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Abstract	18 
The	hydroxyl	radical	(OH)	is	the	primary	atmospheric	oxidant,	responsible	for	removing	many	19 
important	trace	gases,	including	methane,	from	the	atmosphere.		Although	robust	relationships	20 
between	OH	drivers	and	modes	of	climate	variability	have	been	shown,	the	underlying	mechanisms	21 
between	OH	and	these	climate	modes,	such	as	the	El	Niño	Southern	Oscillation	(ENSO),	have	not	22 
been	thoroughly	investigated.		Here,	we	use	a	chemical	transport	model	to	perform	a	38-year	23 
simulation	of	atmospheric	chemistry,	in	conjunction	with	satellite	observations,	to	understand	the	24 
relationship	between	tropospheric	OH	and	ENSO,	Northern	Hemispheric	modes	of	variability,	the	25 
Indian	Ocean	Dipole,	and	monsoons.		Empirical	orthogonal	function	(EOF)	and	regression	analyses	26 
show	that	ENSO	is	the	dominant	mode	of	global	OH	variability	in	the	tropospheric	column	and	27 
upper	troposphere,	responsible	for	approximately	30%	of	the	total	variance	in	boreal	winter.		28 
Reductions	in	OH	due	to	El	Niño	are	centered	over	the	tropical	Pacific	and	Australia	and	can	be	as	29 
high	as	10	-	15%	in	the	tropospheric	column.		The	relationship	between	ENSO	and	OH	is	driven	by	30 
changes	in	nitrogen	oxides	in	the	upper	troposphere	and	changes	in	water	vapor	and	O1D	in	the	31 
lower	troposphere.		While	the	correlations	between	monsoons	or	other	modes	of	variability	and	OH	32 
span	smaller	spatial	scales	than	for	ENSO,	regional	changes	in	OH	can	be	significantly	larger	than	33 
those	caused	by	ENSO.		Similar	relationships	occur	in	multiple	models	that	participated	in	the	34 
Chemistry	Climate	Model	Initiative	(CCMI),	suggesting	that	the	dependence	of	OH	interannual	35 
variability	on	these	well-known	modes	of	climate	variability	is	robust.		Finally,	the	spatial	pattern	36 
and	r2	values	of	correlation	between	ENSO	and	modeled	OH	drivers	–	such	as	carbon	monoxide,	37 
water	vapor,	lightning,	and	to	a	lesser	extent,	NO2	–	closely	agree	with	satellite	observations.		The	38 
ability	of	satellite	products	to	capture	the	relationship	between	OH	drivers	and	ENSO	provides	an	39 
avenue	to	an	indirect	OH	observation	strategy	and	new	constraints	on	OH	variability.		40 
 41 
1.0 Introduction	42 
The	hydroxyl	radical	(OH),	the	atmosphere’s	primary	oxidant,	removes	many	trace	gases	that	affect	43 
composition	and	climate.	Despite	its	central	role	in	atmospheric	chemistry,	the	spatiotemporal	44 
distributions	of	OH	concentrations	are	poorly	constrained,	often	confounding	interpretation	of	45 
observed	variations	and	trends	of	important	atmospheric	constituents.	For	example,	there	are	46 
several	plausible	explanations	of	the	observed	fluctuations	in	the	global	burden	of	atmospheric	47 
methane	(CH4),	the	second-most	important	anthropogenic	greenhouse	gas.		Explanations	include	48 
variations	and	trends	in	both	emissions	and	oxidation	of	methane	(Prather	and	Holmes,	2017;Rigby	49 
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et	al.,	2017;Turner	et	al.,	2017).		Better	constraints	on	OH	and	its	dynamical	and	photochemical	50 
drivers	are	needed	to	improve	confidence	in	our	interpretation	of	recent	methane	trends	and	to	51 
project	future	climate	in	response	to	changes	in	emissions	and	composition. 52 
	 53 
Observational	limitations	and	chemistry	climate	model	disagreement	pose	challenges	to	advancing	54 
our	understanding	of	the	spatiotemporal	variability	in	OH.	There	are	few	direct	in	situ	OH	55 
observations,	on	local,	regional,	and	global	scales	(Stone	et	al.,	2012)	as	OH	is	both	highly	reactive,	56 
with	a	lifetime	of	~1	s	in	the	free	troposphere	(Mao	et	al.,	2009),	and	low	in	concentration,	on	the	57 
order	of	106	molecules/cm3.		Recent	work	has	demonstrated	that	formaldehyde,	a	longer-lived	58 
species	(hours)	whose	chemical	production	in	the	remote	troposphere	is	dominated	by	CH4	59 
oxidation,	shows	promise	for	inferring	variability	in	OH	columns	over	the	remote	atmosphere	60 
(Wolfe	et	al.,	2019).		In	models	of	atmospheric	chemistry	and	transport,	OH	can	vary	widely,	with	61 
differences	in	global	methane	lifetime,	a	proxy	for	OH	abundance,	between	45	and	80%	among	62 
models	in	inter-comparison	projects	(e.g.,	Voulgarakis	et	al.,	2013;Nicely	et	al.,	2017;Zhao	et	al.,	63 
2019).			64 
	65 
Analysis	of	the	factors	causing	inter-model	differences	in	the	tropospheric	OH	burden	is	66 
challenging,	as	causation	is	difficult	to	prove	with	a	species	so	tightly	coupled	to	a	multitude	of	67 
chemical	and	meteorological	processes.		Primary	OH	production	occurs	through	photolysis	of	O3	68 
followed	by	reaction	with	water	vapor	(H2O(v)),	while	secondary	production	is	often	regulated	by	69 
nitrogen	oxides	(NOX	=	NO	+	NO2)	through	the	reaction	of	the	hydroperoxyl	radical	(HO2)	with	NO.		70 
Globally,	CO	and	CH4	are	the	primary	sinks,	although	other	species,	particularly	volatile	organic	71 
compounds	(VOCs),	can	be	important	regionally.		However,	attributing	OH	variability	remains	72 
challenging,	with	different	models	showing	widely	ranging	responses	in	OH	to	changes	in	these	73 
drivers,	particularly	to	NOX	and	humidity	(Wild	et	al.,	2020).	74 
	75 
These	chemical	and	radiative	drivers	of	OH	variability	are	in	turn	partially	regulated	by	large-scale	76 
dynamical	features,	such	as	the	El	Niño	Southern	Oscillation	(ENSO),	monsoons,	and	modes	of	77 
Northern	Hemispheric	(NH)	variability	(e.g.	the	North	Atlantic	Oscillation	(NAO)),	through	changes	78 
in	transport	and	emissions.		Oman	et	al.	(2011)	and	Oman	et	al.	(2013)	used	satellite	observations	79 
and	chemistry	climate	models	to	show	that	the	horizontal	and	vertical	distributions	of	tropospheric	80 
ozone	are	significantly	modulated	by	ENSO,	most	prominently	through	the	manifestation	of	a	dipole	81 
pattern	over	southeast	Asia	and	the	tropical	western	Pacific.		Sekiya	and	Sudo	(2012)	found	similar	82 
results	with	the	CHASER	chemical	transport	model,	along	with	strong	relationships	between	ozone	83 
variability	and	the	Indian	Ocean	Dipole	(IOD),	the	Arctic	Oscillation,	and	the	Asian	winter	monsoon.	84 
ENSO	events	can	also	change	CH4	emissions	from	wetlands	(Zhang	et	al.,	2018),	lightning	NO	85 
production	(Murray	et	al.,	2013;Murray	et	al.,	2014;Turner	et	al.,	2018),	and	CO	emissions	from	86 
biomass	burning	(Duncan,	2003a;Duncan,	2003b;Rowlinson	et	al.,	2019).		In	addition	to	this	87 
biomass	burning	relationship	with	ENSO,	Buchholz	et	al.	(2018)	also	noted	relationships	between	88 
CO	in	tropical	fire	regions	and	the	IOD	as	well	as	with	the	Tropical	South	Atlantic	and	Southern	89 
Annular	modes.		Relationships	between	the	Madden-Julian	Oscillation	(MJO)	and	variability	of	90 
tropical	ozone	(Tian	et	al.,	2007;Ziemke	et	al.,	2015),	H2O(v)	(Myers	and	Waliser,	2003),	and	CO	91 
(Wong	and	Dessler,	2007)	have	also	been	shown.		Finally,	climate	modes	can	alter	the	long	range	92 
transport	of	CO	to	the	Arctic,	through	increased	outflow	from	Europe	(Li	et	al.,	2002;Creilson	et	al.,	93 
2003;e.g.	Duncan,	2004)	and	Asia	(Fisher	et	al.,	2010)	for	the	NAO	and	ENSO,	respectively.			94 
	95 
Despite	the	strong	linkages	between	these	dynamical	features	and	OH	drivers,	there	is	little	96 
research	on	the	relationship	between	these	processes	and	OH	itself.		Turner	et	al.	(2018)	used	a	97 
6000-year	simulation	with	free	running	dynamics	to	suggest	that	ENSO	is	the	dominant	mode	of	OH	98 
variability	at	decadal	timescales,	mainly	through	its	effects	on	lightning	NO	emissions.		Their	study,	99 
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however,	held	most	forcings	and	emissions,	including	greenhouse	gas	concentrations	and	biomass	100 
burning,	to	1860	conditions.	Emissions	of	lightning	NO,	dust,	and	dimethyl	sulfide	were	allowed	to	101 
respond	to	model	meteorology.		During	the	1997/98	ENSO	event,	increases	in	CO	from	biomass	102 
burning	led	to	decreases	in	OH	of	9%	on	the	global	scale	(Rowlinson	et	al.,	2019)	and	up	to	20%	103 
over	the	Indian	Ocean	(Duncan,	2003a).		Using	inversions	of	observations	of	methyl	chloroform	to	104 
estimate	OH	concentrations,	Prinn	et	al.	(2001)	found	OH	to	be	lower	during	ENSO	years,	105 
suggesting	this	could	be	linked	to	reduced	UV	radiation	near	the	surface	due	to	increased	cloud	106 
coverage.		As	with	ENSO,	modeling	studies	have	shown	that	the	Asian	monsoon	increases	OH	107 
concentrations	in	the	upper	troposphere	(UT)	through	increased	lightning	NO	production,	despite	108 
increases	in	convectively	lofted	OH	sinks,	particularly	CO	(Lelieveld	et	al.,	2018).			109 
 110 
Here,	we	examine	how	OH	and	related	chemical	and	radiative	factors	vary	with	known	modes	of	111 
climate	and	atmospheric	variability.		Using	correlation	analysis,	we	compare	the	relationship	112 
between	ENSO	and	tropospheric	column	OH	from	the	MERRA-2	GMI	(Modern-Era	Retrospective	113 
analysis	for	Research	and	Applications	Global	Modeling	Initiative)	setup	of	the	NASA	Goddard	Earth	114 
Observing	System	(GEOS)	Chemistry	Climate	Model	(GEOSCCM)	(Strode	et	al.,	2019)	and	four	115 
models	that	participated	in	the	joint	International	Global	Atmospheric	Chemistry	116 
(IGAC)/Stratosphere-troposphere	Processes	And	their	Role	in	Climate	(SPARC)	Chemistry	Climate	117 
Model	Initiative	(CCMI)	(Morgenstern	et	al.,	2017).		After	evaluating	these	relationships	from	the	118 
MERRA2	GMI	model	with	in	situ	and	satellite	observations,	we	explore	further	the	relationship	119 
between	OH,	its	precursors,	and	ENSO.		Finally,	we	expand	the	analysis	to	include	not	only	ENSO	120 
but	also	other	modes	of	internal	climate	variability.	121 
 122 
2.0 Methods	123 
In	this	section,	we	outline	the	methodology	used	to	understand	the	relationship	between	OH	and	124 
large-scale	dynamical	drivers.		First,	we	describe	the	analysis	methods	used	in	Section	2.1.		In	125 
Sections	2.2	and	2.3,	we	describe	the	relevant	details	of	the	MERRA2	GMI	and	CCMI	simulations,	126 
respectively.		127 
 128 
2.1 Description	of	Analysis	Methods	129 
Because	the	factors	driving	OH	concentrations	and	interannual	variability	are	altitude	dependent,	130 
we	divide	the	atmosphere	into	4	layers:		the	surface	to	the	top	of	the	PBL	(PBL),	from	the	top	of	the	131 
PBL	to	500	hPa	(Lower	Free	Troposphere:	LFT),	between	500	and	300	hPa	(Middle	Free	132 
Troposphere:	MFT),	and	from	300	hPa	to	the	tropopause	(Upper	Free	Troposphere:	UFT).		Output	133 
from	each	model	has	been	vertically	averaged	to	these	layers	on	a	seasonal	basis.	In	addition,	we	134 
also	examine	the	tropospheric	column.	135 
	136 
To	help	determine	the	relationship	between	the	modes	of	climate	variability	and	photochemical	137 
and	meteorological	variables	archived	by	the	various	models,	we	regress	model	output	against	138 
different	climate	indices.		To	perform	the	regression,	we	first	detrend	the	output	on	a	monthly	139 
basis,	removing	any	linear	trend	from	each	variable	over	the	1980	to	2018	period	to	account	for	140 
changes	in	the	background	value.		We	then	regress	the	model	variable	against	a	specific	climate	141 
index	(e.g.	ENSO	index)	for	1980	to	2018.		We	perform	these	regressions	on	each	grid	cell	for	each	142 
of	the	4	layers	as	well	as	for	the	tropospheric	column.		In	the	results	below,	we	only	include	143 
regressions	where	the	Pearson	correlation	coefficient	(r)	exceeds	0.5,	unless	otherwise	indicated.		144 
Using	other	methods	to	define	significance	of	a	regression,	such	as	a	two-tailed	student	t	test	with	p	145 
values	less	than	0.05,	does	not	significantly	alter	the	results.			146 
	147 
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Climate	features	considered	here	include	ENSO,	the	IOD,	several	Northern	Hemispheric	148 
atmospheric	modes	of	variability,	and	various	monsoons.		We	use	monthly	values	of	the	ENSO	149 
multivariate	index	(MEI)	(Wolter	and	Timlin,	2011)	obtained	from	https://psl.noaa.gov/enso/mei	150 
and	averaged	to	seasonal	time	scales.		Here,	ENSO-related	events	are	defined	according	to	the	151 
seasonally	averaged	MEI,	where	MEI	>	0.5	is	an	El	Niño	event,	MEI	<	-0.5	is	a	La	Niña	event,	and	an	152 
MEI	value	between	0.5	and	-0.5	is	a	neutral	event.		For	the	Indian	Ocean	Dipole,	we	used	the	Dipole	153 
Mode	Index	(DMI)	obtained	from		https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/.			Northern	154 
Hemispheric	modes	considered	are	the	NAO,	the	East	Atlantic	Pattern	(EA),	the	Pacific	North	155 
American	Pattern	(PNA),	the	East	Atlantic	Western	Russian	Pattern,	the	Scandinavian	Pattern,	the	156 
West	Pacific	Pattern,	the	East	Pacific	North	Pacific	Pattern,	and	the	Tropical	Northern	Hemisphere	157 
Pattern.		Indices	for	the	NH	modes	were	taken	from	the	NOAA	Climate	Prediction	Center	(available	158 
online	at	https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml)	and	were	determined	159 
from	a	rotated	principal	component	analysis	of	the	500	hPa	geopotential	height	of	the	National	160 
Center	for	Environmental	Prediction	Reanalysis.			161 
	162 
The	MERRA2	GMI	(Section	2.2)	and	CCMI	models	(Section	2.3)	included	here	are	constrained	or	163 
nudged	to	reanalyses	data	(MERRA,	MERRA2,	JRA-55,	and	the	ERA-interim)	which	assimilate	164 
observed	meteorology.		The	meteorological	variables	used	to	calculate	the	DMI	and	MEI,	including	165 
sea	surface	temperature,	sea	level	pressure,	and	zonal	and	meridional	winds,	agree	well	or	are	166 
identical	among	the	different	reanalyses	(Orbe	et	al.,	2020;Bosilovich	et	al.,	2015).		Thus,	climate	167 
modes	in	these	models	correspond	to	the	NOAA	indices.		Likewise,	indices	for	the	NAO	calculated	168 
from	surface	pressure	from	the	models	correlate	well	(r2	of	0.79	or	greater)	with	the	NAO	index	169 
calculated	by	NOAA.	170 
	171 
Table	1:	Summary	of	the	climate	modes	and	monsoons	considered	in	this	work.		The	index	used	to	172 
characterize	the	mode,	as	well	as	the	source	of	the	index,	is	also	indicated.	173 

