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Section S1. Determination of response factors for uncalibrated species

The concentration of one species A is calculated as:

signal _ signal

[A4] = tor 1
response factor (Smax * S_) * relTrans
0

The response factors of iodide adducts are determined via determining

(a) 5 sensitivity of species A relative to maximum sensitivity, S;,qx;

(b) relTrans: relative transmission of species A, i.e., transmission efficiency of
species A relative to primary ions.
1.1 Relative sensitivity
Previous work has verified the connections among the binding energy of the
iodide-adduct bond, the voltage dissociating iodide adducts and the sensitivity of
corresponding species (Iyer et al., 2016; Lopez-Hilfiker et al., 2016). First, we
performed the voltage scanning procedure on the gases during different time of day:
morning, afternoon, evening and night. Then we used sigmoidal function with
constrains to fit the fraction of remaining signal and dV which is the voltage difference
of the interface between two quadrupoles in CIMS. Every fit of an individual iodide
adduct yielded two parameters: S, the relative signal at much weaker dV compared
to the signal under operational dV; dVs,, the voltage at which half of the signal is
removed (i.e. half of an iodide adduct dissociate). We constrained that S, should be
larger than 0.9 and dVs, should be less than 50. We averaged reasonable results of
inverse Sy and dVs, for every iodide adduct. After removing outliers (Motulsky and
Brown, 2006), we applied sigmoidal fit to the results of individual fits of all the iodide
adducts and obtained an empirical relationship between relative sensitivity and dVs.
As shown in Fig. S7a, our result is very similar to the curve reported in Lopez-Hilfiker
et al., 2016. There are 107 of 1334 iodide adducts that we failed to obtain dVs,, so we
assume that they have a relative sensitivity of 0.23 which is the left limit of sigmoidal
curve in Fig. S7a.
We took the calibration factor of levoglucosan, 60 ncps/ppt, as the maximum

sensitivity. On the one hand, levoglucosan is one of the compounds that we calibrated
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most frequently; on the other hand, it is one of the maximum sensitivity compounds
(Iyer et al., 2016) and has a transmission efficiency very close to primary ions (see Sect.
1.2). The possible reason why the iodide cluster of C¢H,705 had a relative sensitivity
lower than one is that it included isomers which were weakly bonded with iodide.
Sensitivities derived from voltage scanning for gaseous species would be applied to
particle-phase species, as discussed in the supplement file of Isaacman-VanWertz et al.,
2018.
1.2 Relative transmission efficiency

Transmission efficiency of an ion in CIMS instrument depends on its mass-to-
charge ratio. Known compounds across the m/z range of interest were introduced into
the CIMS one by one and the relative transmission as a function of m/z was determined
via comparing the increase of analyte ions relative to the decrease of primary ions
(Heinritzi et al., 2016). Compounds used for this calibration were formic acid, acetic
acid, lactic acid and C2-C5 perfluorinated acids (C2HF302, C3HF502, C4HF7Ox,
CsHF90z2). The gaussian function was applied for fitting this dependence curve as
shown in Fig. S7b.

The final response factors for iodide adducts are plotted in Fig. S7c. For 35
species that we had calibrated, response factors derived were replaced by calibration

factors when converting their signals to concentrations.
Section S2. 0S ofa CH,0, and C,H,N,,0, compound

The OS; —n. space which plots 0S. as the function of carbon number,

provides a framework for describing the bulk chemical properties and the evolution of
organics (Kroll et al., 2011). The approximate OS,; of a CyH, 0, compound was

calculated as:

— (0] H
OSC_ZXE_E (3)

For CyH,N,;,0, compounds, the influence of N is dependent on functional
groups so we made several assumptions to classify them. (1) N-containing functional
groups are nitro (-NO2) or nitrate (-NO3) in our case; (2) N-containing aromatics feature

nitro moieties and N-containing aliphatic hydrocarbons feature nitrate moieties; (3) N-
3
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containing aromatics have 6-9 carbon atoms and less hydrogen atoms than aliphatic
hydrocarbons with the same carbon atoms. This was not an absolutely right

classification but at least it provided a rough separation between nitro compounds and

. . N
nitrate compounds for most C,H,N,,0, species. After the above step, 3 X < and

N . . . .
5% ~ Was minus from equation (3) for nitro compounds and for nitrate compounds,
respectively:

— (0] H N
OSC—ZXE_E_(30T5)XE (4)
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133 Table S1. The calibrated species and corresponding calibration methods

No.

