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Abstract	18 
The	hydroxyl	radical	(OH)	is	the	primary	atmospheric	oxidant,	responsible	for	removing	many	19 
important	trace	gases,	including	methane,	from	the	atmosphere.		Although	robust	relationships	20 
between	OH	drivers	and	modes	of	climate	variability	have	been	shown,	the	underlying	mechanisms	21 
between	OH	and	these	climate	modes,	such	as	the	El	Niño	Southern	Oscillation	(ENSO),	have	not	22 
been	thoroughly	investigated.		Here,	we	use	a	chemical	transport	model	to	perform	a	38-year	23 
simulation	of	atmospheric	chemistry,	in	conjunction	with	satellite	observations,	to	understand	the	24 
relationship	between	tropospheric	OH	and	ENSO,	Northern	Hemispheric	modes	of	variability,	the	25 
Indian	Ocean	Dipole,	and	monsoons.		Empirical	orthogonal	function	(EOF)	and	regression	analyses	26 
show	that	ENSO	is	the	dominant	mode	of	global	OH	variability	in	the	tropospheric	column	and	27 
upper	troposphere,	responsible	for	approximately	30%	of	the	total	variance	in	boreal	winter.		28 
Reductions	in	OH	due	to	ENSO	are	centered	over	the	tropical	Pacific	and	Australia	and	can	be	as	29 
high	as	10	-	15%	in	the	tropospheric	column.		The	relationship	between	ENSO	and	OH	is	driven	by	30 
changes	in	nitrogen	oxides	in	the	upper	troposphere	and	changes	in	water	vapor	and	O1D	in	the	31 
lower	troposphere.		While	the	spatial	scale	of	the	relationship	between	monsoons,	other	modes	of	32 
variability,	and	OH	are	much	smaller	than	ENSO,	local	changes	in	OH	can	be	significantly	larger	than	33 
those	caused	by	ENSO.		These	relationships	also	occur	in	multiple	models	that	participated	in	the	34 
Chemistry	Climate	Model	Initiative	(CCMI),	suggesting	that	the	dependence	of	OH	interannual	35 
variability	on	these	well-known	modes	of	climate	variability	is	robust.		Finally,	modeled	36 
relationships	between	ENSO	and	OH	drivers	–	such	as	carbon	monoxide,	water	vapor,	and	lightning	37 
–	closely	agree	with	satellite	observations.		The	ability	of	satellite	products	to	capture	the	38 
relationship	between	OH	drivers	and	ENSO	provides	an	avenue	to	an	indirect	OH	observation	39 
strategy	and	new	constraints	on	OH	variability.		40 
 41 
1.0 Introduction	42 
The	hydroxyl	radical	(OH),	the	atmosphere’s	primary	oxidant,	removes	many	trace	gases	that	affect	43 
composition	and	climate.	Despite	its	central	role	in	atmospheric	chemistry,	the	spatiotemporal	44 
distributions	of	OH	concentrations	are	poorly	constrained,	often	confounding	interpretation	of	45 
observed	variations	and	trends	of	important	atmospheric	constituents.	For	example,	there	are	46 
several	plausible	explanations	of	the	observed	fluctuations	in	the	global	burden	of	atmospheric	47 
methane	(CH4),	the	second-most	important	anthropogenic	greenhouse	gas.		Explanations	include	48 
variations	and	trends	in	both	emissions	and	oxidation	of	methane	(Prather	and	Holmes,	2017;Rigby	49 
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et	al.,	2017;Turner	et	al.,	2017).		Better	constraints	on	OH	and	its	dynamical	and	photochemical	50 
drivers	are	needed	to	improve	confidence	in	our	interpretation	of	recent	methane	trends	and	to	51 
project	future	climate	in	response	to	changes	in	emissions	and	composition. 52 
	 53 
Observational	limitations	and	chemistry	climate	model	disagreement	pose	challenges	to	advancing	54 
our	understanding	of	the	spatiotemporal	variability	in	OH.	There	are	few	direct	in	situ	OH	55 
observations,	on	local,	regional,	and	global	scales	(Stone	et	al.,	2012)	as	OH	is	both	highly	reactive,	56 
with	a	lifetime	of	~1	s	in	the	free	troposphere	(Mao	et	al.,	2009),	and	low	in	concentration,	on	the	57 
order	of	106	molecules/cm3.		Recent	work	has	demonstrated	that	a	longer-lived	intermediate	of	CH4	58 
oxidation,	formaldehyde,	shows	promise	for	inferring	variability	in	OH	columns	over	the	remote	59 
atmosphere	(Wolfe	et	al.,	2019).		In	models	of	atmospheric	chemistry	and	transport,	OH	can	vary	60 
widely,	with	differences	in	global	methane	lifetime,	a	proxy	for	OH	abundance,	between	45	and	61 
80%	among	models	in	inter-comparison	projects	(e.g.,	Voulgarakis	et	al.,	2013;Nicely	et	al.,	62 
2017;Zhao	et	al.,	2019).			63 
	64 
Analysis	of	the	factors	causing	inter-model	differences	in	the	tropospheric	OH	burden	is	65 
challenging,	as	causation	is	difficult	to	prove	with	a	species	so	tightly	coupled	to	a	multitude	of	66 
chemical	and	meteorological	processes.		Primary	OH	production	occurs	through	photolysis	of	O3	67 
followed	by	reaction	with	water	vapor	(H2O(v)),	while	secondary	production	is	often	regulated	by	68 
nitrogen	oxides	(NOX	=	NO	+	NO2)	through	the	reaction	of	the	hydroperoxyl	radical	(HO2)	with	NO.		69 
Globally,	CO	and	CH4	are	the	primary	sinks,	although	other	species,	particularly	volatile	organic	70 
compounds	(VOCs),	can	be	important	regionally.		However,	attributing	OH	variability	remains	71 
challenging,	with	different	models	showing	widely	ranging	responses	in	OH	to	changes	in	these	72 
drivers,	particularly	to	NOX	and	humidity	(Wild	et	al.,	2020).	73 
	74 
These	chemical	and	radiative	drivers	of	OH	variability	are	in	turn	partially	regulated	by	large-scale	75 
dynamical	features,	such	as	the	El	Niño	Southern	Oscillation	(ENSO),	monsoons,	and	modes	of	76 
Northern	Hemispheric	(NH)	variability	(e.g.	the	North	Atlantic	Oscillation	(NAO)),	through	changes	77 
in	transport	and	emissions.		Oman	et	al.	(2011)	and	Oman	et	al.	(2013)	used	satellite	observations	78 
and	chemistry	climate	models	to	show	that	the	horizontal	and	vertical	distributions	of	tropospheric	79 
ozone	are	significantly	modulated	by	ENSO,	most	prominently	through	the	manifestation	of	a	dipole	80 
pattern	over	southeast	Asia	and	the	tropical	western	Pacific.		Sekiya	and	Sudo	(2012)	found	similar	81 
results	with	the	CHASER	chemical	transport	model,	along	with	strong	relationships	between	ozone	82 
variability	and	the	Indian	Ocean	Dipole	(IOD),	the	Arctic	Oscillation,	and	the	Asian	winter	monsoon.	83 
ENSO	events	can	also	change	CH4	emissions	from	wetlands	(Zhang	et	al.,	2018),	CO	emissions	from	84 
biomass	burning	(Duncan,	2003b;Duncan,	2003a;Rowlinson	et	al.,	2019),	and	lightning	NO	85 
production	(Murray	et	al.,	2013;Murray	et	al.,	2014;Turner	et	al.,	2018).		Relationships	between	the	86 
Madden-Julian	Oscillation	(MJO)	and	variability	of	tropical	ozone	(Tian	et	al.,	2007;Ziemke	et	al.,	87 
2015),	H2O(v)	(Myers	and	Waliser,	2003),	and	CO	(Wong	and	Dessler,	2007)	have	also	been	shown.		88 
Finally,	the	NAO	can	alter	the	long	range	transport	of	CO,	through	increased	outflow	from	Europe	89 
over	the	North	Atlantic	during	its	negative	phase	(Li	et	al.,	2002;Creilson	et	al.,	2003;e.g.	Duncan,	90 
2004).			91 
	92 
Despite	the	strong	linkages	between	these	dynamical	features	and	OH	drivers,	there	is	little	93 
research	on	the	relationship	between	these	processes	and	OH	itself.		Turner	et	al.	(2018)	used	a	94 
6000-year	simulation	with	free	running	dynamics	to	suggest	that	ENSO	is	the	dominant	mode	of	OH	95 
variability	at	decadal	timescales,	mainly	through	its	effects	on	lightning	NO	emissions.		Their	study,	96 
however,	held	most	forcings	and	emissions,	including	greenhouse	gas	concentrations	and	biomass	97 
burning,	to	1860	conditions.	Emissions	of	lightning	NO,	dust,	and	dimethyl	sulfide	were	allowed	to	98 
respond	to	model	meteorology.		During	the	1997/98	ENSO	event,	increases	in	CO	from	biomass	99 
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burning	led	to	decreases	in	OH	of	9%	on	the	global	scale	(Rowlinson	et	al.,	2019)	and	up	to	20%	100 
over	the	Indian	Ocean	(Duncan,	2003b).		Using	inversions	of	observations	of	methyl	chloroform	to	101 
estimate	OH	concentrations,	Prinn	et	al.	(2001)	found	OH	to	be	lower	during	ENSO	years,	102 
suggesting	this	could	be	linked	to	reduced	UV	radiation	near	the	surface	due	to	increased	cloud	103 
coverage.		As	with	ENSO,	modeling	studies	have	shown	that	the	Asian	monsoon	increases	OH	104 
concentrations	in	the	upper	troposphere	(UT)	through	increased	lightning	NO	production,	despite	105 
increases	in	convectively	lofted	OH	sinks,	particularly	CO	(Lelieveld	et	al.,	2018).			106 
 107 
Here,	we	examine	how	OH	and	related	chemical	and	radiative	factors	vary	with	known	modes	of	108 
climate	and	atmospheric	variability.		Using	correlation	analysis,	we	compare	the	relationship	109 
between	ENSO	and	tropospheric	column	OH	from	the	NASA	Goddard	Earth	Observing	System	110 
(GEOS)	Chemistry	Climate	Model	(GEOSCCM)	(Strode	et	al.,	2019)	and	four	models	that	111 
participated	in	the	joint	International	Global	Atmospheric	Chemistry	(IGAC)/Stratosphere-112 
troposphere	Processes	And	their	Role	in	Climate	(SPARC)	Chemistry	Climate	Model	Initiative	113 
(CCMI)	(Morgenstern	et	al.,	2017).		After	evaluating	these	relationships	from	the	GEOSCCM	model	114 
with	in	situ	and	satellite	observations,	we	explore	further	the	relationship	between	OH,	its	115 
precursors,	and	ENSO.		Finally,	we	expand	the	analysis	to	include	not	only	ENSO	but	also	other	116 
modes	of	internal	climate	variability.	117 
 118 
2.0 Methods	119 
In	this	section,	we	outline	the	methodology	used	to	understand	the	relationship	between	OH	and	120 
large-scale	dynamical	drivers.		First,	we	describe	the	analysis	methods	used	in	Section	2.1.		In	121 
Sections	2.2	and	2.3,	we	describe	the	relevant	details	of	the	GEOSCCM	and	CCMI	simulations,	122 
respectively.		123 
 124 
2.1 Description	of	Analysis	Methods	125 
Because	the	factors	driving	OH	concentrations	and	interannual	variability	are	altitude	dependent,	126 
we	divide	the	atmosphere	into	4	layers:		the	surface	to	the	top	of	the	PBL	(PBL),	from	the	top	of	the	127 
PBL	to	500	hPa	(Lower	Free	Troposphere:	LFT),	between	500	and	300	hPa	(Middle	Free	128 
Troposphere:	MFT),	and	from	300	hPa	to	the	tropopause	(Upper	Free	Troposphere:	UFT).		Output	129 
from	each	model	has	been	vertically	averaged	to	these	layers	on	a	seasonal	basis.	In	addition,	we	130 
also	examine	the	tropospheric	column.	131 
	132 
To	help	determine	the	relationship	between	the	modes	of	climate	variability	and	photochemical	133 
and	meteorological	variables	archived	by	the	various	models,	we	regress	model	output	against	134 
different	climate	indices.		To	perform	the	regression,	we	first	detrend	the	output	on	a	monthly	basis	135 
and	then	regress	the	model	variable	against	a	specific	climate	index	(e.g.	ENSO	index)	for	1980	to	136 
2018.		We	perform	these	regressions	on	each	grid	cell	for	each	of	the	4	layers	as	well	as	for	the	137 
tropospheric	column.		In	the	results	below,	we	only	include	regressions	where	the	Pearson	138 
correlation	coefficient	(r)	exceeds	0.5,	unless	otherwise	indicated.		Using	other	methods	to	define	139 
significance	of	a	regression,	such	as	a	two-tailed	student	t	test	with	p	values	less	than	0.05,	does	not	140 
significantly	alter	the	results.			141 
	142 
Climate	features	considered	here	include	ENSO,	the	IOD,	several	Northern	Hemispheric	143 
atmospheric	modes	of	variability,	and	various	monsoons.		We	use	the	ENSO	multivariate	index	144 
(MEI)	(Wolter	and	Timlin,	2011)	and	the	Dipole	Mode	Index	(DMI)	for	the	Indian	Ocean	Dipole,	145 
obtained	from	https://psl.noaa.gov/enso/mei/	and	146 
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/,	respectively.			Northern	Hemispheric	modes	147 
considered	are	the	NAO,	the	East	Atlantic	Pattern	(EA),	the	Pacific	North	American	Pattern	(PNA),	148 
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the	East	Atlantic	Western	Russian	Pattern,	the	Scandinavian	Pattern,	the	West	Pacific	Pattern,	the	149 
East	Pacific	North	Pacific	Pattern,	and	the	Tropical	Northern	Hemisphere	Pattern.		Indices	for	the	150 
NH	modes	were	taken	from	the	NOAA	Climate	Prediction	Center	(available	online	at	151 
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml)	and	were	determined	from	a	152 
rotated	principal	component	analysis	of	the	500	hPa	geopotential	height	of	the	National	Center	for	153 
Environmental	Prediction	Reanalysis.		Monsoons	included	in	this	analysis	are	the	Indian,	South	154 
American,	North	American,	South	African,	North	African,	Australian,	and	the	Western	North	Pacific.		155 
We	calculate	the	monsoon	index	for	each	model	used	in	this	study	based	on	the	definitions	of	Yim	et	156 
al.	(2013),	where	the	index	is	defined	by	the	difference	of	zonal	winds	at	850	hPa	between	two,	157 
monsoon-specific	regions.		See	Table	2	in	Yim	et	al.	(2013)	for	more	details.		Because	the	GEOSCCM	158 
(Section	2.2)	and	CCMI	models	(Section	2.3)	included	here	are	constrained	or	nudged	to	different	159 
reanalyses	(MERRA,	MERRA2,	JRA-55,	and	the	ERA-interim),	the	calculated	monsoon	index	varies	160 
among	the	models,	although	the	indices	of	a	given	monsoon	from	each	model	are	highly	correlated	161 
with	one	another	(generally	r2	>	0.9).	162 
	163 
In	addition	to	regression	analysis,	we	also	performed	an	empirical	orthogonal	function	(EOF)	164 
analysis	for	tropospheric	column	OH	(TCOH)	and	separately	for	each	of	the	four	layers	described	165 
above.		EOF	analysis	allows	for	the	statistical	determination	of	the	spatial	modes	of	OH	variability	166 
and	their	variation	with	time	without	a	priori	knowledge	of	the	controlling	mechanisms	(e.g.,	167 
Barnston	and	Livezey,	1987).		To	perform	the	analysis,	OH	fields	for	each	grid	box	were	detrended	168 
by	subtracting	a	linear	fit	and	standardized	with	the	standard	deviation	before	calculating	the	EOF.		169 
We	report	here	only	the	first	and	second	EOFs	and	their	associated	principal	component	time	series		170 
as	none	of	the	other	EOFs	correlated	spatially	or	temporally	with	any	of	the	modes	of	climate	171 
variability	discussed	here.	172 