Mode	Type	 Index	 Mode	Type	 Index	

El	Niño	Southern	
Oscillation	

Multivariate	
ENSO	Index	
(NOAA)	

North	Atlantic	
Oscillation	

EOF	of	
geopotential	
height	at	500	

mbar	from	NCEP	
reanalysis	
(NOAA)	

Indian	Ocean	
Dipole	

Dipole	Mode	
Index	(NOAA)	 East	Atlantic	

Asian	Monsoon	

Model-specific	
index	calculated	

from	the	
difference	of	
zonal	winds	in	
monsoon	specific	

regions	

Pacific	North	
American	

South	American	
Monsoon	

East	Atlantic	
Western	Russian	

North	American	
Monsoon	 Scandinavian	

South	African	
Monsoon	 West	Pacific	

North	African	
Monsoon	

East	Pacific	
North	Pacific	

Australian	
Monsoon	 Tropical	

Northern	
Hemisphere	Western	North	

Pacific	Monsoon	
	174 
Monsoons	included	in	this	analysis	are	the	Asian,	South	American,	North	American,	South	African,	175 
North	African,	Australian,	and	the	Western	North	Pacific.		We	calculate	the	monsoon	index	for	each	176 
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model	used	in	this	study	based	on	the	definitions	of	Yim	et	al.	(2013),	where	the	index	is	defined	by	177 
the	difference	of	zonal	winds	at	850	hPa	between	two,	monsoon-specific	regions.		See	Table	2	in	178 
Yim	et	al.	(2013)	for	more	details.		Because	the	MERRA2	GMI	and	CCMI	models	included	here	are	179 
constrained	or	nudged	to	different	reanalyses,	the	calculated	monsoon	index	varies	among	the	180 
models,	although	the	indices	of	a	given	monsoon	from	each	model	are	highly	correlated	with	one	181 
another	(generally	r2	>	0.9).		Table	1	summarizes	the	climate	modes	and	monsoons	as	well	as	the	182 
corresponding	indices	used	here.	183 
	184 
In	addition	to	regression	analysis,	we	also	performed	an	empirical	orthogonal	function	(EOF)	185 
analysis	for	tropospheric	column	OH	(TCOH)	and	separately	for	each	of	the	four	layers	described	186 
above.		EOF	analysis	allows	for	the	statistical	determination	of	the	spatial	modes	of	OH	variability	187 
and	their	variation	with	time	without	a	priori	knowledge	of	the	controlling	mechanisms	(e.g.,	188 
Barnston	and	Livezey,	1987).		To	perform	the	analysis,	OH	fields	for	each	grid	box	were	detrended	189 
by	subtracting	a	linear	fit	to	the	time	series	over	the	1980	to	2018	period	to	account	for	changes	in	190 
background	associated	with	long-term	trends	in	OH.		We	report	here	only	the	first	and	second	EOFs	191 
and	their	associated	principal	component	time	series	as	none	of	the	other	EOFs	correlated	spatially	192 
or	temporally	with	any	of	the	modes	of	climate	variability	discussed	here.	193 

	194 
2.2 MERRA-2	GMI	Simulation	Description	195 
To	understand	the	interannual	variability	of	OH,	we	use	the	MERRA-2	GMI	(Modern-Era	196 
Retrospective	analysis	for	Research	and	Applications	Global	Modeling	Initiative)	simulation,	197 
publicly	available	at	https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/.		This	is	a	run	198 
of	the	GEOSCCM	model	(Strode	et	al.,	2019)	constrained	to	meteorology	from	MERRA-2	(Gelaro	et	199 
al.,	2017)	that	uses	the	GMI	chemical	mechanism	(Duncan	et	al.,	2007;Oman	et	al.,	2013;Gelaro	et	200 
al.,	2017).		The	GMI	chemical	mechanism	includes	approximately	120	species	and	400	reactions,	201 
characterizing	the	photochemistry	of	the	troposphere	and	stratosphere.		The	model	was	run	from	202 
1980	to	2018	at	a	resolution	of	c180	on	the	cubed	sphere,	equivalent	to	approximately	0.625°	203 
longitude	×	0.5°	latitude,	with	72	vertical	levels.		The	model	was	run	in	a	replay	mode	(Orbe	et	al.,	204 
2017)	and	constrained	to	temperature,	pressure,	and	winds	from	MERRA-2.		Model	output	is	205 
available	at	daily	and	monthly	resolutions,	with	hourly	output	available	only	for	some	local	satellite	206 
overpass	times.		All	data	used	in	this	work	is	monthly	averaged	unless	otherwise	indicated. 207 
 208 
Anthropogenic	emissions	are	from	the	Measuring	Atmospheric	Composition	and	Climate	mega	City	209 
(MACCity)	inventory	(Granier	et	al.,	2011)	for	1980	–	2010,	and	then	from	the	Representative	210 
Concentration	Pathway	8.5	(RCP8.5)	scenario	for	2011	–	2018.		Biomass	burning	emissions	are	211 
from	the	Global	Fire	Emissions	Database	(GFED)	4s	inventory	starting	in	1997	(Giglio	et	al.,	2013).		212 
Biomass	burning	emissions	from	before	1997	are	calculated	from	scale	factors	derived	from	213 
aerosol	index	data	from	the	Total	Ozone	Mapping	Spectrometer	(TOMS)	instrument,	as	described	in	214 
Duncan	(2003).		Biogenic	emissions	are	calculated	online	using	the	method	described	in	Guenther	215 
et	al.	(1999)	and	Guenther	et	al.	(2000),	an	early	form	of	the	Model	of	Emissions	of	Gases	and	216 
Aerosols	from	Nature	(MEGAN).		A	known	high	bias	in	isoprene	emissions	from	MEGAN	(e.g.,	Wang	217 
et	al.,	2017),	could	exacerbate	low	modeled	OH	in	regions	dominated	by	biogenic	VOC	emissions.		218 
Lightning	NO	emissions	are	based	on	the	cumulative	mass	flux	(Allen	et	al.,	2010),	with	constraints	219 
from	the	Lightning	Imaging	Sounder	(LIS)/Optical	Transient	Detector	(OTD)	v2.3	climatology	(Cecil	220 
et	al.,	2014).		Total,	global	lightning	NO	emissions	are	scaled	to	be	6.5	Tg	N/year	for	each	year	of	the	221 
simulation,	although	emissions	demonstrate	significant	interannual	variability	on	the	local	222 
scale.		For	example,	over	the	tropical	Pacific,	an	area	we	will	investigate	throughout	this	paper,	peak	223 
emissions	are	1.5	times	higher	than	minimum	emissions	over	the	time	period	studied	here	(Fig.	S1).			224 
Methane	concentrations	are	specified	at	the	surface	for	4	different	latitude	bands	(90°S	-	30°S,	30°S	225 
-	0°,	0°	-	30°N,	30°N	-	90°N)	at	monthly	resolution	and	advected	throughout	the	troposphere.		226 
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Methane	data	are	from	the	NOAA	Global	Monitoring	Division	(GMD)	surface	network	(Dlugokencky	227 
et	al.,	1994)	and	monthly	values	are	interpolated	from	annual	means.			228 
	229 
Because	CH4	is	specified	as	a	boundary	condition,	the	model	does	not	capture	feedbacks	(e.g.,	230 
wetland	or	wildfire	emissions)	between	CH4	emissions	and	climate	modes	beyond	the	extent	to	231 
which	these	manifest	in	the	observed	methane	surface	concentrations.		ENSO,	for	example,	is	232 
known	to	affect	atmospheric	CH4	concentrations	through	changes	in	emissions	from	wetlands	233 
(Zhang	et	al.,	2018;Melton	et	al.,	2013)	and	biomass	burning	(Worden	et	al.,	2013),	although	there	234 
is	uncertainty	in	the	magnitudes	of	these	effects	(Melton	et	al.,	2013).		On	the	global	scale,	however,	235 
these	ENSO-induced	changes	in	emissions	do	not	significantly	perturb	background	CH4.		For	236 
example,	during	the	1997/98	ENSO	event,	one	of	the	largest	on	record,	CH4	grew	at	a	rate	of	237 
approximately	15	ppbv/yr	on	top	of	a	background	on	the	order	of	1700	ppbv	(Nisbet	et	al.,	2016).		238 
Because	of	this	small	perturbation	and	the	dominance	of	CO	as	the	primary	OH	sink	over	much	of	239 
the	globe	(see	Section	5.0),	it	is	unlikely	that	the	relationship	between	climate	modes	and	OH	would	240 
differ	significantly	with	the	inclusion	of	direct	methane	emissions	in	the	simulation. 241 
 242 
2.3 IGAC/SPARC	Chemistry	Climate	Model	Initiative	(CCMI)	Phase	1	Model	Simulations	243 
To	place	the	results	from	MERRA2	GMI	in	the	context	of	other	models,	we	compare	our	simulation	244 
with	those	from	CCMI.		The	CCMI	was	conducted	to	help	assess	the	ability	of	a	suite	of	models	to	245 
address	various	aspects	of	atmospheric	chemistry,	including	trends	in	tropospheric	ozone	and	the	246 
controlling	mechanisms	of	OH	(Morgenstern	et	al.,	2017).		Output	from	these	models	have	already	247 
been	used	to	assess	various	aspects	of	tropospheric	OH	(Zhao	et	al.,	2019;Nicely	et	al.,	2020),	HCHO	248 
(Anderson	et	al.,	2017),	O3	(Revell	et	al.,	2018;Dhomse	et	al.,	2018)	and	meteorological	variables	249 
(Orbe	et	al.,	2020).		Modeling	groups	conducted	multiple	runs,	including	a	forecast	scenario	to	2100	250 
and	two	hindcast	scenarios,	one	with	free-running	meteorology	and	one,	the	specified	dynamics	251 
(SD)	scenario,	in	which	models	were	either	nudged	to	meteorological	reanalyses	or	run	as	chemical	252 
transport	models	(Orbe	et	al.,	2020).	 253 
 254 
We	perform	a	similar	analysis	as	with	MERRA2	GMI	with	four	models	that	performed	the	CCMI	SD	255 
run.		We	use	the	SD	run,	which	spanned	the	years	1980	–	2010,	instead	of	the	other	scenarios	to	256 
allow	for	more	direct	comparison	among	the	CCMI	models	as	well	as	with	MERRA2	GMI	and	257 
observations	from	satellite.		We	include	only	models	that	output	data	for	all	years	between	1980	258 
and	2010	and	that	have	non-methane	hydrocarbon	chemistry	in	their	chemical	mechanisms.		259 
Models	used	here	are	WACCM	(Solomon	et	al.,	2015),	CHASER	(MIROC-ESM)	(Watanabe	et	al.,	260 
2011),	a	setup	of	EMAC	with	90	vertical	levels	(EMAC)	(Jöckel	et	al.,	2016),	and	MRI-ESM1r1	261 
(Yukimoto	et	al.,	2012).		We	omit	CAM4Chem	and	a	different	setup	of	EMAC	with	47	vertical	levels	262 
because	results	for	those	models	are	essentially	identical	to	WACCM	and	EMAC90,	respectively.		263 
EMAC90	and	CHASER	were	nudged	to	the	ERA-interim	reanalysis,	WACCM	to	the	MERRA	264 
reanalysis,	and	MRI	to	the	JRA-55	reanalysis.		Sea	surface	temperatures	(SST)	and	sea	ice	were	265 
prescribed	in	each	model	with	the	Hadley	SST	dataset.		Anthropogenic	emissions	were	from	the	266 
MACCity	inventory,	while	lightning	NOX	was	calculated	online	using	model-specific	267 
parameterizations.		Biomass	burning	emissions	are	from	Granier	et	al.	(2011),	which	incorporate	a	268 
modified	version	of	the	RETRO	inventory	from	1980	–	1996	and	GFEDv2	from	1997	–	2010	and	are	269 
based	on	Lamarque	et	al.	(2010).		Monthly-averaged	CO	emissions	from	this	inventory	in	Indonesia,	270 
where	biomass	burning	emissions	are	strongly	affected	by	ENSO	(e.g.,	Duncan,	2003a),	are	highly	271 
correlated	(r2	=	0.79)	in	time	with	the	GFED	4s	inventory	used	in	the	M2GMI	simulation.	Likewise,	272 
monthly-averaged	CO	emissions	over	Indonesia	from	the	two	inventories	agree	within	35%,	on	273 
average.		Further	model	details	can	be	found	in	Orbe	et	al.	(2020),	Morgenstern	et	al.	(2017),	and	274 
references	therein. 275 