Calibrated species

Calibration method

1

Chlorine, Hydrogen cyanide

Gaseous standard dilution

Formic acid, Acetic acid, Propionic acid, Butyric acid, Pentanoic acid,

Catechol, Acrylic acid, Glycollic acid, Lactic acid, Phenol, m-cresol, 4-

nitrophenol, 2,4-dinitrophenol, cis-pinonic acid, 3-Methylcatechol,

Pyruvic acid

Dissolve standards in the water;

Thermally evaporate aqueous standards via the liquid
calibration unit (LCU, Ionicon Analytic GmbH) to generate
a flow at defined trace concentrations;

Liquid standard dilutino

Nitric acid, Formic acid

Inject a constant flow into the permeation tube;

Dilute the outflow gradiently when its concentration is stable

Isocyanic acid, Dinitrogen pentoxide

Use the flow tube reactor to generate the flow containing
target compounds;

Gas-phase standard dilution

Malonic acid, Succinic acid, Meso-erythritol, Glutaric acid, Adipic
acid, Pimelic acid, Levoglucosan, Tricarballylic acid, Azelaic acid,
Sebacic acid, Dodecanedioic acid, Citric acid, Dipentaerythritol, 4-

nitrocatechol, Xylitol, Heptaethylene glycol, Octaethylene glycol

Dissolve standards in organic solvents (e.g., acetone,
isopropanol);

Inject different amounts of solution on the FIGAERO filter

134
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Figure S1. Diurnal trends of trace gases (a) and some important VOCs (b) (Wu et al.,

2020). The shading indicates standard deviations.
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152 Figure S5. The effects of water content on the sensitivities of different species. The
153  curves with square markers were obtained from calibrations using FIGAERO. Gray

154  dots show how the signal of internal standard DCOOH varied with ambient humidity.
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correction to the signal of DCOOH based on its curve shown in Fig. S5.
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Figure S7. (a) Fitting the voltage scanning results as a sigmoidal function of sensitivity
relative to maximum sensitivity versus dVso (i.e. the voltage where half of an iodide
adducts dissociate). (b) Fitting relative transmission efficiency as a gaussian curve of
m/z. (c) The sensitivity derived from voltage scanning procedure. The transmission
correction has been applied. The bottom line in Figure S7c¢ that has a shape exactly the
same as the transmission curve represents the points with a cutoff of 0.23 for the relative

sensitivity. See text in Section S1.
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173 Figure S8. Mass defect diagram for iodide charged C,H, 0, compounds in the gas
174 phase (a) and particle phase (c), and CyH,N;,0, compounds in both phases (b, d).
175  The circle size denotes the concentration and the circle color denotes the ratio of the
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Figure S15. (a) Diurnal trends of S-containing ions measured by FIGAERO-I-CIMS

including CH3S05, SO31~ and HSO, , as well as particulate sulfate measured by

AMS. (b) Time series of particle-phase SO;I~ and sulfate.
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208  Figure S16. Time series of chlorine measured by AMS.
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210  Figure S17. Fractions of species classes for iodide charged ions as a function of m/z
211  in the gas phase (a) and particle phase (b). The concentration of every ion is summed

212 to unit mass resolution to give an overall picture.
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213

214 Figure S18. (a) Van Krevelen diagrams for particle-phase C,H, 0, compounds

215  detected by FIGAERO-I-CIMS. The size of circles represents the campaign-averaged
216  concentration of this compound in particles. (b) Correlation coefficients between OA
217  and particle-phase UMR signals measured by FIGAERO-I-CIMS, plotted as a

218  function of m/z. Star markers from left to right denote CH,0,1~, HNO3I~,

219  C4HgO0,17, CoH 40417, CoH3NO,I~ and CygH 4N,O0ql ™.
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