	173 
2.2 MERRA-2	GMI	Simulation	Description	174 
To	understand	the	interannual	variability	of	OH,	we	use	the	MERRA-2	GMI	(Modern-Era	175 
Retrospective	analysis	for	Research	and	Applications	Global	Modeling	Initiative)	simulation,	176 
publicly	available	at	https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/.		This	is	a	run	177 
of	the	GEOSCCM	model	(Strode	et	al.,	2019)	constrained	to	meteorology	from	MERRA-2	(Gelaro	et	178 
al.,	2017)	that	uses	the	GMI	chemical	mechanism	(Duncan	et	al.,	2007;Oman	et	al.,	2013;Gelaro	et	179 
al.,	2017).		The	GMI	chemical	mechanism	includes	approximately	120	species	and	400	reactions,	180 
characterizing	the	photochemistry	of	the	troposphere	and	stratosphere.		The	model	was	run	from	181 
1980	to	2018	at	a	resolution	of	c180	on	the	cubed	sphere,	equivalent	to	approximately	0.625°	182 
longitude	×	0.5°	latitude,	with	72	vertical	levels.		The	model	was	run	in	a	replay	mode	(Orbe	et	al.,	183 
2017)	and	constrained	to	temperature,	pressure,	and	winds	from	MERRA-2.		Model	output	is	184 
available	at	daily	and	monthly	resolutions,	with	hourly	output	available	only	for	some	local	satellite	185 
overpass	times.		All	data	used	in	this	work	is	monthly	averaged	unless	otherwise	indicated. 186 
 187 
Anthropogenic	emissions	are	from	the	Measuring	Atmospheric	Composition	and	Climate	mega	City	188 
(MACCity)	inventory	(Granier	et	al.,	2011)	for	1980	–	2010,	and	then	from	the	Representative	189 
Concentration	Pathway	8.5	(RCP8.5)	scenario	for	2011	–	2018.		Biomass	burning	emissions	are	190 
from	the	Global	Fire	Emissions	Database	(GFED)	4s	inventory	starting	in	1997	(Giglio	et	al.,	2013).		191 
Biomass	burning	emissions	from	before	1997	are	calculated	from	scale	factors	derived	from	192 
aerosol	index	data	from	the	Total	Ozone	Mapping	Spectrometer	(TOMS)	instrument,	as	described	in	193 
Duncan	(2003).		Biogenic	emissions	are	calculated	online	using	the	Model	of	Emissions	of	Gases	and	194 
Aerosols	from	Nature	(MEGAN)	model	(Guenther	et	al.,	1999;Guenther	et	al.,	2000).			A	known	high	195 
bias	in	isoprene	emissions	from	MEGAN	(e.g.,	Wang	et	al.,	2017),	could	exacerbate	low	modeled	OH	196 
in	regions	dominated	by	biogenic	VOC	emissions.		Lightning	NO	emissions	are	based	on	the	197 
cumulative	mass	flux	(Allen	et	al.,	2010),	with	constraints	from	the	Lightning	Imaging	Sounder	198 
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(LIS)/Optical	Transient	Detector	(OTD)	v2.3	climatology	(Cecil	et	al.,	2014).		Total,	global	lightning	199 
NO	emissions	are	scaled	to	be	6.5	Tg	N/year	for	each	year	of	the	simulation,	although	emissions	200 
demonstrate	significant	interannual	variability	on	the	local	scale.		For	example,	over	the	tropical	201 
Pacific,	an	area	we	will	investigate	throughout	this	paper,	peak	emissions	are	1.5	times	higher	than	202 
minimum	emissions	over	the	time	period	studied	here	(Fig.	S1).		Methane	concentrations	are	203 
specified	as	latitude-	and	time-dependent	boundary	conditions. 204 
 205 
2.3 IGAC/SPARC	Chemistry	Climate	Model	Initiative	(CCMI)	Phase	1	Model	Simulations	206 
To	place	the	results	from	MERRA2	GMI	in	the	context	of	other	models,	we	compare	our	simulation	207 
with	those	from	CCMI.		The	CCMI	was	conducted	to	help	assess	the	ability	of	a	suite	of	models	to	208 
address	various	aspects	of	atmospheric	chemistry,	including	trends	in	tropospheric	ozone	and	the	209 
controlling	mechanisms	of	OH	(Morgenstern	et	al.,	2017).		Output	from	these	models	have	already	210 
been	used	to	assess	various	aspects	of	tropospheric	OH	(Zhao	et	al.,	2019;Nicely	et	al.,	2020),	HCHO	211 
(Anderson	et	al.,	2017),	O3	(Revell	et	al.,	2018;Dhomse	et	al.,	2018)	and	meteorological	variables	212 
(Orbe	et	al.,	2020).		Modeling	groups	conducted	multiple	runs,	including	a	forecast	scenario	to	2100	213 
and	two	hindcast	scenarios,	one	with	free-running	meteorology	and	one,	the	specified	dynamics	214 
(SD)	scenario,	in	which	models	were	either	nudged	to	meteorological	reanalyses	or	run	as	chemical	215 
transport	models	(Orbe	et	al.,	2020).	 216 
 217 
We	perform	a	similar	analysis	as	with	MERRA2	GMI	with	four	models	that	performed	the	CCMI	SD	218 
run.		We	use	the	SD	run,	which	spanned	the	years	1980	–	2010,	instead	of	the	other	scenarios	to	219 
allow	for	more	direct	comparison	among	the	CCMI	models	as	well	as	with	MERRA2	GMI	and	220 
observations	from	satellite.		We	include	only	models	that	output	data	for	all	years	between	1980	221 
and	2010	and	that	have	non-methane	hydrocarbon	chemistry	in	their	chemical	mechanisms.		222 
Models	used	here	are	WACCM	(Solomon	et	al.,	2015),	CHASER	(MIROC-ESM)	(Watanabe	et	al.,	223 
2011),	a	setup	of	EMAC	with	90	vertical	levels	(EMAC)	(Jöckel	et	al.,	2016),	and	MRI-ESM1r1	224 
(Yukimoto	et	al.,	2012).		We	omit	CAM4Chem	and	a	different	setup	of	EMAC	with	47	vertical	levels	225 
because	results	for	those	models	are	essentially	identical	to	WACCM	and	EMAC90,	respectively.		226 
EMAC90	and	CHASER	were	nudged	to	the	ERA-interim	reanalysis,	WACCM	to	the	MERRA	227 
reanalysis,	and	MRI	to	the	JRA-55	reanalysis.		Sea	surface	temperatures	(SST)	and	sea	ice	were	228 
prescribed	in	each	model	with	the	Hadley	SST	dataset.		Anthropogenic	emissions	were	from	the	229 
MACCity	inventory,	while	lightning	NOX	was	calculated	online	using	model-specific	230 
parameterizations.	Further	model	details	can	be	found	in	Orbe	et	al.	(2020),	Morgenstern	et	al.	231 
(2017),	and	references	therein. 232 
 233 
As	with	the	MERRA2	GMI	analysis,	we	use	monthly	averaged	output.		For	layer	averaging,	only	234 
EMAC90,	WACCM,	and	MRI	output	a	tropopause	height,	while	no	models	output	PBL	height.		To	235 
calculate	the	tropopause	height	for	CHASER,	we	used	the	relationship	between	O3	and	CO	as	236 
described	in	Pan	et	al.	(2004).		PBL	height	for	all	models	was	determined	from	the	bulk	Richardson	237 
number	(Seibert	et	al.,	2000).	 238 