 7 

 276 
As	with	the	MERRA2	GMI	analysis,	we	use	monthly	averaged	output.		For	layer	averaging,	only	277 
EMAC90,	WACCM,	and	MRI	output	a	tropopause	height,	while	no	models	output	PBL	height.		To	278 
calculate	the	tropopause	height	for	CHASER,	we	used	the	relationship	between	O3	and	CO	as	279 
described	in	Pan	et	al.	(2004).		PBL	height	for	all	models	was	determined	from	the	bulk	Richardson	280 
number	(Seibert	et	al.,	2000).	 281 

	 282 
3.0 MERRA2	GMI	Simulation	Evaluation	283 
While	there	has	been	some	evaluation	of	the	MERRA2	GMI	simulation	(Ziemke	et	al.,	2019;Strode	et	284 
al.,	2019),	species	in	the	simulation	relevant	to	this	study	have	not	been	investigated.		As	a	result,	285 
we	evaluate	MERRA2	GMI	using	in	situ	observations	of	OH	and	related	species	as	well	as	remotely	286 
sensed	observations	of	OH	drivers	in	order	to	understand	the	effect	any	model	biases	could	have	on	287 
our	results.		In	Section	3.1,	we	use	in	situ	observations	from	the	first	two	deployments	of	the	288 
Atmospheric	Tomography	(ATom)	campaign	to	evaluate	OH	and	CO	over	the	remote	Pacific	and	289 
Atlantic	Oceans.		In	Section	3.2,	we	also	compare	output	to	satellite	observations	of	CO,	H2O(v),	and	290 
NO2	to	evaluate	the	model	over	larger	temporal	and	spatial	scales.	291 
 292 
3.1 Evaluation	of	MERRA2	GMI	with	in	situ	Observations	293 
During	the	ATom	campaign,	a	suite	of	air	quality	and	climate	relevant	trace	gases	and	aerosols	were	294 
measured	throughout	the	remote	Pacific	and	Atlantic.		During	each	of	the	deployments,	aircraft	295 
transected	the	Pacific	from	Alaska	to	New	Zealand,	went	around	Tierra	del	Fuego,	and	travelled	296 
north	over	the	Atlantic	to	Greenland.		Each	flight	consisted	of	a	series	of	ascents	and	descents	297 
allowing	for	vertical	profiling	across	most	latitudes	of	the	remote	Pacific	and	Atlantic	Oceans.		The	298 
combination	of	the	flight	track	and	the	repetition	across	seasons	provided	unprecedented	sampling	299 
of	many	trace	gases,	including	OH.		As	part	of	the	ATom	campaign,	a	limited	subset	of	species,	300 
including	OH	and	CO,	from	the	MERRA2	GMI	simulation	were	output	hourly	for	the	duration	of	301 
ATom1	(July	–	August	2016)	and	ATom2	(January	–	February	2017)	only,	allowing	for	direct	302 
comparison	to	the	in	situ	observations.		Only	daily	or	longer	resolution	output	is	available	for	the	303 
other	deployments,	and,	as	a	result,	we	focus	our	analysis	on	these	first	two	deployments.	304 
	305 
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 306 
Figure 1: Regression of observed OH (left) and CO (right) from ATom 2 (boreal winter 2017; top row) and ATom 1 (boreal summer 307 
2016; bottom row) against hourly output from MERRA2 GMI interpolated to the ATom flight track.  Data from the Southern (blue 308 
circles) and Northern (orange triangles) Hemisphere are shown, along with the r2, bias, and normalized mean bias (NMB) for each 309 
hemisphere.  Observations and model output have been filtered for biomass burning influence.  Observations of continental 310 
outflow from New Zealand and South America from ATom 2 are indicated by blue stars. 311 

Observations	used	here	include	OH	(Brune	et	al.,	2020)	and	CO	(Santoni	et	al.,	2014),	with	2σ	312 
uncertainties	of	35%	and	3.5	ppbv,	respectively.		Data	have	been	averaged	to	a	5-minute	time	base	313 
and	filtered	for	biomass	burning	influence,	defined	as	times	when	concentrations	of	HCN	and	CO	314 
are	both	above	the	75th	percentile	for	the	individual	ATom	deployments.		We	omit	the	biomass	315 
burning	influenced	parcels	because	small	differences	in	measured	and	modeled	winds	could	result	316 
in	misplacement	of	modeled	biomass	burning	plumes,	resulting	in	unrealistically	large	differences	317 
in	OH.		Inclusion	of	the	biomass	burning	influenced	parcels	does	not	significantly	change	the	model	318 
bias	but	does	degrade	the	correlation.		For	comparison	of	the	observations	to	MERRA2	GMI,	hourly	319 
data	were	output	by	the	model	and	then	bilinearly	interpolated	in	the	horizontal	and	linearly	320 
interpolated	in	time	and	in	the	vertical	to	the	in	situ	observation	time	and	location.	321 
	322 
MERRA2	GMI	has	a	OH	high	bias	of	approximately	20%	(Fig.	1a)	when	compared	to	observations	323 
from	ATom	2.		A	regression	of	measured	and	modeled	OH	shows	moderate	to	high	correlation	in	324 
both	the	Southern	Hemisphere	(SH)	and	NH,	with	r2	values	of	0.30	and	0.78,	respectively.		325 
Normalized	Mean	Biases	(NMB)	relative	to	the	observations	is	within	measurement	uncertainty	in	326 
both	the	NH	(19%)	and	SH	(16%),	with	nearly	identical	high	biases	during	the	summer	deployment	327 
of	ATom1	(Fig.	1c).		The	comparatively	poorer	model	performance	for	OH	in	the	SH	is	being	driven	328 
by	continental	outflow	from	South	America	and	New	Zealand.		When	data	from	these	regions	are	329 
omitted	(Fig.	1a,	blue	stars),	the	correlation	for	the	SH	increases	to	0.63	and	the	NMB	is	22%.		The	330 
limited	model	output	at	hourly	resolution	does	not	allow	for	a	determination	of	the	cause	of	this	331 
disagreement	in	continental	outflow	regions.		In	the	case	of	South	America,	however,	a	known	high	332 
bias	in	modeled	isoprene,	resulting	in	extremely	low	OH	over	the	Amazon,	is	consistent	with	the	333 
disagreement	between	the	simulation	and	observations.		334 
	335 
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Agreement	between	observed	and	modeled	CO	shows	a	strong	hemispheric	dependence,	with	a	336 
NMB	of	-14%	in	the	NH	(i.e.,	the	model	is	lower	than	observations	by	14%)	and	8%	in	the	SH	during	337 
ATom	2,	although	both	hemispheres	have	a	strong	correlation	(r2	>	0.7).		While	agreement	in	the	SH	338 
improves	in	ATom	1,	with	a	NMB	of	2%	(Fig.	1d),	the	model	underestimate	in	the	NH	is	even	more	339 
pronounced	(NMB	=	-20%).		This	NH	low	bias	in	CO	is	a	well-known	problem	in	global	chemistry	340 
models	(e.g.	Naik	et	al.,	2013;Stein	et	al.,	2014;Travis	et	al.,	2020)	and	could	be	a	contributing	factor	341 
in	the	overestimate	in	OH,	as	CO	is	the	dominant	global	OH	sink.			342 
	343 
Comparison	of	the	MERRA2	GMI	simulation	to	in	situ	observations	demonstrates	that	the	model	344 
captures	the	spatial	variability	of	OH	and	its	predominant	global	sink,	CO,	in	the	remote	atmosphere	345 
during	both	the	NH	summer	and	winter,	with	the	exception	of	OH	off	the	coast	of	South	America	346 
and	New	Zealand.		The	poorer	agreement	between	measured	and	modeled	OH	in	regions	of	fresh,	347 
continental	outflow	suggests	that	modeled	relationships	between	climate	modes	and	OH	in	these	348 
regions	might	be	more	uncertain	than	in	the	remote	atmosphere.		This	lack	of	agreement	does	not	349 
significantly	affect	the	results	discussed	in	this	work,	as	the	majority	of	the	relationships	found	350 
between	OH	and	modes	of	climate	variability	discussed	in	Sections	4	and	5	are	centered	in	the	351 
remote	atmosphere.	352 
		353 
3.2 Evaluation	of	MERRA2	GMI	with	Satellite	Observations	354 
While	there	are	no	remotely	sensed	observations	of	tropospheric	column	OH	(TCOH),	there	are	355 
satellite	observations	of	OH	drivers.		Comparing	these	observations	to	MERRA2	GMI	allows	for	356 
model	evaluation	over	larger	spatial	and	temporal	scales	than	with	ATom.		Satellite	data	used	here	357 
include	tropospheric	CO	columns	from	the	Measurement	Of	Pollutants	In	The	Troposphere	358 
(MOPITT)	instrument,	H2O(v)	from	the	Atmospheric	Infrared	Sounder	(AIRS),	and	tropospheric	NO2	359 
from	the	Ozone	Monitoring	Instrument	(OMI).		AIRS	is	on	the	Aqua	satellite,	with	a	daily,	local	360 
overpass	time	of	approximately	13:30.		We	use	the	monthly	averaged,	Level	3,	Version	6	standard	361 
physical	retrieval	(Susskind	et	al.,	2014)	from	2003	to	2018.		For	MOPITT	CO	on	the	Terra	satellite,	362 
we	use	the	Level	3,	V008	retrieval	that	uses	both	near	and	thermal	infrared	radiances	(Deeter	et	al.,	363 
2019)	from	2001	to	2018.		MOPITT	has	a	daily,	local	overpass	time	of	approximately	10:30.		Both	364 
satellite	products	have	a	global	horizontal	resolution	of	1°	×	1°.		We	also	use	the	OMI	NO2	Version	4,	365 
Level	3	product	(Lamsal	et	al.,	2021)	from	2005	to	2018.		Data	have	been	regridded	to	1°	×	1°	366 
horizontal	resolution.		OMI	is	located	on	the	Aura	satellite	and,	as	with	AIRS,	has	a	local	overpass	367 
time	of	approximately	13:30.			368 
	369 
For	comparison	of	the	satellite	retrievals	to	MERRA2	GMI,	we	use	monthly	fields	of	the	model	370 
variables	output	at	the	satellite	overpass	time.		For	CO,	where	averaging	kernel	and	a	priori	371 
information	are	available	for	the	Level	3	MOPITT	data,	we	convolve	the	model	output	with	these	372 
variables	so	that	direct	comparison	between	satellite	and	model	are	possible.		While	shape	factors	373 
and	scattering	weights	for	the	OMI	NO2	retrieval	are	unavailable	for	the	Level	3	data,	shape	factors	374 
for	the	OMI	NO2	retrieval	are	determined	from	a	similar	setup	of	the	GEOSCCM	model,	also	375 
employing	the	GMI	chemical	mechanism	and	MERRA2	meteorology.		Applying	the	satellite	shape	376 
factors	to	the	simulation	discussed	here	would	therefore	not	result	in	significant	changes	in	the	377 
modeled	NO2.		Finally,	for	AIRS	H2O(v),	averaging	kernel	information	was	unavailable	for	the	Level	3	378 
data,	so	numerical	comparisons	between	satellite	and	model	should	be	regarded	as	more	379 
qualitative	than	quantitative.	380 
	381 
When	compared	to	MOPITT	in	boreal	winter	(i.e.,	DJF),	tropospheric	column	CO	from	MERRA2	GMI	382 
(Fig.	2,	first	column)	shows	similar	results	to	that	found	through	comparison	to	the	in	situ	383 
observations,	namely	a	low	bias	in	the	NH	(9%)	and	high	bias	in	the	SH	(7%).		Differences	over	the	384 
tropical	Pacific,	an	area	that	will	be	shown	later	to	have	a	strong	relationship	between	ENSO	and	385 
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OH,	are	generally	less	than	10%,	while	a	noticeable	high	bias	exists	over	parts	of	South	America.		386 
Results	for	June	–	August	(JJA)	are	spatially	similar	(Fig.	3),	with	a	NH	low	bias	of	20%	and	387 
overestimates	of	column	CO,	averaging	45%,	in	the	SH.		These	areas	of	high	bias	over	South	America	388 
likely	result	from	the	high	bias	in	isoprene	emissions,	as	discussed	in	Section	2.2,	that	would	lead	to	389 
unrealistically	high	in	situ	production	of	CO.	390 
	391 

