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Abstract
Highly oxygenated organic molecules (HOM) are found to play an important role in the formation and
growth of secondary organic aerosol (SOA). SOA is an important type of aerosol with significant impact on air

quality and climate. Compared with the oxidation of volatile organic compounds by ozone (Os3) and hydroxyl radical

(OH), HOM formation in the oxidation by nitrate NOs-radical (NO3), an important oxidant at night-time and dawn,
has received less attention. In this study, HOM formation in the reaction of isoprene with NO3z was investigated in
the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). A large number of
HOM including monomers (Cs), dimers (Cio), and trimers (C;s), both closed-shell compounds and open-shell peroxy
radicals_(RO»), were identified and were classified into various series according to their formula. Their formation
pathways were proposed based on the peroxy radicals observed and known mechanisms in the literature, which were
further constrained by the time profiles of HOM after sequential isoprene addition to differentiate first- and second-
generation products. HOM monomers containing one to three N atoms (1-3N monomers) were formed, starting with
NOs3 addition to carbon double bond, forming peroxy radicals{RO,}, followed by autoxidation. 1N monomers were
formed by both the direct reaction of NO3 with isoprene and of NOs with first-generation products. 2N-monomers
(e.g. CsHgN2Onp (n=7-13), CsH10N2On (n=8-14)) were likely the termination products of CsHoN2Ojpe, which was formed by
the addition of NOj3 to C5-hydroxynitrate (CsH9NOy), a first-generation product containing one carbon double bond.
2N-monomers, which were second-generation products, dominated in monomers and accounted for ~34% of all
HOM, indicating the important role of second-generation oxidation in HOM formation in the isoprene+NOj reaction
under our experimental conditions. H-shift of alkoxy radicals to form peroxy radicals and subsequent autoxidation
(“alkoxy-peroxy” pathway) was found to be an important pathway of HOM formation. HOM dimers were mostly
formed by the accretion reaction of various HOM monomer RO; and via the termination reactions of dimer RO,
formed by further reaction of closed-shell dimers with NO3 and possibly by the reaction of C5-RO» with isoprene.
HOM trimers were likely formed by the accretion reaction of dimer RO, with monomer RO;. The concentrations of
different HOM showed distinct time profiles during the reaction, which was linked to their formation pathway. HOM
concentrations either showed a typical time profile of first-generation products, or of second-generation products, or
a combination of both, indicating multiple formation pathways and/or multiple isomers. Total HOM molar yield was

estimated to be 1.2%:, which corresponded to a SOA yield of ~3.6% assuming the molecular weight of CsHoNOg
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41 as the lower limit. This yield suggests that HOM may contribute a significant fraction to SOA yield in the reaction
42 ofisoprene with NO:s.
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1 Introduction

Highly oxygenated organic molecules (HOM) are an important class of compounds formed in the oxidation
of volatile of organic compounds (VOC) including biogenic VOC (BVOC) and anthropogenic VOC (Crounse
et al., 2013; Ehn et al., 2014; Jokinen et al., 2014; Rissanen et al., 2014; Jokinen et al., 2015; Krechmer et al.,
2015; Mentel et al., 2015; Rissanen et al., 2015; Kenseth et al., 2018; Molteni et al., 2018; Garmash et al., 2019;
McFiggans et al., 2019; Molteni et al., 2019; Quelever et al., 2019). A number of recent studies have
demonstrated that HOM play a pivotal role in both nucleation and also particle growth of pre-existing particles,
thus contributing to secondary organic aerosol (SOA) (Ehn et al., 2014; Kirkby et al., 2016; Trostl et al., 2016).
Particularly, in the early stage of aerosol growth, HOM may contribute a significant fraction of SOA mass
(Trostl et al., 2016).

HOM are formed by the autoxidation of peroxy radicals (RO,), which means they undergo intramolecular
H-shift forming alky radicals, followed by O, addition leading to formation of new RO, as shown below
(Vereecken et al., 2007; Crounse et al., 2013; Ehn et al., 2017; Bianchi et al., 2019; Mgller et al., 2019; Nozicre
and Vereecken, 2019; Vereecken and Noziére, 2020).

H-shift \\C /\ 0, \\C
| 7Y

0o OOH 00 OOH
Besides autoxidation, the RO, can also react with HO,, RO, and NOs, either forming a series of termination
products (R1-3), including organic hydroxyperoxide, alcohol, and carbonyl, or forming alkoxy radicals (RO,

R4-5) via the following reactions.

RO»+R'0,~>ROH+R=0 (R1)
RO»+R'0,~>R=0+R’OH (R2)
RO»+HO,~»ROOH (R3)
RO,+R'0,>RO+R'0+0, (R4)
RO»+NO;>RO+NO,+0, (R5)
RO»+R'0,~>ROOR'+0; (R6)

The termination products are detected in the mass spectra at masses M+1, M-15, M-17 respectively with
M being the molecular mass of the parent RO, (Ehn et al., 2014; Mentel et al., 2015). In case that RO; is an acyl
peroxy radical, percarboxylic acids and carboxylic acids are formed instead of hydroperoxides and alcohols in
R3 and R1, respectively (Atkinson et al., 2006; Mentel et al., 2015). RO, can also form HOM dimers by the
accretion reaction of two RO, (R6) (Berndt et al., 2018a; Berndt et al., 2018b; Valiev et al., 2019). Additionally,
HOM can be formed via H-shift in RO followed by O, addition (referred to as “alkoxy-proxy” pathway)
(Finlayson-Pitts and Pitts, 2000; Vereecken and Peeters, 2010; Vereecken and Francisco, 2012; Mentel et al.,
2015). These pathways are summarized in a recent comprehensive review (Bianchi et al., 2019), which also

further clarifies HOM definition.
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Currently, most laboratory studies of HOM formation focus on the VOC oxidation by OH and O3 (Crounse
et al., 2013; Ehn et al., 2014; Jokinen et al., 2014; Rissanen et al., 2014; Jokinen et al., 2015; Krechmer et al.,
2015; Mentel et al., 2015; Rissanen et al., 2015; Kirkby et al., 2016; Trostl et al., 2016; Kenseth et al., 2018;
Molteni et al., 2018; Garmash et al., 2019; McFiggans et al., 2019; Molteni et al., 2019; Quelever et al., 2019;
Wang et al., 2020; Yan et al., 2020). HOM formation in the oxidation of VOC with NOj; has received much less
attention. NOj is another important oxidant of VOC mainly operating during nighttime. Particularly, NO; has
high reactivity with unsaturated BVOC such as monoterpene and isoprene. It is often the dominant oxidant of
these compounds at night, especially in regions where biogenic and anthropogenic emissions mix (Geyer et al.,
2001; Brown et al., 2009; Brown et al., 2011). The reaction products contribute to SOA formation (Xu et al.,
2015; Lee et al., 2016). Also, the organic nitrates produced in these reactions play an important role in nitrogen
chemistry by altering NOx concentration, which further influences photochemical recycling and ozone
formation in the next day. Among these reaction products, HOM can also be formed (Xu et al., 2015; Lee et al.,
2016; Yan et al., 2016). Despite the potential importance, studies of HOM formation in the oxidation of BVOC
by NOs are still limited compared with the HOM formation via oxidation by O3 and OH. Although a number of
laboratory studies have investigated the reaction of NO; with BVOC (Ng et al., 2008; Fry et al., 2009; Rollins
et al., 2009; Fry et al., 2011; Kwan et al., 2012; Fry et al., 2014; Boyd et al., 2015; Schwantes et al., 2015; Nah
etal., 2016; Boyd et al., 2017; Claflin and Ziemann, 2018; Faxon et al., 2018; Draper et al., 2019; Takeuchi and
Ng, 2019; Novelli et al., 2021; Vereecken et al., 2021), these studies mostly focus on either SOA yield and
composition, or on the gas-phase chemistry mechanism mainly for “traditional” oxidation products that stem
from few oxidation steps.

