

Supporting of

Enhanced secondary organic aerosol formation from the photo-oxidation of mixed anthropogenic volatile organic compounds

Junling Li et al.

5 *Correspondence to Hong Li (lihong@craes.org.cn)*

10

15

20

25

Calculation of Vapor Wall Loss

$$\bar{c} = \sqrt{\frac{8RT}{\pi M_w}} \quad (1)$$

30 where R was the ideal gas constant (i.e., $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$), T was the temperature, M_w was the molecular weight.

$$D_{\text{gas}} = D_{\text{CO}_2} \times \frac{M_w \text{CO}_2}{M_w} \quad (2)$$

where D_{CO_2} was $1.38 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$, M_w was set to 300 g mol^{-1} here.

$$k_n = \frac{\lambda}{R_p} = \frac{6D_{\text{gas}}}{D_p \bar{c}} \quad (3)$$

where K_n was the Knudsen number, R_p was the particle radius, and λ was the gas mean free path.

$$35 \quad \bar{F}_{\text{FS}} = \frac{0.75\alpha(1+k_n)}{k_n^2+k_n+0.283k_n\alpha+0.75\alpha} \quad (4)$$

where α was the mass accommodation coefficient onto particles, and it was set to 0.002 in this work (Zhang et al., 2014).

Table S1. $\bar{\tau}_{\text{g-p}}/\bar{\tau}_{\text{g-w}}$ values for the VOCs used in this work.

VOC	AS Seed (Yes or No)	Temperature (°C)	$\bar{\tau}_{\text{g-p}}/\bar{\tau}_{\text{g-w}}$
1,3,5-TMB	No	35	2.64-4.42
<i>n</i> -dodecane	No	35	4.25-7.34
Mix	No	35	0.19-0.85

40 **Table S2. Initial concentrations of the conducted experiments.**

Date	Precursor	Concentration (ppb)	TMB/Dode	NO _x (ppb)	$\Delta \text{VOCs}/\text{NO}_x$
2019.0927	<i>n</i> -dodecane	22	--	210	1.26
2019.1009	<i>n</i> -dodecane	20	--	214	1.12
2019.0925(Li et al., 2021)	1,3,5-TMB	178	--	197	8.13
2019.1014(Li et al., 2021)	1,3,5-TMB	170	--	250	6.12
2019.0903(Li et al., 2021)	1,3,5-TMB	105	--	211	4.48
2019.0907	Dod+TMB	28+168	6	231	8
2019.0921	Dod+TMB	22+155	7	212	7.83
2019.0919	Dod+TMB	20+182	9.1	218	8.61

