNL, SJJ, MGK, XL, CRN made various measurements in the DISCOVER-AQ 2011 campaign. JL
- 810 conducted the analyses with discussions with YW, RZ, CS, AW, JH, KFB, EAC, RWL, JJS, RD, AMT, TNK,
- 811 LNL, SJJ, MGK, XL, and CRN. JL and YW led the writing of the manuscript with inputs from all other
- 812 coauthors. All coauthors reviewed the manuscript.

813 Competing interests

814 The authors declare that they have no conflict of interest.

815 Acknowledgments

- 816 This work was supported by the NASA ACMAP Program. We thank Chun Zhao for providing us the PNNL
- 817 NEI2011 emission inventory. We thank Yuzhong Zhang and Jenny Fisher for providing the updated GEOS-
- 818 Chem chemistry mechanism files and thank Yuzhong Zhang, Yongjia Song, Hang Qu, Ye Cheng, Aoxing Zhang,
- 819 Yufei Zou and Ziming Ke for discussion with J. Li. We thank Susan Strahan for providing the GMI outputs
- 820 download link.

821 References

- Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T. P., Salawitch, R. J., Worden, H. M., Fried,
- 823 A., Mikoviny, T., and Wisthaler, A.: Measured and modeled CO and NO_y in DISCOVER-AQ: An evaluation of
- emissions and chemistry over the eastern US, Atmos. Environ., 96, 78-87,
- 825 <u>https://doi.org/10.1016/j.atmosenv.2014.07.004</u>, 2014.
- Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO₂ by GOME measurements: A signature of
 anthropogenic sources, Atmos. Chem. Phys., 3, 2225-2232, <u>https://doi.org/10.5194/acp-3-2225-2003</u>, 2003.
- 828 Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., Van Der A, R. J., Sneep, M., Van Den Oord, G. H. J.,
- Levelt, P. F., Stammes, P., and Gleason, J. F.: Near-real time retrieval of tropospheric NO₂ from OMI, Atmos. Chem.
- 830 Phys., 7, 2103-2118, <u>https://doi.org/10.5194/acp-7-2103-2007</u>, 2007.
- 831 Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., and Van Der A, R. J.: Intercomparison of
- 832 SCIAMACHY and OMI tropospheric NO_2 columns: Observing the diurnal evolution of chemistry and emissions from
- 833 space, J. Geophys. Res.-Atmos., 113, <u>https://doi.org/10.1029/2007JD008816</u>, 2008.
- Boersma, K. F., Jacob, D. J., Trainic, M., Rudich, Y., De Smedt, I., Dirksen, R., and Eskes, H. J.: Validation of urban
 NO₂ concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using
 in situ surface measurements in Israeli cities, Atmos. Chem. Phys., 9, 3867-3879, <u>https://doi.org/10.5194/acp-9-3867-</u>
 2009, 2009.
- 838 Boersma, K. F., Eskes, H. J., Dirksen, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M.,
- Claas, J., and Leitão, J.: An improved tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring
 Instrument, Atmos. Meas. Tech., 4, 1905-1928, https://doi.org/10.5194/amt-4-1905-2011, 2011.
- Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H., Zara, M., Peters, E.,
 and Roozendael, M. V.: Improving algorithms and uncertainty estimates for satellite NO₂ retrievals: results from the
 quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651-6678,
 <u>https://doi.org/10.5194/amt-11-6651-2018</u>, 2018.
- 845 Breuer, H., Ács, F., Horváth, Á., Németh, P., and Rajkai, K.: Diurnal course analysis of the WRF-simulated and
- observation-based planetary boundary layer height, Advances in Science and Research, 11, 83-88,
 <u>https://doi.org/10.5194/asr-11-83-2014</u>, 2014.
- Brohede, S., McLinden, C. A., Berthet, G., Haley, C. S., Murtagh, D., and Sioris, C. E.: A stratospheric NO₂
 climatology from Odin/OSIRIS limb-scatter measurements, Can. J. Phys., 85, 1253-1274, <u>https://doi.org/10.1139/p07-</u>
 141, 2007.
- Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J., Lerner, B. M., Jakoubek,
 R., and Middlebrook, A. M.: Nighttime removal of NO_x in the summer marine boundary layer, Geophys. Res. Lett.,
 31, https://doi.org/10.1029/2004GL019412, 2004.
- Bucsela, E. J., Krotkov, N. A., Celarier, E. A., Lamsal, L. N., Swartz, W. H., Bhartia, P. K., Boersma, K. F., Veefkind,
 J. P., Gleason, J. F., and Pickering, K. E.: A new stratospheric and tropospheric NO₂ retrieval algorithm for nadir-

- viewing satellite instruments: applications to OMI, Atmos. Meas. Tech., 6, 2607-2626, <u>https://doi.org/10.5194/amt-6-</u>
 <u>2607-2013</u>, 2013.
- Canty, T., Hembeck, L., Vinciguerra, T., Goldberg, D., Carpenter, S., Allen, D., Loughner, C., Salawitch, R., and
 Dickerson, R.: Ozone and NO_x chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI) data,
 Atmos. Chem. Phys., 15, 10965, https://doi.org/10.5194/acp-15-10965-2015, 2015.
- 861 Chance, K.: OMI Algorithm Theoretical Basis Document: OMI Trace Gas Algorithms, available at
- https://ozoneaq.gsfc.nasa.gov/media/docs/ATBD-OMI-04.pdf, Smithsonian Astrophysical Observatory, Cambridge,
 MA, USA2.0, 78, 2002.
- Cheng, Y., Wang, Y., Zhang, Y., Chen, G., Crawford, J. H., Kleb, M. M., Diskin, G. S., and Weinheimer, A. J.: Large
 biogenic contribution to boundary layer O₃-CO regression slope in summer, Geophys. Res. Lett., 44, 7061-7068,
 <u>https://doi.org/10.1002/2017GL074405</u>, 2017.
- Cheng, Y., Wang, Y., Zhang, Y., Crawford, J. H., Diskin, G. S., Weinheimer, A. J., and Fried, A.: Estimator of surface
 ozone using formaldehyde and carbon monoxide concentrations over the eastern United States in summer, J. Geophys.
 Res.-Atmos., 123, 7642-7655, https://doi.org/10.1029/2018JD028452, 2018.
- Choi, S., Lamsal, L. N., Follette-Cook, M., Joiner, J., Krotkov, N. A., Swartz, W. H., Pickering, K. E., Loughner, C.
 P., Appel, W., Pfister, G., Saide, P. E., Cohen, R. C., Weinheimer, A. J., and Herman, J. R.: Assessment of NO₂
 observations during DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523-2546,
 <u>https://doi.org/10.5194/amt-13-2523-2020</u>, 2020.
- Choi, Y., Wang, Y., Zeng, T., Cunnold, D., Yang, E. S., Martin, R., Chance, K., Thouret, V., and Edgerton, E.:
 Springtime transitions of NO₂, CO, and O₃ over North America: Model evaluation and analysis, J. Geophys. Res.Atmos., 113, https://doi.org/10.1029/2007JD009632, 2008.
- 877 Choi, Y., Kim, H., Tong, D., and Lee, P.: Summertime weekly cycles of observed and modeled NO_x and O₃
- 878 concentrations as a function of satellite-derived ozone production sensitivity and land use types over the Continental 879 United States, Atmos Chem. Phys. 12, 6201 6207, https://doi.org/10.5104/con.12.6201.2012, 2012
- 879 United States, Atmos. Chem. Phys., 12, 6291-6307, <u>https://doi.org/10.5194/acp-12-6291-2012</u>, 2012.
- Compton, J. C., Delgado, R., Berkoff, T. A., and Hoff, R. M.: Determination of planetary boundary layer height on
 short spatial and temporal scales: A demonstration of the covariance wavelet transform in ground-based wind profiler
 and lidar measurements, Journal of Atmospheric and Oceanic Technology, 30, 1566-1575,
 https://doi.org/10.1175/JTECH-D-12-00116.1, 2013.
- Bavid, L. M., and Nair, P. R.: Diurnal and seasonal variability of surface ozone and NO_x at a tropical coastal site:
 Association with mesoscale and synoptic meteorological conditions, J. Geophys. Res.-Atmos., 116,
 https://doi.org/10.1029/2010JD015076, 2011.
- Bavis, C., Brown, B., and Bullock, R.: Object-based verification of precipitation forecasts. Part I: Methodology and
 application to mesoscale rain areas, Monthly Weather Review, 134, 1772-1784, <u>https://doi.org/10.1175/MWR3145.1</u>,
 2006.