Importantly, HOM formation in the reaction of NO3; with isoprene, the most abundant BVOC accounting
for more than half of the global BVOC emissions, has not been explicitly addressed yet, to the best of our
knowledge. Although isoprene from plants are mainly emitted under light conditions, i.e., in the daytime,
isoprene can remain high after sunset in significant concentrations (Starn et al., 1998; Stroud et al., 2002; Brown et
al., 2009) because of the reduced consumption by OH and is found to decay rapidly. A substantial fraction of
isoprene can then be oxidized by NOs (Brown et al., 2009). Regarding the budget of NO3, the reaction of isoprene
with NOs can contribute to a significant or even dominant fraction of NO; loss at night in regions where VOC is
dominated by isoprene such as Northeast US (Brown et al., 2009). Under some circumstances, the reaction of isoprene
with NOs can contribute to a significant fraction during the afternoon and afterwards (Ayres et al., 2015; Hamilton
et al., 2021). The reaction of isoprene with NOj is the subject of a number of studies (Ng et al., 2008; Perring et
al., 2009; Rollins et al., 2009; Kwan et al., 2012; Schwantes et al., 2015; Vereecken et al., 2021). These studies
focus on the oxidation mechanism and “traditional” oxidation products, as well as SOA yields. The initial step
is the NO; addition to one of the C=C double bounds, preferentially to the carbon C1 (Schwantes et al., 2015),
followed by O, addition forming a nitrooxyalkyl peroxy radical (RO;). This RO, can undergo the reactions
described above, forming a series of products such as C5-nitrooxyhydroperoxide, C5-nitrooxycarbonyl, and C5-
hydroxynitrate (Ng et al., 2008; Kwan et al., 2012), as well as methyl vinyl ketone (MVK), potentially
methacrolein (MACR), formaldehyde, OH radical, and NO» as minor products (Schwantes et al., 2015). A high
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nitrate yield (57-95%) was found (Perring et al., 2009; Rollins et al., 2009; Kwan et al., 2012; Schwantes et al.,
2015). Products in the particle phase such as Co dimers were also detected (Ng et al., 2008; Kwan et al., 2012;
Schwantes et al., 2015). The SOA yield varies from 2% to 23.8% depending on the organic aerosol concentration
(Ng et al., 2008; Rollins et al., 2009). These studies have provided valuable insights in oxidation mechanism,
particle yield and composition. However, because HOM formation was not the focus of these studies, only a
limited number of products, mainly moderately oxygenated ones (oxygen number <2 in addition to NOs3
functional groups), were detected in the gas phase. The detailed mechanism of HOM formation and their yields
in the reaction of BVOC+NO;3 are still unclear.

In this study, we investigated the HOM formation in the oxidation of isoprene by NOs;. We report the
identification of HOM, including HOM monomers, dimers, and trimers. According to the reaction products and
literature, we discuss the formation mechanism of these HOM. The formation mechanism of various HOM is
further constrained with time series of HOM upon repeated isoprene additions. We also provide an estimate of

HOM yield in the isoprene+NOs3 reaction and assess their roles in SOA formation.

2 Experimental
2.1 Chamber setup and experiments

Experiments investigating the reaction of isoprene with NO; were conducted in the SAPHIR chamber
(Simulation of Atmospheric PHotochemistry In a large Reaction chamber) at Forschungszentrum Jiilich,
Germany. The details of the chamber have been described before (Rohrer et al., 2005; Zhao et al., 2015a; Zhao
et al., 2015b; Zhao et al., 2018). Briefly, SAPHIR is a Teflon chamber with a volume of 270 m>. It can utilize
natural sunlight for illumination and is equipped with a louvre system to switch between light and dark
conditions. In this study, the experiments were conducted in the dark with the louvres closed.

Temperature and relative humidity were continuously measured. Gas and particle phase species were
characterized using a comprehensive set of instruments with the details described before (Zhao et al., 2015b).
VOC were characterized using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS,
Ionicon Analytik, Austria). NOx and O3 concentrations were measured using a chemiluminescence NOy analyzer
(ECO PHYSICS TR480) and an UV photometer O3 analyzer (ANSYCO, model O341M), respectively. OH,
HO, and RO, concentrations were measured using a laser induced fluorescence system (LIF) (Fuchs et al., 2012).
NO; and N»Os were detected by a custom-built instrument based on cavity ring-down spectroscopy. The design
of the instrument is similar to that described by Wagner et al. (2011). NO3 was directly detected in one cavity
by its absorption at 662 nm and the sum of NO; and N,Os in a second, heated cavity, which had a heated inlet
to thermally decompose N>Os to NOs. The sampling flow rate was 3 to 4 liters per minute. The detection by
cavity ring-down spectroscopy was achieved by a diode laser that was periodically switched on and off with a
repetition rate of 200 Hz. Ring-down events were observed by a digital oscilloscope PC card during the time
when the laser was switched off and were averaged over 1s. The zero-decay time that is needed to calculate the

concentration of NO3; was measured every 20 s by chemically removing NO; in the reaction with excess nitric
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oxide (NO) in the inlet system. The accuracy of measurements was limited by the uncertainty in the correction
for inlet losses of NO3 and N»Os. In the case of N,Os a transmission of (85+£10) % was achieved and in the case
of NOs of (50+30) %.

Before an experiment, the chamber was flushed with high purity synthetic air (purity>99.9999% O, and N,).
Experiments were conducted under dry condition (RH<2 %) and temperature was at 30243 K. NO> and O3 were
added to the chamber first to form N>Os and NOs, reaching concentrations of ~60 ppb for NO; and ~100 ppb for Os.
After around half an hour, isoprene was sequentially added into the chamber for three times at intervals of ~1 h.
Around 40 min after the third isoprene injection, NO, was added to compensate the loss of NO3 and N>Os. Afterwards,
three isoprene additions were repeated in the same way as before. O3 was added before the fifth and the sixth isoprene
addition to compensate for its loss by reaction. The schematic for the experimental procedure is shown in Fig. S1.
Experiments were designed such that the chemical system was dominated by the reaction of isoprene with NO3 and
the reaction of isoprene with O3z did not play a major role (<3% of the isoprene consumption). Figure S2 shows the
relative contributions of the reaction of Oz and NO3 with isoprene to the total chemical loss of isoprene using the
NOs and O3 concentrations measured. The reaction with NO3 accounted for >95% of the isoprene consumption for
the whole experiments. The contribution of the reaction of isoprene with trace amount of OH, mainly produced in
the reaction of isoprene+QOs via Criegee intermediates (Nguyen et al., 2016), is negligible as the OH yield is less than
one (Malkin et al., 2010) and thus its contribution is less than that of isoprene+QOs. This is consistent with the
contribution determined using measured OH concentration, despite some uncertainty in measured OH concentration
due to the interference from NOs. In these experiments, RO; fate is estimated to be dominated by its reaction with
NO3 according to the measured NOs, RO», and HO» concentration and their rate constants for the reactions with RO»
(MCM v3.2(Jenkin et al., 1997; Jenkin et al., 2003; Saunders et al., 2003; Jenkin et al., 2015), via website:
http://mcm.leeds.ac.uk/MCM) despite uncertainties of the measured RO, and HO; concentration due to interference
from NOs. As a large portion of RO; is not measured by LIF (Vereecken et al., 2021) and thus RO, is underestimated,
we expected the reaction of RO>+RO; to be also important. Overall, we estimate that he RO, fate is dominated the

reaction RO>+NOs with significant contribution of RO>+RO..

2.2  Characterization of HOM

In this study we refer to similar definition for HOM by Bianchi et al. (2019), i.e., HOM typically contain six or
more oxygen atoms formed via autoxidation and related chemistry of peroxy radicals. HOM were detected using a
Chemical Ionization time-of-flight Mass Spectrometer (Aerodyne Research Inc., USA) with nitrate as the reagent ion
(CIMS) (Eisele and Tanner, 1993; Jokinen et al., 2012). "N nitric acid was used to produce "NO;™ in order to
distinguish the NOs3 group in target molecules formed in the reaction from the reagent ion. The details of the
instrument are described in our previous publications (Ehn et al., 2014; Mentel et al., 2015; Pullinen et al., 2020).
The CIMS has a mass resolution of ~4000 (m/dm). Examples of peak fitting are shown in Fig. S3. HOM
concentrations were estimated using the calibration coefficient of H,SO4 as described by Pullinen et al. (2020)
because the charge efficiency of HOM and H>SOj4 can be assumed to be equal and close to the collision limit (Ehn et
al., 2014; Pullinen et al., 2020). The details of the calibration with H,SO4 are provided in the supplement S1. Since

HOM contain more than six oxygen atoms and their clusters with nitrate ions are quite stable (Ehn et al., 2014), the
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charge efficiency of HOM is thus assumed to be equal to that of H,SO4, which is close to the collision limit (Viggiano
et al., 1997). If HOM do not charge with nitrate ions at their collision limit or the clusters formed break during the
short residence time in the charger, its concentration would be underestimated as pointed by Ehn et al. (2014). Thus,
our assumption provides a lower limit of the HOM concentration. The HOM yield was derived using the
concentration of the HOM produced, divided by the concentration of isoprene that was consumed by NOs. The
uncertainty of HOM yield was estimated to -55%/+103%. The loss of HOM to the chamber was corrected using a
wall loss rate of 6x10* s as quantified previously (Zhao et al., 2018). HOM concentrations were also corrected for
dilution due to the replenishment flow needed to maintain a constant overpressure of the chamber (loss rate ~1x107°
s1) (Zhao et al., 2015b). The influence of wall loss correction and dilution correction on HOM yield was ~12% and
<1%, respectively. Although the wall loss rate of vapors in this study might not be exactly the same as in our previous
photo-oxidation experiments (Zhao et al., 2018), HOM yield is not sensitive to the vapor wall loss rate. An increase

of wall loss rate by 100% or a decrease by 50% only changes the HOM yield by 11% and -6%, respectively.