	 239 
3.0 MERRA2	GMI	Simulation	Evaluation	240 
While	there	has	been	some	evaluation	of	the	MERRA2	GMI	simulation	(Ziemke	et	al.,	2019;Strode	et	241 
al.,	2019),	species	in	the	simulation	relevant	to	this	study	have	not	been	investigated.		As	a	result,	242 
we	evaluate	MERRA2	GMI	using	in	situ	observations	of	OH	and	related	species	as	well	as	remotely	243 
sensed	observations	of	OH	drivers	in	order	to	understand	the	effect	any	model	biases	could	have	on	244 
our	results.		In	Section	3.1,	we	use	in	situ	observations	from	the	first	two	deployments	of	the	245 
Atmospheric	Tomography	(ATom)	campaign	to	evaluate	OH,	CO,	and	HCHO	over	the	remote	Pacific	246 
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and	Atlantic	Oceans.		In	Section	3.2,	we	also	compare	output	to	satellite	observations	of	CO,	H2O(v),	247 
and	NO2	to	evaluate	the	model	over	larger	temporal	and	spatial	scales.	248 
 249 
3.1 Evaluation	of	MERRA2	GMI	with	in	situ	Observations	250 
During	the	ATom	campaign,	a	suite	of	air	quality	and	climate	relevant	trace	gases	and	aerosols	were	251 
measured	throughout	the	remote	Pacific	and	Atlantic.		During	each	of	the	deployments,	aircraft	252 
transected	the	Pacific	from	Alaska	to	New	Zealand,	went	around	Tierra	del	Fuego,	and	travelled	253 
north	over	the	Atlantic	to	Greenland.		Each	flight	consisted	of	a	series	of	ascents	and	descents	254 
allowing	for	vertical	profiling	across	most	latitudes	of	the	remote	Pacific	and	Atlantic	Oceans.		The	255 
combination	of	the	flight	track	and	the	repetition	across	seasons	provided	unprecedented	sampling	256 
of	many	trace	gases,	including	OH.		As	part	of	the	ATom	campaign,	a	limited	subset	of	species,	257 
including	OH	and	CO,	from	the	MERRA2	GMI	simulation	were	output	hourly	for	the	duration	of	258 
ATom1	(July	–	August	2016)	and	ATom2	(January	–	February	2017)	only,	allowing	for	direct	259 
comparison	to	the	in	situ	observations.		Only	daily	or	longer	resolution	output	is	available	for	the	260 
other	deployments,	and,	as	a	result,	we	focus	our	analysis	on	these	first	two	deployments.	261 
	262 

 263 
Figure 1: Regression of observed OH (a) and CO (b) from ATom 2 (boreal winter 2017) against hourly output from MERRA2 GMI 264 
interpolated to the ATom flight track.  Data from the Southern (blue circles) and Northern (orange triangles) Hemisphere are 265 
shown, along with the r2, bias, and normalized mean bias (NMB) for each hemisphere.  Observations and model output have been 266 
filtered for biomass burning influence. 267 

Observations	used	here	include	OH	(Brune	et	al.,	2020)	and	CO	(Santoni	et	al.,	2014),	with	2σ	268 
uncertainties	of	35%	and	3.5	ppbv,	respectively.		Data	have	been	averaged	to	a	5-minute	time	base	269 
and	filtered	for	biomass	burning	influence,	defined	as	times	when	concentrations	of	HCN	and	CO	270 
are	both	above	the	75th	percentile	for	the	individual	ATom	deployments.		We	omit	the	biomass	271 
burning	influenced	parcels	because	small	differences	in	measured	and	modeled	winds	could	result	272 
in	misplacement	of	modeled	biomass	burning	plumes,	resulting	in	unrealistically	large	differences	273 
in	OH.		Inclusion	of	the	biomass	burning	influenced	parcels	does	not	significantly	change	the	model	274 
bias	but	does	degrade	the	the	correlation.		For	comparison	of	the	observations	to	MERRA2	GMI,	275 
hourly	data	were	output	by	the	model	and	then	bilinearly	interpolated	in	the	horizontal	and	276 
linearly	interpolated	in	time	and	in	the	vertical	to	the	in	situ	observation	time	and	location.	277 
	278 
MERRA2	GMI	has	a	OH	high	bias	of	approximately	20%	(Fig.	1)	when	compared	to	observations	279 
from	ATom	2.		A	regression	of	measured	and	modeled	OH	shows	moderate	to	high	correlation	in	280 
both	the	Southern	Hemisphere	(SH)	and	NH,	with	r2	values	of	0.30	and	0.78,	respectively.		281 
Normalized	Mean	Biases	(NMB)	relative	to	the	observations	are	similar	in	both	the	NH	(19%)	and	282 
SH	(16%),	with	nearly	identical	high	biases	during	the	summer	deployment	of	ATom1	(Fig.	S2).		283 
The	comparatively	poorer	model	performance	for	OH	in	the	SH	is	being	driven	by	continental	284 
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outflow	from	South	America	and	New	Zealand.		When	data	from	these	regions	are	omitted,	the	285 
correlation	for	the	SH	increases	to	0.63	and	the	NMB	is	22%.	286 
	287 
Agreement	between	observed	and	modeled	CO	shows	a	strong	hemispheric	dependence,	with	an	288 
NMB	of	-14%	in	the	NH	(i.e.,	the	model	is	lower	than	observations	by	14%)	and	8%	in	the	SH,	289 
although	both	hemispheres	have	a	strong	correlation	(r2	>	0.7).		While	agreement	in	the	SH	290 
improves	in	the	summer,	with	an	NMB	of	2%	(Fig.	S2),	the	model	underestimate	in	the	NH	is	even	291 
more	pronounced	(NMB	=	-20%).		This	NH	low	bias	in	CO	is	consistent	with	the	overestimate	in	OH	292 
and	is	a	well-known	problem	in	global	chemistry	models	(Naik	et	al.,	2013;e.g.	Stein	et	al.,	2014).			293 
	294 
Comparison	of	the	MERRA2	GMI	simulation	to	in	situ	observations	demonstrates	that	the	model	295 
captures	the	spatial	variability	of	OH	and	its	predominant	global	sink,	CO,	in	the	remote	atmosphere	296 
during	both	the	NH	summer	and	winter,	with	the	exception	of	OH	off	the	coast	of	South	America	297 
and	New	Zealand.		The	poorer	agreement	between	measured	and	modeled	OH	in	regions	of	fresh,	298 
continental	outflow	suggests	that	modeled	relationships	between	climate	modes	and	OH	in	these	299 
regions	might	be	more	uncertain	than	in	the	remote	atmosphere.	300 
		301 
3.2 Evaluation	of	MERRA2	GMI	with	Satellite	Observations	302 
While	there	are	no	remotely	sensed	observations	of	tropospheric	column	OH	(TCOH),	there	are	303 
satellite	observations	of	OH	drivers.		Comparing	these	observations	to	MERRA2	GMI	allows	for	304 
model	evaluation	over	larger	spatial	and	temporal	scales	than	with	ATom.		Satellite	data	used	here	305 
include	tropospheric	CO	columns	from	the	Measurement	Of	Pollutants	In	The	Troposphere	306 
(MOPITT)	instrument,	H2O(v)	from	the	Atmospheric	Infrared	Sounder	(AIRS),	and	tropospheric	NO2	307 
from	the	Ozone	Monitoring	Instrument	(OMI).		AIRS	is	on	the	Aqua	satellite,	with	a	daily,	local	308 
overpass	time	of	approximately	13:30.		We	use	the	monthly	averaged,	Level	3,	Version	6	standard	309 
physical	retrieval	(Susskind	et	al.,	2014)	from	2003	to	2018.		For	MOPITT	CO	on	the	Terra	satellite,	310 
we	use	the	Level	3,	V008	retrieval	that	uses	both	near	and	thermal	infrared	radiances	(Deeter	et	al.,	311 
2019)	from	2001	to	2018.		MOPITT	has	a	daily,	local	overpass	time	of	approximately	10:30.		Both	312 
satellite	products	have	a	global	horizontal	resolution	of	1°	×	1°.		We	also	use	the	OMI	NO2	Version	3,	313 
Level	3	product	(Krotkov	et	al.,	2017)	from	2005	to	2018.		Data	have	been	regridded	to	1°	×	1°	314 
horizontal	resolution.		OMI	is	located	on	the	Aura	satellite	and,	as	with	AIRS,	has	a	local	overpass	315 
time	of	approximately	13:30.		For	comparison	of	the	satellite	retrievals	to	MERRA2	GMI,	we	use	316 
monthly	fields	of	the	model	variables	output	at	the	satellite	overpass	time.	317 
	318 
When	compared	to	MOPITT	in	boreal	winter,	tropospheric	column	CO	from	MERRA2	GMI	(Fig.	2,	319 
first	column)	shows	similar	results	to	that	found	through	comparison	to	the	in	situ	observations,	320 
namely	a	low	bias	in	the	NH	(9%)	and	high	bias	in	the	SH	(7%).		Differences	over	the	tropical	321 
Pacific,	an	area	that	will	be	shown	later	to	have	a	strong	relationship	between	ENSO	and	OH,	are	322 
generally	less	than	10%,	while	a	noticeable	high	bias	exists	over	parts	of	South	America.		Results	for	323 
June	–	August	(JJA)	are	spatially	similar	(Fig.	S3),	with	a	NH	low	bias	of	20%	and	overestimates	of	324 
column	CO,	averaging	45%,	in	the	SH	corresponding	with	areas	of	biomass	burning.	325 
	326 
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 327 
Figure 2: Tropospheric column CO (left), H2O(v)	(middle), and NO2 (right) from MOPITT, AIRS, and OMI, respectively (top row), and 328 
MERRA2 GMI (middle row) averaged over the satellite lifetime for DJF.  The fractional difference between MERRA2 GMI and the 329 
satellite is shown in the bottom row. 330 