 392 
Figure 2: Tropospheric column CO (left), H2O(v)	(middle), and NO2 (right) from MOPITT, AIRS, and OMI, respectively (top row), and 393 
MERRA2 GMI (middle row)  for DJF.  For the satellite retrievals and model, data are averaged over the time range described in the 394 
text for each instrument.  The fractional difference between MERRA2 GMI and the satellite is shown in the bottom row. 395 

MERRA2	GMI	captures	the	spatial	distribution	of	H2O(v),	although	the	model	is	biased	high	in	both	396 
the	column	and	throughout	much	of	the	troposphere.		Overestimates	in	column	H2O(v)	are	~14%	in	397 
both	December	–	February	(DJF)	(Fig.	2h)	and	JJA	(Fig.	3).		These	overestimates	extend	over	most	of	398 
the	world’s	oceans,	and	only	small	regions	over	northern	India,	central	Africa,	eastern	Russia,	and	399 
eastern	Canada	show	any	underestimate	in	H2O(v).		Fractional	differences	in	H2O(v)	between	400 
MERRA2	GMI	and	the	different	AIRS	pressure	levels	are	most	pronounced	in	the	tropical	UT	(Fig.	401 
4).		At	pressures	greater	than	700	hPa,	modeled	H2O(v)	is	generally	within	10%	of	the	observations,	402 
while	for	pressures	less	than	500	hPa,	modeled	H2O(v)	in	the	equatorial	region	disagrees	with	403 
observations	by	55%	on	average.		404 
	405 
Agreement	between	observed	and	modeled	NO2	is	weaker	than	for	the	other	species	examined	406 
here.		While	MERRA2	GMI	appears	to	capture	the	regions	with	local	NO2	maxima	–	notably	those	407 
over	central	Africa,	eastern	China,	and	the	northeastern	United	States	–	the	magnitudes	frequently	408 
differ.		The	simulation	shows	a	significant	high	bias	over	central	Africa	and	the	equatorial	Atlantic	409 
on	the	order	of	100%,	suggesting	that	biomass	burning	emissions	of	NOX,	the	dominant	NO	source	410 
in	this	region,	are	too	high.		In	contrast,	concentrations	over	eastern	Asia	are	too	low	in	the	model,	411 
suggesting	errors	in	the	anthropogenic	emissions	inventory	and/or	in	the	NOX	lifetime.		Strode	et	al.	412 
(2019)	also	evaluated	NO2	in	MERRA2	GMI,	comparing	trends	in	tropospheric	column	NO2	over	the	413 
eastern	US	and	eastern	China	in	MERRA2	GMI	and	OMI.		They	found	that	although	trends	were	414 
similar	between	the	simulation	and	observations	in	both	regions,	the	magnitude	of	the	trends	415 
differed,	likely	due	to	errors	in	the	MACCity	emissions	inventory.	416 
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 417 
Figure 3: Same as Figure 2 except for JJA. 418 

As	with	the	in	situ	observations,	comparison	between	MERRA2	GMI	and	satellite	retrievals	419 
demonstrates	that	the	simulation	is	able	to	capture	the	distribution	of	the	chemical	drivers	of	OH	in	420 
remote	regions,	which	tend	to	exhibit	the	strongest	relationship	between	OH	and	climate	modes	421 
(see	Section	4.0).		These	results	lend	confidence	to	the	analysis	described	in	Sections	4.0	and	5.0	422 
and	suggest	the	findings	in	remote	regions	are	likely	applicable	to	the	actual	atmosphere.		The	large	423 
disagreement	between	the	simulation	and	observed	column	CO	and	NO2	in	regions	that	are	424 
significantly	impacted	by	biomass	burning	and/or	biogenic	emissions	suggests,	however,	that	425 
modeled	relationships	of	chemical	species	with	modes	of	climate	variability	in	these	regions	should	426 
be	viewed	with	caution.		We	further	evaluate	the	ability	of	the	simulation	to	capture	the	427 
relationship	between	ENSO	and	CO,	H2O(v),	and	NO2	using	satellite	observations	in	Section	5.1.2.	428 

 429 
Figure 4: The fractional difference in zonal mean H2O(v)	between MERRA2 GMI and AIRS for the different AIRS pressure layers for 430 
DJF.  Positive numbers indicate a high bias in the model.   431 

	432 
4.0 The	Relationship	between	Simulated	OH	Variability	and	Climate	Modes	433 
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When	considered	in	concert,	the	modes	of	climate	variability	evaluated	here	(i.e.,	ENSO,	the	IOD,	434 
and	NH	modes)	along	with	monsoons	explain	a	substantial	fraction	of	the	simulated	tropospheric	435 
OH	interannual	variability	over	19	–	40%	of	the	global	troposphere	by	mass,	depending	on	season.		436 
Figure	5	highlights	regions	that	show	significant	correlation	between	TCOH	and	the	NH	modes	437 
(purple),	monsoons	(light	blue),	ENSO	(green),	and	the	IOD	(orange)	for	each	season	in	MERRA2	438 
GMI	output.		In	all	seasons,	correlation	with	ENSO	has	the	largest	spatial	extent,	but	in	DJF	and	439 
MAM,	for	example,	the	8	NH	modes	can	explain	TCOH	variability	over	large	swaths	of	the	NH,	440 
comprising	10%	of	global,	tropospheric	mass.		In	JJA,	the	combination	of	the	different	climate	441 
modes	and	monsoons	has	the	smallest	spatial	coverage	(19%	of	the	global,	tropospheric	mass),	442 
while	the	IOD,	consistent	with	its	seasonal	variability,	only	has	a	widespread	correlation	with	TCOH	443 
during	SON.		Similar	patterns	are	found	for	the	individual	layers	(Fig.	S2).		444 
	445 
Below,	we	examine	the	relationships	between	tropospheric	OH	and	the	various	modes	of	climate	446 
variability	demonstrated	in	Figure	5.		First,	in	Section	5.0,	we	show	that	El	Niño	events	lead	to	447 
global	reductions	in	tropospheric	OH,	with	changes	being	driven	by	decreased	secondary	448 
production	in	the	UFT	that	more	than	compensates	for	increased	primary	production	in	the	PBL.		In	449 
Section	6.0,	we	demonstrate	that	the	effects	on	OH	from	NH	modes	of	variability,	the	IOD,	and	some	450 
monsoons	have	limited	spatial	scales,	as	compared	to	ENSO,	but	can	significantly	alter	local	OH	451 
distributions.		In	both	sections,	we	also	compare	simulations	from	MERRA2	GMI	to	simulations	452 
from	the	CCMI,	demonstrating	that	the	relationship	between	OH	and	climate	modes	is	robust	453 
among	multiple	models.	454 
	455 

 456 
Figure 5: Regions that show a significant correlation (absolute value of r >0.5) between a NH mode (purple), monsoon (light 457 
blue), ENSO (green), or IOD (orange) and TCOH for each season in the MERRA2 GMI simulation.  Regions with TCOH less than 1 x 458 
1011 molecules/cm2 have been hatched out. 459 

5.0 Relationship	between	Simulated	OH	Variability	and	ENSO	in	MERRA2	GMI	460 
To	understand	the	relationship	between	OH,	its	drivers,	and	ENSO,	we	first	investigate	the	OH	461 
production	rate.		In	the	MERRA2	GMI	simulation,	the	OH	production	rate	is	primarily	dependent	on	462 
reactions	1	–	4,	where	O1D	is	produced	from	the	photolysis	of	tropospheric	O3.		In	the	free	463 
troposphere,	these	four	reactions	comprise	at	least	95%	of	OH	production	in	the	tropics,	on	464 
average,	and	at	least	90%	in	the	PBL.		Only	in	the	regions	with	large	biogenic	emissions	(e.g.,	South	465 
America	and	central	Africa)	do	other	reactions	contribute	more	than	15%	of	the	total	OH	466 
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production	in	the	PBL.		As	will	be	shown,	the	effects	of	ENSO	on	OH	are	primarily	focused	away	467 
from	these	regions,	so	we	restrict	our	analysis	to	reactions	1-4.	468 
	469 

H2O2	+	hυ	g	2OH	 (Reaction	1)	
NO	+	HO2	g	NO2	+	OH	 (Reaction	2)	
O3	+	HO2	g	2O2	+	OH	 (Reaction	3)	
H2O	+	O1D	g	2OH	 (Reaction	4)	

	470 
During	El	Niño	events,	the	dominance	of	these	individual	reactions	in	producing	OH	varies	with	471 
altitude.		We	focus	our	analysis	on	DJF	throughout	Section	5.0	because	that	is	the	season	with	the	472 
largest	impact	of	ENSO	on	OH	as	shown	in	Figure	5.		Figure	6	shows	the	zonal	mean	of	the	fraction	473 
of	total	OH	production	from	the	H2O	+	O1D	(a)	and	NO	+	HO2	(b)	reactions	as	well	as	the	total	OH	474 
production	rate	(c)	during	El	Niño	events	in	DJF.		While	the	production	rates	along	these	pathways	475 
vary	with	the	ENSO	phase,	as	discussed	in	Sections	5.2	and	5.3,	the	relative	importance	of	the	476 
individual	reactions	is	similar	during	neutral	and	La	Niña	events	(not	shown)	and	is	in	agreement	477 
with	previous	model	studies	(e.g.	Spivakovsky	et	al.,	2000).			478 
	479 
The	H2O	+	O1D	reaction	is	dominant	from	the	surface	to	about	800	hPa	through	much	of	the	SH	and	480 
the	tropics,	while,	near	the	surface,	the	NO	+	HO2	reaction	only	has	large	impacts	in	the	NH	mid-481 
latitudes.		This	influence	of	NOX	in	the	NH	mid-latitudes	extends	through	much	of	the	troposphere.		482 
In	the	UFT,	this	reaction	is	the	greatest	contributor	to	total	OH	production	at	all	latitudes	except	the	483 
NH	polar	region,	where	the	HO2	+	O3	reaction	dominates	during	polar	night	(Fig.	S3).		Total	OH	484 
production	in	the	polar	regions,	however,	is	orders	of	magnitude	lower	than	in	the	tropics.		Outside	485 
of	the	polar	regions,	the	HO2	+	O3	and	H2O2	photolysis	reactions	generally	contribute	between	10	486 
and	30%	of	the	total	rate	(Fig.	S3).		The	dominant	OH	sink	throughout	the	troposphere	is	CO,	which	487 
is	responsible	for	50%	or	greater	of	OH	loss	at	all	tropospheric	pressures	and	latitudes	(Fig.	S4)	488 
during	El	Niño	events.		Because	of	the	differing	importance	of	the	individual	OH	production	489 
reactions	with	altitude,	we	first	examine	the	relationship	between	OH	and	ENSO	for	TCOH	(Section	490 
5.1)	and	then	separately	for	the	PBL	(Section	5.2)	and	the	UFT	(Section	5.3).			Finally,	in	Section	5.4,	491 
we	investigate	the	MFT	and	LFT,	where	the	effects	of	ENSO	on	OH	are	more	limited.	492 
	493 

 494 
Figure 6: Zonal mean of the fractional contribution of the O1D + H2O (a) and  NO + HO2 (b) reactions to the total OH production 495 
rate as well as the total OH production rate (c) for El Niño events (MEI > 0.5) for DJF averaged over 1980-2018.	496 