- Bay, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser induced fluorescence instrument for in situ detection of NO₂, peroxy nitrates, alkyl nitrates, and HNO₃, J. Geophys. Res.Atmos., 107, ACH 4-1-ACH 4-14, https://doi.org/10.1029/2001JD000779, 2002.
- de Foy, B.: City-level variations in NOx emissions derived from hourly monitoring data in Chicago, Atmos. Environ.,
 176, 128-139, <u>https://doi.org/10.1016/j.atmosenv.2017.12.028</u>, 2018.
- BenBleyker, A., Morris, R. E., Lindhjem, C. E., Parker, L. K., Shah, T., Koo, B., Loomis, C., and Dilly, J.: Temporal
 and Spatial Detail in Mobile Source Emission Inventories for Regional Air Quality Modeling, 2012 International
- 897 Emission Inventory Conference, Florida, U.S., August 13 16, 2012, 2012.
- BenBleyker, A., Koupal, J., DeFries, T., and Palacios, C.: Improvement of Default Inputs for MOVES and SMOKEMOVES: CRC Project A-100, available at <u>https://crcao.org/reports/recentstudies2017/A-</u>
 100/ERG FinalReport CRCA100 28Feb2017.pdf, Eastern Research Group, Inc., Austin, TX, 86, 2017.
- Dirksen, R. J., Boersma, K. F., Eskes, H. J., Ionov, D. V., Bucsela, E. J., Levelt, P. F., and Kelder, H. M.: Evaluation
- 902 of stratospheric NO₂ retrieved from the Ozone Monitoring Instrument: Intercomparison, diurnal cycle, and trending, J.
- 903 Geophys. Res.-Atmos., 116, <u>https://doi.org/10.1029/2010JD014943</u>, 2011.
- 904 EPA: Profile of the 2011 National Air Emissions Inventory, available at
- 905 <u>https://www.epa.gov/sites/production/files/2015-08/documents/lite_finalversion_ver10.pdf</u>, U.S. Environmental
 906 Protection Agency, 2014.
- 907 Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan Miller, C., Yu, K., Zhu, L., Yantosca, R. M.,
- and Sulprizio, M. P.: Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene-and
- 909 monoterpene-rich atmosphere: constraints from aircraft (SEAC⁴RS) and ground-based (SOAS) observations in the
- 910 Southeast US, Atmos. Chem. Phys., 16, 5969-5991, <u>https://doi.org/10.5194/acp-16-5969-2016</u>, 2016.
- 911 Flynn, C. M., Pickering, K. E., Crawford, J. H., Lamsal, L., Krotkov, N., Herman, J., Weinheimer, A., Chen, G., Liu,
- 912 X., and Szykman, J.: Relationship between column-density and surface mixing ratio: Statistical analysis of O₃ and NO₂
- data from the July 2011 Maryland DISCOVER-AQ mission, Atmos. Environ., 92, 429-441,
 - 914 <u>https://doi.org/10.1016/j.atmosenv.2014.04.041</u>, 2014.
 - 915 Frey, M. M., Brough, N., France, J. L., Anderson, P. S., Traulle, O., King, M. D., Jones, A. E., Wolff, E. W., and
 - 916 Savarino, J.: The diurnal variability of atmospheric nitrogen oxides (NO and NO₂) above the Antarctic Plateau driven
 - by atmospheric stability and snow emissions, Atmos. Chem. Phys., 13, 3045-3062, <u>https://doi.org/10.5194/acp-13-</u>
 3045-2013, 2013.
 - Gaur, A., Tripathi, S. N., Kanawade, V. P., Tare, V., and Shukla, S. P.: Four-year measurements of trace gases (SO₂, NO_x, CO, and O₃) at an urban location, Kanpur, in Northern India, Journal of Atmospheric Chemistry, 71, 283-301, https://doi.org/10.1007/s10874-014-9295-8, 2014.
- 922 Gourley, J. J., Hong, Y., Flamig, Z. L., Wang, J., Vergara, H., and Anagnostou, E. N.: Hydrologic evaluation of
- 923 rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb basin, Oklahoma, Journal of
- 924 Hydrometeorology, 12, 973-988, <u>https://doi.org/10.1175/2011JHM1287.1</u>, 2011.

- Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model
 of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for
 modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- Hains, J. C., Boersma, K. F., Kroon, M., Dirksen, R. J., Cohen, R. C., Perring, A. E., Bucsela, E., Volten, H., Swart, D.
- 929 P. J., and Richter, A.: Testing and improving OMI DOMINO tropospheric NO₂ using observations from the
- 930 DANDELIONS and INTEX B validation campaigns, J. Geophys. Res.-Atmos., 115,
- 931 <u>https://doi.org/10.1029/2009JD012399</u>, 2010.
- Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abuhassan, N.: NO₂ column amounts from groundbased Pandora and MFDOAS spectrometers using the direct-Sun DOAS technique: Intercomparisons and application
- to OMI validation, J. Geophys. Res.-Atmos., 114, <u>https://doi.org/10.1029/2009JD011848</u>, 2009.
- 935 Herman, J., Spinei, E., Fried, A., Kim, J., Kim, J., Kim, W., Cede, A., Abuhassan, N., and Segal-Rozenhaimer, M.:
- NO₂ and HCHO measurements in Korea from 2012 to 2016 from Pandora spectrometer instruments compared with
 OMI retrievals and with aircraft measurements during the KORUS-AQ campaign, Atmos. Meas. Tech., 11, 4583 4603, https://doi.org/10.5194/amt-11-4583-2018, 2018.
- Herman, J., Abuhassan, N., Kim, J., Kim, J., Dubey, M., Raponi, M., and Tzortziou, M.: Underestimation of column
 NO₂ amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA
 spectrometer instruments, Atmos. Meas. Tech., 12, 5593-5612, https://doi.org/10.5194/amt-12-5593-2019, 2019.
- Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment
 processes, Monthly weather review, 134, 2318-2341, <u>https://doi.org/10.1175/MWR3199.1</u>, 2006.
- Hu, X., Doughty, D. C., Sanchez, K. J., Joseph, E., and Fuentes, J. D.: Ozone variability in the atmospheric boundary
 layer in Maryland and its implications for vertical transport model, Atmos. Environ., 46, 354-364,
 https://doi.org/10.1016/j.atmoseny.2011.09.054, 2012.
- Huijnen, V., Eskes, H. J., Poupkou, A., Elbern, H., Boersma, K. F., Foret, G., Sofiev, M., Valdebenito, A., Flemming,
 J., and Stein, O.: Comparison of OMI NO₂ tropospheric columns with an ensemble of global and European regional air
 quality models, Atmos. Chem. Phys., 10, 3273-3296, https://doi.org/10.5194/acp-10-3273-2010, 2010.
- 950 Ionov, D. V., Timofeyev, Y. M., Sinyakov, V. P., Semenov, V. K., Goutail, F., Pommereau, J. P., Bucsela, E. J.,
- 951 Celarier, E. A., and Kroon, M.: Ground based validation of EOS Aura OMI NO₂ vertical column data in the
- midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France), J. Geophys. Res.-Atmos., 113,
 <u>https://doi.org/10.1029/2007JD008659</u>, 2008.
- Irie, H., Kanaya, Y., Akimoto, H., Tanimoto, H., Wang, Z., Gleason, J. F., and Bucsela, E. J.: Validation of OMI
 tropospheric NO₂ column data using MAX-DOAS measurements deep inside the North China Plain in June 2006:
 Mount Tai Experiment 2006, Atmos. Chem. Phys., 8, 6577-6586, https://doi.org/10.5194/acp-8-6577-2008, 2008.
- 957 Irie, H., Boersma, K. F., Kanaya, Y., Takashima, H., Pan, X., and Wang, Z.: Quantitative bias estimates for
- tropospheric NO₂ columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia,
 Atmos. Meas. Tech., 5, 2403-2411, <u>https://doi.org/10.5194/amt-5-2403-2012</u>, 2012.

- Jones, A. E., Weller, R., Wolff, E. W., and Jacobi, H. W.: Speciation and rate of photochemical NO and NO₂
 production in Antarctic snow, Geophys. Res. Lett., 27, 345-348, <u>https://doi.org/10.1029/1999GL010885</u>, 2000.
- Judd, L. M., Al-Saadi, J. A., Valin, L. C., Pierce, R. B., Yang, K., Janz, S. J., Kowalewski, M. G., Szykman, J. J.,
 Tiefengraber, M., and Mueller, M.: The Dawn of Geostationary Air Quality Monitoring: Case Studies from Seoul and
 Los Angeles, Front. Environ. Sci., 6, 85, https://doi.org/10.3389/fenvs.2018.00085, 2018.
- Judd, L. M., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G., Pierce, R. B., Szykman, J. J., Valin, L. C., Swap, R.,
 Cede, A., Mueller, M., Tiefengraber, M., Abuhassan, N., and Williams, D.: Evaluating the impact of spatial resolution
 on tropospheric NO₂ column comparisons within urban areas using high-resolution airborne data, Atmos. Meas. Tech.,
 12, 6091-6111, <u>https://doi.org/10.5194/amt-12-6091-2019</u>, 2019.

Judd, L. M., Al-Saadi, J. A., Szykman, J. J., Valin, L. C., Janz, S. J., Kowalewski, M. G., Eskes, H. J., Veefkind, J. P.,
Cede, A., Mueller, M., Gebetsberger, M., Swap, R., Pierce, R. B., Nowlan, C. R., Abad, G. G., Nehrir, A., and
Williams, D.: Evaluating Sentinel-5P TROPOMI tropospheric NO₂ column densities with airborne and Pandora
spectrometers near New York City and Long Island Sound, Atmos. Meas. Tech., 13, 6113-6140,
https://doi.org/10.5104/emt.12.6112.2020.2020

- 973 <u>https://doi.org/10.5194/amt-13-6113-2020</u>, 2020.
- Kalinga, O. A., and Gan, T. Y.: Estimation of rainfall from infrared microwave satellite data for basin scale
 hydrologic modelling, Hydrological processes, 24, 2068-2086, <u>https://doi.org/10.1002/hyp.7626</u>, 2010.

Kaynak, B., Hu, Y., Martin, R. V., Sioris, C. E., and Russell, A. G.: Comparison of weekly cycle of NO₂ satellite
 retrievals and NO_x emission inventories for the continental United States, J. Geophys. Res.-Atmos., 114,
 <u>https://doi.org/10.1029/2008JD010714</u>, 2009.

- Kim, S. W., McDonald, B., Baidar, S., Brown, S., Dube, B., Ferrare, R., Frost, G., Harley, R., Holloway, J., and Lee,
- 980 H. J.: Modeling the weekly cycle of NO_x and CO emissions and their impacts on O_3 in the Los Angeles-South Coast
- 981 Air Basin during the CalNex 2010 field campaign, J. Geophys. Res.-Atmos., 121, 1340-1360,
 - 982 <u>https://doi.org/10.1002/2015JD024292</u>, 2016.
 - Knepp, T., Pippin, M., Crawford, J., Chen, G., Szykman, J., Long, R., Cowen, L., Cede, A., Abuhassan, N., and
 Herman, J.: Estimating surface NO₂ and SO₂ mixing ratios from fast-response total column observations and potential
 application to geostationary missions, Journal of atmospheric chemistry, 72, 261-286, <u>https://doi.org/10.1007/s10874-</u>
 013-9257-6, 2015.
 - Knepp, T. N., Szykman, J. J., Long, R., Duvall, R. M., Krug, J., Beaver, M., Cavender, K., Kronmiller, K., Wheeler,
 M., and Delgado, R.: Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles, Atmos.
 Meas. Tech., 10, 3963-3983, <u>https://doi.org/10.5194/amt-10-3963-2017</u>, 2017.
 - Kollonige, D. E., Thompson, A. M., Josipovic, M., Tzortziou, M., Beukes, J. P., Burger, R., Martins, D. K., van Zyl, P.
 G., Vakkari, V., and Laakso, L.: OMI Satellite and Ground Based Pandora Observations and Their Application to
 Surface NO₂ Estimations at Terrestrial and Marine Sites, J. Geophys. Res.-Atmos., 123, 1441-1459,
 https://doi.org/10.1002/2017JD026518, 2018.

Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J., Chan, K. L., Wenig,
M., and Zara, M.: The version 3 OMI NO₂ standard product, Atmos. Meas. Tech., 10, 3133-3149,
<u>https://doi.org/10.5194/amt-10-3133-2017</u>, 2017.

Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J., Gleason, J. F., Martin,
R. V., Philip, S., and Irie, H.: Evaluation of OMI operational standard NO₂ column retrievals using in situ and surfacebased NO₂ observations, Atmos. Chem. Phys., 14, 11587-11609, https://doi.org/10.5194/acp-14-11587-2014, 2014.

Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., and Lu, Z.: US NO₂ trends
(2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring
Instrument (OMI), Atmos. Environ., 110, 130-143, https://doi.org/10.1016/j.atmosenv.2015.03.055, 2015.

Lamsal, L. N., Janz, S. J., Krotkov, N. A., Pickering, K. E., Spurr, R. J. D., Kowalewski, M. G., Loughner, C. P.,
Crawford, J. H., Swartz, W. H., and Herman, J.: High - resolution NO₂ observations from the Airborne Compact
Atmospheric Mapper: Retrieval and validation, J. Geophys. Res.-Atmos., 122, 1953-1970,
https://doi.org/10.1002/2016JD025483, 2017.

Lamsal, L. N., Krotkov, N. A., Vasilkov, A., Marchenko, S., Qin, W., Yang, E. S., Fasnacht, Z., Joiner, J., Choi, S.,
Haffner, D., Swartz, W. H., Fisher, B., and Bucsela, E.: Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide
standard product version 4.0 with improved surface and cloud treatments, Atmos. Meas. Tech., 14, 455-479,
<u>https://doi.org/10.5194/amt-14-455-2021</u>, 2021.

Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J., Bhartia, P. K., Tamminen, J., de Haan, J. F.,
and Veefkind, J. P.: Science objectives of the ozone monitoring instrument, IEEE Transactions on Geoscience and
Remote Sensing, 44, 1199-1208, https://doi.org/10.1109/TGRS.2006.872336, 2006.

Li, J., Wang, Y., and Qu, H.: Dependence of summertime surface ozone on NO_x and VOC emissions over the United
States: Peak time and value, Geophys. Res. Lett., 46, 3540-3550, <u>https://doi.org/10.1029/2018GL081823</u>, 2019.

Lin, Y., and Mitchell, K. E.: the NCEP stage II/IV hourly precipitation analyses: Development and applications, 19th
 Conf. Hydrology, American Meteorological Society, San Diego, CA, USA, 2005,

Liu, C., Liu, X., Kowalewski, M., Janz, S., González Abad, G., Pickering, K., Chance, K., and Lamsal, L.: Analysis of
 ACAM data for trace gas retrievals during the 2011 DISCOVER-AQ campaign, Journal of Spectroscopy, 2015,
 <u>https://doi.org/10.1155/2015/827160</u>, 2015a.

- Liu, C., Liu, X., Kowalewski, M. G., Janz, S. J., González Abad, G., Pickering, K. E., Chance, K., and Lamsal, L. N.:
 Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ
 flight campaign, Atmos. Meas. Tech., 8, 751-759, https://doi.org/10.5194/amt-8-751-2015, 2015b.
- Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., and Zeng, L.: Summertime
 photochemistry during CAREBeijing-2007: RO_x budgets and O₃ formation, Atmos. Chem. Phys., 12, 7737-7752,
 https://doi.org/10.5194/acp-12-7737-2012, 2012.
- Lopez, P.: Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF, Monthly
 Weather Review, 139, 2098-2116, <u>https://doi.org/10.1175/2010MWR3565.1</u>, 2011.

Luo, G., Yu, F., and Schwab, J.: Revised treatment of wet scavenging processes dramatically improves GEOS-Chem
12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States, Geosci. Model Dev., 12, 34393447, https://doi.org/10.5194/gmd-12-3439-2019, 2019.

Marchenko, S., Krotkov, N., Lamsal, L., Celarier, E., Swartz, W., and Bucsela, E.: Revising the slant column density
 retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument, J. Geophys. Res.-Atmos., 120, 5670-5692,
 https://doi.org/10.1002/2014JD022913, 2015.

- 1035 Marr, L. C., Moore, T. O., Klapmeyer, M. E., and Killar, M. B.: Comparison of NO_x Fluxes Measured by Eddy
- 1036 Covariance to Emission Inventories and Land Use, Environ. Sci. Technol., 47, 1800-1808,
- 1037 <u>https://doi.org/10.1021/es303150y</u>, 2013.

McDonald, B., McKeen, S., Cui, Y. Y., Ahmadov, R., Kim, S.-W., Frost, G. J., Pollack, I., Peischl, J., Ryerson, T. B.,
and Holloway, J.: Modeling Ozone in the Eastern US using a Fuel-Based Mobile Source Emissions Inventory,
Environ. Sci. Technol., <u>https://doi.org/10.1021/acs.est.8b00778</u>, 2018.

- Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E., Lang, R., Lefebvre, A., Livschitz, Y., and Albinana,
 A. P.: GOME-2 on MetOp, Proc. of The 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland,
 2006, 48,
- Nelson, B. R., Prat, O. P., Seo, D.-J., and Habib, E.: Assessment and implications of NCEP Stage IV quantitative
 precipitation estimates for product intercomparisons, Weather and Forecasting, 31, 371-394,
 <u>https://doi.org/10.1175/WAF-D-14-00112.1</u>, 2016.

Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J.
L., and Fuchs, H.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic
aerosol, Atmos. Chem. Phys., 17, 2103-2162, https://doi.org/10.5194/acp-17-2103-2017, 2017.

Nowlan, C. R., Liu, X., Leitch, J. W., Chance, K., González Abad, G., Liu, C., Zoogman, P., Cole, J., Delker, T.,
Good, W., Murcray, F., Ruppert, L., Soo, D., Follette-Cook, M. B., Janz, S. J., Kowalewski, M. G., Loughner, C. P.,
Pickering, K. E., Herman, J. R., Beaver, M. R., Long, R. W., Szykman, J. J., Judd, L. M., Kelley, P., Luke, W. T., Ren,
X., and Al-Saadi, J. A.: Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor
Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas
2013, Atmos. Meas. Tech., 9, 2647-2668, <u>https://doi.org/10.5194/amt-9-2647-2016</u>, 2016.

- Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook, M. B., Fried, A., González Abad,
 G., Herman, J. R., Judd, L. M., Kwon, H. A., Loughner, C. P., Pickering, K. E., Richter, D., Spinei, E., Walega, J.,
 Weibring, P., and Weinheimer, A. J.: Nitrogen dioxide and formaldehyde measurements from the GEOstationary
 Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11,
 5941-5964, https://doi.org/10.5194/amt-11-5941-2018, 2018.
- Oetjen, H., Baidar, S., Krotkov, N. A., Lamsal, L. N., Lechner, M., and Volkamer, R.: Airborne MAX-DOAS
 measurements over California: Testing the NASA OMI tropospheric NO₂ product, J. Geophys. Res.-Atmos., 118, 7400-7413, https://doi.org/10.1002/jgrd.50550, 2013.

- Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Zamora, M. L., Zeng, L., Shao, M., and Wu, Y.-S.: Markedly
 enhanced absorption and direct radiative forcing of black carbon under polluted urban environments, Proc. Natl. Acad.
 Sci. U.S.A., 201602310, <u>https://doi.org/10.1073/pnas.1602310113</u>, 2016.
- Peters, E., Wittrock, F., Großmann, K., Frieß, U., Richter, A., and Burrows, J. P.: Formaldehyde and nitrogen dioxide
 over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS
 observations, Atmos. Chem. Phys., 12, 11179-11197, https://doi.org/10.5194/acp-12-11179-2012, 2012.
- 1070 Reddy, B. S. K., Kumar, K. R., Balakrishnaiah, G., Gopal, K. R., Reddy, R. R., Sivakumar, V., Lingaswamy, A. P.,
 1071 Arafath, S. M., Umadevi, K., and Kumari, S. P.: Analysis of diurnal and seasonal behavior of surface ozone and its
 1072 precursors (NO_x) at a semi-arid rural site in Southern India, Aerosol Air Qual Res, 12, 1081-1094,
 1073 https://doi.org/10.4209/aagr.2012.03.0055 2012.

1074 Reed, A. J., Thompson, A. M., Kollonige, D. E., Martins, D. K., Tzortziou, M. A., Herman, J. R., Berkoff, T. A.,
1075 Abuhassan, N. K., and Cede, A.: Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals
1076 from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011, Journal of atmospheric
1077 chemistry, 72, 455-482, https://doi.org/10.1007/s10874-013-9254-9, 2015.

- 1078 Reed, C., Evans, M. J., Carlo, P. D., Lee, J. D., and Carpenter, L. J.: Interferences in photolytic NO₂ measurements:
 1079 explanation for an apparent missing oxidant?, Atmos. Chem. Phys., 16, 4707-4724, <u>https://doi.org/10.5194/acp-16-</u>
 1080 4707-2016, 2016.
- 1081 Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO₂ retrieval for the GOME-2 satellite
 1082 instrument, Atmos. Meas. Tech., 4, 1147-1159, <u>https://doi.org/10.5194/amt-4-1147-2011</u>, 2011.
- Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO₂ observations over the United States: effects of
 emission control technology and the economic recession, Atmos. Chem. Phys., 12, 12197-12209,
 https://doi.org/10.5194/acp-12-12197-2012, 2012.
- Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H.-y., and Iredell,
 M.: NCEP climate forecast system version 2 (CFSv2) 6-hourly products, available at
 https://rda.ucar.edu/datasets/ds094.0/, https://doi.org/10.5065/D61C1TXF, 2011 (last access: Mar 10, 2015).
- Sawamura, P., Müller, D., Hoff, R. M., Hostetler, C. A., Ferrare, R. A., Hair, J. W., Rogers, R. R., Anderson, B. E.,
 Ziemba, L. D., and Beyersdorf, A. J.: Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar
 data set–DISCOVER-AQ 2011, Atmos. Meas. Tech., 7, 3095-3112, https://doi.org/10.5194/amt-7-3095-2014, 2014.
- Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John
 Wiley & Sons, Inc, Hoboken, New Jersey, 2016.
- Sen, B., Toon, G. C., Osterman, G. B., Blavier, J.-F., Margitan, J. J., Salawitch, R. J., and Yue, G. K.: Measurements
 of reactive nitrogen in the stratosphere, J. Geophys. Res.-Atmos., 103, 3571-3585, <u>https://doi.org/10.1029/97JD02468</u>,
 1998.

Shin, H. H., and Hong, S.-Y.: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a
single day from CASES-99, Boundary-Layer Meteorology, 139, 261-281, <u>https://doi.org/10.1007/s10546-010-9583-z</u>,
2011.

Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis, K. R., Marais, E. A., Cohen, R. C., Laughner, J. L.,
Choi, S., Joiner, J., and Lamsal, L. N.: Using satellite observations of tropospheric NO₂ columns to infer long-term
trends in US NO_x emissions: the importance of accounting for the free tropospheric NO₂ background, Atmos. Chem.

1103 Phys., 19, 8863-8878, <u>https://doi.org/10.5194/acp-19-8863-2019</u>, 2019.

Souri, A. H., Choi, Y., Jeon, W., Li, X., Pan, S., Diao, L., and Westenbarger, D. A.: Constraining NO_x emissions using
 satellite NO₂ measurements during 2013 DISCOVER-AQ Texas campaign, Atmos. Environ., 131, 371-381,
 <u>https://doi.org/10.1016/j.atmosenv.2016.02.020</u>, 2016.

Souri, A. H., Choi, Y., Pan, S., Curci, G., Nowlan, C. R., Janz, S. J., Kowalewski, M. G., Liu, J., Herman, J. R., and
Weinheimer, A. J.: First top - down estimates of anthropogenic NO_x emissions using high - resolution airborne remote
sensing observations, J. Geophys, Res.-Atmos., 123, 3269-3284, https://doi.org/10.1002/2017JD028009, 2018.

1110 Spinei, E., Cede, A., Swartz, W. H., Herman, J., and Mount, G. H.: The use of NO₂ absorption cross section

temperature sensitivity to derive NO₂ profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements, Atmos, Meas, Tech., 7, 4299-4316, https://doi.org/10.5194/amt-7-4299-2014,

1113 2014.

Spurr, R.: LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer
 models for use in remote sensing retrieval problems, in: Light Scattering Reviews 3, Springer, 229-275, 2008.

1116 Thompson, A. M., Stauffer, R. M., Boyle, T. P., Kollonige, D. E., Miyazaki, K., Tzortziou, M., Herman, J. R.,

Abuhassan, N., Jordan, C. E., and Lamb, B. T.: Comparison of Near - Surface NO₂ Pollution With Pandora Total

1118 Column NO₂ During the Korea - United States Ocean Color (KORUS OC) Campaign, J. Geophys. Res.-Atmos., 124,

1119 13560-13575, <u>https://doi.org/10.1029/2019JD030765</u>, 2019.

Thornton, J. A., Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO₂: In situ laser-induced fluorescence detection at
parts per trillion mixing ratios, Anal. Chem., 72, 528-539, <u>https://doi.org/10.1021/ac9908905</u>, 2000.

Tong, D., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T., Pickering, K. E., and Stajner, I.: Long-term NO_x
trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground
observations, and emission inventories, Atmos. Environ., 107, 70-84, <u>https://doi.org/10.1016/j.atmosenv.2015.01.035</u>,
2015.

Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C., Yantosca, R. M., and
Sulprizio, M. P.: Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16,
13561-13577, <u>https://doi.org/10.5194/acp-16-13561-2016</u>, 2016.

Tu, J., Xia, Z.-G., Wang, H., and Li, W.: Temporal variations in surface ozone and its precursors and meteorological
effects at an urban site in China, Atmospheric Research, 85, 310-337, <u>https://doi.org/10.1016/j.atmosres.2007.02.003</u>,
2007.

- Valin, L. C., Russell, A. R., Hudman, R. C., and Cohen, R. C.: Effects of model resolution on the interpretation of
 satellite NO₂ observations, Atmos. Chem. Phys., 11, 11647-11655, <u>https://doi.org/10.5194/acp-11-11647-2011</u>, 2011.
- van der A, R. J., Eskes, H. J., Roozendael, M. V., De Smedt, I., Blond, N., Boersma, F., Weiss, A., and van Peet, J. C.
 A.: Algorithm Document Tropospheric NO₂, available at <u>http://www.temis.nl/docs/AD_NO2.pdf1.0</u>, 23, 2010.

Van Geffen, J., Boersma, K., Van Roozendael, M., Hendrick, F., Mahieu, E., De Smedt, I., Sneep, M., and Veefkind,
J.: Improved spectral fitting of nitrogen dioxide from OMI in the 405–465 nm window, Atmos. Meas. Tech., 8, 16851699, https://doi.org/10.5194/amt-8-1685-2015, 2015.

- 1139 Van Stratum, B. J. H., Vilà-Guerau de Arellano, J., Ouwersloot, H. G., Dries, K. d., Van Laar, T. W., Martinez, M.,
- Lelieveld, J., Diesch, J.-M., Drewnick, F., and Fischer, H.: Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO, Atmos. Chem. Phys., 12, 5329-5341,
- 1142 <u>https://doi.org/10.5194/acp-12-5329-2012</u>, 2012.
- 1143 Wooldridge, P. J., Perring, A. E., Bertram, T. H., Flocke, F. M., Roberts, J. M., Singh, H. B., Huey, L. G., Thornton, J.
- A., Wolfe, G. M., and Murphy, J. G.: Total Peroxy Nitrates ([Sigma] PNs) in the atmosphere: the Thermal
- Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements,
 Atmos. Meas. Tech., 3, 593, <u>https://doi.org/10.5194/amt-3-593-2010</u>, 2010.
- Yuan, H., McGinley, J. A., Schultz, P. J., Anderson, C. J., and Lu, C.: Short-range precipitation forecasts from timelagged multimodel ensembles during the HMT-West-2006 campaign, Journal of Hydrometeorology, 9, 477-491,
 https://doi.org/10.1175/2007JHM879.1, 2008.
- Zhang, R., Wang, Y., Smeltzer, C., Qu, H., Koshak, W., and Boersma, K. F.: Comparing OMI-based and EPA AQS in
 situ NO₂ trends: towards understanding surface NO_x emission changes, Atmos. Meas. Tech., 11, 3955-3967,
 <u>https://doi.org/10.5194/amt-11-3955-2018</u>, 2018.
- Zhang, Y., and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the Southeast United States,
 Proc. Natl. Acad. Sci. U.S.A., 113, 10025-10030, https://doi.org/10.1073/pnas.1602563113, 2016.
- 1155 Zhang, Y., Wang, Y., Chen, G., Smeltzer, C., Crawford, J., Olson, J., Szykman, J., Weinheimer, A. J., Knapp, D. J.,
- and Montzka, D. D.: Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of
- 1157 DISCOVER AQ 2011 observations, J. Geophys. Res.-Atmos., 121, 1922-1934,
- https://doi.org/10.1002/2015JD024203, 2016.
- Zhao, C., Wang, Y., Choi, Y., and Zeng, T.: Summertime impact of convective transport and lightning NO_x production over North America: modeling dependence on meteorological simulations, Atmos. Chem. Phys., 9, 4315-4327,
 <u>https://doi.org/10.5194/acp-9-4315-2009</u>, 2009.
- 1162 Zhao, X., Griffin, D., Fioletov, V., McLinden, C., Davies, J., Ogyu, A., Lee, S. C., Lupu, A., Moran, M. D., Cede, A.,
- Tiefengraber, M., and Müller, M.: Retrieval of total column and surface NO₂ from Pandora zenith-sky measurements,
 Atmos. Chem. Phys., 19, 10619-10642, https://doi.org/10.5194/acp-19-10619-2019, 2019.
- Zhao, X., Griffin, D., Fioletov, V., McLinden, C., Cede, A., Tiefengraber, M., Müller, M., Bognar, K., Strong, K.,
 Boersma, F., Eskes, H., Davies, J., Ogyu, A., and Lee, S. C.: Assessment of the quality of TROPOMI high-spatial-

- 1167 resolution NO₂ data products in the Greater Toronto Area, Atmos. Meas. Tech., 13, 2131-2159, 1168 https://doi.org/10.5194/amt-13-2131-2020, 2020.
- 1169 Zheng, Y., Alapaty, K., Herwehe, J. A., Del Genio, A. D., and Niyogi, D.: Improving high-resolution weather forecasts
- using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme, Monthly Weather
- 1171 Review, 144, 833-860, <u>https://doi.org/10.1175/MWR-D-15-0005.1</u>, 2016.

Table 1. Comparison of the concentrations of NO _y and i	s components between REAM and P-3B aircraft measurements during the
DISCOVER-AQ campaign	