MERRA2	GMI	captures	the	spatial	distribution	of	H2O(v),	although	the	model	is	biased	high	in	both	331 
the	column	and	throughout	much	of	the	troposphere.		Overestimates	in	column	H2O(v)	are	~14%	in	332 
both	December	–	February	(DJF)	(Fig.	2h)	and	JJA	(Fig.	S3).		These	overestimates	extend	over	most	333 
of	the	world’s	oceans,	and	only	small	regions	over	northern	India,	central	Africa,	eastern	Russia,	334 
and	eastern	Canada	show	any	underestimate	in	H2O(v).		Fractional	differences	in	H2O(v)	between	335 
MERRA2	GMI	and	the	different	AIRS	pressure	levels	are	most	pronounced	in	the	tropical	UT	(Fig.	336 
3).		At	pressures	greater	than	700	hPa,	modeled	H2O(v)	is	generally	within	10%	of	the	observations,	337 
while	for	pressures	less	than	500	hPa,	modeled	H2O(v)	in	the	equatorial	region	disagrees	with	338 
observations	by	55%	on	average.		339 
	340 
Agreement	between	observed	and	modeled	NO2	is	weaker	than	for	the	other	species	examined	341 
here.		While	MERRA2	GMI	appears	to	capture	the	regions	with	local	NO2	maxima	–	notably	those	342 
over	central	Africa,	eastern	China,	and	the	northeastern	United	States	–	the	magnitudes	frequently	343 
differ.		The	simulation	shows	a	significant	high	bias	over	central	Africa	and	the	equatorial	Atlantic	344 
on	the	order	of	100%,	suggesting	that	biomass	burning	emissions	of	NOX,	the	dominant	NO	source	345 
in	this	region,	are	too	high,	consistent	with	the	CO	comparison	to	MOPITT.		In	contrast,	346 
concentrations	over	eastern	Asia	are	too	low	in	the	model,	suggesting	errors	in	the	anthropogenic	347 
emissions	inventory	and/or	in	the	NOX	lifetime.		Strode	et	al.	(2019)	also	evaluated	NO2	in	MERRA2	348 
GMI,	comparing	trends	in	tropospheric	column	NO2	over	the	eastern	US	and	eastern	China	in	349 
MERRA2	GMI	and	OMI.		They	found	that	although	trends	were	similar	between	the	simulation	and	350 
observations	in	both	regions,	the	magnitude	of	the	trends	differed,	likely	due	to	errors	in	the	351 
MACCity	emissions	inventory.	352 
	353 
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 354 
Figure 3: The fractional difference in zonal mean H2O(v)	between MERRA2 GMI and AIRS for the different AIRS pressure layers for 355 
DJF.  Positive numbers indicate a high bias in the model.   356 

As	with	the	in	situ	observations,	comparison	between	MERRA2	GMI	and	satellite	retrievals	357 
demonstrates	that	the	simulation	is	able	to	capture	the	distribution	of	the	chemical	drivers	of	OH	in	358 
remote	regions,	which	tend	to	exhibit	the	strongest	relationship	between	OH	and	climate	modes	359 
(see	Section	4.0).		These	results	lend	confidence	to	the	analysis	described	in	Sections	4.0	and	5.0	360 
and	suggest	the	findings	in	remote	regions	are	likely	applicable	to	the	actual	atmosphere.		The	large	361 
disagreement	between	the	simulation	and	observed	column	CO	and	NO2	in	regions	that	are	362 
significantly	impacted	by	biomass	burning	emissions	suggests,	however,	that	modeled	relationships	363 
of	chemical	species	with	modes	of	climate	variability	in	these	regions	should	be	viewed	with	364 
caution.		We	further	evaluate	the	ability	of	the	simulation	to	capture	the	relationship	between	ENSO	365 
and	CO,	H2O(v),	and	NO2	using	satellite	observations	in	Section	5.1.2.	366 
	367 
4.0 The	Relationship	between	Simulated	OH	Variability	and	Climate	Modes	368 
When	considered	in	concert,	the	modes	of	climate	variability	evaluated	here	(i.e.,	ENSO,	the	IOD,	369 
and	NH	modes)	along	with	monsoons	explain	a	substantial	fraction	of	the	simulated	tropospheric	370 
OH	interannual	variability	over	19	–	40%	of	the	global	atmosphere	by	mass,	depending	on	season.		371 
Figure	4	highlights	regions	that	show	significant	correlation	between	TCOH	and	the	NH	modes	372 
(purple),	monsoons	(light	blue),	ENSO	(green),	and	the	IOD	(orange)	for	each	season	in	MERRA2	373 
GMI	output.		In	all	seasons,	correlation	with	ENSO	has	the	largest	spatial	extent,	but	in	DJF	and	374 
MAM,	for	example,	the	8	NH	modes	can	explain	TCOH	variability	over	large	swaths	of	the	NH,	375 
comprising	10%	of	the	globe.		In	JJA,	the	climate	modes	have	the	smallest	spatial	coverage	(19%	of	376 
the	globe),	while	the	IOD,	consistent	with	its	seasonal	variability,	only	has	a	widespread	correlation	377 
with	TCOH	during	SON.		Similar	patterns	are	found	for	the	individual	layers	(Fig.	S4).		378 
	379 
Below,	we	examine	the	relationships	between	tropospheric	OH	and	the	various	modes	of	climate	380 
variability	demonstrated	in	Figure	4.		First,	in	Section	5.0,	we	show	that	El	Niño	events	lead	to	381 
global	reductions	in	tropospheric	OH,	with	changes	being	driven	by	increased	primary	production	382 
in	the	PBL	and	decreased	secondary	production	in	the	UFT.		In	Section	6.0,	we	demonstrate	that	the	383 
effects	on	OH	from	NH	modes	of	variability,	the	IOD,	and	some	monsoons	have	limited	spatial	384 
scales,	as	compared	to	ENSO,	but	can	significantly	alter	local	OH	distributions.		In	both	sections,	we	385 
also	compare	simulations	from	MERRA2	GMI	to	simulations	from	the	CCMI,	demonstrating	that	the	386 
relationship	between	OH	and	climate	modes	is	robust	among	multiple	models.	387 
	388 
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 389 
Figure 4: Regions that show a significant correlation (absolute value of r >0.5) between a NH mode (purple), monsoon (light 390 
blue), ENSO (green), or IOD (orange) and TCOH for each season.  Regions with TCOH less than 1 x 1011 molecules/cm2 have been 391 
hatched out. 392 

5.0 Relationship	between	Simulated	OH	Variability	and	ENSO	in	MERRA2	GMI	393 
To	understand	the	relationship	between	OH,	its	drivers,	and	ENSO,	we	first	investigate	the	OH	394 
production	rate.		In	the	MERRA2	GMI	simulation,	the	OH	production	rate	is	primarily	dependent	on	395 
reactions	1	–	4,	where	O1D	is	produced	from	the	photolysis	of	tropospheric	O3.		In	the	free	396 
troposphere,	these	four	reactions	comprise	at	least	95%	of	OH	production	in	the	tropics,	on	397 
average,	and	at	least	90%	in	the	PBL.		Only	in	the	regions	with	large	biogenic	emissions	(e.g.,	South	398 
America	and	central	Africa)	do	other	reactions	contribute	more	than	15%	of	the	total	OH	399 
production	in	the	PBL.		As	will	be	shown,	the	effects	of	ENSO	on	OH	are	primarily	focused	away	400 
from	these	regions,	so	we	restrict	our	analysis	to	reactions	1-4.	401 
	402 

H2O2	+	hυ	g	2OH	 (Reaction	1)	
NO	+	HO2	g	NO2	+	OH	 (Reaction	2)	
O3	+	HO2	g	2O2	+	OH	 (Reaction	3)	
H2O	+	O1D	g	2OH	 (Reaction	4)	

	403 
During	El	Niño	events,	the	dominance	of	these	individual	reactions	in	producing	OH	varies	with	404 
altitude.		Figure	5	shows	the	zonal	mean	of	the	fraction	of	total	OH	production	from	the	H2O	+	O1D	405 
(a)	and	NO	+	HO2	(b)	reactions	as	well	as	the	total	OH	production	rate	(c)	during	El	Niño	events	in	406 
DJF.		We	focus	our	analysis	on	DJF	throughout	Section	5.0	because	that	is	the	season	with	the	407 
largest	impact	of	ENSO	on	OH	as	shown	in	Figure	4.		The	relative	importance	of	the	individual	408 
reactions	is	similar	during	neutral	and	La	Niña	years	(not	shown)	and	is	in	agreement	with	409 
previous	model	studies	(e.g.	Spivakovsky	et	al.,	2000).		The	H2O	+	O1D	reaction	is	dominant	from	the	410 
surface	to	about	800	hPa	through	much	of	the	SH	and	the	tropics,	while,	near	the	surface,	the	NO	+	411 
HO2	reaction	only	has	large	impacts	in	the	NH	mid-latitudes.		This	influence	of	NOX	in	the	NH	mid-412 
latitudes	extends	through	much	of	the	troposphere.		In	the	UFT,	this	reaction	is	the	greatest	413 
contributor	to	total	OH	production	at	all	latitudes	except	the	NH	polar	region,	where	the	HO2	+	O3	414 
reaction	dominates	during	polar	night	(Fig.	S5).		Total	OH	production	in	the	polar	regions,	however,	415 
is	orders	of	magnitude	lower	than	in	the	tropics.		Outside	of	the	polar	regions,	the	HO2	+	O3	and	416 
H2O2	photolysis	reactions	generally	contribute	between	10	and	30%	of	the	total	rate	(Fig.	S5).		417 
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Because	of	the	differing	importance	of	the	individual	OH	production	reactions	with	altitude,	we	418 
examine	the	relationship	between	OH	and	ENSO	separately	for	each	of	the	atmospheric	layers	and	419 
for	TCOH.			420 
	421 

 422 
Figure 5: Zonal mean of the fractional contribution of the O1D + H2O (a) and  NO + HO2 (b) reactions to the total OH production 423 
rate as well as the total OH production rate (c) for El Niño events (MEI > 0.5) for DJF averaged over 1980-2018.	424 

5.1.1 Tropospheric	Column	OH	425 
5.1.1					The	Relationship	between	Simulated	TCOH	and	ENSO	426 

 427 
Figure 6: Absolute difference in TCOH between El Niño events and neutral years (a) for DJF averaged over 1980 – 2018.  El 428 
Niño events are defined as having a MEI value greater than 0.5, and neutral years have a MEI value between -0.5 and 05.  429 
The analogous plot for La Niña events (MEI less than -0.5) is also shown (b). Panel c shows the average OH column for neutral 430 
years.   The 1980 – 2018 time period includes 11 El Niños, 12 La Niñas, and 15 neutral years.   431 

As	shown	in	Figure	6,	TCOH	decreases	by	3.3%	during	El	Niño	events	(relative	to	neutral	events)	432 
equatorward	of	30°	in	DJF	and	is	characterized	by	widespread	decreases	in	the	tropics	and	433 
subtropics,	especially	northern	Australia,	and	west-central	and	southern	Africa.		Regional	increases	434 
are	found	over	eastern	Africa,	the	east-central	Pacific,	southern	South	America,	and	Indonesia.		435 
Maximum	decreases	in	TCOH	are	on	the	order	of	4.5	×	1011	molecules/cm2	(~10-15%)	and	are	436 
centered	over	northern	Australia,	while	maximum	increases	in	TCOH	(~2.5×	1011	molecules/cm2)	437 
are	centered	over	Sumatra.			438 
	439 
During	La	Niña	events,	TCOH	increases	relative	to	neutral	years	over	much	of	the	globe,	although	440 
the	changes	are	not	necessarily	symmetric	with	those	seen	during	El	Niño	events.		Increases	over	441 
Australia	are	on	the	order	of	1	to	2	×	1011	molecules/cm2,	on	par	with	the	decreases	seen	during	El	442 
Niño,	but	the	changes	during	La	Niña	are	centered	over	Western	Australia	and	the	Indian	Ocean.		443 
Over	the	Pacific,	the	magnitude	of	the	OH	increase	is	lower	(on	the	order	of	0.5	to	1	×	1011	444 
molecules/cm2)	than	the	decreases	found	during	El	Niño,	and	some	regions	off	the	coast	of	Hawaii	445 
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and	Papua	New	Guinea	show	decreases	during	both	ENSO	phases.		Besides	these	two	regions,	there	446 
are	also	significant	decreases	in	OH	over	eastern	Africa	and	in	the	southern	portion	of	South	447 
America.			448 
	449 