5.1 Tropospheric	Column	OH	497 
5.1.1					The	Relationship	between	Simulated	TCOH	and	ENSO	498 
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 499 
Figure 7: Absolute difference in TCOH between El Niño events and neutral events (a) for DJF averaged over 1980 – 2018.  El 500 
Niño and neutral events are defined as a season having an MEI value greater than 0.5 or an MEI  value between -0.5 and 501 
0.5, respectively.  The analogous plot for La Niña events (MEI less than -0.5) is also shown (b). Panel c shows the average OH 502 
column for neutral events.   The 1980 – 2018 time period includes 11 El Niños, 12 La Niñas, and 15 neutral events in DJF.   503 

As	shown	in	Figure	7,	TCOH	decreases	by	3.3%	during	El	Niño	events	(relative	to	neutral	events)	504 
equatorward	of	30°	in	DJF	and	is	characterized	by	widespread	decreases	in	the	tropics	and	505 
subtropics,	especially	northern	Australia,	and	west-central	and	southern	Africa.		Regional	increases	506 
are	found	over	eastern	Africa,	the	east-central	Pacific,	southern	South	America,	and	Indonesia.		507 
Maximum	decreases	in	TCOH	are	on	the	order	of	4.5	×	1011	molecules/cm2	(~10-15%)	and	are	508 
centered	over	northern	Australia,	while	maximum	increases	in	TCOH	(~2.5×	1011	molecules/cm2)	509 
are	centered	over	Sumatra.			510 
	511 
During	La	Niña	events,	TCOH	increases	relative	to	neutral	events	over	much	of	the	globe,	although	512 
the	changes	are	not	necessarily	symmetric	with	those	seen	during	El	Niño	events.		Increases	over	513 
Australia	are	on	the	order	of	1	to	2	×	1011	molecules/cm2,	on	par	with	the	decreases	seen	during	El	514 
Niño,	but	the	changes	during	La	Niña	are	centered	over	Western	Australia	and	the	Indian	Ocean.		515 
Over	the	Pacific,	the	magnitude	of	the	OH	increase	is	lower	(on	the	order	of	0.5	to	1	×	1011	516 
molecules/cm2)	than	the	decreases	found	during	El	Niño,	and	some	regions	off	the	coast	of	Hawaii	517 
and	Papua	New	Guinea	show	decreases	during	both	ENSO	phases.		Besides	these	two	regions,	there	518 
are	also	significant	decreases	in	OH	over	eastern	Africa	and	in	the	southern	portion	of	South	519 
America.			520 
	521 
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 522 
Figure 8: The first EOF of TCOH from MERRA2 GMI for DJF (a), MAM (b), JJA (c), and SON (d). 523 

Consistent	with	these	widespread	changes	in	TCOH,	EOF	analysis	demonstrates	that	over	most	524 
seasons,	JJA	being	the	notable	exception,	ENSO	is	the	dominant	mode	of	OH	variability.		Figure	8	525 
shows	the	spatial	component	of	the	first	EOF	of	TCOH	for	the	four	seasons.		While	EOF	analysis	does	526 
not	quantify	changes	in	column	content,	it	does	highlight,	for	each	mode	of	variability,	regions	527 
where	changes	in	TCOH	are	most	prominent.		For	DJF,	the	first	EOF	(Fig.	8a)	is	almost	identical	to	528 
the	composite	figure	showing	OH	anomalies	during	El	Niño	(Fig.	7a).		Likewise,	the	temporal	529 
component	of	the	1st	EOF	strongly	correlates	with	the	MEI	(r2	=	0.70,	Table	2).		In	DJF,	the	first	EOF	530 
is	responsible	for	29%	of	the	total	spatial	variance	for	TCOH.		Although	ENSO	is	the	dominant	mode,	531 
however,	70%	of	the	spatial	variance	is	still	unexplained.		In	JJA,	ENSO	influence	on	OH	is	much	532 
weaker,	with	a	correlation	between	the	1st	EOF	and	TCOH	of	r2	=	0.25,	consistent	with	the	seasonal	533 
cycle	of	ENSO.	534 
	535 
While	the	spatial	pattern	of	the	EOF	varies	seasonally	(Fig.	8),	ENSO	shows	similar	levels	of	536 
correlation	to	the	temporal	component	of	the	1st	EOF	in	MAM	and	SON	as	for	DJF,	with	r2	values	of	537 
0.54	and	0.60,	respectively.		Likewise,	the	spatial	patterns	of	the	first	EOF	of	TCOH	for	these	seasons	538 
are	similar	to	the	composite	figures	showing	OH	anomalies	during	El	Niño	(Fig.	S5).		For	MAM,	539 
again	the	EOF	shows	regions	with	a	negative	sign	over	much	of	the	Northern	Hemisphere,	with	the	540 
largest	magnitude	centered	over	the	Pacific	Ocean,	India,	and	Atlantic	coast	of	the	United	States.		541 
Regions	with	an	opposite	sign	include	the	Maritime	Continent	and	much	of	central	Africa.		In	SON,	542 
almost	all	of	the	tropics	show	some	response,	with	major	centers	off	the	east	coast	of	Papua	New	543 
Guinea	and	off	the	west	coast	of	Sumatra.		In	addition,	there	is	a	larger	response	over	the	Indian	544 
Ocean	than	for	other	months,	also	evident	in	the	regression	of	TCOH	with	the	MEI,	suggesting	the	545 
possible	influence	of	the	IOD,	which	is	correlated	with	ENSO	(r2	=	0.30).		This	seasonal	component	546 
in	the	strength	of	the	relationship	between	the	EOF	and	the	MEI	is	also	reflected	in	the	correlation	547 
analysis	(Fig.	5),	where	the	area	of	correlation	between	TCOH	and	the	MEI	maximizes	in	DJF	and	548 
minimizes	in	JJA.	549 
	550 
Table 2: For each season, we show the r2 of the correlation of the temporal component of the EOF that has the highest 551 
correlation with the MEI for TCOH and for OH in each layer.  In addition, we also indicate the percent of the total spatial 552 
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variance explained by that EOF.  With the exception of the values indicated by a *, the 1st EOF has the highest correlation with 553 
the MEI.  Those indicated with a * are the 2nd EOF.   554 

	 Column	 UFT	 MFT	 LFT	 PBL	

Month	 Pct.	
Variance	 r2	 Pct.	

Variance	 r2	 Pct.	
Variance	 r2	 Pct.	

Variance	 r2	 Pct.	
Variance	 r2	

DJF	 29.4	 0.7	 37.6	 0.73	 20.8	 0.81	 11.7*	 0.55	 12*	 0.85	
MAM	 25.9	 0.54	 36.2	 0.61	 23.4	 0.40	 9.5*	 0.48	 9.3*	 0.59	
JJA	 30.7	 0.25	 44.6	 0.14	 29	 0.15	 27.7	 0.06	 39.4	 0.07	
SON	 33.2	 0.60	 41.1	 0.50	 22.8	 0.63	 12.3*	 0.59	 9.3*	 0.63	

 555 
5.1.2	The	Relationship	between	TCOH	Drivers	and	ENSO	556 

 557 
Figure 9: Regression of tropospheric column H2O(v)	(a), CO (b), NO2 (c), and OH (d) from MERRA2 GMI (top) and satellite retrievals 558 
from AIRS (e), MOPITT (f), and OMI (g) against the MEI for DJF over the satellite lifetime. 	559 

To	understand	the	factors	driving	ENSO-related	changes	in	TCOH,	we	also	investigate	the	560 
relationship	between	OH	precursors	and	ENSO.		Figure	6	demonstrates	that	the	O1D	+	H2O	and	NO	+	561 
HO2	reactions	control	zonal	mean	OH	production	in	the	tropics.		As	a	result,	we	investigate	the	562 
relationship	between	tropospheric	column	H2O(v),	CO,	NO2	and	ENSO	using	both	MERRA2	GMI	563 
output	and	satellite	retrievals.		We	use	NO2	here,	instead	of	NO,	because	of	its	observability	from	564 
space,	although	simulated	NO	demonstrates	similar	spatial	correlation	patterns	with	the	MEI	as	565 
simulated	NO2.		566 
	567 
Regression	of	total	column	H2O(v)	from	AIRS	against	the	MEI	(Fig.	9e)	reveals	a	tri-pole	pattern	over	568 
the	Pacific	Ocean,	with	an	area	of	positive	correlation	throughout	much	of	the	equatorial	Pacific	569 
Ocean	and	areas	of	anti-correlation	poleward	of	this	region,	in	agreement	with	previous	work		(e.g.	570 
Shi	et	al.,	2018).		Each	of	these	areas	is	well-captured	by	the	MERRA2	GMI	simulation	(Fig.	9a),	571 
showing	nearly	identical	spatial	patterns	and	strength	of	correlation	over	most	of	the	globe.		This	572 
relationship	between	H2O(v)	and	ENSO	can	be	explained	by	the	increased	convective	uplifting	in	the	573 
equatorial	Pacific	and	associated	increased	subsidence	poleward	of	this	region	during	El	Niño	574 
events.		While	the	anticorrelation	between	H2O(v)	and	the	MEI	over	Australia	and	southern	Africa	is	575 
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consistent	with	the	decrease	in	TCOH	over	these	regions	during	El	Niño	events	(Fig.	7),	the	positive	576 
correlation	between	H2O(v)	and	the	MEI	over	the	equatorial	Pacific	suggests	there	must	be	577 
competing	effects	from	other	OH	drivers	in	order	to	explain	the	decreases	in	TCOH	in	this	region.		578 
	579 
Simulated	tropospheric	column	NO2	is	strongly	anti-correlated	with	ENSO	over	the	equatorial	580 
Pacific,	indicating	a	suppression	of	OH	production	when	the	MEI	is	positive	(El	Niño),	consistent	581 
with	Figure	7.		Column	NO2	exhibits	the	opposite	correlation	pattern	as	H2O(v)	over	the	Pacific,	with	582 
decreases	in	NO2	in	regions	with	increased	H2O(v)	and	vice	versa.		The	similarities	in	the	spatial	583 
correlation	patterns	for	NO2	and	H2O(v)	with	the	MEI	suggests	that	convection	is	also	at	least	584 
partially	driving	the	changes	in	NO2	in	the	equatorial	Pacific.		Changes	in	the	Walker	Circulation	585 
associated	with	El	Niño	events	have	been	shown	to	redistribute	O3	in	the	tropics,	resulting	in	a	586 
dipole	pattern	over	the	western	and	central	Pacific	(Oman	et	al.,	2011).		Analysis	of	vertical	winds	587 
and	the	NO2	anomaly	suggests	a	similar	mechanism	for	NO2.			588 
	589 
Correlations	between	OMI	NO2	and	the	MEI	suggest	similar	relationships	as	found	in	the	MERRA2	590 
GMI	simulation,	although	the	correlations	are	not	as	robust	as	for	the	other	satellite	variables	591 
examined	here.		This	is	likely	because	tropospheric	NO2	columns	over	the	ocean	are	frequently	at	or	592 
below	the	instrumental	average	noise	(5	×	1014	molecules/cm2).		As	with	the	simulation,	OMI	593 
suggests	broad	regions	of	anti-correlation	between	ENSO	and	NO2	in	the	equatorial	Pacific	and	Gulf	594 
of	Alaska	as	well	as	a	region	of	positive	correlation	in	the	extra-tropical	NH	Pacific.		These	results	595 
demonstrate	that,	with	enough	temporal	and	spatial	averaging,	OMI	is	capable	of	capturing	the	596 
variability	of	tropospheric	NO2	even	in	remote	regions	with	low	concentrations.	597 
	598 
Tropospheric	column	CO	and	the	MEI	are	positively	correlated	over	most	of	the	globe	in	both	599 
MERRA2	GMI	and	in	MOPITT	(Figs.	9b	and	f,	respectively),	suggesting	strong	increases	in	CO	during	600 
El	Niño	events.		This	increase	in	CO	is	associated	with	increased	biomass	burning,	particularly	in	601 
Indonesia,	and	is	consistent	with	the	modeled	decrease	in	OH	(e.g.	Duncan,	2003a)	and	with	the	602 
widespread	decrease	in	TCOH	over	much	of	the	tropics.	603 
	604 

 605 
Figure 10: Same as panels a and b of Figure 7 except for the PBL level.	606 

5.2 The	Planetary	Boundary	Layer	607 
5.2.1	The	Relationship	between	PBL	OH	and	ENSO	608 
In	contrast	to	the	tropospheric	column	(Fig.	7),	mean	mass-weighted	OH	(e.g.,	Lawrence	et	al.,	609 
2001)	in	the	PBL	increases	globally	by	1%	during	El	Niño	events	(Fig.	10),	although	regional	610 
differences	are	significantly	larger.		PBL	OH	exhibits	an	area	of	strong	positive	correlation	with	the	611 
MEI	(Fig.	11d)	over	the	central	Pacific,	marked	by	increases	in	concentrations	on	the	order	of	2-3	×	612 
105	molecules/cm3,	approximately	15%	higher	than	concentrations	in	neutral	events.		Changes	in	613 
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the	PBL	during	La	Niña	are	smaller,	with	localized	concentration	decreases	of	about	5	–	10%	over	614 
the	tropical	Pacific	(Fig.	10b).		Regions	with	significant	correlation	between	PBL	OH	and	the	MEI	are	615 
distinctly	smaller	than	in	the	UFT	(Fig.	11)	and	for	TCOH	(Fig.	5a),	further	emphasizing	the	616 
comparatively	limited	spatial	effects	of	ENSO	in	the	PBL.			617 
	618 