3  Results and discussion
3.1 Overview of HOM

The mass spectra of HOM in the gas phase formed in the oxidation of isoprene by NO; are shown in
Fig. 1. A large number of HOM were detected. Almost all peaks are assigned HOM containing nitrogen atoms
with possibly few exceptions such as CsH;oOs and CsHsO;; with very minor peaks (<~1% of the maximum
peak). The reaction products can be roughly divided into three classes: monomers (C5, ~200-400 Th), dimers
(C10, ~400-600 Th), and trimers (C15, ~>600 Th), according to their mass to charge ratio (m/z). The detailed

peak assignment of monomers, dimers, and trimers is discussed in the following sections.

3.2 HOM monomers and their formation
3.2.1 Overview of HOM monomers

HOM monomers showed a roughly repeating pattern in the mass spectrum at every 16 Th
(corresponding to the mass of oxygen) (Fig. 1a). Here a number of series of HOM monomers with continuously
increasing oxygenation were found, such as CsHoNO,, CsH7;NO,, CsHsN>Oy, CsH;oN2Oy, (Table 1, Table S1-2
and Fig. 2). These monomers included both stable closed-shell molecules and open-shell radicals, such as
CsHgNOpe and CsHoN,Ope. The open-shell molecules were likely RO; radicals because of their much longer life
time and hence higher concentrations compared with alkoxy radicals (RO) and alkyl radicals (R). Since the
observed stable products were mostly termination products of RO, reactions, we describe the stable products in
a RO,-oriented approach. It is worth noting that some of the termination products may contain multiple isomers

formed from different pathways.
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Figure 1. Mass spectrum of the HOM formed in the oxidation of isoprene by NOs. HOM are detected as
clusters with the reagent ion '’NO;", which is not shown in the molecular formula in the figure for simplicity. Panel
a and b show the average spectrum during the first isoprene addition period (P1) and for the whole period of six
isoprene additions (P1-6), respectively. The insets show the contributions of different classes of HOM. 1-3N-
monomer refers to the monomers containing 1-3 nitrogen atoms in the molecular formula.

HOM monomers were classified into 1N-, 2N-, and 3N-monomers according to the number of nitrogen
atoms that they contain. HOM without nitrogen atoms were barely observed except for very minor peaks (<~1% of
the maximum peak) possibly assigned to CsHioOs and CsHgOii. The contribution of 2N-monomers such as
CsH10N20O, and CsHgN>O,, was higher than that of the IN-HOM monomers, and that of 3N-monomers was the least
(Fig. 1, inset). The most abundant monomers were CsH1oN2Os, CsH19N20o, and CsHgN>Os. The termination products
of CsH9NOs, CsHoNOy, and CsH7NOgs also showed relatively high abundance. These limited number of compounds
dominated the HOM monomers. Since 2N-monomers were second-generation products as discussed below, the
higher abundance 2N- monomers indicate that the second-generation HOM play an important role in the reaction of
NO3 with isoprene in the reaction conditions of our study, as also seen by Wu et al. (2020) . This is more evident for
the mass spectrum averaged over six isoprene addition periods (Fig. 1b), where the abundance of CsH1oN>O, and
CsHgN»O, were more dominant. This observation is in contrast with the finding for the reaction of O3 with BVOC
which contains only one double bond such as a-pinene (Ehn et al., 2014), where HOM are mainly first-generation
products formed via autoxidation. The higher abundance of HOM 2N-monomers than 1N-monomers is likely because
HOM production rate via the autoxidation of 1N-monomer RO, following the reaction of isoprene with NO3; may be
slower than that of the reaction of 1N-monomers (including both HOM and non-HOM monomers) with NOs. We
would like to note that some less oxygenated 1N-monomers such as CsH9NOgys and CsH7NOs may have high

abundance but are not detected by NO3;-CIMS and are not HOM and thus not included in HOM 1N-monomers.



239
240

241
242
243
244
245

246

247
248
249
250
251
252

253

0.15 7
—; [ I
0.14 3 0.0 0.5 C’I)/(é 1.5 2.0
_; O ° e L] ° °
£ 0133 Gy 'j;nNyosHmN]io[
c 3 C © e e
“\5/ 3 . :BQCSOB 30505H2N209 . . CsHioN;Os.11,13.14
9] = et ol g . o8y LSCTERERe @ e S o
k) 012 = o , e° E)' [5) CngNadg 16
- 3 o #1Cy SHN,O5HI1BNI,O,
@ E ‘ ©8-mme o Qe LA — G 'CsHeNzoe 11,1314
g 0114 -+ 304C5HgN,Og ° . .
% 3 274G HgNo§9°CsH9N09 CsHoNOg4¢ *
kS I e @ R (A @ -
2 0.10 3 287C5H8N20é & o CsHgN,O7.11
m p—
: - 289
x 3 SR O B2 CHl@%-ve  CHNO,,
E #T2C5HNO
0.09 F oot @ ©2-----;0 CsH/NOg 10
0.08 S | ° — I | |
250 300 350 400

Kendrick mass (O, Th)

Figure 2. Kendrick mass defect plot for O of HOM monomers. The m/z in the molecular formula include the
reagent ion "NOs", which is not shown for simplicity. The size (area) of circles is set to be proportional to the average
peak intensity of each molecular formula during the first isoprene addition period (P1). The species at m/z 351 and 353
(labelled in grey) are the adducts of CsHsN»>Og and CsHoN2Og with H[15N],O¢’, respectively. The blue dashed lines with
arrows indicate the termination product hydroperoxide (M+H), alcohol (M-O+H), and ketone (M-O-H) with M the
molecular formula of a HOM RO,.

3.2.2 1N-monomers

In our experiments we observed a CsHsNOy* (n=7-12) series (series M1), as well as its corresponding
termination products CsH7;NOy.1, CsHoNO,.1, and CsH9NO,, via the reactions with RO, and HO,, which contain
carbonyl, hydroxyl, and hydroperoxy group, respectively. Overall, the peak intensities of CsHoNO, and
CsH7NO, series first increased and then decreased as oxygen number increased (Fig. 2), with the peak intensity
of CsHoNOg and CsH7NOg being the highest within their respective series when averaged over the whole

experiment period.

Table 1. HOM monomers formed in the oxidation of isoprene by NOs.

Series Number ~ Product Type? Pathway of RO»

CsHsgNOn n=7-11) RO, I NO
soprene+NOs

Mla/b CsHoNOn n=6-11) ROOH/ROH Isoprene+NOs+NOs
CsH7NOn n=6-10) R=0
CsHoN2On (n=8-11,13,14°  RO»

M2a/b CsH1oN2On (n=s-11,13,14°  ROOH/ROH Isoprene +NO3+NO;3
CsHsN2On (n=7-11) R=0
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CsHoN3Op (n-9-16)° RO_NO,

CsH7N20nn=9) RO>
M3 CsHsN>Op (n=s, 9) ROOH/ROH Isoprene +NO3+NOs
CsHeN2On (n=3) R=0
CsH10NOn (n=8-9) RO,
M4 CsH11NOy (n=7-9) ROOH/ROH Isoprene +NOs+OH
C 5H9N0n (n=7-8) R=O

% RO, denotes peroxy radical and ROOH, ROH, R=0, and RO,NO; denote the termination products

containing hydroperoxy, hydroxyl, carbonyl group, and peroxynitrate, respectively.

b Peak assignment of compounds with n=13,14 may be subject to uncertainties.

: /' NO, 4>_/7 H- shlft ychza ion ﬂ H- shn‘ﬂ
OzNO OzNO

O,NO
C5H8 C5H8N05' C5H8N07° C5H8N09' C H8N09'
o)
H shift Decompose H Sh'ﬁ w >e/7
O OH
O,NO O NO
C5H8NOQ° C5H8N09' C5H8N09' C5H8N011°
(a)
OOH OOH —O00H Q. —OOH HQ
R02/ NO, Heshift H-shlft Decompose w Hshift w H shift N
O,NO OH O,NO
CsHgNOg* CsHgNOg® CsHgNOge CsHgNOg* CsHgNOge CsHgNOge CsHgNO,o*
(b)

Scheme 1. The example pathways to form HOM RO, CsHsNO,* (n=7, 9, 11) series (a) and CsHgNOye®
(n=8, 10) series (b) in the reaction of isoprene with NOs. The detected products are in bold.

CsHgNO,* with odd number oxygen atoms (n=7, 9, 11, series M1a) were possibly formed by the attack
of NOs3 to one double bond (preferentially to C1 according to previous studies (Skov et al., 1992; Berndt and
Boge, 1997; Schwantes et al., 2015) and followed by autoxidation (Scheme 1a). We would like to note that
NO;-CIMS only observed HOM with oxygen numbers > 6 in this study due to its selectivity of detection.
CsHsNOg* with even number oxygen atoms (n=8, 10, series M1b in Table 1) were possibly formed after H-shift
of an alkoxy radical formed in reaction R4 or RS and subsequent O, addition (“alkoxy-peroxy” channel)
(Scheme 1b), where the alkoxy radicals can be formed both from the RO,+NO3 and RO,+RO; reactions. The
hydroxyRO, formed can undergo further autoxidation adding two oxygen atoms after each H-shift. We would

like to note that the scheme and other schemes in this study only show example isomers and pathways to form these
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molecules. It is likely that many of the reactions occurring are not the dominant channels as otherwise there would
be much higher HOM yield as discussed below.