 450 
Figure 7: The first EOF of TCOH from MERRA2 GMI for DJF (a), MAM (b), JJA (c), and SON (d). 451 

Consistent	with	these	widespread	changes	in	TCOH,	EOF	analysis	demonstrates	that	over	most	452 
seasons,	JJA	being	the	notable	exception,	ENSO	is	the	dominant	mode	of	OH	variability.		Figure	7	453 
shows	the	spatial	component	of	the	first	EOF	of	TCOH	for	the	four	seasons.		While	EOF	analysis	does	454 
not	quantify	changes	in	column	content,	it	does	highlight,	for	each	mode	of	variability,	regions	455 
where	changes	in	TCOH	are	most	prominent.		For	DJF,	the	first	EOF	(Fig.	7a)	is	almost	identical	to	456 
the	composite	figure	showing	OH	anomalies	during	El	Niño	(Fig.	6a).		Likewise,	the	temporal	457 
component	of	the	1st	EOF	strongly	correlates	with	the	MEI	(r2	=	0.70,	Table	1).		In	DJF,	the	first	EOF	458 
is	responsible	for	29%	of	the	total	variance	for	TCOH.		Although	ENSO	is	the	dominant	mode,	459 
however,	70%	of	the	variability	is	still	unexplained.			460 
	461 
While	the	spatial	pattern	of	the	EOF	varies	seasonally	(Fig.	7),	ENSO	shows	similar	levels	of	462 
correlation	to	the	temporal	component	of	the	1st	EOF	in	MAM	and	SON	as	for	DJF,	with	r2	values	of	463 
0.54	and	0.60,	respectively.		For	MAM,	again	the	EOF	shows	regions	with	a	negative	sign	over	much	464 
of	the	Northern	Hemisphere,	with	the	largest	magnitude	centered	over	the	Pacific	Ocean,	India,	and	465 
Atlantic	coast	of	the	United	States.		Regions	with	an	opposite	sign	include	the	Maritime	Continent	466 
and	much	of	central	Africa.		In	SON,	almost	all	of	the	tropics	show	some	response,	with	major	467 
centers	off	the	east	coast	of	Papua	New	Guinea	and	off	the	west	coast	of	Sumatra.		In	addition,	there	468 
is	a	larger	response	over	the	Indian	Ocean	than	for	other	months,	also	evident	in	the	regression	of	469 
TCOH	with	the	MEI,	suggesting	the	possible	influence	of	the	IOD,	which	is	correlated	with	ENSO	(r2	470 
=	0.30).		This	seasonal	component	in	the	strength	of	the	relationship	between	the	EOF	and	the	MEI	471 
is	also	reflected	in	the	correlation	analysis	(Fig.	4),	where	the	area	of	correlation	between	TCOH	and	472 
the	MEI	maximizes	in	DJF	and	minimizes	in	JJA.	473 
	474 
Table 1: For each season, we show the r2 of the correlation of the temporal component of the EOF that has the highest 475 
correlation with the MEI for TCOH and for OH in each layer.  In addition, we also indicate the percent of the total variance 476 
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explained by that EOF.  With the exception of the values indicated by a *, the 1st EOF has the highest correlation with the MEI.  477 
Those indicated with a * are the 2nd EOF.   478 

	 Column	 UFT	 MFT	 LFT	 PBL	

Month	 Pct.	
Variance	 r2	 Pct.	

Variance	 r2	 Pct.	
Variance	 r2	 Pct.	

Variance	 r2	 Pct.	
Variance	 r2	

DJF	 29.4	 0.7	 37.6	 0.73	 20.8	 0.81	 11.7*	 0.55	 12*	 0.85	
MAM	 25.9	 0.54	 36.2	 0.61	 23.4	 0.40	 9.5*	 0.48	 9.3*	 0.59	
JJA	 30.7	 0.25	 44.6	 0.14	 29	 0.15	 27.7	 0.06	 39.4	 0.07	
SON	 33.2	 0.60	 41.1	 0.50	 22.8	 0.63	 12.3*	 0.59	 9.3*	 0.63	

 479 
5.1.2	The	Relationship	between	TCOH	Drivers	and	ENSO	480 

 481 
Figure 8: Regression of tropospheric column H2O(v)	(a), CO (b), NO2 (c), and OH (d) from MERRA2 GMI (top) and satellite retrievals 482 
from AIRS (e), MOPITT (f), and OMI (g) against the MEI for DJF over the satellite lifetime.  OMI NO2 includes only grid boxes with 483 
greater than the averaged noise in the tropospheric column retrieval (5 × 1014 molecules/cm2) for more than 6 years of the time 484 
series.	485 

To	understand	the	factors	driving	ENSO-related	changes	in	TCOH,	we	also	investigate	the	486 
relationship	between	OH	precursors	and	ENSO.		Figure	5	demonstrates	that	the	O1D	+	H2O	and	NO	+	487 
HO2	reactions	control	zonal	mean	OH	production	in	the	tropics.		As	a	result,	we	investigate	the	488 
relationship	between	tropospheric	column	H2O(v),	CO,	NO2	and	ENSO	using	both	MERRA2	GMI	489 
output	and	satellite	retrievals.		We	use	NO2	here,	instead	of	NO,	because	of	its	observability	from	490 
space,	although	simulated	NO	demonstrates	similar	spatial	correlation	patterns	with	the	MEI	as	491 
simulated	NO2.		492 
	493 
Regression	of	total	column	H2O(v)	from	AIRS	against	the	MEI	(Fig.	8e)	reveals	a	tri-pole	pattern	over	494 
the	Pacific	Ocean,	with	an	area	of	positive	correlation	throughout	much	of	the	equatorial	Pacific	495 
Ocean	and	areas	of	anti-correlation	poleward	of	this	region,	in	agreement	with	previous	work		(e.g.	496 
Shi	et	al.,	2018).		Each	of	these	areas	is	well-captured	by	the	MERRA2	GMI	simulation	(Fig.	8a),	497 
showing	nearly	identical	spatial	patterns	and	strength	of	correlation	over	most	of	the	globe.		This	498 
relationship	between	H2O(v)	and	ENSO	can	be	explained	by	the	increased	convective	uplifting	in	the	499 
equatorial	Pacific	and	associated	increased	subsidence	poleward	of	this	region	during	El	Niño	500 
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events.		While	the	anticorrelation	between	H2O(v)	and	the	MEI	over	Australia	and	southern	Africa	501 
are	consistent	with	the	decrease	in	TCOH	over	these	regions	during	El	Niño	events	(Fig.	6),	the	502 
positive	correlation	between	H2O(v)	and	the	MEI	over	the	equatorial	Pacific	suggests	there	must	be	503 
competing	effects	from	other	OH	drivers	in	order	to	explain	the	decreases	in	TCOH	in	this	region.		504 
	505 
Simulated	tropospheric	column	NO2	is	strongly	anti-correlated	with	ENSO	over	the	equatorial	506 
Pacific,	indicating	a	suppression	of	OH	production	when	the	MEI	is	positive	(El	Niño),	consistent	507 
with	Figure	6.		Column	NO2	exhibits	the	opposite	correlation	pattern	as	H2O(v)	over	the	Pacific,	with	508 
decreases	in	NO2	in	regions	with	increased	H2O(v)	and	vice	versa.		The	similarities	in	the	spatial	509 
correlation	patterns	for	NO2	and	H2O(v)	with	the	MEI	suggests	that	convection	is	also	at	least	510 
partially	driving	the	changes	in	NO2	in	the	equatorial	Pacific.		Changes	in	the	Walker	Circulation	511 
associated	with	El	Niño	events	have	been	shown	to	redistribute	O3	in	the	tropics,	resulting	in	a	512 
dipole	pattern	over	the	western	and	central	Pacific	(Oman	et	al.,	2011).		Analysis	of	vertical	winds	513 
and	the	NO2	anomaly	(Fig.	S6)	suggest	a	similar	mechanism	for	NO2.		OMI	data	are	insufficient	to	514 
evaluate	the	simulated	relationship	between	ENSO	and	column	NO2	based	on	our	criteria	of	filtering	515 
data	below	the	monthly	averaged	noise	in	the	NO2	retrieval.			516 
	517 
The	dominant	OH	sink	throughout	the	troposphere	is	CO,	which	is	responsible	for	50%	or	greater	of	518 
OH	loss	at	all	tropospheric	pressures	and	latitudes	(Fig.	S7)	during	El	Niño	events.		Tropospheric	519 
column	CO	and	the	MEI	are	positively	correlated	over	most	of	the	globe	in	both	MERRA2	GMI	and	in	520 
MOPITT	(Figs.	8b	and	f,	respectively),	suggesting	strong	increases	in	CO	during	El	Niño	events.		This	521 
increase	in	CO	is	associated	with	increased	biomass	burning,	particularly	in	Indonesia,	and	is	522 
consistent	with	the	modeled	decrease	in	OH	(e.g.	Duncan,	2003b)	and	with	the	widespread	523 
decrease	in	TCOH	over	much	of	the	tropics.	524 
	525 

 526 
Figure 9: Same as Figure 6 except for the PBL level.	527 

5.2 The	Planetary	Boundary	Layer	528 
5.2.1	The	Relationship	between	PBL	OH	and	ENSO	529 
In	contrast	to	the	tropospheric	column	(Fig.	6),	OH	in	the	PBL	increases	by	3%	equatorward	of	30°	530 
during	El	Niño	events	(Fig.	9),	although	the	geographic	extent	of	these	changes	is	more	limited	than	531 
for	TCOH.		PBL	OH	exhibits	an	area	of	strong	positive	correlation	with	the	MEI	(Fig.	10d)	over	the	532 
central	Pacific,	marked	by	increases	in	concentrations	on	the	order	of	2-3	×	105	molecules/cm3,	533 
approximately	15%	higher	than	concentrations	in	neutral	years.		Changes	in	the	PBL	during	La	Niña	534 
are	smaller,	with	concentrations	only	decreasing	about	5	–	10%	over	the	tropical	Pacific.		Regions	535 
with	significant	correlation	between	PBL	OH	and	the	MEI	are	distinctly	smaller	than	in	the	UFT	(Fig.	536 
10)	and	for	TCOH	(Fig.	4a),	further	emphasizing	the	comparatively	limited	spatial	effects	of	ENSO	in	537 
the	PBL.			538 
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	539 