 619 
Figure 11: Correlation of OH from MERRA2 GMI with the MEI for the different atmospheric layers in DJF. 620 

The	more	geographically	limited	changes	in	OH	shown	by	the	composite	and	regression	analyses	621 
are	consistent	with	EOF	analysis.		During	all	seasons	except	JJA,	ENSO	correlates	more	strongly	with	622 
the	2nd	EOF	for	the	PBL	(Table	2),	suggesting	another	mechanism	is	the	dominant	mode	of	623 
variability.		The	spatial	pattern	of	the	2nd	EOF	for	PBL	OH	varies	markedly	across	seasons	(Fig.	S6),	624 
with	the	largest	signal	over	the	tropical	Pacific	during	DJF	and	MAM	and	over	Indonesia	in	SON.		In	625 
general,	the	r2	with	ENSO	is	0.5	or	higher	and	the	mode	contributes	approximately	10%	of	the	total	626 
spatial	variance,	although	correlation	in	JJA	(r2	=	.07)	is	negligible.			627 
	628 
In	contrast	to	the	ENSO-related	EOFs,	the	first	EOF	(Fig.	S7)	for	the	DJF	PBL	layer	reveals	a	spatial	629 
pattern	much	more	limited	to	continental	regions	and	areas	of	continental	outflow,	suggesting	that	630 
this	mode	of	variability	is	potentially	reflective	of	long-term	emission	trends,	in	both	anthropogenic	631 
and	biomass	burning	emissions.		This	is	more	evident	in	the	1st	EOF	for	JJA,	where	the	spatial	632 
pattern	shows	opposite	signs	over	regions	with	known	net	emissions	reductions	(the	United	States,	633 
portions	of	Europe,	and	Japan)	and	those	with	known	net	emissions	increases	(China,	India,	the	634 
Middle	East)	over	the	1980	–	2018	period	examined	here.	635 
	636 
5.2.2	The	Relationship	between	PBL	OH	drivers	and	ENSO	637 
Approximately	80%	of	the	zonal	mean	OH	production	in	the	tropical	PBL	during	El	Niño	events	is	638 
from	the	H2O	+	O1D	reaction	(Fig.	6a).		Figure	12	shows	the	correlation	of	the	MEI	against	both	OH	639 
production	from	this	reaction	as	well	as	the	total	OH	production	rate	for	the	PBL.		Similar	plots	for	640 
the	other	OH	production	reactions	are	shown	in	Figure	S8.		The	nearly	identical	regression	pattern	641 
for	the	H2O	+	O1D	and	the	total	production	rate	with	the	MEI	demonstrates	that	changes	in	this	642 
reaction	are	driving	changes	in	OH	in	the	tropics	during	El	Niño	events.	643 
	644 
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 645 
Figure 12: Correlation of the MEI with the production rate of OH from the H2O + O1D reaction (a) for DJF and the total OH 646 
production rate as defined in the text (b) for the PBL level are shown. 647 

To	understand	the	relationship	between	the	OH	production	rate	and	ENSO	in	the	PBL,	we	examine	648 
the	changes	in	H2O(v)	and	O1D	(Fig.	13).		The	spatial	correlation	of	H2O(v)	and	the	MEI	in	the	PBL	649 
exhibits	a	tripole	pattern	similar	to	that	seen	in	the	tropospheric	column	(Fig.	9a).		While	H2O(v)	is	650 
correlated	with	the	MEI	in	the	equatorial	Pacific,	which	would	lead	to	increases	in	OH	production,	651 
H2O(v)	is	anti-correlated	with	the	MEI	near	the	Hawaiian	Islands	and	in	the	south	Pacific,	which	652 
would	lead	to	decreased	OH	production	in	these	regions.		Because	OH	increases	in	these	areas	653 
during	El	Niño	events,	the	decreased	H2O(v)	is	offset	by	increases	in	O1D	to	result	in	a	net	positive	654 
correlation	of	the	total	OH	production	rate.		655 
	656 

 657 
Figure 13: Correlation of the indicated species with the MEI for the PBL level for DJF. 658 

Changes	in	O1D	and	its	photochemical	drivers,	O3	and	the	rate	of	O3	photolysis	to	O1D	(J(O1D)),	are	659 
driving	the	ENSO-related	changes	in	OH	in	the	PBL.		O1D	shows	distinct	regions	of	positive	660 
correlation	with	ENSO	extending	from	the	Philippines	to	the	eastern	Pacific	Ocean	and	another	661 
region	of	positive	correlation	off	the	coast	of	Papua	New	Guinea	(Fig.	13b).		O1D	abundance	is	662 
controlled	both	by	O3	concentrations	and	incoming	solar	radiation	at	wavelengths	less	than	320	663 
nm.		Positive	correlation	between	ENSO	and	O3	in	the	PBL	is	limited	to	the	western	Pacific	Ocean,	664 
where	horizontal	advection	of	relatively	high	O3	air	from	Indonesia	to	the	Pacific	Ocean	is	increased	665 
during	El	Niño	events	due	to	changes	in	the	Walker	Circulation	(Oman	et	al.,	2011).		Changes	in	O3	666 
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and	O1D	off	the	coast	of	Papua	New	Guinea	are	potentially	linked	to	the	South	Pacific	Convergence	667 
Zone,	which	has	a	strong	dependence	on	ENSO	(Borlace	et	al.,	2014).		J(O1D)	exhibits	two	regions	of	668 
positive	correlation	extending	from	South	America,	one	that	reaches	Hawaii	in	the	NH	and	another	669 
that	spans	almost	to	the	coast	of	Australia	in	the	SH	(Fig.	13d).		The	MERRA2	GMI	simulation	shows	670 
reduction	in	total	stratospheric	column	O3	of	2-5%	in	the	tropics	during	El	Niño,	consistent	with	671 
previous	work		(e.g.,	Randel	et	al.,	2009),	which	could	contribute	to	the	increase	in	J(O1D),	although	672 
more	work	is	needed	to	establish	this	link.	673 
	674 
5.3 The	Upper	Free	Troposphere	675 
5.3.1				The	Relationship	between	UFT	OH	and	ENSO	676 

 677 
Figure 14: Same as Figure 7 except for the UFT.	678 

Similar	to	the	relationship	between	ENSO	and	TCOH,	OH	in	the	UFT	shows	a	strong	anticorrelation	679 
with	the	MEI	over	much	of	the	tropics	(Fig.	11a)	resulting	in	large-scale	decreases	during	El	Niño	680 
events.		Decreases	are	highest	over	Northern	Australia	and	the	west-central	Pacific,	on	the	order	of	681 
1-2	×	105	molecules/cm3	or	15-20%	lower	than	in	neutral	events.		During	La	Niña	events,	OH	682 
increases	with	respect	to	neutral	events	over	much	of	the	globe,	although	the	magnitude	of	the	683 
increases	is	lower	than	for	El	Niño	events.		As	with	TCOH,	one	notable	exception	is	over	central	684 
Africa,	where	UFT	OH	decreases	between	1-2	×	105	molecules/cm3.	685 
	686 
EOF	analysis	on	UFT	OH	followed	by	correlation	of	the	temporal	component	(i.e.,	the	principal	687 
component)	with	the	MEI	demonstrates	that	ENSO	is	the	dominant	mode	of	OH	variability	in	the	688 
UFT	throughout	much	of	the	year.		The	MEI	correlates	with	UFT	OH	(r2	>	0.5)	for	DJF,	MAM,	and	689 
SON,	and	explains	36%	of	the	spatial	variance	or	greater	in	each	of	the	seasons	(Table	1),	690 
demonstrating	that	the	relationship	between	ENSO	and	OH	is	even	stronger	in	the	UFT	than	in	the	691 
tropospheric	column	as	a	whole.		As	with	the	other	atmospheric	levels,	there	is	little	correlation	692 
between	OH	and	the	MEI	for	JJA.			693 
	694 
5.3.2	The	Relationship	between	UFT	OH	drivers	and	ENSO	695 
While	changes	in	the	O1D	+	H2O	reaction	drive	ENSO-related	changes	in	OH	production	in	the	PBL,	696 
the	NO	+	HO2	reaction	drives	OH	production	in	the	UFT.		The	nearly	identical	correlation	patterns	697 
between	the	NO	+	HO2	reaction	(Fig.	15)	and	the	total	OH	production	rate	in	the	UFT	layer	suggest	698 
that	changes	in	NO	and/or	HO2	during	El	Niño	are	driving	interannual	OH	variability	in	the	UFT,	699 
leading	to	decreased	OH	production	over	most	of	the	tropical	Pacific.		This	dependence	on	the	NO	+	700 
HO2	reaction	is	consistent	with	its	overall	contribution	to	the	total	production	rate	as	shown	in	701 
Figure	6.		Similar	plots	for	the	other	OH	production	reactions	are	shown	in	Figure	S9.			While	J(O1D)	702 
does	increase	in	the	UFT	during	El	Niño	events,	as	does	production	from	the	O1D	+	H2O	reaction	in	703 
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some	regions,	the	relatively	small	contribution	of	this	reaction	to	the	total	OH	production	in	the	704 
UFT	(Fig.	6a)	does	not	significantly	perturb	OH	in	this	layer.	705 
	706 
Regression	analysis	suggests	that	changes	in	NO	are	driving	the	relationship	between	OH	and	ENSO	707 
in	the	UFT	in	MERRA2	GMI.		The	MEI-NO	correlation	exhibits	a	strong	dipole	pattern	in	the	tropics	708 
(Fig.	16),	with	areas	of	positive	correlation	over	southeast	Asia	and	the	maritime	continent	and	a	709 
large	area	of	anti-correlation	over	much	of	the	Pacific.		HO2	exhibits	the	opposite	pattern,	with	710 
increased	concentrations	over	much	of	the	Pacific	during	El	Niño.		This	is	consistent	with	the	NO	711 
pattern,	as	decreased	NO	concentrations	favor	partitioning	of	HOX	(HOX	=	OH	+	HO2)	towards	HO2.	712 
	713 

 714 
Figure 15: Correlation of the production rate of OH from the NO + HO2 reaction (a) for DJF and the total OH production rate as 715 

defined in the text (b) with the MEI for the UFT level are shown.	716 

Similarities	between	NO	and	O3	correlation	with	the	MEI	in	the	UFT	suggest	similar	mechanisms	in	717 
controlling	the	spatial	distribution	of	these	species.		The	relationship	between	O3	and	the	MEI	718 
shown	in	Figure	16b	is	similar	to	that	found	in	Oman	et	al.	(2013)	using	satellite	data.			They	719 
demonstrated	that	areas	of	increased	O3	over	Indonesia	coincided	with	increased	downward	flow	720 
in	the	region	associated	with	changes	in	the	Walker	circulation.		Decreases	in	O3	over	the	Pacific	721 
coincided	with	increased	upward	motion,	convectively	lofting	low	O3	air	throughout	the	column.		722 
Similarly,	regions	of	anomalously	low	NO	in	the	UFT	during	El	Niño	events	are	associated	with	723 
regions	of	anomalous	upward	motion,	suggesting	that	decreases	in	upper	tropospheric	NO	results	724 
from	the	convective	lofting	of	NOX-poor	air	from	lower	in	the	tropospheric	column.	725 
	726 
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 727 
Figure 16: Correlation of the indicated species with the MEI for the UFT level for DJF.	728 

The	anti-correlation	between	ENSO	and	NO	also	suggests	that	lightning	emissions	of	NO	over	the	729 
tropical	Pacific	do	not	significantly	increase	OH	production	in	the	region	during	El	Niño	events.		730 
Lightning	NO	emissions	in	MERRA2	GMI	show	a	correlation	pattern	(Fig.	17)	similar	to	that	of	731 
H2O(v)	(Fig.	9a),	with	increased	lightning	over	the	equatorial	Pacific	and	decreased	lightning	732 
poleward	of	this	region	during	El	Niño	events.		The	correlation	pattern	from	MERRA2	GMI	output	733 
agrees	closely	with	flash	rate	data	observed	from	the	Lightning	Imaging	Sensor	(LIS).		The	only	734 
region	of	significant	difference	between	the	satellite	and	MERRA2	GMI	is	in	the	equatorial	Pacific,	735 
where	the	region	of	positive	correlation	extends	from	Papua	New	Guinea	to	the	South	American	736 
coast	in	the	simulation	but	only	about	half	that	distance	in	the	satellite	product.			737 
	738 