Some HOM monomers may contain multiple isomers and be formed via different pathways. For
example, CsHoNO, can contain alcohols derived from RO, CsHgNOy+i®, hydroperoxides derived from RO,
CsHgNO,e or the ketones from RO, CsHigNOy+i*. Some RO, CsHgNO,* may be formed via the reaction of first-
generation products with NOj3 in addition to direct reaction of isoprene with NOs. For example, CsHgNO7¢ can
be formed by the reaction of NO; with CsHgO», which is a first-generation product observed previously in the
reaction of isoprene with NOs or OH (Scheme S1b) (Kwan et al., 2012). Moreover, RO, CsHsNOy* can be
formed from C5-carbonylnitrate, a first-generation product, with OH (Scheme S1a). Trace amount of OH can
be produced in the reaction of isoprene with NO3; (Kwan et al., 2012; Wennberg et al., 2018). OH can also be
formed via Criegee intermediates formed in the isoprene+O; reaction (Nguyen et al., 2016), but this OH source
was likely minor because the contribution of the isoprene+Q; reaction to total isoprene loss was negligible (<5%,
Fig. S2). In addition, CsHsNOsg* may also be formed by the reaction of NO; with CsHgOs, which is a first-
generation product observed in the reaction of isoprene with OH (Kwan et al., 2012). The CsHsNOy* formed
via direct reaction of isoprene with NOs is a first-generation RO, while that formed via other indirect pathways
is a second-generation RO,. The time profile of the isomers from these two pathways, however, are expected to
be different as will be discussed below.

Time series of HOM can shed light on their formation mechanisms. It is expected that first-generation
products increase fast with isoprene addition and reach a maximum earlier in the presence of wall loss of organic
vapour, while second-generation products reach a maximum in the later stage or increase continuously if the
production rate is higher than the loss rate. As a reference to analyze the time profiles of HOM, the times profile
of isoprene, NOs, and N,Os are also shown (Fig. S4). After isoprene was added in each period, NO; and N,Os
dropped dramatically and then gradually increased. We found that termination products within the same M1
series showed different time profiles. For example, in CsHoNO, series, CsHoNOs clearly increased
instantaneously with isoprene addition, and decreased fast afterwards (Fig. 3a), indicating that it was a first-
generation product, which was expected according to the mechanism Scheme 1. CsHoNOs and CsHoNOjohad a
general increasing trend with time. While CsHoNOg increased continuously with time, CsHyNOjo reached
maximum intensity in the late phase of each isoprene addition period and then decreased naturally or after
isoprene addition. The faster loss of CsHoNOjo than CsHoNOs may result from the faster wall loss due to its
lower volatility. CsHoNO7 and CsHoNOg showed a mixing time profile with features of the former two kinds of
time profiles, increasing almost instantaneously with isoprene additions, especially in the first two periods,
while increasing continuously or decreasing first with isoprene additions and then increasing later in each period.
This kind of time series indicates that there were significant contributions from both first- and second-generation
products.

The second-generation products may be different isomers formed in pathways other than shown in
Scheme 1. Second-generation CsHoNOg can be formed via CsHsNO7¢, which can also be formed by the reaction

of NO; and O with CsHzO; as mentioned above (Scheme S2b), or by the reaction of OH with CsH7NO4 (Scheme
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S2a). The time profiles of CsHsNO7* did show more contribution of second-generation processes because it
continuously increased with time in general. If the pathways via the reaction of NOs and O, with CsHgO, and
the reaction of OH with CsH7NO4 contribute most to CsHoNOg, CsHoNOg would show mostly a time profile of
second-generation products. Similarly, second-generation CsHoNO7 can be formed via CsHsNO7* or CsHsNOse.
The time series of CsHsNOse did show the contribution of both the first- and second-generation processes, which
generally increased with time while also responding to isoprene addition (Fig. S5). Similar to CsHoNOs, the
second-generation pathway for CsHoNO7, CsHoNOy, and CsHoNOjo are shown in Scheme S1, S3, S4. For the
RO, in CsHsNOye series other than CsHsNO7se, the peak of CsHsNOy,e overlaps with CsHioN>Oy, in the mass
spectra, which is a much larger peak, and thus cannot be differentiated from CsH;oN»On. Therefore, it is not
possible to obtain reliable separate time profiles in order to differentiate their major sources. It is worth noting
that nitrate CIMS may not be able to detect all isomers of CsHoNOs due to the sensitivity limitation. Therefore,
we cannot exclude the possibility that the absence of some first-generation isomers of CsHoNOg was due to the

low sensitivity of these isomers.
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Figure 3. Time series of peak intensity of several HOM monomers of CsHoNO,, series (a) and of CsHioN>O,
series (b). They are likely the termination products of RO, CsHgNO,e and CsHoN,Oye, respectively. The dashed lines
indicate the time of isoprene additions. The long-dashed arrow indicates the time of NO; addition. The dash-dotted

arrows indicate the time of O3 additions.

Among the termination products of the 1N-monomer RO,, carbonyl and hydroxyl/hydroperoxide
species had comparable abundance in general (Table S1), suggesting that disproportionation reactions between
RO, and RO; forming hydroxy and carbonyl species (R1-2) was likely an important RO, termination pathway.
However, dependence of the exact ratio of carbonyl species to hydroxyl/hydroperoxide species on the number
of oxygen atoms did not show a clear trend (Table S1), suggesting that the reactions of HOM RO> depended on
their specific structure. There was no clear difference in the abundance between the termination products from
CsHsNOy* with odd and even number of oxygen atom in general, although the most abundant termination
product of CsHgNO,e , i.e. CsH7NOs, was likely formed from CsHsNOoe in series M1a. This fact indicates that
both the peroxy pathway and alkoxy-peroxy pathway were important for the HOM formation in the
isoprene+NQOj reaction under our conditions, in agreement with the significant formation of alkoxy radicals
from the reaction of RO, with NO3 and ROs.

In addition to the termination products of RO, M1, minor peaks of the RO; series CsH1oNOy* (n=8-9) (M4,
Table 1) and their corresponding termination products including hydroperoxide, alcohol and carbonyl species were
detected (Table S3). CsHioNO, were likely formed by sequential addition of NO3 and OH to two double bonds of

isoprene (Scheme S5). OH can react fast with isoprene or with the first-generation products of the reaction of isoprene
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with NOs, thus forming CsH;oNOye. In addition, a few very minor but noticeable peaks of CsHoOn* and their
corresponding termination products CsH0O, and CsHsO, were also observed. These HOM may be formed by the
reactions of isoprene with trace amount of OH and with O3, although their contributions to reacted isoprene were
negligible. These HOM were also observed in the reaction of isoprene with O3 with and without OH scavengers
(Jokinen et al., 2015).

Among 1N-monomer HOM, CsH9NO7 has been observed in the particle phase using ESI-TOFMS by
Ng et al. (2008) while others have not been observed in previous laboratory studies of the reaction of isoprene
with NO3, to our knowledge. A number of Cs organic nitrates have been observed in field studies. For example,
CsH7.11NOg.s_and CsH7.11NO4.9 have been observed in_the gas phase (Massoli et al., 2018) and -the aeresel
particle phase (Lee et al., 2016; Chen et al., 2020)s, respectively-during-the Seuthera- Oxidant-and Aerosol-Study
in a rural areaAlabama— of southeast US, where isoprene is abundant.-ee—et-al;2646) —Xu et al. (2021)
observed a number of Cs 1IN-HOM such as CsH70,11NOg 7 in polluted megacities of Nanjing and Shanghai of

east China during summer. While many of these HOM have daytime sources and are attributed to photo-
oxidation in the presence of NO,., nighttime oxidation with NO; also contribute to their formation (Lee et al.,

2016; Chen et al., 2020; Xu et al., 2021). CsH7.;;NO4 oThese—compounds were also observed in chamber
experiments of the reaction of isoprene with OH in the presence of NOx (Lee et al., 2016). CsHNO49 and

CsHxNOs.1p have been also observed in the gas phase and particle_phase, respectively, in a monoterpene-

dominating rural area in southwest Germany (Huang et al., 2019).