 540 
Figure 10: Correlation of OH from MERRA2 GMI with the MEI for the different atmospheric layers in DJF. 541 

The	more	geographically	limited	changes	in	OH	shown	by	the	composite	and	regression	analyses	542 
are	consistent	with	EOF	analysis.		During	all	seasons	except	JJA,	ENSO	correlates	more	strongly	with	543 
the	2nd	EOF	for	the	PBL	(Table	1),	suggesting	another	mechanism	is	the	dominant	mode	of	544 
variability.		In	general,	the	r2	with	ENSO	is	0.5	or	higher	and	the	mode	contributes	approximately	545 
10%	of	the	total	variance.		In	contrast	to	the	ENSO	related	EOFs,	the	first	EOF	(Fig.	S8)	for	the	DJF	546 
PBL	layer	reveals	a	spatial	pattern	much	more	limited	to	continental	regions	and	areas	of	547 
continental	outflow,	suggesting	that	this	mode	of	variability	is	potentially	reflective	of	long-term	548 
emission	trends,	in	both	anthropogenic	and	biomass	burning	emissions.		This	is	more	evident	in	the	549 
1st	EOF	for	JJA,	where	the	spatial	pattern	shows	opposite	signs	over	regions	with	known	net	550 
emissions	reductions	(the	United	States,	Europe,	and	Japan)	and	those	with	known	net	emissions	551 
increases	(China,	India,	the	Middle	East)	over	the	1980	–	2018	period	examined	here.	552 
	553 
5.2.2	The	Relationship	between	PBL	OH	drivers	and	ENSO	554 
Approximately	80%	of	the	zonal	mean	OH	production	in	the	tropical	PBL	during	El	Niño	events	is	555 
from	the	H2O	+	O1D	reaction	(Fig.	5a),	suggesting	that	changes	in	these	two	species	are	driving	the	556 
interannual	variability	of	OH	in	the	PBL.		Figure	11	shows	the	correlation	between	OH	production	557 
from	this	reaction	as	well	as	the	total	OH	production	rate	against	the	MEI	for	the	PBL.		Similar	plots	558 
for	the	other	OH	production	reactions	are	shown	in	Figure	S9.		The	nearly	identical	regression	559 
pattern	for	the	H2O	+	O1D	and	the	total	production	rate	with	the	MEI	demonstrates	that	changes	in	560 
this	reaction	are	driving	changes	in	OH	in	the	tropics	during	El	Niño	events.	561 
	562 
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 563 
Figure 11: Correlation of the production rate of OH from the H2O + O1D reaction (a) for DJF and the total OH production rate as 564 
defined in the text (b) with the MEI for the PBL level are shown. 565 

To	understand	the	relationship	between	the	OH	production	rate	and	ENSO	in	the	PBL,	we	examine	566 
the	changes	in	H2O(v)	and	O1D	(Fig.	12).		The	spatial	correlation	of	H2O(v)	and	the	MEI	in	the	PBL	567 
exhibits	a	tripole	pattern	similar	to	that	seen	in	the	tropospheric	column	(Fig.	8a).		While	H2O(v)	is	568 
correlated	with	the	MEI	in	the	equatorial	Pacific,	which	would	lead	to	increases	in	OH	production,	569 
H2O(v)	is	anti-correlated	with	the	MEI	near	the	Hawaiian	Islands	and	in	the	south	Pacific,	which	570 
would	lead	to	decreased	OH	production	in	these	regions.		Because	OH	increases	in	these	areas	571 
during	El	Niño	events,	the	decreased	H2O(v)	must	be	offset	by	increases	in	O1D	to	result	in	a	net	572 
positive	correlation	of	the	total	OH	production	rate.		573 
	574 

 575 
Figure 12: Correlation of the indicated species with the MEI for the PBL level for DJF. 576 

Changes	in	O1D	and	its	photochemical	drivers,	O3	and	the	rate	of	O3	photolysis	to	O1D	(JO1D),	are	577 
driving	the	ENSO-related	changes	in	OH	in	the	PBL.		O1D	shows	distinct	regions	of	positive	578 
correlation	with	ENSO	extending	from	the	Philippines	to	the	eastern	Pacific	Ocean	and	another	579 
region	of	positive	correlation	off	the	coast	of	Papua	New	Guinea	(Fig.	12b).		O1D	abundance	is	580 
controlled	both	by	O3	concentrations	and	incoming	solar	radiation	at	wavelengths	less	than	320	581 
nm.		Positive	correlation	between	ENSO	and	O3	in	the	PBL	is	limited	to	the	western	Pacific	Ocean,	582 
where	horizontal	advection	of	relatively	high	O3	air	from	Indonesia	to	the	Pacific	Ocean	is	increased	583 
during	El	Niño	events	due	to	changes	in	the	Walker	Circulation.		Changes	in	O3	and	O1D	off	the	coast	584 
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of	Papua	New	Guinea	are	potentially	linked	to	the	South	Pacific	Convergence	Zone,	which	has	a	585 
strong	dependence	on	ENSO	(Borlace	et	al.,	2014).		JO1D	exhibits	two	regions	of	positive	correlation	586 
extending	from	South	America,	one	that	reaches	Hawaii	in	the	NH	and	another	that	spans	almost	to	587 
the	coast	of	Australia	in	the	SH	(Fig.	12d).		These	increases	in	O1D	are	likely	associated	with	changes	588 
in	stratospheric	O3,	which	can	decrease	by	several	Dobson	Units	in	the	tropics	during	El	Niño	events	589 
(Randel	et	al.,	2009).			590 
	591 
5.3 The	Upper	Free	Troposphere	592 
5.3.1				The	Relationship	between	UFT	OH	and	ENSO	593 

 594 
Figure 13: Same as Figure 6 except for the UFT.	595 

Similar	to	the	relationship	between	ENSO	and	TCOH,	OH	in	the	UFT	shows	a	strong	anticorrelation	596 
with	the	MEI	over	much	of	the	tropics	(Fig.	10a)	resulting	in	large-scale	decreases	during	El	Niño	597 
events.		Decreases	are	highest	over	Northern	Australia	and	the	west-central	Pacific,	on	the	order	of	598 
1-2	×	105	molecules/cm3	or	15-20%	lower	than	in	neutral	years.		During	La	Niña	events,	OH	599 
increases	with	respect	to	neutral	years	over	much	of	the	globe,	although	the	magnitude	of	the	600 
increases	is	lower	than	for	El	Niño	events.		As	with	TCOH,	one	notable	exception	is	over	central	601 
Africa,	where	UFT	OH	decreases	between	1-2	×	105	molecules/cm3.	602 
	603 
EOF	analysis	on	UFT	OH	followed	by	correlation	of	the	temporal	component	(i.e.,	the	principal	604 
component)	with	the	MEI	demonstrates	that	ENSO	is	the	dominant	mode	of	OH	variability	in	the	605 
UFT	throughout	much	of	the	year.		The	MEI	correlates	with	UFT	OH	(r2	>	0.5)	for	DJF,	MAM,	and	606 
SON,	and	explains	36%	of	the	variance	or	greater	in	each	of	the	seasons	(Table	1),	demonstrating	607 
that	the	relationship	between	ENSO	and	OH	is	even	stronger	in	the	UFT	than	in	the	tropospheric	608 
column	as	a	whole.		As	with	the	other	atmospheric	levels,	there	is	little	correlation	between	OH	and	609 
the	MEI	for	JJA.			610 
	611 
5.3.2	The	Relationship	between	UFT	OH	drivers	and	ENSO	612 
While	changes	in	the	O1D	+	H2O	reaction	drive	ENSO-related	changes	in	OH	production	in	the	PBL,	613 
the	NO	+	HO2	reaction	drives	OH	production	in	the	UFT.		The	nearly	identical	correlation	patterns	614 
between	the	NO	+	HO2	reaction	(Fig.	14)	and	the	total	OH	production	rate	in	the	UFT	layer	suggest	615 
that	changes	in	NO	and/or	HO2	during	El	Niño	are	driving	interannual	OH	variability	in	the	UFT,	616 
leading	to	decreased	OH	production	over	most	of	the	tropical	Pacific.		This	dependence	on	the	NO	+	617 
HO2	reaction	is	consistent	with	its	overall	contribution	to	the	total	production	rate	as	shown	in	618 
Figure	5.		Similar	plots	for	the	other	OH	production	reactions	are	shown	in	Figure	S10.		619 
	620 
Regression	analysis	suggests	that	changes	in	NO	are	driving	the	relationship	between	OH	and	ENSO	621 
in	the	UFT	in	MERRA2	GMI.		The	MEI-NO	correlation	exhibits	a	strong	dipole	pattern	in	the	tropics	622 
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(Fig.	15),	with	areas	of	positive	correlation	over	southeast	Asia	and	the	maritime	continent	and	a	623 
large	area	of	anti-correlation	over	much	of	the	Pacific.		HO2	exhibits	the	opposite	pattern,	with	624 
increased	concentrations	over	much	of	the	Pacific	during	El	Niño.		This	is	consistent	with	the	NO	625 
pattern,	as	decreased	NO	concentrations	favor	partitioning	of	HOX	(HOX	=	OH	+	HO2)	towards	HO2.	626 
	627 

 628 
Figure 14: Correlation of the production rate of OH from the NO + HO2 reaction (a) for DJF and the total OH production rate as 629 

defined in the text (b) with the MEI for the UFT level are shown.	630 

Similarities	between	NO	and	O3	correlation	with	the	MEI	in	the	UFT	suggest	similar	mechanisms	in	631 
controlling	the	spatial	distribution	of	these	species.		The	relationship	between	O3	and	the	MEI	632 
shown	in	Figure	15b	is	similar	to	that	found	in	Oman	et	al.	(2013)	using	satellite	data.			They	633 
demonstrated	that	areas	of	increased	O3	over	Indonesia	coincided	with	increased	downward	flow	634 
in	the	region	associated	with	changes	in	the	Walker	circulation.		Decreases	in	O3	over	the	Pacific	635 
coincided	with	increased	upward	motion,	convectively	lofting	low	O3	air	throughout	the	column.		636 
Similarly,	regions	of	anomalously	low	NO	in	the	UFT	during	El	Niño	events	are	associated	with	637 
regions	of	anomalous	upward	motion	(Fig.	S7),	suggesting	that	decreases	in	upper	tropospheric	NO	638 
results	from	the	convective	lofting	of	NOX-poor	air	from	lower	in	the	tropospheric	column.	639 
	640 

 641 
Figure 15: Correlation of the indicated species with the MEI for the UFT level for DJF.	642 

The	anti-correlation	between	ENSO	and	NO	also	suggests	that	lightning	emissions	of	NO	over	the	643 
tropical	Pacific	does	not	significantly	increase	OH	production	in	the	region.		Lightning	NO	emissions	644 
in	MERRA2	GMI	show	a	correlation	pattern	similar	to	that	of	H2O(v)	(Fig.	8c),	with	increased	645 
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lightning	over	the	equatorial	Pacific	and	decreased	lightning	poleward	of	this	region	during	El	Niño	646 
events.		The	correlation	pattern	from	MERRA2	GMI	output	agrees	closely	with	flash	rate	data	647 
observed	from	the	Lightning	Imaging	Sensor	(LIS).		The	only	region	of	significant	difference	648 
between	the	satellite	and	MERRA2	GMI	is	in	the	equatorial	Pacific,	where	the	region	of	positive	649 
correlation	extends	from	Papua	New	Guinea	to	the	South	American	coast	in	the	simulation	but	only	650 
about	half	that	distance	in	the	satellite	product.		These	results	are	in	contrast	to	the	findings	of	651 
Turner	et	al.	(2018),	who	found	that	lightning	NO	emissions	were	the	primary	driver	in	the	652 
relationship	between	OH	and	ENSO.		This	difference	could	result	from	differences	in	the	handling	of	653 
biomass	burning	emissions	in	the	two	models,	as	MERRA2	GMI	emissions	were	based	on	654 
observations	and	varied	seasonally.		Our	analysis	also	cannot	disentangle	the	impact	on	ENSO-655 
related	changes	in	lighting	NO	emissions	over	land	on	OH	in	the	remote	atmosphere.		656 
	657 

 658 
Figure 16: The regression of lightning NO emissions at 300 hPa (a) and the lightning flash rate from the LIS/OTD time series (b) 659 

against the MEI.  Lightning data are restricted to within 35 degrees of the equator because of the spatial coverage of the 660 
Tropical Rainfall Monitoring Mission (TRMM) satellite, on which LIS is located.	661 