 739 
Figure 17: The regression of lightning NO emissions at 300 hPa (a) and the lightning flash rate from the LIS/OTD time series (b) 740 

against the MEI.  Lightning data are restricted to within 35 degrees of the equator because of the spatial coverage of the 741 
Tropical Rainfall Monitoring Mission (TRMM) satellite, on which LIS is located.	742 
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This	tri-pole	correlation	pattern	between	MEI	and	lightning,	evident	in	both	the	satellite	and	model	743 
(Fig.	17)	is	in	contrast	to	the	relationship	with	NO	(Fig.	16a)	and	other	reactive	nitrogen	(NOy)	744 
species	in	the	UFT.		While	the	anti-correlation	in	NO	is	consistent	with	the	changes	in	lightning	NO	745 
emissions	in	some	regions,	in	the	equatorial	Pacific	band,	NO	decreases	during	El	Niño	events	746 
despite	an	increase	in	lightning	NO	emissions.		This	apparent	discrepancy	occurs	because	even	747 
though	lightning	NO	increases	by	100%	or	more	over	the	equatorial	Pacific	during	El	Niño	events	in	748 
the	model,	the	absolute	difference	is	orders	of	magnitude	lower	than	the	accompanying	changes	749 
over	land.		We	conclude	that	the	resulting	NO	perturbations	over	the	equatorial	Pacific	latitudes	are	750 
dominated	by	mechanism	other	than	the	local	lightning	response,	such	as	changes	in	the	Walker	751 
Circulation	and	the	associated	transport	of	air	originating	over	the	continents.		This	mechanism	is	752 
supported	by	the	similar	regression	pattern	of	longer-lived	species,	such	as	HNO3	(Fig.	16c)	and	753 
PAN	(not	shown),	to	NO	in	the	UFT,	showing	that	transport	of	reactive	nitrogen	from	other	source	754 
regions,	particularly	lightning	over	South	America,	is	likely	reduced	during	El	Niño	events.	755 
	756 
Our	findings	are	broadly	consistent	with	Turner	et	al.	(2018),	who	found	that	increases	in	lightning	757 
NO	emissions	drive	increases	in	OH	during	La	Niña	and,	conversely,	decreases	in	lightning	NO	758 
emissions	lead	to	OH	decreases	during	El	Niño.		The	results	presented	here	suggest	that	in	addition	759 
to	this	influence	of	lightning	locally,	other	mechanisms,	such	as	atmospheric	transport	of	NOy	760 
species,	also	likely	contribute	to	the	relationship	between	ENSO	and	OH	in	the	equatorial	Pacific.		761 
	762 
5.4 Variability	in	the	MFT	and	LFT		763 
As	in	the	UFT,	ENSO	is	the	dominant	mode	of	variability	in	the	MFT	in	DJF,	with	strong	correlation	764 
between	the	MEI	and	the	temporal	component	of	the	first	EOF	(r2	=	0.81)	and	the	first	EOF	765 
explaining	20.8%	of	the	total	spatial	variance.		Likewise,	the	largest	OH	anomalies	in	the	LFT	during	766 
both	El	Niño	and	La	Niña	are	centered	over	Australia	and	South	Africa	(Fig.	18),	similar	to	patterns	767 
seen	in	the	UFT.		Unlike	in	the	UFT,	however,	there	is	a	large	region	extending	from	the	coast	of	768 
South	America	into	the	Pacific	where	OH	concentration	is	positively	correlated	with	ENSO.		These	769 
changes	are	driven	by	increase	in	H2O(v),	and	subsequent	increased	OH	production	from	the	H2O	+	770 
O1D	reaction.	771 
	772 

 773 
Figure 18: Same as panels a and b of Figure 7 except for the MFT and LFT. 774 
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ENSO-related	changes	in	OH	concentration	in	the	LFT	are	smaller	in	magnitude	than	for	the	other	775 
atmospheric	levels	(Fig.	18),	with	maximum	increases	in	OH	during	El	Niño	on	the	order	of	1	–	1.5	x	776 
105	molecules/cm3.		The	spatial	extent	of	significant	correlation	between	the	MEI	and	OH	777 
concentration	in	the	LFT	is	smaller	than	for	the	other	atmospheric	levels	(Fig.	11),	with	the	most	778 
prominent	feature	being	an	area	of	positive	correlation	near	Indonesia.		Consistent	with	the	more	779 
limited	impact,	ENSO	is	correlated	with	the	2nd	EOF	of	OH	concentration	for	the	LFT	(r2	=	0.55),	780 
explaining	only	11.7%	of	the	total	variability	(Table	1).	781 
	782 
It	is	likely	that	competing	effects	from	the	different	drivers	limit	the	interannual	variability	in	OH	in	783 
the	LFT	and	MFT,	explaining	the	smaller	regions	of	correlation	with	ENSO.		For	these	levels,	no	784 
single	OH	production	reaction	clearly	explains	the	relationship	between	ENSO	and	OH.		In	contrast	785 
to	the	PBL	and	UFT,	where	the	relationship	between	the	total	OH	production	rate	closely	mirrored	786 
the	production	rates	from	the	O1D	+	H2O	and	NO	+	HO2	reactions,	respectively,	there	are	no	787 
analogous	relationships	for	the	LFT	and	MFT.		At	these	levels,	no	reaction	clearly	dominates	total	788 
OH	production	(Fig.	6).		Increases	in	H2O	in	the	mid	troposphere,	which	would	tend	to	increase	OH,	789 
are	offset	by	decreases	in	NO	and	O3.		These	competing	effects	likely	explain	why	the	absolute	790 
changes	in	OH	are	comparatively	smaller	in	the	LFT	than	in	the	other	layers.	791 
	792 
The	comparatively	smaller	changes	in	LFT	OH	during	El	Niño	events	limit	the	effect	of	ENSO	on	the	793 
interannual	variability	of	the	CH4	lifetime.		Global	mean,	mass-weighted	tropospheric	OH	decreases	794 
by	2.2%	during	El	Niño	events,	corresponding	to	only	a	1%	decrease	in	the	CH4	lifetime.		While	795 
changes	in	OH	concentration	are	most	pronounced	in	the	UFT	and	PBL,	CH4	lifetime	is	mostly	796 
dictated	by	OH	in	the	LFT	due	to	the	temperature	dependence	of	the	OH	+	CH4	reaction	rate.		This	797 
limited	effect	on	CH4	lifetime	highlights	the	importance	of	investigating	the	spatial	OH	variability	as	798 
global	mean	metrics	can	obscure	important	year-to-year	changes.	799 
	800 
5.5 Comparing	Simulated	OH	Relationships	with	ENSO	in	MERRA2	GMI	with	the	CCMI	801 

models	802 
To	understand	whether	the	relationship	between	OH	and	ENSO	found	in	MERRA2	GMI	is	robust,	we	803 
examine	model	simulations	from	the	CCMI.		To	compare	the	relationship	between	OH	and	ENSO	804 
among	the	different	models,	we	performed	the	same	regression	analysis	on	TCOH	for	the	4	CCMI	805 
models	considered	here	as	for	MERRA2	GMI.		Figure	19	shows	the	number	of	CCMI	models	that	806 
demonstrate	a	meaningful	correlation	between	TCOH	and	the	MEI,	defined	as	the	absolute	value	of	807 
r	greater	than	0.5,	for	each	grid	cell.		To	facilitate	comparison,	OH	for	each	model	has	been	808 
regridded	to	the	resolution	of	the	model	with	the	lowest	horizontal	resolution	(2.81°	longitude	x	809 
2.77°	latitude).		This	regridding	does	not	substantially	alter	the	correlation	patterns	examined	here.	810 
	811 
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 812 
Figure 19: The number of CCMI models that show a correlation between TCOH and ENSO over the period 1980 to 2010.  Only 813 
regressions with an absolute value of r greater than 0.5 are included.  All models have been regridded to a common horizontal 814 
grid.  This regridding does not substantially alter the correlation patterns examined here.  Grid boxes that also exhibit significant 815 
correlations between TCOH and ENSO for MERRA2 GMI are indicated by the stippling. 816 

In	agreement	with	MERRA2	GMI,	TCOH	varies	with	ENSO	over	a	large	fraction	of	the	tropics	in	most	817 
of	the	CCMI	models,	with	broadly	similar	spatial	regression	patterns	for	most	models	across	all	818 
seasons	except	for	MAM	(Fig.	19).		In	DJF,	most	models	show	strong	correlation	between	ENSO	and	819 
column	OH	over	the	central	Pacific	and	south	of	the	Aleutian	Islands,	with	at	least	three	CCMI	820 
models	and	MERRA2	GMI	showing	correlation	in	each	of	these	areas.		This	agreement	highlights	the	821 
relationship	of	OH	with	ENSO	as	well	as	with	the	PNA	and	Australian	monsoon,	as	discussed	in	822 
Section	6.0.		Similar	agreement	among	models	was	found	for	SON	and	JJA,	although	the	spatial	823 
extent	of	the	highly	correlated	region	is	much	smaller	for	JJA.		In	SON,	the	expansion	of	the	area	of	824 
significant	correlation	over	most	of	the	Indian	Ocean	likely	results	from	the	strong	relationship	825 
between	the	IOD	and	ENSO	during	this	season.		There	is	less	agreement	in	MAM,	with	only	1	or	2	826 
models	showing	strong	correlation	in	most	regions.			827 
	828 
EOF	analysis	of	the	different	CCMI	models	likewise	suggests	that,	in	DJF,	ENSO	is	the	dominant	829 
mode	of	TCOH	variability.		The	spatial	pattern	of	the	first	EOF	of	TCOH	in	DJF	for	the	five	models	is	830 
shown	in	Figure	S10,	and	the	principal	component	time	series,	along	with	the	time	series	of	the	831 
MEI,	is	shown	in	Figure	S11.		MERRA2	GMI,	WACCM,	and	MRI	show	a	strong	correlation	between	832 
the	MEI	and	the	first	EOF	(r2	>	0.64).		For	each	of	these	models	ENSO	is	the	cause	of	29	–	48%	of	the	833 
total	spatial	variance	in	TCOH.		The	correlation	between	the	first	EOF	and	the	MEI	for	CHASER	is	834 
weaker	(r2	=	0.28),	although	the	spatial	component	shows	similarities	to	the	other	models.		835 
Correlation	between	the	MEI	and	the	EOFs	for	the	UFT	and	MFT	levels	increases	to	0.56	and	0.45,	836 
respectively,	showing	that	ENSO	is	still	important	in	controlling	the	interannual	variability	of	837 
CHASER,	at	least	in	the	UFT.		Similarly,	EMAC	has	no	correlation	between	the	1st	EOF	of	TCOH	and	838 
the	MEI,	but	does	for	the	UFT	layer	(r2	=	0.64).		This	EOF	explains	20%	of	the	total	spatial	variance	839 
for	this	level	but	has	a	substantially	different	spatial	pattern	than	for	the	other	models.		While	840 
further	work	is	needed	to	understand	the	cause	of	the	relationship	between	OH	and	ENSO	in	the	841 
UFT	in	EMAC,	results	from	MERRA2	GMI	suggest	a	role	for	changes	in	production	via	the	NO	+	HO2	842 
reaction.		843 
	844 
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The	agreement	among	the	majority	of	the	models	suggests	that	the	relationship	between	ENSO	and	845 
TCOH	is	robust.		While	SSTs	and	emissions	are	identical	among	the	models,	meteorology,	chemical	846 
mechanisms,	and	parameterizations,	such	as	that	for	lightning	and	convection,	vary	widely.		Despite	847 
the	differences	in	these	chemical	and	dynamical	drivers	of	OH,	the	spatial	patterns	of	the	ENSO	848 
TCOH	relationship	are	similar	for	most	models.		While	it	is	beyond	the	scope	of	this	paper,	849 
determining	the	cause	of	inter-model	differences	in	this	relationship	between	OH	and	climate	850 
modes	could	further	our	understanding	of	the	mechanisms	driving	interannual	OH	variability.		851 
Given	the	results	from	the	MERRA2	GMI	analysis,	investigating	ENSO-related	changes	in	UFT	NO,	852 
both	from	lightning	and	transport,	could	provide	insight	into	these	inter-model	differences.		853 
Further,	Nicely	et	al.	(2020)	showed	that	J(O1D)	was	the	largest	driver	in	differences	in	the	methane	854 
lifetime	in	the	CCMI	models,	suggesting	the	potential	importance	of	this	variable	in	inter-model	855 
differences	in	the	OH-ENSO	relationship	in	the	PBL	and	lower	troposphere.	856 
	857 
6.0	Relationship	between	simulated	OH	and	NH	Climate	Modes,	Monsoons,	and	the	IOD	858 
We	now	investigate	the	relationship	between	OH	and	the	NH	modes	of	variability,	monsoons,	and	859 
the	IOD.		In	Section	6.1,	we	evaluate	the	relationships	in	MERRA2	GMI,	demonstrating	that	these	860 
other	climate	features	exert	a	much	more	spatially	limited	influence	on	OH	as	compared	to	ENSO	861 
(Fig.	5).		Despite	the	comparatively	limited	extent	of	influence,	each	of	these	modes	of	variability	862 
can	strongly	influence	the	atmospheric	oxidative	capacity	on	the	local	scale.		In	Section	6.2,	we	863 
compare	the	results	from	MERRA2	GMI	to	CCMI	simulations,	demonstrating	that	the	relationship	864 
between	OH	and	the	IOD	and	NH	modes	is	robust	among	models,	while	the	relationship	between	865 
monsoons	and	OH	is	primarily	limited	to	MERRA2	GMI.	866 
	867 
6.1	Simulated	OH	and	the	NH	Climate	Modes,	Monsoons,	and	the	IOD	in	MERRA2	GMI	868 
Northern	Hemispheric	modes	of	variability	are	strongly	correlated	(r>0.5)	with	OH	over	~10%	of	869 
the	globe	during	DJF	but	have	a	comparatively	smaller	effect	on	global	OH	than	ENSO.		During	the	870 
positive	phases	of	the	NAO,	defined	as	the	index	being	greater	than	0.4,	TCOH	increases	by	up	to	871 
25%	in	the	northern	Atlantic.		Similarly,	during	the	positive	phase	of	the	PNA,	TCOH	decreases	by	872 
10	–	20%	in	the	northern	Pacific	(Fig.	20).		Because	OH	production	is	almost	an	order	of	magnitude	873 
lower	in	the	NH	mid-latitudes	than	in	the	tropics	(Fig.	6c),	however,	the	resultant	decrease	in	global	874 
mean	mass-weighted	OH	(e.g.,	Lawrence	et	al.,	2001)	during	the	positive	phase	of	the	NAO	is	only	875 
0.77%,	as	compared	to	decreases	of	2.2%	during	an	El	Niño	event.		Similar	results	are	found	for	the	876 
other	NH	modes.	877 
	878 