3.2.3 2N-mononmers

The 2N-monomer RO, series CsHoN>Op(n=8-14), were observed, as well as its likely termination
products, CsHgN>O, and CsH;oN2On, which contain a carbonyl and hydroxyl or hydroperoxide functional group,
respectively. The RO, series CsHoN>O,* with odd number of oxygen atoms (n=9, 11) (M2a in Table 1) were
likely formed from the first-generation product CsHyNO4 (C5-hydroxynitrate) by adding NOs to the remaining
double bond, forming CsHoN,Ooe, followed by autoxidation (Scheme 2a). This RO, series can also be formed
by the addition of NO; to the double bond of first-generation products (e.g. CsHoNOs, C5-
nitrooxyhydroperoxide) and a subsequent alkoxy-peroxy step (Scheme 2b). CsHoN,Oy® with even number of
oxygen atoms (n=8, 10, 12) (M2b in Table 1), can be formed by the addition of NOs to the double bond of
CsHoNOs followed by autoxidation (Scheme. 3a), or of CsHoNO4 followed by an alkoxy-peroxy step (Scheme.
3b). The formation pathways of CsHoN»Oj3/14* and CsHgN,Ose cannot be well explained, as they contain too
many or too few oxygen atoms to be formed via the pathways in Scheme 2 or 3. In Scheme 2 and 3, we show the
reactions starting from 1-NOs-isoprene-4-OO as an example. In the supplement, we have also shown the pathways
starting from 1-NOs-isoprene-2-OO peroxy radicals, which is indicated in a recent study by Vereecken et al. (2021)
to be the dominant RO, in the reaction of isoprene with NOs.

Formation through either Scheme 2 or 3 means that CsHgN»O, and CsH1oN»O, were second-generation
products. The time series of CsH;oN2O, species clearly indicates that they were indeed second-generation

products. CsHioN2O, species generally did not increase immediately with isoprene addition (Fig. 3b), but
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increased gradually with time and reached its maximum in the later stage of each period before decreasing with
time (in the period 1 and 6), or decreasing after the next isoprene addition (periods 2-5). This time profile can
be explained by the time series of the precursor of CsH;oN2O,, CsHoN2Oye (RO3) (Fig. S6). The changing rate
(production rate minus destruction rate) of CsH;oN>O, concentration was dictated by the concentration of
CsHgN,Oye and the wall loss rate. During periods 2 to 5, CsHoN>Oye gradually increased but decreased sharply
after the isoprene additions, resulted from chemical reactions of CsHoN>O,* and additionally from wall loss.
When the rate of change of the CsH1oN>O, concentration was positive, the concentration of CsH;oN,O, increased
with time. After isoprene additions, the rate of change of the CsH;oN,O, concentration decreased dramatically
to even negative, leading to decreasing concentrations. Similar to CsH;joN2Oy, the CsHgN>O, series did not
respond immediately to isoprene additions (Fig. S7), which is expected for second-generation products
according to the mechanism discussed above (Scheme 2-3). Particularly, the continuing increase of CsHsN»O,
even after isoprene was completely depleted (at ~21:40, Fig. S7) clearly indicates that these compounds were

second-generation products, although in the end they decreased due to wall loss.

OH

00" OH OH
)J RO,  \__/ NoO, \ / H-shlft
\ OOH
oo’
o,NO OZNOJ 0, NOJ ONO, OZNO ONG,

CsHyNO5e CsHyNO, C:HgN,O4¢ CsHyN,O ¢
(Scheme 1a)

(a)
oo’
00H 00" ‘ 0OH
HO2 N03 Roz/ NO, H shift H shlft
\ OH

o,NO o NO ONOz 0No2 ONOz ONO,
CsHgNO5e CsHyNOs CsHyN,0,0° CsHgN,Og* C;sHyN,0g° CsHgN,O,4e
(Scheme 1a)

Scheme 2. The example pathways to form CsHoN>O, (n=9, 11) HOM RO, series by RO, channel (a)

and alkoxy-peroxy channel. The detected products are in bold.

oo’
OOH | OOH
Ho2 & H-shift \ /7
0, \ 00" 0O, \ 0OH
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Scheme 3. The example pathways to form CsHoN>O, (n=10, 12) HOM RO, series by RO, channel (a) and

alkoxy-peroxy channel (b). The detected products are in bold.

According to the finding of Ng et al. (2008), C5-hydroxynitrate decays much faster than C5-
nitrooxyhydroperoxides. Additionally, C5-hydroxynitrate concentration is expected to be higher than that of
nitrooxyhydroperoxides because RO>+RO> forming alcohol is likely more important than RO,+HO, forming
hydroperoxide in this study. Therefore, it is likely that CsHoN>On* M2a series was mainly formed from CsHoNO4
instead of CsHoNOs, while CsHoN>O,* M2b were formed from CsHoNO, followed by an alkoxy-peroxy step.
That is, Scheme 2a and 3b appear more likely.

Similar to CsHgNOxe, the intensity of carbonyl species from CsHoN>O,* was also comparable with that
of hydroxyl/hydroperoxide species, suggesting that RO,+RO; reaction forming ketone and alcohol was likely
an important pathway of HOM formation in the isoprene+NOs reaction. In general, the intensity of the
termination products from CsHoN>Oye with both even and odd oxygen numbers were comparable. This again
suggests that both peroxy and alkoxy-peroxy pathways were important for HOM formation in the isoprene+NO3
reaction. The intensity of CsHgN,O,, first increased and then decreased with oxygen number while CsH;oN2Op
decreased with oxygen number, with CsH;oN,Osg and CsHsN,Os being the most abundant within their respective
series.

Some 2N-monomers have been detected in previous studies of the reaction of isoprene with NOs.
CsHoN2Og has been detected in the particle phase by Ng et al. (2008) and CsHgN>O7 was detected in the gas
phase by Kwan et al. (2012). CsH9N>Oo* has been proposed to be formed via the pathway as in Scheme 2a (Ng
et al., 2008), and it was directly detected in our study. CsHsN,O7 species has been proposed to be a dinitrooxy
epoxide formed by the oxidation of nitrooxyhydroperoxide (Kwan et al., 2012), instead of being a dinitrooxy
ketone proposed in our study, a termination product of CsHoN>Ose. Admittedly, CsHsN>O7 may contain both
isomers. In addition, Ng et al. (2008) detected CsHsN»Os in the gas phase, which was not detected in this study

likely due to the selectivity of NO3;-CIMS. 2N-monomers have also been observed in previous field studies.

For example, Massoli et al. (2018) observed CsHoN»Os.1q.in rural Alabama US during the SOAS campaign. Xu

et al. (2021)_observed CsHg10N>Og and CsHioN>Osg in polluted megacities of Nanjing and Shanghai during

summer.

One could suppose that CsH7N,Oye should also be formed since C5-nitrooxycarbonyl (CsH7NOj) also
contains one double bond that can be attacked by NOs in a second oxidation step. However, concentrations of
CsH7N»O, were too low to assign molecular formulas with confidence except for CsH7N2Oye, clearly showing

that CsH7N,On* was not important. This fact is consistent with the finding of Ng et al. (2008) that CS5-
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nitrooxycarbonyls react slowly with NOs. Additionally, the peroxy radical formed in the reaction of C5-
nitrooxycarbonyls with NOs3 likely leads to more fragmentation in H-shift as found in the OH oxidation of
methacrolein (Crounse et al., 2012), which may also contribute to the low abundance of CsH7N,O,. The presence of
HOM containing two N atoms is in line with the finding by Faxon et al. (2018) who detected products containing
two N atoms in the reaction of NO; with limonene, which also contain two carbon double bonds. It is anticipated

that for VOC with more than one double bond, NO; can add to all the double bonds as for isoprene and limonene.

3.2.4 3N-monomers

HOM containing three nitrogen atoms, CsHoN3O, (n=9-16), were observed. These compounds were
possibly peroxynitrates formed by the reaction of RO, (CsHgN,Oy¢) with NO,. The time series of CsHoN3O,
was examined to check whether they match such a mechanism. If CsHoN3O, were formed by the reaction of
C5HoN»O,.2¢ with NO», the concentration would be a function of the concentrations of CsHoN>Oy.2* and NO; as
follows:

d[C,;H,N,Q, ]

at
where [CsHoN3Oy], [CsHoN2On2¢], and [NO-] are the concentration of these species, k is the rate

=k[C,H,N,O, ,*][NG,]-k,, [C;H,N;O, ]

constant and Ky, is the wall loss rate. Because the products of CsHoN>Oy.2* and NO; were at their maximum at
the end of each period and decreased rapidly after isoprene addition (Fig. S8), the concentration should have its
maximum increasing rate at the end of each isoprene addition period. However, we found that only CsHoN3O.,
15, 16 showed such a time profile (Fig. S9), while CsHoN3Oo, 10, 11, 13, 14 generally increased with time, different
from what one would expect based on the proposed pathway. Therefore, it is likely that CsHoN3O12, 15, 16 were
mainly formed via the reaction of CsHoN,One with NO,, whereas CsHoN3Oo 10,11,13,14 Were not. Moreover,
CsHoN30O9 cannot be explained by the reaction CsHoN>Oye (n>9) with NO> or NOs, because these reactions
would add at least one more oxygen atom. One possible pathway to form CsHoN3;O9 was the direct addition of
N>Os to the carbon double bond of C5-hydroxynitrate, forming a nitronitrate. Such a mechanism has been
proposed previously in the heterogeneous reaction of N>Os with 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) because -NO, and -NO; groups were detected (Lai and Finlayson-Pitts, 1991). This
pathway generally matched the time series of CsHoN3O9 10,11,13,14 typical of second-generation products since
C5-hydroxynitrate was a first-generation product. It is possible that the main pathway of CsHoN3Og 19,11,13,14 Was
the reaction of CsHoNOs 5 6 with N»Os, although the reaction of N,Os with C=C double bonds in common alkenes
and unsaturated alcohols are believed to be not important (Japar and Niki, 1975; Pfrang et al., 2006).
3N-monomers, CsHyoN3O, has been observed in the particles formed in the isoprene+NOjs reaction by
Ng et al. (2008). Here a complete series of CsHoN3O, were observed. CsHoN3O,9 was previously proposed to
be formed by another pathway, i.e. the reaction of RO, (CsHoN>Og¢) and NOs3; (Ng et al., 2008). We further
examined the possibility of such a pathway in our study. Similar to NO,, if CsHoN3O, were formed by the
reaction of CsHoN»Op.2* with NOs, the concentration would have its maximum increasing rate at the end of each