This	relationship	with	lightning,	evident	in	both	the	satellite	and	model,	is	in	contrast	to	the	662 
relationship	with	all	reactive	nitrogen	species	(NOy)	in	the	UFT.		NO	and	NO2	in	the	UFT	layer	show	663 
decreases	over	most	of	the	Pacific	during	El	Niño	conditions.			This	seeming	discrepancy	is	due	to	664 
the	small	change	in	the	magnitude	of	lightning	NO	emissions	over	the	Pacific.		Even	though	lightning	665 
NO	increases	by	100%	or	more	over	the	equatorial	Pacific	during	El	Niño	events,	the	absolute	666 
difference	is	orders	of	magnitude	lower	than	that	seen	over	land.		This	suggests	that,	while	local	667 
lightning	emissions	might	be	perturbing	NOX	abundance,	other	mechanisms,	such	as	convective	668 
lofting	and	horizontal	advection	are	driving	the	modeled	relationship	with	ENSO.		The	similar	669 
regression	pattern	of	longer	lived	species,	such	as	HNO3	(Fig.	15c)	and	PAN	(not	shown),	to	NO	in	670 
the	UFT	supports	this	idea,	showing	that	transport	of	reactive	nitrogen	from	other	regions,	671 
including	lightning	from	other	areas,	is	likely	reduced	during	El	Niño	events	672 
	673 
5.4 Variability	in	the	MFT	and	LFT		674 
As	in	the	UFT,	ENSO	is	the	dominant	mode	of	variability	in	the	MFT	in	DJF,	with	strong	correlation	675 
between	the	MEI	and	the	temporal	component	of	the	first	EOF	(r2	=	0.81)	and	the	first	EOF	676 

https://doi.org/10.5194/acp-2020-1192
Preprint. Discussion started: 16 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 20 

explaining	20.8%	of	the	total	variance.		Likewise,	the	largest	OH	anomalies	in	the	LFT	during	both	677 
El	Niño	and	La	Niña	are	centered	over	Australia	and	South	Africa	(Fig.	17),	similar	to	patterns	seen	678 
in	the	UFT.		Unlike	in	the	UFT,	however,	there	is	a	large	region	extending	from	the	coast	of	South	679 
America	into	the	Pacific	where	OH	concentration	is	positively	correlated	with	ENSO.		These	changes	680 
are	driven	by	increase	in	H2O(v),	and	subsequent	increased	OH	production	from	the	H2O	+	O1D	681 
reaction.	682 
	683 

 684 
Figure 17: Same as Figure 6 except for the MFT and LFT. 685 

ENSO-related	changes	in	OH	concentration	in	the	LFT	are	smaller	in	magnitude	than	for	the	other	686 
atmospheric	levels	(Fig.	17),	with	maximum	increases	in	OH	during	El	Niño	on	the	order	of	1	–	1.5	x	687 
105	molecules/cm3.		The	spatial	extent	of	significant	correlation	between	the	MEI	and	OH	688 
concentration	in	the	LFT	is	smaller	than	for	the	other	atmospheric	levels	(Fig.	10),	with	the	most	689 
prominent	feature	being	an	area	of	positive	correlation	near	Indonesia.		Consistent	with	the	more	690 
limited	impact,	ENSO	is	correlated	with	the	2nd	EOF	of	OH	concentration	for	the	LFT	(r2	=	0.55),	691 
explaining	only	11.7%	of	the	total	variability	(Table	1).	692 
	693 
It	is	likely	that	competing	effects	from	the	different	drivers	limit	the	interannual	variability	in	OH	in	694 
the	LFT	and	MFT,	explaining	the	smaller	regions	of	correlation	with	ENSO.		For	these	levels,	no	695 
single	OH	production	reaction	clearly	explains	the	relationship	between	ENSO	and	OH.		In	contrast	696 
to	the	PBL	and	UFT,	where	the	relationship	between	the	total	OH	production	rate	closely	mirrored	697 
the	production	rates	from	the	O1D	+	H2O	and	NO	+	HO2	reactions,	respectively,	there	are	no	698 
analogous	relationships	for	the	LFT	and	MFT.		At	these	levels,	no	reaction	clearly	dominates	total	699 
OH	production	(Fig.	5).		Increases	in	H2O	in	the	mid	troposphere,	which	would	tend	to	increase	OH,	700 
are	offset	by	decreases	in	NO	and	O3.		These	competing	effects	likely	explain	why	the	absolute	701 
changes	in	OH	are	comparatively	smaller	in	the	LFT	than	in	the	other	layers.	702 
	703 
5.5 Comparing	Simulated	OH	Relationships	with	ENSO	in	MERRA2	GMI	with	the	CCMI	704 

models	705 
To	understand	whether	the	relationship	between	OH	and	ENSO	found	in	MERRA2	GMI	is	robust,	we	706 
examine	model	simulations	from	the	CCMI.		To	compare	the	relationship	between	OH	and	ENSO	707 
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among	the	different	models,	we	performed	the	same	regression	analysis	on	TCOH	for	the	CCMI	708 
models	as	for	MERRA2	GMI.		Figure	18	shows	the	number	of	models	that	demonstrate	a	meaningful	709 
correlation	between	TCOH	and	the	MEI,	defined	as	the	absolute	value	of	r	greater	than	0.5,	for	each	710 
grid	cell.		To	facilitate	comparison,	OH	for	each	model	has	been	regridded	to	the	resolution	of	the	711 
model	with	the	lowest	horizontal	resolution	(2.81°	longitude	x	2.77°	latitude).		This	regridding	does	712 
not	substantially	alter	the	correlation	patterns	examined	here.	713 
	714 

 715 
Figure 18: The number of CCMI models and MERRA2 GMI that show a correlation between tropospheric column OH and ENSO 716 
over the period 1980 to 2010.  Only regressions with an absolute value of r greater than 0.5 are included.  All models have been 717 
regridded to a common horizontal grid.  This regridding does not substantially alter the correlation patterns examined here. 718 

In	agreement	with	MERRA2	GMI,	TCOH	varies	with	ENSO	over	a	large	fraction	of	the	tropics	in	most	719 
of	the	CCMI	models,	with	broadly	similar	spatial	regression	patterns	for	most	models	across	all	720 
seasons	except	for	MAM	(Fig.	18).		In	DJF,	most	models	show	strong	correlation	between	ENSO	and	721 
column	OH	over	the	central	Pacific	and	south	of	the	Aleutian	Islands,	with	at	least	four	models	722 
showing	correlation	in	each	of	these	areas.		This	agreement	highlights	the	relationship	of	OH	with	723 
ENSO	as	well	as	with	the	PNA	and	Australian	monsoon,	as	discussed	in	Section	6.0.		Similar	724 
agreement	among	models	was	found	for	SON	and	JJA,	although	the	spatial	extent	of	the	highly	725 
correlated	region	is	much	smaller	for	JJA.		In	SON,	the	expansion	of	the	area	of	significant	726 
correlation	over	most	of	the	Indian	Ocean	likely	results	from	the	strong	relationship	between	the	727 
IOD	and	ENSO	during	this	season.		There	is	less	agreement	in	MAM,	with	only	1	or	2	models	728 
showing	strong	correlation	in	most	regions.			729 
	730 
EOF	analysis	of	the	different	CCMI	models	likewise	suggests	that,	in	DJF,	ENSO	is	the	dominant	731 
mode	of	TCOH	variability.		The	spatial	pattern	of	the	first	EOF	of	TCOH	in	DJF	for	the	five	models	is	732 
shown	in	Figure	S11,	and	the	principal	component	time	series,	along	with	the	time	series	of	the	733 
MEI,	is	shown	in	Figure	S12.		MERRA2	GMI,	WACCM,	and	MRI	show	a	strong	correlation	between	734 
the	MEI	and	the	first	EOF	(r2	>	0.64).		For	each	of	these	models	ENSO	is	the	cause	of	29	–	48%	of	the	735 
total	variance	in	TCOH.		The	correlation	between	the	first	EOF	and	the	MEI	for	CHASER	is	weaker	736 
(r2	=	0.28),	although	the	spatial	component	shows	similarities	to	the	other	models.		Correlation	737 
between	the	MEI	and	the	EOFs	for	the	UFT	and	MFT	levels	increases	to	0.56	and	0.45,	respectively,	738 
showing	that	ENSO	is	still	important	in	controlling	the	interannual	variability	of	CHASER,	at	least	in	739 
the	UFT.		Similarly,	EMAC	has	no	correlation	between	the	1st	EOF	of	TCOH	and	the	MEI,	but	does	for	740 
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the	UFT	layer	(r2	=	0.64).		This	EOF	explains	20%	of	the	total	variance	for	this	level	but	has	a	741 
substantially	different	spatial	pattern	than	for	the	other	models.			742 
	743 
The	agreement	among	the	majority	of	the	models	suggests	that	the	relationship	between	ENSO	and	744 
TCOH	is	robust.		While	SSTs	and	emissions	are	identical	among	the	models,	meteorology,	chemical	745 
mechanisms,	and	parameterizations,	such	as	that	for	lightning	and	convection,	vary	widely.		Despite	746 
the	differences	in	these	chemical	and	dynamical	drivers	of	OH,	the	spatial	patterns	of	the	ENSO	747 
TCOH	relationship	are	similar	for	most	models.		While	it	is	beyond	the	scope	of	this	paper,	748 
determining	the	cause	of	inter-model	differences	in	this	relationship	between	OH	and	climate	749 
modes	could	further	our	understanding	of	the	mechanisms	driving	interannual	OH	variability.	750 
	751 
6.0	Relationship	between	simulated	OH	and	NH	Climate	Modes,	Monsoons,	and	the	IOD	752 
We	now	investigate	the	relationship	between	OH	and	the	NH	modes	of	variability,	monsoons,	and	753 
the	IOD.		In	Section	6.1,	we	evaluate	the	relationships	in	MERRA2	GMI,	demonstrating	that	these	754 
other	climate	features	exert	a	much	more	spatially	limited	influence	on	OH	as	compared	to	ENSO	755 
(Fig.	4).		Despite	the	comparatively	limited	extent	of	influence,	each	of	these	modes	of	variability	756 
can	strongly	influence	the	atmospheric	oxidative	capacity	on	the	local	scale.		In	Section	6.2,	we	757 
compare	the	results	from	MERRA2	GMI	to	CCMI	simulations,	demonstrating	that	the	relationship	758 
between	OH	and	the	IOD	and	NH	modes	is	robust	among	models,	while	the	relationship	between	759 
monsoons	and	OH	is	primarily	limited	to	MERRA2	GMI.	760 
	761 
6.1	Simulated	OH	and	the	NH	Climate	Modes,	Monsoons,	and	the	IOD	in	MERRA2	GMI	762 
Northern	Hemispheric	modes	of	variability	are	strongly	correlated	(r>0.5)	with	the	MEI	over	~10%	763 
of	the	globe	during	DJF	but	have	a	comparatively	smaller	effect	on	global	OH	than	ENSO.		During	the	764 
positive	phases	of	the	NAO	and	the	PNA,	defined	as	the	respective	index	being	greater	than	0.4,	765 
TCOH	increases	by	up	to	25%	in	the	northern	Atlantic	and	decreases	by	10	–	20%	in	the	northern	766 
Pacific,	respectively	(Fig.	S13).		Because	OH	production	is	almost	an	order	of	magnitude	lower	in	767 
the	NH	mid-latitudes	than	in	the	tropics	(Fig.	5c),	however,	the	resultant	decrease	in	global	mean	768 
mass-weighted	OH	(e.g.,	Lawrence	et	al.,	2001)	during	the	positive	phase	of	the	NAO	is	only	0.77%,	769 
as	compared	to	decreases	of	2.2%	during	an	El	Niño	event.		Similar	results	are	found	for	the	other	770 
NH	modes.	771 
	772 
The	effects	of	the	monsoons	on	OH	interannual	variability	are	much	more	localized	than	for	ENSO	773 
and	vary	markedly	among	the	different	monsoons	(Fig.	4).		For	example,	Figure	S14a	shows	the	774 
partial	correlation	coefficient	(e.g.,	Sekiya	and	Sudo,	2012)	of	TCOH	with	the	Australian	monsoon,	775 
taking	into	account	the	correlation	of	the	Australian	monsoon	index	with	the	MEI,	which	has	an	r2	776 
of	0.65	for	DJF.		Correlation	is	almost	exclusively	restricted	to	areas	near	the	Australian	continent.		777 
In	this	region,	however,	monsoons	with	an	index	in	the	75th	percentile	or	higher	result	in	TCOH	that	778 
is	15-20%	(up	to	7	x	1011	molecules/cm2)	higher	than	for	monsoons	with	an	index	between	the	25th	779 
and	75th	percentile	(Fig.	S15).		These	increases	in	OH	column	for	the	strongest	monsoons	are	larger	780 
in	magnitude	than	typical	changes	associated	with	ENSO,	although	they	are	limited	to	a	smaller	781 
region,	suggesting	that	the	Australian	monsoon	can	significantly	perturb	the	local	atmospheric	782 
oxidative	capacity.			783 
	784 
In	contrast,	despite	its	larger	scale,	the	Asian	monsoon	only	shows	correlation	with	TCOH	over	a	785 
small	portion	of	the	subcontinent	(Fig.	4b&d).		Interestingly,	this	correlation	is	only	present	during	786 
MAM	and	SON,	not	during	JJA	when	the	Asian	monsoon	is	at	full	strength.		Lelieveld	et	al.	(2018)	787 
have	shown	using	in	situ	observations	that	upper	tropospheric	OH	is	increased	during	the	Asian	788 
monsoon.		The	lack	of	correlation	demonstrated	here	suggests	either	that	there	is	not	significant	789 
interannual	variability	in	this	increase	or	that	the	model	is	not	accurately	capturing	the	chemical	790 