 27 

 879 
Figure 20: Fractional change in TCOH for positive phases of the NAO (a) and PNA (b), defined as having an index greater than 0.4, 880 
as compared to neutral events (index between -0.4 and 0.4).  Note that, for emphasis, the x-axis is shifted in panel b to center the 881 
map over the Pacific Ocean.	882 

The	effects	of	the	monsoons	on	OH	interannual	variability	are	much	more	localized	than	for	ENSO	883 
and	vary	markedly	among	the	different	monsoons	(Fig.	S12).		For	example,	Figure	S13a	shows	the	884 
partial	correlation	coefficient	(e.g.,	Sekiya	and	Sudo,	2012)	of	TCOH	with	the	Australian	monsoon,	885 
taking	into	account	the	correlation	of	the	Australian	monsoon	index	with	the	MEI,	which	has	an	r2	886 
of	0.65	for	DJF.		Correlation	is	almost	exclusively	restricted	to	areas	near	the	Australian	continent.		887 
In	this	region,	however,	monsoons	with	an	index	in	the	75th	percentile	or	higher	result	in	TCOH	that	888 
is	15-20%	(up	to	7	x	1011	molecules/cm2)	higher	than	for	monsoons	with	an	index	between	the	25th	889 
and	75th	percentile	(Fig.	S14).		These	increases	in	OH	column	for	the	strongest	monsoons	are	larger	890 
in	magnitude	than	typical	changes	associated	with	ENSO,	although	they	are	limited	to	a	smaller	891 
region,	suggesting	that	the	Australian	monsoon	can	significantly	perturb	the	local	atmospheric	892 
oxidative	capacity.			893 
	894 
In	contrast,	despite	its	larger	scale,	the	Asian	monsoon	only	shows	correlation	with	TCOH	over	a	895 
small	portion	of	the	subcontinent	(Fig.	S12b&d).		Correlations	outside	of	the	sub-continent	region	896 
result	from	the	correlation	between	the	Asian	monsoon	and	ENSO.		Interestingly,	this	correlation	is	897 
only	present	during	MAM	and	SON,	not	during	JJA	when	the	Asian	monsoon	is	at	full	strength.		898 
Lelieveld	et	al.	(2018)	have	shown	using	in	situ	observations	that	upper	tropospheric	OH	is	899 
increased	during	the	Asian	monsoon.		The	lack	of	correlation	demonstrated	here	suggests	that	the	900 
model	is	not	accurately	capturing	the	chemical	variability	within	the	monsoon	anticyclone.		The	901 
correlation	with	the	monsoon	index	for	MAM	and	SON	could	result	from	interannual	variability	in	902 
the	start	and	end	of	the	monsoon.		Since	these	seasons	are	at	the	fringe	of	the	monsoon,	yearly	903 
variations	in	the	start	and	end	date	would	lead	to	larger	variability	than	that	seen	during	JJA,	when	904 
the	monsoon	is	active	every	year.	905 
	906 
The	IOD	also	shows	a	strong	relationship	with	OH,	although	due	to	its	annual	cycle,	the	relationship	907 
is	only	present	during	SON	(Fig.	5d).		Taking	into	account	the	correlation	between	ENSO	and	the	908 
IOD	(r2		=	0.30),	the	partial	correlation	between	the	Dipole	Mode	Index	(DMI)	and	TCOH	becomes	909 
mostly	restricted	to	the	western	Indian	Ocean	(Fig.	S13b),	where	TCOH	is	anticorrelated	with	the	910 
DMI,	resulting	in	decreases	in	TCOH	on	the	order	of	10%	(about	1.5	x	1011	molecules/cm2).		During	911 
the	positive	phase	of	the	IOD,	the	Indian	Ocean	basin	exhibits	a	Walker-type	circulation	with	912 
anomalous	surface	easterly	winds	and	increased	convection	in	the	region	that	exhibits	913 
anticorrelation	between	OH	and	the	DMI.		This	region	is	also	characterized	by	an	anticorrelation	914 
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between	the	DMI	and	OH	production	from	the	NO	+	HO2	reaction	despite	a	positive	correlation	with	915 
lightning	NO	emissions,	analogous	to	the	relationship	between	NO	and	ENSO	in	the	equatorial	916 
Pacific.		This	suggests	that	the	anticorrelation	between	TCOH	and	the	DMI	in	the	eastern	Indian	917 
Ocean	is	being	driven	by	changes	in	NO	transport	from	this	Walker-type	circulation.		More	work	is	918 
needed,	however,	to	prove	this	relationship,	as	the	correlations	between	OH	production	from	the	919 
NO	+	HO2	reaction	and	the	DMI	do	not	meet	our	stated	statistical	significance	criteria.	920 
	921 
6.2	Simulated	OH	and	the	NH	Climate	Modes,	Monsoons,	and	the	IOD	in	the	CCMI	models	922 
The	MERRA2	GMI	and	the	CCMI	simulations	exhibit	nearly	identical	spatial	relationships	between	923 
TCOH	and	the	NH	climate	modes	and	the	IOD,	demonstrating	that	these	relationships	are	robust	924 
among	multiple	models.		For	example,	all	5	models	show	two	broad	regions	of	correlation	between	925 
the	NAO	and	TCOH,	corresponding	to	the	dipole	pattern	of	the	NAO	(Fig.	21a).		Similar	agreement	is	926 
found	for	the	other	NH	modes	(Fig.	S15).		Likewise,	most	models	show	the	same	pattern	of	927 
correlation	between	the	IOD	and	TCOH	(Fig.	21b),	consistent	with	their	agreement	for	ENSO	since	928 
the	two	modes	are	closely	related.			929 
	930 

 931 
Figure 21: Same as Figure 19 except for the NAO (a) the IOD (b), and the Australian Monsoon (c).  The NAO and Australian 932 
monsoon are shown for DJF and the IOD for SON..	933 

In	contrast	to	the	other	modes	of	variability,	the	relationship	between	TCOH	and	the	different	934 
monsoons	varies	widely	among	the	models.		Agreement	is	highest	for	the	Australian	monsoon	(Fig.	935 
21c),	where	most	models	see	correlation	off	the	northwestern	coast	of	the	continent.		For	the	other	936 
monsoons	considered	here,	there	is	no	consistent	relationship	with	OH,	with	MERRA2	GMI	being	937 
the	only	model	showing	correlations	with	most	monsoons	(Fig.	S16).		While	models	and	938 
observations	have	shown	the	monsoons	can	change	OH	abundance,	particularly	in	the	UFT	939 
(Lelieveld	et	al.,	2018),	the	lack	of	correlation	among	the	models	suggests	either	that	those	changes	940 
are	not	highly	variable	from	year	to	year	or	that	not	all	models	capture	the	mechanisms	behind	941 
monsoon	influence	on	OH,	such	as	convective	lofting	of	OH	precursors.	942 
	943 
7.0	Conclusions	944 
Because	of	limited	in	situ	observations	and	inter-model	differences,	there	is	significant	uncertainty	945 
in	the	processes	driving	interannual	OH	variability,	despite	its	importance	in	controlling	the	946 
removal	of	many	atmospheric	trace	gases.		Here,	we	have	explored	the	relationship	between	OH	947 
and	multiple	modes	of	climate	variability,	including	ENSO,	the	IOD,	NH	modes	of	variability,	and	948 
monsoons	in	order	to	understand	how	these	large-scale	dynamical	features	influence	OH	through	949 
control	of	its	dynamical	and	photochemical	drivers.		950 
	951 
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Using	output	from	the	MERRA2	GMI	simulation,	we	have	shown	that	during	DJF,	when	considered	952 
together,	these	climate	features	can	explain	a	portion	of	OH	variability	over	approximately	40%	of	953 
the	troposphere	by	mass.		ENSO	is	the	dominant	mode	of	variability	in	all	seasons	except	for	JJA	and	954 
can	explain	20	–	30	%	of	the	spatial	variance	in	TCOH	and	results	in	an	average	decrease	in	global,	955 
mass	weighted	OH	of	2.2%	during	El	Niño	events.		Effects	from	the	other	modes	of	variability	956 
considered	here	are	more	limited	in	spatial	scale	but	can	strongly	alter	the	atmospheric	oxidative	957 
capacity	on	the	local	scale.		For	example,	changes	in	TCOH	for	the	NAO,	IOD,	and	Australian	958 
monsoon	can	reach	0.5,	1.5,	and	7	x	1011	molecules/cm2,	respectively,	compared	to	2	x	1011	959 
molecules/cm2	for	ENSO.		960 
	961 
Changes	in	OH	with	ENSO	are	driven	by	different	processes	in	the	upper	and	lower	troposphere.		In	962 
the	PBL,	where	OH	production	is	dominated	by	the	reaction	of	O1D	with	water,	changes	in	the	963 
distribution	of	these	species	leads	to	a	positive	correlation	between	OH	and	ENSO.		Increases	in	964 
H2O(v)	during	El	Niño	are	associated	with	increased	convection	and	warmer	SSTs,	while	increases	in	965 
O1D	result	from	increased	horizontal	advection	of	O3	in	the	western	Pacific	and	increased	966 
photolysis	rates	resulting	from	reduced	stratospheric	O3	in	the	eastern	Pacific.		In	the	upper	967 
troposphere,	NO	controls	the	OH	abundance	over	the	tropical	Pacific.		In	much	of	the	region,	968 
decreases	in	lightning	NO	production	correspond	to	decreases	in	total	NO,	and	thus	OH.		In	the	969 
equatorial	region,	however,	increases	in	lightning	NO	production	are	offset	by	other	processes,	970 
potentially	including	transport	due	to	changes	in	the	Walker	Circulation.		Further	work	is	needed	to	971 
determine	the	relative	importance	of	these	two	factors	in	controlling	OH	in	the	region	during	El	972 
Niño	and	La	Niña	events.	973 
	974 
Absolute	changes	in	OH	concentration	during	El	Niño	and	La	Niña	events	in	the	LFT	and,	to	a	lesser	975 
extent,	the	MFT	were	limited	by	competing	effects	from	changes	in	the	O1D	+	H2O	and	NO	+	HO2	976 
reactions.		As	a	result,	ENSO	only	explains	11.7%	of	the	variability	in	the	LFT	and	is	associated	with	977 
the	second	EOF.		Because	OH	variability	in	the	LFT	drives	variability	in	the	CH4	lifetime,	which	978 
showed	limited	response	to	ENSO	variability,	further	research	is	warranted	to	understand	the	979 
dominant	mode	of	OH	variability	at	this	level,	including	any	impacts	in	emissions	trends,	which	980 
appear	to	be	the	dominant	mode	of	variability	in	the	PBL.	981 
	982 
The	relationship	between	the	individual	climate	modes	seen	in	MERRA2	GMI	is	also	seen	in	the	983 
majority	of	the	CCMI	models,	suggesting	that	the	relationship	between	the	modes	and	OH	is	robust.		984 
4	of	the	5	models	examined	here	show	similar	relationships	between	ENSO	and	TCOH	for	all	985 
seasons	except	MAM,	and	three	of	those	models	suggest	that	ENSO	is	the	dominant	mode	of	OH	986 
variability	in	DJF,	responsible	for	between	30	and	50%	of	total	spatial	variance.		Similar	agreement	987 
is	found	for	the	NH	modes	of	variability	and	the	IOD,	while	there	is	little	agreement	among	models	988 
between	the	relationship	of	the	individual	monsoons	and	OH.	989 
	990 
Despite	the	agreement	among	models	in	the	importance	of	the	driving	factors	of	OH	variability,	991 
there	is	still	a	lack	of	observations	to	demonstrate	that	the	models	are	accurate.		We	have	shown	992 
here	that	satellite	observations	of	H2O,	CO,	lightning	flashes,	and,	to	a	lesser	extent,	NO2	are	able	to	993 
capture	the	respective	variability	of	each	variable	as	well	as	the	relationship	with	ENSO,	in	excellent	994 
agreement	with	the	model	simulation.		While	further	understanding	of	the	relationship	between	995 
these	species	and	ENSO	is	needed,	the	results	presented	here	suggest	that	combining	the	996 
observations	of	OH	drivers	and	the	various	climate	modes	could	lead	to	additional	methods	to	997 
constrain	OH	from	space.				998 
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