isoprene addition period. Among CsHoN,Oye, the precursors of CsHoN3O;,, CsHoN2Oo, 10, 13, 14* showed a
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maximum increasing rate and a subsequent decrease after isoprene addition. The difference in oxygen number
between CsHoN3O1z, 15, 16, the termination products, and CsHoN2Og, 10, 13, 14*, the corresponding RO, with the
consistent time profile is mostly two. Since the reaction of CsH9N,O, with NO, and NO; result an increased
oxygen number by two and by one, respectively, we infer that it is more likely that CsHoN3O12, 15, 16 were formed
by the reaction of CsHoN»O1, 13, 14 with NO, rather than NOs, and thus they were likely peroxynitrates rather
than nitrates formed by the reaction of RO, with NOs. Since alkyl peroxynitrates decompose rapidly (Finlayson-
Pitts and Pitts, 2000; Ziemann and Atkinson, 2012), it is possible that these compounds contained
peroxyacylnitrates.

Little attention has been paid to the RO,+NO; pathway in nighttime chemistry of isoprene in the
literature (Wennberg et al., 2018), which is likely due to the instability of the products. According to this
pathway, CsHsN»O,, which was proposed to be a ketone formed via CsHoN»Oge in the M2 series (Table 1) as
discussed above, can also comprise peroxynitrate formed by the reaction of CsHsNOy* (M1a RO») with NOs.
3N dimer such as CsHoN3O or as-wel-as2N-monomers-such-as-CsHsNoOg-and-CsHN.O g-have been observed
in a recent field study in polluted cities in east China (Xu et al., 2021).

3.3 HOM dimers and their formation

Table 2. HOM dimers and trimers formed in the oxidation of isoprene by NOs.

Series Number Formula Type Pathway of RO2
Dimer 1 Ci10H16N204 (n=10-17) ROOR? MI1° +M1
Dimer 2 Ci1oH17N30, (n=11-19) ROOR M1+M2/M3+M4
Dimer 3 Ci1oH1sN4O, (n=15-18) ROOR M2+M2

Dimer 4 Ci1oH1sN2O, (n=10-16) ROOR M1+M4

Dimer 5 CioHisN304 (ni=13-17 ROOR M1+M3

Dimer 6 Cio0H19N304 (n=14-15y ROOR M2+M4

Dimer 7 C10H14N20n (n=10-16) ROOR Unknown
Dimer 8 C10H15N0n (n=9-12) ROOR C10H16N0n
Dimer 9 C1()H17N0n (n=9-15) ROOR C10H15N0n
Dimer R1 C10H15N3On (n=12-15) R02 Dimer 1+NO3
Dimer R2 Ci1oH17N2O, (n=11-12) RO, Dimer 1+OH
Dimer R3 CioH17N4Oy (n=16-18y  RO» Dimer 24+NOQO3
Dimer R4 C10H15N0n (n=10-14) R02 M1+C5Hg
Trimer 1 Ci15H24N4O, (n=17-22) ROOR Dimer R1+M1
Trimer 2 C15sH2sNsOp (n=20-22) ROOR giiﬁ:; giiﬁé’
Trimer 3 C15H25N30n (n=13-20) ROOR girngf‘ Eﬁ:ﬁé’
Trimer 4 Ci5sH26N4Op =172y ROOR Dimer R2+M2

2 ROOR denotes for organic peroxide.

®: The numbering is referred to Table 1.

A number of HOM dimer series were observed, including CioHsN2O, (n=10-17), C1oH17N30; (n=11-19), and
C10H13N40n (n:15—18), C10H13N20n (n110—16), C10H15N30n (n:l3—17), and CloH19N30n (n:14—15) series (Table 2,
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Table S3). CioH1sN2O,, series (dimer 1, Table 2) was likely formed by the accretion reaction of two monomer RO»
of M1a/b (Reaction R7).
CsHgNOy*+ CsHsNOn® = CioH16N20n1+n22102 R7
Similarly, C10H1sN4O,, series (dimer 2, Table 2) were likely formed by the accretion reaction of two monomer RO,
of M2 (Reaction R8). As nl and n2 are > 9, the number of oxygen in CioHisN4O, is expected to be >16. This is
consistent with our observation that only C10H1sN4O, with n>16 had significant concentrations.
CsHoN2Opio+ CsHoN2Ono* = C1oH1sN4On1+n22+02 R8
Ci0H17N30, series (dimer 3, Table 2) were likely formed by the cross accretion reaction of one M1 RO, and one
M2 RO, (reaction R9). Since nl is >5 and n2 is >9, the number of oxygen atoms in CioH17N30, is expected to be
>12, which is also roughly consistent with our observation that only CioH;7N30, with n>11 were detected.
CsHgNOx1*+CsHoN2On2*=> C1oH17N3001 4022102 R9
Similarly, Ci10H18N20n (n=10-16) and C1oH15sN30y (n=13-17) series (dimer 4, dimer 5, Table 2) were likely formed
from the accretion reaction between one M1 RO, and one M4 RO,, and between one M1 RO, and one M3 RO,
(CsH7N200¢). Other dimer series than dimer 1-5 were also present. However, they had quite low intensity (Fig. 4),
which was consistent with the low abundance of their parent monomer RO». They can be formed from various
accretion reactions of monomer RO,. For example, CioHi9N3O, can be formed by the accretion reaction of
CsHoN,Ope and CsHoNOye (Table 2).

Similar to monomers, a few species dominated in HOM dimers spectrum. The dominant dimer series were
Ci10H17N30x and C;9H;6N2Ox series, with C19H17N3012-14 and C1oH16N2012-14 showing highest intensity among each
series (Fig. 4). In addition, the O/C ratio or oxidation state of HOM dimers were generally lower than that of
monomers (Fig. 2, Fig. 4), which resulted from the loss of two oxygen atoms in the accretion reaction of two

monomer RO».
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Figure 4. Kendrick mass defect plot for O of HOM dimers formed in the isoprene+NOs reaction. The size (area)
of circles is set to be proportional to the average peak intensity of each molecular formula during the first isoprene addition
period (P1). The molecular formula include the reagent ion "’NOj3, which is not shown for simplicity. The species

labelled in grey (CioHi7N3012.14 H[15N]:0¢) are the adducts of CioH17N3012.14 with H[15N],O¢".

According to the mechanism above (R7-9), we attempt to explain the relative intensities of the dimers using
the signal intensities of monomer RO,. Assuming that the rate constant for each of HOM-RO,+ HOM-RO; reaction
forming dimers is the same considering that all HOM-RO; are highly oxygenated with a number of functional groups,
it is expected that the dimer formed by the recombination between the most abundant RO, has the highest intensity.
The most abundant monomer RO, were CsHoN2Og* and CsHoN»O1o* and thus the most abundant dimers are expected
to be C1oH16N4O16, C10H16N4O17, and C10H16N4O13. This expected result is in contrast with our observation showing
that the most abundant dimers were CioH17N3012.14 and CioH16N2O12-14 (Fig. 4). The discrepancy is possibly
attributed to the presence of less oxygenated RO, (with O<5) that have a low detection sensitivity in the NO3-CIMS
(Riva et al., 2019) due to their lower oxygenation compared with other HOM RO» shown above. These RO, may
react with CsH9N2Oge and CsH9N»Ojge. For example, CsHgNOse (RO2) is proposed to be an important first-
generation RO, in the oxidation of isoprene by NOs3 (Ng et al., 2008; Rollins et al., 2009; Kwan et al., 2012;
Schwantes et al., 2015). Although CsHsNOse showed very low signal in our mass spectra, it was likely to have high
abundance since it was the first RO, formed in the reaction of isoprene with NOs. Indeed, we found that the
termination products of CsHgNOse such as CsHoNOs, CsH7NO4, and CsH9NO4 had high abundance in another study,
indicating the high abundance of CsHsNOse. The accretion reaction of CsHgNOse with CsH9gN2Oo.19* and CsHgNOo.
10* can explain the high abundance of C;oH7N3012-14 and C1oH16N2012-14 among all dimers.