https://doi.org/10.5194/acp-2020-1192
Preprint. Discussion started: 16 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 23 

variability	within	the	monsoon	anticyclone.		The	correlation	with	the	monsoon	index	for	MAM	and	791 
SON	could	result	from	interannual	variability	in	the	start	and	end	of	the	monsoon.		Since	these	792 
seasons	are	at	the	fringe	of	the	monsoon,	yearly	variations	in	the	start	and	end	date	would	lead	to	793 
larger	variability	than	that	seen	during	JJA,	when	the	monsoon	is	active	every	year.	794 
	795 
The	IOD	also	shows	a	strong	relationship	with	OH,	although	due	to	its	annual	cycle,	the	relationship	796 
is	only	present	during	SON	(Fig.	4d).		Taking	into	account	the	correlation	between	ENSO	and	the	797 
IOD	(r2		=	0.30),	the	partial	correlation	between	the	Dipole	Mode	Index	(DMI)	and	TCOH	becomes	798 
mostly	restricted	to	the	western	Indian	Ocean	(Fig.	S14b),	where	TCOH	is	anticorrelated	with	the	799 
DMI,	resulting	in	decreases	in	TCOH	on	the	order	of	10%	(about	1.5	x	1011	molecules/cm2).	800 
	801 
6.2	Simulated	OH	and	the	NH	Climate	Modes,	Monsoons,	and	the	IOD	in	the	CCMI	models	802 
The	MERRA2	GMI	and	the	CCMI	simulations	exhibit	nearly	identical	spatial	relationships	between	803 
TCOH	and	the	NH	climate	modes	and	the	IOD,	demonstrating	that	these	relationships	are	robust	804 
among	multiple	models.		For	example,	all	5	models	show	two	broad	regions	of	correlation	between	805 
the	NAO	and	TCOH,	corresponding	to	the	dipole	pattern	of	the	NAO	(Fig.	19a).		Similar	agreement	is	806 
found	for	the	other	NH	modes	(Fig.	S16).		Likewise,	most	models	show	the	same	pattern	of	807 
correlation	between	the	IOD	and	TCOH	(Fig.	19c),	consistent	with	their	agreement	for	ENSO	since	808 
the	two	modes	are	closely	related.			809 
	810 

 811 
Figure 19: Same as Figure 18 except for the NAO (a) and the Australian Monsoon (b) in DJF and for the IOD in SON (c).	812 

In	contrast	to	the	other	modes	of	variability,	the	relationship	between	TCOH	and	the	different	813 
monsoons	varies	widely	among	the	models.		Agreement	is	highest	for	the	Australian	monsoon	(Fig.	814 
19b),	where	most	models	see	correlation	off	the	northwestern	coast	of	the	continent.		For	the	other	815 
monsoons	considered	here,	there	is	no	consistent	relationship	with	OH,	with	most	areas	only	816 
showing	correlation	with	one	model	(Fig.	S17).		While	models	and	observations	have	shown	the	817 
monsoons	can	change	OH	abundance,	particularly	in	the	UFT	(Lelieveld	et	al.,	2018),	the	lack	of	818 
correlation	among	the	models	suggests	that	those	changes	are	not	highly	variable	from	year	to	year.	819 
	820 
7.0	Conclusions	821 
Because	of	limited	in	situ	observations	and	inter-model	differences,	there	is	significant	uncertainty	822 
in	the	processes	driving	interannual	OH	variability,	despite	its	importance	in	controlling	the	823 
removal	of	many	atmospheric	trace	gases.		Here,	we	have	explored	the	relationship	between	OH	824 
and	multiple	modes	of	climate	variability,	including	ENSO,	the	IOD,	NH	modes	of	variability,	and	825 
monsoons	in	order	to	understand	how	these	large-scale	dynamical	features	influence	OH	through	826 
control	of	its	dynamical	and	photochemical	drivers.		827 
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	828 
Using	output	from	the	MERRA2	GMI	simulation,	we	have	shown	that	during	DJF,	when	considered	829 
together,	these	climate	features	can	explain	OH	variability	over	approximately	40%	of	the	globe.		830 
ENSO	is	the	dominant	mode	of	variability	in	all	seasons	except	for	JJA	and	can	explain	20	–	30	%	of	831 
the	variance	in	TCOH	and	results	in	an	average	decrease	in	global,	mass	weighted	OH	of	2.2%	832 
during	El	Niño	events.		Effects	from	the	other	modes	of	variability	considered	here	are	more	limited	833 
in	spatial	scale	but	can	strongly	alter	the	atmospheric	oxidative	capacity	on	the	local	scale.		For	834 
example,	changes	in	TCOH	for	the	NAO,	IOD,	and	Australian	monsoon	can	reach	0.5,	1.5,	and	7	x	835 
1011	molecules/cm2,	respectively,	compared	to	2	x	1011	molecules/cm2	for	ENSO.		836 
	837 
Changes	in	OH	with	ENSO	are	driven	by	different	processes	in	the	upper	and	lower	troposphere.		In	838 
the	PBL,	where	OH	production	is	dominated	by	the	reaction	of	O1D	with	water,	changes	in	the	839 
distribution	of	these	species	leads	to	a	positive	correlation	between	OH	and	ENSO.		Increases	in	840 
H2O(v)	during	El	Niño	are	associated	with	increased	convection	and	warmer	SSTs,	while	increases	in	841 
O1D	result	from	increased	horizontal	advection	of	O3	in	the	western	Pacific	and	increased	842 
photolysis	rates	resulting	from	reduced	stratospheric	O3	in	the	eastern	Pacific.		In	the	upper	843 
troposphere,	NO	controls	the	OH	abundance	over	the	tropical	Pacific.		Despite	increased	lightning	844 
NOX	emissions	in	some	areas	of	the	Pacific,	increased	convective	lofting	of	low	NO	air	from	near	the	845 
surface	and	advection	of	air	with	lower	reactive	nitrogen	than	during	neutral	years,	leads	to	846 
reduced	OH	during	El	Niño	events.	847 
	848 
Absolute	changes	in	OH	concentration	during	El	Niño	and	La	Niña	events	in	the	LFT	and,	to	a	lesser	849 
extent,	the	MFT	were	modest	when	compared	to	changes	in	OH	in	the	PBL	and	UFT.		At	these	levels,	850 
OH	production	is	driven	by	competing	effects	from	the	O1D	+	H2O	and	NO	+	HO2	reactions.		As	a	851 
result,	ENSO	only	explains	11.7%	of	the	variability	in	the	LFT	and	is	associated	with	the	second	852 
EOF.		Because	OH	variability	in	the	LFT	drives	variability	in	the	oxidation	of	CH4,	further	research	is	853 
warranted	to	understand	the	dominant	mode	of	OH	variability	at	this	level,	including	any	impacts	in	854 
emissions	trends,	which	appear	to	be	the	dominant	mode	of	variability	in	the	PBL.	855 
	856 
The	relationship	between	the	individual	climate	modes	seen	in	MERRA2	GMI	is	also	seen	in	the	857 
majority	of	the	CCMI	models,	suggesting	that	the	relationship	between	the	modes	and	OH	is	robust.		858 
4	of	the	5	models	examined	here	show	similar	relationships	between	ENSO	and	TCOH	for	all	859 
seasons	except	MAM,	and	three	of	those	models	suggest	that	ENSO	is	the	dominant	mode	of	OH	860 
variability	in	DJF,	responsible	for	between	30	and	50%	of	total	variance.		Similar	agreement	is	861 
found	for	the	NH	modes	of	variability	and	the	IOD,	while	there	is	little	agreement	among	models	862 
between	the	relationship	of	the	individual	monsoons	and	OH.	863 
	864 
Despite	the	agreement	among	models	in	the	importance	of	the	driving	factors	of	OH	variability,	865 
there	is	still	a	lack	of	observations	to	demonstrate	that	the	models	are	accurate.		We	have	shown	866 
here	that	satellite	observations	of	H2O,	CO,	and	lightning	flashes	are	able	to	capture	the	respective	867 
variability	of	each	variable	as	well	as	the	relationship	with	ENSO,	in	excellent	agreement	with	the	868 
model	simulation.		While	further	understanding	of	the	relationship	between	these	species	and	869 
ENSO	is	needed,	the	results	presented	here	suggest	that	combining	the	observations	of	OH	drivers	870 
and	the	various	climate	modes	could	lead	to	additional	methods	to	constrain	OH	from	space.				871 
	872 
Data	Availability	873 
All	output	from	MERRA2	GMI	is	publicly	available	at	https://acd-874 
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/.		Output	from	the	EMAC,	MRI,	and	CHASER	875 
models	is	available	from	the	Centre	for	Environmental	Data	Analysis	at	876 
http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output.		Output	from	WACCM	are	available	877 

https://doi.org/10.5194/acp-2020-1192
Preprint. Discussion started: 16 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 25 

at	http://www.earthsystemgrid.org.		Satellite	data	are	available	at	https://disc.gsfc.nasa.gov.		Data	878 
from	the	ATom	campaign	are	located	at	https://espoarchive.nasa.gov/archive/browse/atom.			879 
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