			NO_{y} / ppb^{1}	NO / ppb	NO2_NCAR / ppb	NO ₂ _LIF / ppb ²	$\sum PNs / ppb$	$\sum ANs / ppb$	HNO3 / ppb	Derived- NOy / ppb ³
		P-3B	2.51 ± 2.09	0.18 ± 0.29	0.85 ± 1.13	0.68 ± 0.95	0.70 ± 0.58	0.31 ± 0.23	1.15 ± 0.73	2.86 ± 2.26
	Weekday ⁵	REAM	3.64 ± 3.13	0.18 ± 0.30	0.74 ± 1.04	0.68 ± 0.89	0.54 ± 0.45	0.10 ± 0.09	1.80 ± 1.61	3.10 ± 2.70
26 14		\mathbb{R}^2	0.33	0.35	0.38	0.34	0.37	0.38	0.24	0.41
. IIIX-0C		P-3B	3.00 ± 2.18	0.15 ± 0.20	0.71 ± 0.80	0.63 ± 0.72	0.91 ± 0.53	0.36 ± 0.21	1.15 ± 0.79	2.96 ± 2.15
	Weekend	REAM	3.78 ± 2.20	0.15 ± 0.17	0.54 ± 0.59	0.53 ± 0.58	0.53 ± 0.29	0.09 ± 0.06	2.31 ± 1.38	3.43 ± 2.26
		\mathbb{R}^2	0.29	0.28	0.41	0.45	0.27	0.39	0.50	0.51
		P-3B	2.51 ± 2.15	0.19 ± 0.30	0.86 ± 1.27	0.68 ± 0.98	0.70 ± 0.59	0.31 ± 0.22	1.17 ± 0.74	2.90 ± 2.27
	Weekday	REAM	3.81 ± 3.81	0.19 ± 0.35	0.79 ± 1.31	0.76 ± 1.20	0.46 ± 0.51	0.08 ± 0.10	2.03 ± 1.91	3.31 ± 3.28
1 1		\mathbb{R}^2	0.28	0.22	0.26	0.32	0.37	0.29	0.38	0.47
4-KIII		P-3B	2.96 ± 2.13	0.14 ± 0.18	0.69 ± 0.74	0.63 ± 0.71	0.91 ± 0.51	0.35 ± 0.21	1.15 ± 0.80	2.94 ± 2.09
	Weekend	REAM	4.36 ± 3.66	0.25 ± 0.40	0.85 ± 1.28	0.81 ± 1.23	0.41 ± 0.29	0.08 ± 0.08	2.54 ± 1.99	3.72 ± 3.52
		\mathbb{R}^2	0.21	0.15	0.19	0.18	0.16	0.23	0.38	0.37
¹ For P-3B,	the concentration	ons of NO _y ,	, NO, and NO ₂₋	NCAR were m	leasured by using	the NCAR 4-ch	annel chemilum	ninescence insti	rument. The me	asurement

incertainties are 10%, 10 - 15%, and 10% for NO, NO₂, and NO₃, respectively. The 1-second, 1-sigma detection limits are 20 pptv, 30 pptv, and 20 pptv for NO₃. NO2, and NOy, respectively (https://discover-aq.larc.nasa.gov/pdf/2010STM/Weinheimer20101005_DISCOVERAQ_AJW.pdf). For REAM, NOy is the sum of VO, NO₂, total peroxyacyl nitrates (Σ PNs), total alkyl nitrates (Σ ANs) (include alkyl nitrates and hydroxyalkyl nitrates), HNO₃, HONO, 2 × N₂O₅, HNO₄, first generation C5 carbonyl nitrate (nighttime isoprene nitrate ISN1: C5H8NO4), 2 × C5 dihydroxydinitrate (DHDN: C5H10O8N2), methyl peroxy nitrate (MPN: CH₃O₂NO₂), propanone nitrate (PROPNN: CH₃C(=O)CH₂ONO₂), nitrate from methyl vinyl ketone (MVKN: HOCH₂CH(ONO₂)C(=O)CH₃), nitrate from methacrolein (MARCN: HOCH₂C(ONO₂)(CH₃)CHO), and ethanol nitrate (ETHLN: CHOCH₂ONO₂).

technique. The accuracy of TD-LIF measurements of NO2, Σ PNs, Σ ANs, and HNO3 is better than 15%, and the detection limit for the sum of NO2, Σ PNs, Σ ANs, ² For P-3B, the concentrations of NO₂_LJF, Σ PNs, Σ ANs, and HNO₃ were measured by applying the thermal dissociation-laser induced fluorescence (TD-LJF) and HNO₃ is ~ 10 ppt 10 s⁻¹ (Day et al., 2002).

³ To compare NO₂ concentrations from TD-LIF measurements with those from REAM, we calculate derived-NO₂ as the sum of NO₂ NO₂ LIF, Σ PNs, Σ ANs, and HNO3. Only when the concentrations of all the five species are available at the same hour in the same grid cell, we can calculate derived-NOy at the given hour in the given grid cell. Therefore, in Table 1, the averaged derived-NO_y values are not exactly equal to the sum of averaged NO, NO₂_LIF, \sum PNs, \sum ANs, and HNO₃ concentrations that only depend on the availability of a single species. In addition, the measurement times and frequencies between NO₂ and derived-NO₂ are not the same. A comparison between these two types of data needs coincident sampling, as described in the main text.

⁴ Mean NO_x emissions over the six P-3B spiral sites are close (relative difference < 4%) between the 36-km and 4-km REAM (Table S1).

Due to different sampling times and locations between weekdays and weekends, we do not recommend a direct comparison between weekday and weekend values here

1193 1194 Figure 1. The locations of surface and P-3B aircraft observations during the DISCOVER-AQ 2011 campaign. We mark the 1195 36-km REAM grid cells with red lines and the 4-km REAM grid cells with black lines. Gray shading denotes land surface in 1196 the nested 4-km WRF domain, while white area denotes ocean/water surface. Blue dots denote surface O₃ observation sites. 1197 Cross-marks denote surface NO₂ observation sites, and their colors denote different measurement instruments: green for the 1198 Thermo Electron 42C-Y NO_v analyzer, dark orchid for the Ecotech Model 9841/9843 T-NO_v analyzers, black for the 1199 Thermo Model 42C NO_x analyzer, and chocolate for the Teledyne API model 200eup photolytic NO_x analyzer, Circles 1200 denote Pandora sites, and the cyan circle denotes a Pandora site (USNA) on a ship. Black squares denote the inland P-3B 1201 aircraft spiral locations.

1203 1204 figure 2. Distributions of NO_x emissions for the (a) 36-km and (b) 4-km REAM simulations around the DISCOVER-AQ 1205 2011 region. Here NO_x emissions refer to the mean values (molecules km⁻² s⁻¹) in one week (Monday – Sunday). 1206

1208 Figure 3. Relative diurnal profiles of weekday and weekend NO_x emissions (molecules km⁻² s⁻¹) in the DISCOVER-AQ

2011 region (the 36/4 km grid cells over the 11 inland Pandora sites shown in Figure 1) for the 36-km and 4-km REAM. All the profiles are scaled by the 4-km weekday emission average value (molecules $km^{-2} s^{-1}$).

Figure 4. Hourly ratios of NO₂ measurements from the Teledyne API model 200 eup photolytic NO_x analyzer to NO₂ from
 coincident catalytic instruments for 2011 July. "CY42" denotes the ratios of photolytic NO₂ to NO₂ from the Thermo
 Electron 42C-Y NO_y analyzer in Edgewood, "C42" denotes the ratios of photolytic NO₂ to NO₂ from the Thermo Model

1216 42C NO_x analyzer in Padonia, and "ECO" denotes the ratios of photolytic NO₂ to NO₂ from the Ecotech Model 9841 T-NO_y

analyzer in Padonia. "ECO" ratios are also used to scale NO₂ measurements from the Ecotech Model 9843 T-NO_y analyzer.