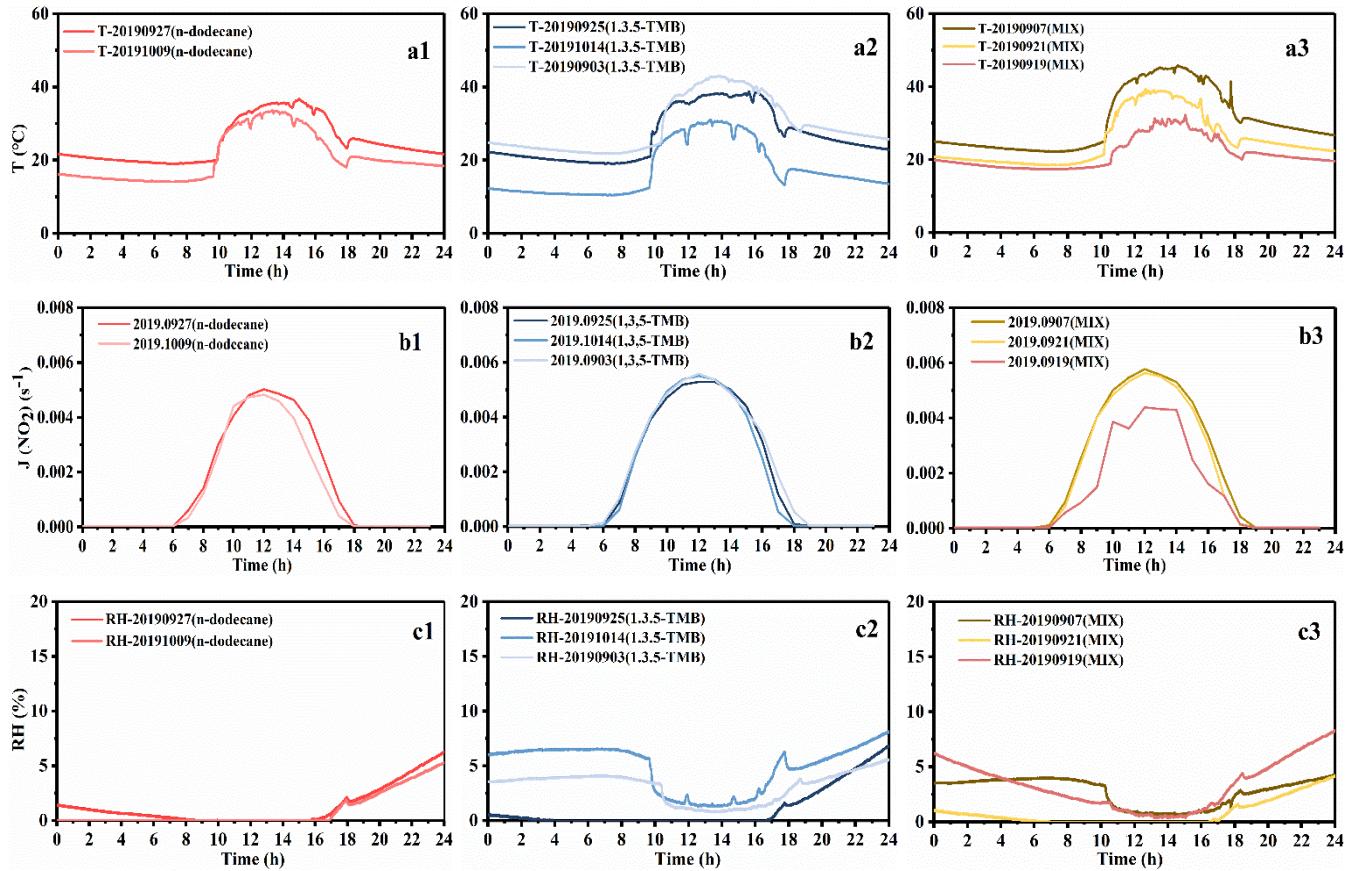
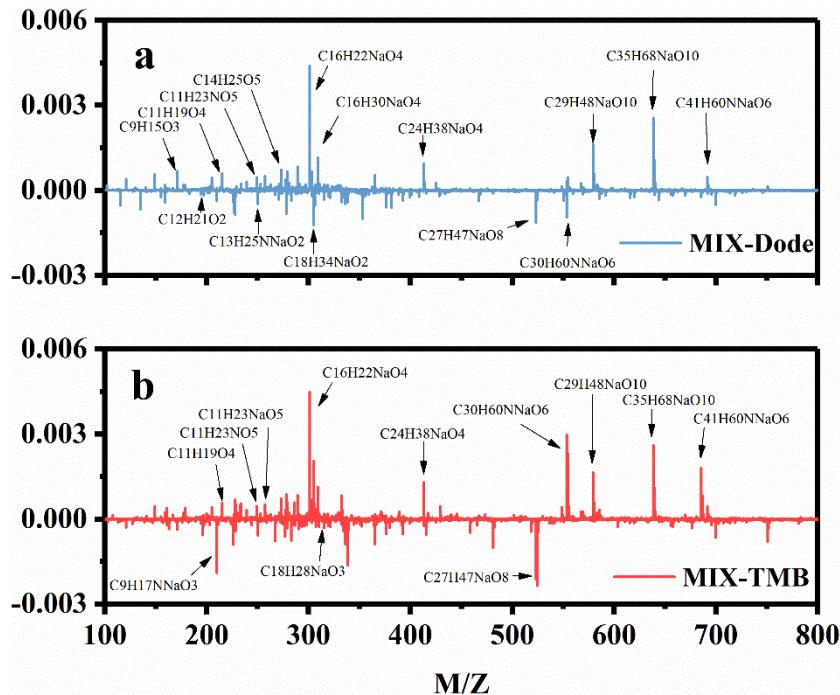



Figure S1. The temperature (T, a), the NO₂ photolysis rate of the experiments (J(NO₂), b), and relative humidity (RH, c); the data of 1,3,5-TMB was referred to Li et al. (2021) in summer.

Figure S2. Results of mass spectra difference in (a) mixed AVOCs SOA minus *n*-dodecane SOA, and (b) mixed AVOCs SOA minus

50 **1,3,5-TMB SOA. The Y-axis is the relative intensity normalized by dividing by the total signal strength of the mass spectra.**

References

Li, J., Li, H., Wang, X., Wang, W., Ge, M., Zhang, H., Zhang, X., Li, K., Chen, Y., Wu, Z., Chai, F., Meng, F., Mu, Y., Mellouki, A., Bi, F., Zhang, Y., Wu, L., and Liu, Yongchun: A Large-Scale Outdoor Atmospheric Simulation Smog Chamber for Studying Atmospheric Photochemical Processes: Characterization and Preliminary Application, *J. Environ. Sci.* 102, 185-197, 2021.

55 Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol, *Proc. Natl. Acad. Sci. USA* 111, 5802-5807, 2014.

60