Provided that CsHgNOse is abundant, we still cannot explain the relative intensity of CioH7N3012,
Ci10H17N3013, and C1oH17N3014 that were all formed by the accretion reaction with CsHgNOse. C1oH7N3012 should
have the highest intensity among CioH17N3012.14 as its precursor RO2, CsHoN>Oge, is the most abundant. This
suggests that accretion reactions other than those of CsHsNOse with CsHoN2Qo_19¢ also contributed to C1oH17N3012-
14. Admittedly, the assumption of different RO, having similar rate constants in accretion reactions may not be valid.
For example, self-reaction of tertiary RO is slower than secondary and primary RO (Jenkin et al., 1998; Finlayson-
Pitts and Pitts, 2000). Different rate constants may also lead to the observation that the most abundant dimers could

not be explained the most abundant RO».

20



544
545

546
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

I
©
o

20 —;

C10H16N2010
C10H16N2011
O C10H16N2012| L g
C10H16N2013
O C10H16N2014
O C10H16N2015

I
(s suol) Ayisusjul yead

- 157 C10H16N2016 |
o C10H16N2017
2
S - 20
o 3
= } .
7] I | I — 0 -
c | ¥
Q : ' i
-— [
£ : ! e
0] 1 1 Y
e | i i
| i i
; Y \f
1

18:00 21:00 0:00
2013/7/23 2013/7/24

Time

Figure 5. Time series of peak intensity of several HOM dimers of CioHi6N2O, series. The dashed lines
indicate the time of isoprene additions. The long-dashed arrow indicates the time of NO» addition. The dash-dotted

arrows indicate the time of O3 additions. The horizontal arrows indicate y-axis scales for different markers.

The time profiles of CioHsN>Oy indicate contributions of both the first- and second-generation products.
The dominance of the first- or second-generation products depended on the specific compounds. Most CioHisN2On
compounds increased instantaneously after isoprene additions, indicating significant contributions of first-generation
products. Since the formation of CioHisN2O, likely involved CsHgNOse as discussed above, the instantaneous
increase may result from the increase of CsHsNOse as well as other first-generation RO». After the initial increase,
Ci0H16N2010.12 then decayed with time (Fig. 5) while CioHi6N2O13.15 increased again in the later phase of a period
and when NO; and O3 were added. The second increase indicated that CioHsN>O13.15 may contain more than one
isomer, which had different production pathways. As discussed above, CsHgNOye can be either a first-generation
RO; formed directly via the reaction of isoprene with NO; and autoxidation, or a second-generation RO, e.g. formed
via the reaction of with CsHgO, with NOs. Therefore the second increase of CioHisN2Oj3.15 may result from the
reaction of two first-generation RO» and of two second-generation RO, or between one first-generation and one
second-generation RO,. The increase of CioHisN2O14.15 after isoprene addition was not large, indicating the
larger contributions from second-generation products compared with other CioH1sN>Oy. Overall, as the number
of oxygen increased, the contribution of second-generation products to CioHisN2O, increased.

In contrast to CioHi6N20y, series, Ci1oH1sN4Oy increased gradually after each isoprene addition and then
decreased afterward (Fig. 6), either naturally or after isoprene additions, which is typical for second-generation
products. Since CioHisN4O, was likely formed by the accretion reaction of CsHoN2Ope (RO3), the time profile

of CioHisN4O, was as expected since CsHoN»Oye was formed via the reaction of NO; with first-generation
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products CsHoNO,. The CioHsN4+O, concentration depended on the product of the concentrations of two

CsHoN;Oye. Taking CioHisN4Oj6 as an example, its concentration can be expressed as follows:

d[Clo Hdli N4016] = k[Cs H9 N209][C5 H9 Nzog] - k\m [CIO H18 N4016]

When the concentration of CsH9N,Ooe increased, the changing rate of Ci9H1sN4O16 was positive and increased

and thus the concentration of CioHisN4Ojs increased. When the concentration CsHoN2>Ooge decreased sharply
after isoprene additions, the changing rate of CioHsN4O1 decreased and even became negative values, and thus
the concentration of CioH1sN4+O16 decreased after isoprene addition.

Similar to the CioHi¢N2On series, while CioH17N30, first increased instantaneously with isoprene
addition, it increased again during the later stage of each period (Fig. S10), showing a mixed behavior of the
first-generation products and second-generation products. The time series of CjoH;7N30, was as expected in
general because CioHi;7N3O, was likely formed via the accretion reaction of CsHsNO,* (M1 RO) and

CsHoN,Oye (M2 RO»), which were first- or second-generation, and second-generation RO, respectively,
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Figure 6. Time series of peak intensity of several HOM dimers of CioHsN4O;, series. The dashed lines indicate the
time of isoprene additions. The long-dashed arrow indicates the time of NO, addition. The dash-dotted arrows

indicate the time of O3 additions. The horizontal arrows indicate y-axis scales for different markers.

Some dimers that cannot be explained by accretion reactions such as CioH16N3Ox (n=12-15)*, C10H17N20n (n=11-
12)°*, C10H16NOn (n=10-14)*, C10H15NOn (n=9-12), C10H17NOx (n=0-15) were also observed. These dimers had low abundance.
We note that due to their low signals in the mass spectra, their assignment and thus range of n may be subject to

uncertainties. Since CioH16NOn (=10-16)*, C10H16N30n (n=12-15)*, and CioH7N2Ope contain unpaired electrons, they
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cannot be formed via the direct accretion reaction of two RO,. Instead, CioHi6N3On (n=12-15) * (dimer R1) and
Ci0H17N20pe (dimer R2) were likely RO, formed by the reaction of HOM dimers containing a double bond (dimer
1) with NO3; and with OH, respectively, followed by the reaction with O,.
C1oH16N20,+NO3+02> C1oH N3Oy R10
C10H16N20,+OH+02> CioH 7N20ne R11

The corresponding termination products of CioHisN3One RO, series such as CioHisN3O, (ketone), CioH17N30,
(hydroperoxide/alcohol) were also observed, although these compounds can also be formed via reactions between
two RO, radicals (R9 and R11). Among the termination products, CioH5sN30, had low intensity. Reaction R13 and
the termination reaction of CioH;7N2On* with HO; provided an additional pathway to CioH17N30, besides the R9
pathway discussed above. Similarly, other dimers may also be formed by the termination reactions of dimer RO»
with RO; or HO:. E.g., CioH1sN4O;, can be formed via termination reaction of C1oH;7N4Op* with another RO, wherein
Ci10H17N4Op* can be formed as follows:

C1oH17N30,+NO3+02> CioH17N4Ope R12

C10H16NOq (n=10-14)* could be explained by the reaction of monomer RO, with isoprene.

CsHsNO,*+CsHs+02> CioH16NOye R13
Only CioH16NOye with n>10 were detected, while according to the mechanism of self-reaction between CsHgNOye,
the n range of Ci1oH1sNOye is expected to be 7-14. The absence of CioHi16NOnwm<i0)® is likely attributed to their low
abundance, which might result from low precursor concentrations, low reaction rates with isoprene, and/or faster
reactive losses with other radicals. Such a reaction of RO with isoprene has been proposed by Ng et al. (2008) and
Kwan et al. (2012). The corresponding termination products of CioHisNOy* are C1oHisNO, (ketone) and CioH17NO,
species (hydroperoxide/alcohol). CioH17NO, species showed a time profile of typical first-generation products (Fig.
S11), i.e. increasing immediately with isoprene addition and then decaying with time. This behaviour further supports
the possibility of reaction R13. Yet, the reaction rate of alkene with RO is likely low due to the high activation
energy (Stark, 1997, 2000). It is worth noting that to our knowledge no experimental kinetic data on the addition of
RO: to alkenes in the gas phase in atmospheric relevant conditions are available, though fast, low-barrier ring closure
reactions in unsaturated RO; radicals have been reported (Vereecken and Peeters, 2004, 2012; Kaminski et al., 2017
Richters et al., 2017; Chen et al., 2021). We would like to note that there is unlikely interference to Cio-HOM from
monoterpenes, which has been reported previously (Bernhammer et al., 2018), as the concentration of monoterpenes
in the chamber during this study was below the limit of detection, which was ~50 ppt (30).

Some of the dimers discussed above have been observed in previous laboratory studies. Ng et al. (2008)
found CioH6N20g and C;9oH6N209 in the gas phase and C;oH7N3012, C10H17N3013, C10H18N4O16, and Ci1oH17N5013g
in the particle phase. C19H16N20g and C19H16N2O9 were also observed in our study, but their intensity in the MS was
too low to assign molecular formulas with high confidence. The low intensity may be due to the low sensitivity of
Ci0H16N20s, 9 in NO3-CIMS. According to modelling results of the products formed in cyclohexene ozonolysis by
Hyttinen et al. (2015), at least two hydrogen bond donor functional groups are needed for a compound to be detected
in a nitrate CIMS. As C19H16N20g and C19H16N209 have no and only one H-bond donor function groups, respectively,
they are expected to have low sensitivity in NO3-CIMS. Moreover, the low intensity can be partly attributed to the

much lower isoprene concentrations used in this study compared to previous studies, leading to the low concentration
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of C10H16N20s and C10H16N209 (Ng et al., 2008). C1oH17N3012, C10H17N3013, C10H18N4O16, and CioH17N5013 were
all observed in the gas phase in this study, wherein the concentration of CioH;7NsO13 was very low. The formation
pathways of C19H17N3012, C1oH17N3013, and C1oH1sN4O16 (R8) were generally similar to those proposed by Ng et al.
(2008) except that the products from H-shift of RO, were involved in the formation of Ci1oH7N3013. Among the two
pathways of CioH1sN4O16 formation (R8 and via R12), our results indicate that R8 was the main pathway, based on
the low concentrations of CioHi7N4O16/17¢ and other termination product of them, Ci9H16N4O1s/16. That the time
profile of CioHisN4O16 was consistent with what is expected from R8 as discussed above offers additional evidence
to that conclusion.