1219 1220 Figure 5. Diurnal cycles of surface (a, c) NO₂ and (b, d) O_3 concentrations on (a, b) weekdays and (c, d) weekends during 1221 the DISCOVER-AQ campaign in the DISCOVER-AQ region (the 36-km grid cells over the 11 inland Pandora sites shown 1222 in Figure 1). Black lines denote the mean observations from all the 11 NO₂ surface monitoring sites and 19 O_3 surface sites 1223 during the campaign (Figure 1), as mentioned in Section 2.5. "REAM-raw" (blue lines) denotes the coincident 36-km REAM 1224 simulation results with WRF-YSU simulated k_{zz} data, and "REAM-kzz" (red lines) is the coincident 36-km REAM 1225 simulation results with updated k_{zz} data. See the main text for details. Vertical bars denote corresponding standard deviations. 1226

Figure 6. ELF observed and model simulated diurnal variations of MLH at the UMBC site during the Discover-AQ campaign. "ELF MLH" denotes ELF derived MLHs by using the covariance wavelet transform method. "WRF-YSU MLH" denotes the 36-km WRF-YSU k_{zz} -determined MLHs, and "Updated MLH" denotes updated k_{zz} -determined MLHs. See the main text for details. Vertical bars denote standard deviations. For the ELF MLHs, there are 13,506 1-minute measurements in total during the campaign, and we bin them into hourly data. The green line corresponding to the right y-axis shows the diurnal variations of the number of hourly ELF data points.

1235 1236 Figure 7. Diurnal cycles of observed and simulated average surface NO₂ concentrations over Padonia, Oldtown, Essex, 1237 Edgewood, Beltsville, and Aldino (Table S1) on (a) weekdays and (b) weekends. Black lines denote mean observations from 1238 the six sites. Red lines denote coincident 36-km REAM simulation results, and blue lines are for coincident 4-km REAM 1239 simulation results. Error bars denote standard deviations.

Figure 8. Temporal evolutions of NO₂ vertical profiles below 3 km on (a, c, e) weekdays and (b, d, f) weekends from the (a, b) P-3B aircraft and (c, d) 36-km and (e, f) 4-km REAM during the DISCOVER-AQ campaign. Horizontal bars denote the corresponding standard deviations. In (a) and (b), dots denote aircraft measurements, while lines below 1 km are based on quadratic polynomial fitting, as described in section 2.6. The fitting values are mostly in reasonable agreement with the aircraft and surface measurements in the boundary layer. On weekends, no aircraft observations were made at 6:00 – 8:00 LT, and therefore no corresponding model profiles are shown.

1248Local TIMe / nLocal TIMe / n1249Figure 9. Contributions of emission, chemistry, transport, and dry deposition to NOx TVCD diurnal variations over the 111250inland Pandora sites (Table S1 and Figure 1) on weekdays in July 2011 for the (a) 36-km and (b) 4-km REAM simulations.1251"Chem" refers to net NOx chemistry production; "Emis" refers to NOx emissions; "Drydep" denotes NOx dry depositions;1252"Transport" includes advection, turbulent mixing, lightning NOx production, and wet deposition. "Total (NOx)" is the hourly1253change of NOx TVCDs ($\triangle(TVCD) = TVCD_{t+1} - TVCD_t$). "Total (NO2)" is the hourly change of NO2 TVCDs, and "Total1254(NO)" is the hourly change of NO TVCDs.

1257 Figure 10. Daily variations of NO₂ TVCDs on (a) weekdays and (b) weekends during the DISCOVER-AO campaign. 1258 "REAM-36km" refers to the 36-km REAM simulation results over the 11 inland Pandora sites. "REAM-4km" refers to the 1259 4-km REAM simulation results over the 11 inland Pandora sites. "Pandora" refers to updated Pandora TVCD data. "Flight" 1260 denotes P-3B aircraft-derived NO₂ VCDs below 3.63 km. "NASA-OMI" denotes the OMI NO₂ TVCDs retrieved by NASA 1261 over the Pandora sites; "KNMI-OMI" denotes the OMI NO2 TVCDs from KNMI; "KNMI-GOME2" is the GOME-2A NO2 1262 TVCDs from KNMI. "OMI-retrieval" and "GOME2-retrieval" denote OMI and GOME-2A TVCDs retrieved by using the 1263 KNMI DOMINO algorithm with corresponding 36-km REAM vertical profiles, respectively. The vertical bars denote 1264 corresponding standard deviations for all data except the 36-km REAM simulation results, the standard deviations of which 1265 are shown with pink shading. We list NO₂ TVCD values at 9:30 and 13:30 LT in Table S3.

1267 1268 Figure 11. Weekday hourly variations of NO₂ VCDs at different height (AGL) bins (< 3.63 km AGL, < 300 m AGL, and 1269 300 m ~ 3.63 km AGL) based on P-3B aircraft-derived datasets and the 36-km and 4-km REAM results. "Flight" denotes P-

1270 3B aircraft-derived NO₂ VCDs, "REAM-36km" denotes coincident 36-km REAM simulated VCDs, and "REAM-4km" 1271 denotes coincident 4-km REAM simulated VCDs.

1273 1274

Figure 12. Diurnal cycles of observed and simulated average surface NO_v concentrations at Padonia, Edgewood, Beltsville, 1275 and Aldino on (a) weekdays and (b) weekends. Vertical bars denote the corresponding standard deviations. It is noteworthy 1276 that the mean NO_x emissions over Padonia, Edgewood, Beltsville, and Aldino are 99% higher in the 4-km than the 36-km 1277 REAM simulations (Table S1).

1279 1280 Figure 13. Comparisons of NO₂ (a, c) TVCDs and (b, d) surface concentrations over the 11 inland Pandora sites between the 1281 4-km and 36-km REAM simulations on (a, b) weekdays and (c, d) weekends for July 2011. "REAM-36km" (black lines) 1282 denotes the 36-km REAM simulation results; "REAM-4km" (red lines) denotes the 4-km REAM simulation results; "4km-1283 regrid" (blue lines) refers to the 36-km values by re-gridding the 4-km REAM simulation results into 36-km REAM grid 1284 cells. The vertical bars denote corresponding standard deviations for all data except the 36-km REAM simulation results, the 1285 standard deviations of which are shown with gray shading.

1288Figure 14. Distributions of the scaled mean (a) 4-km REAM simulated NO2 VCDs below the UC-12 aircraft and (b)1289coincident ACAM measurements on weekdays in July 2011. (c), the distribution of the scaled NEI2011 NOx emissions on1290weekdays. (d) The scatter plot of the scaled 4-km REAM and ACAM NO2 VCDs from (a) and (b). (e) shows the relative1291differences between (a) and (b) (*REAM/ACAM* - 1). (f) The distribution of the number of data points used to calculate grid1292cell mean NO2 VCDs in (a) and (b). Here, we scale all values (VCDs and NOx emissions) based on their corresponding1293domain averages. The domain averages of ACAM and coincident 4-km REAM NO2 VCDs are 4.7 ± 2.0 and $4.6 \pm 3.2 \times 10^{15}$ 1294molecules cm⁻², respectively.

1296
1297
1297
1298
1298
1298
1298
1299
1299
1299
1299
1290
1299
1290
1291
1291
1291
1291
1291
1292
1293
1294
1294
1294
1295
1295
1296
1296
1297
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298</l