Few field studies have reported HOM dimers formed via the reaction NOsz with isoprene. This might be

because NOs+isoprene-HOM dimers can have the identical molecular formula to the HOM monomers from

monoterpene oxidation. Possible contribution of dimer formation in the isoprene oxidation to C6-10 HOM in the

particle phase observed at a rural site Yorkville, US is reported by Chen et al. (2020), although these HOM are

attributed to be more likely from monoterpene oxidation.

3.4 HOM trimers and their formation

A series of HOM trimers were observed, such as CisH24N4Oy (n=17-22), C15H25N50n (n=20-22), C15sH25N30,
=13-20), C1sH26N4On (n=17-21), and C15H24N20n (n=12-16). Among the trimers, C1sH24N4Onwas the most abundant series
(Fig. S12). The C;sH24N40, series can be explained by the accretion reaction of one monomer HOM RO; and
one dimer HOM RO:..

Ci0H16N30n1*+ CsHgNOn2® = Ci5H24N4On1n22102 R14
The formation pathways of dimer RO, CioHisN3O, (n=12-15) and C1oH17N20, are shown above (reaction R10 and
RI11).

The other trimers were likely formed via similar pathways (Table 2 and Supplement S2). Since NO3-CIMS
cannot provide the structural information of these HOM trimers, we cannot elucidate the major pathways. However,
in all these pathways, dimer-RO, is necessary to form a trimer, and most of the dimer-RO» formation pathways
require at least one double bond in the dimer molecule except for the reaction of RO, with isoprene. Since one
double bond has already reacted in the monomer-RO, formation, we anticipate that in the reaction with NOs it is
more favourable for precursors (VOC) containing more than one double bonds to form trimer molecules than
precursors containing only one double bond, as it is easier to generate new RO» radicals from these dimers by
attack on the remaining double bond(s).

The time profile of CisH24N4O, showed the mixed behavior of first- and second-generation products (Fig.
S13), consistent with the mechanism discussed above since CsHgNOp* and CioH6N30,¢ were of first- or second-
generation and second-generation, respectively. The contributions of the second-generation products became
larger as the number of oxygen atoms increased. In contrast, CisH25N30, showed instantaneous increase with
isoprene addition (Fig. S14), which was typical for time profiles of first-generation products. Both proposed
formation pathways of Ci5H25sN30, (RS6 and RS7) contained a second-generation RO», which was not in line with

the time profile observed. The observation cannot be well explained, unless we assume molecular adducts of a dimer
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with one monomer. It is also possible that some CioHi7N,On* were formed very fast or that there were other
formation pathways of C15H25N30, not accounted for here.

We are not aware of field studies reporting NOs+isoprene-HOM trimers, which is likely due to the same

reason for dimers discussed above. It is challenging to distinguish HOM trimers formed in the reaction NO3; with

1soprene from the dimers formed by cross reaction of the RO, from monoterpene oxidation (C10-RO,) with that from

isoprene oxidation (C5-RO») as their molecular formula can be identical.

3.5 Contributions of monomers, dimer, and trimers to HOM

The concentration (represented by peak intensity) of monomers was higher than that of dimers, but overall
their concentrations remained of the same order of magnitude (Fig 1a, inset). The concentration of trimers was much
lower than that of monomers and dimers. The relative contributions of monomers, dimers, and trimers evolved in
time due to the changing concentration of each HOM species. Comparing the contributions of various classes of
HOM in period 1 with those in periods 1-6 reveals that the relative contribution of monomers increased with time,
especially that of 2N-monomers, while the contribution of dimers decreased. This trend is attributed to the larger wall
loss of dimers compared to monomers because of their lower volatility and also to the continuous formation of
second-generation monomers, mostly 2N-momomers. Overall, the relative contribution of total HOM monomers
decreased immediately after isoprene addition while the contribution of HOM dimers increased rapidly (Fig. S15),
which was attributed to the faster increase of dimers intensity due to their rapid formation. Afterwards, the
contribution of monomers to total HOM gradually increased and that of dimers decreased, which was partly due to

the faster wall loss rate of dimers and to the continuous formation of second-generation monomers.

3.6 Yield of HOM

The HOM yield in the oxidation of isoprene by NO; was estimated using the sensitivity of H>SOs. It was
derived for the first isoprene addition period to minimize the contribution of multi-generation products and to better
compare with the data in literature, thus denoted as primary HOM yield (Pullinen et al., 2020) and was estimated to
be 1.2%5. . The uncertainty was estimated as shown in the Supplement S1. Despite the uncertainty, the primary
HOM yield here was much higher than the HOM yield from the ozonolysis and photooxidation of isoprene (Jokinen
et al., 2015). The difference may be attributed to the more efficient oxygenation in the addition of NOs to carbon
double bonds. Compared with the reaction with O3 or OH, the initial peroxy radicals contains 5 oxygen atoms when
isoprene reacts with NO3, while the initial peroxy radicals contains only 3 oxygen atoms when reacting with OH, and

the ozonide contains 3 oxygen atoms in the case of O3,

4  Conclusion and implications

HOM formation in the reaction of isoprene with NO3; was investigated in the SAPHIR chamber. A number
of HOM monomers, dimers, and trimers containing one to five nitrogen atoms were detected, and their time-
dependent concentration profiles were tracked throughout the experiment. Some formation mechanisms for various
HOM were proposed according to the molecular formula identified, and the available literature. HOM showed a

variety of time profiles with multiple isoprene additions during the reaction. First-generation HOM increased
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instantaneously after isoprene addition and then decreased while second-generation HOM increased gradually and
then decreased with time, reaching a maximum concentration at the later stage of each period. The time profiles
provide additional constraints on their formation mechanism beside the molecular formula, suggesting whether they
were first-generation products or second-generation products or a combination of both. 1N-monomers (mostly Cs)
were likely formed by NOs addition to a double bond of isoprene, forming monomer RO, followed by autoxidation
and termination via the reaction with HO,, RO,, and NOs. Time series suggest that some 1N-monomer could also be
formed by the reaction of first-generation products with NO3, and thus be of second-generation. 2N-monomers were
likely formed via the reaction of first-generation products such as C5-hydroxynitrate with NO3 and thus second-
generation products. 3N-monomers likely comprised peroxy/peroxyacyl nitrates formed by the reaction of 2N-
monomer RO, with NO,, and possibly nitronitrates formed via the direct addition of N>Os to the first-generation
products. HOM dimers were mostly formed by the accretion reactions between various HOM monomer RO», either
first-generation or second-generation or with the contributions of both, and thus showed time profiles typical of either
first-generation products, or second-generation products, or a combination of both. Additionally, some dimers peroxy
radicals (dimer RO,) were formed by the reaction of NO3; with dimers containing a C=C double bond. HOM trimers
were proposed to be formed by accretion reactions between the monomer RO» and dimer ROs.

Overall, both HOM monomers and dimers contribute significantly to total HOM while trimers only
contributed a minor fraction. Within both the monomer and dimer compounds, a limited set of compounds dominated
the abundance, such as CsHsN>On, CsHioN2On, C10H17N30,, and C1oH16N2O, series. 2N-monomers, which were
second-generation products, dominated in monomers and accounted for ~34% of all HOM, indicating the important
role of second-generation oxidation in HOM formation in the isoprene+NOs3 reaction. Both RO, autoxidation and
“alkoxy-peroxy” pathways were found to be important for IN- and 2N-HOM formation. In total, the yield of HOM
monomers, dimers, and trimers accounted for 1.3%., of the isoprene reacted, which was much higher than the HOM
yield in the oxidation of isoprene by OH and Oj; reported in the literature (Jokinen et al., 2015). This means that the
reaction of isoprene with NOj is a competitive pathway of HOM formation from isoprene.

The HOM in the reaction of isoprene with NO3 may account for a significant fraction of SOA. If all the
HOM condense on particles, using the molecular weight of the HOM with the least molecular weight observed in
this study (CsHoNOs), the HOM yield corresponds to a SOA yield of 3.6%. Although SOA concentrations were not
measured in this study, Ng et al. (2008) reported a SOA yield of the isoprene+NOs3 reaction of 4.3%-23.8%. Rollins
et al. (2009) reported a SOA yield of 2% at low organic aerosol loading (~0.52 pg m) and 14% if the further
oxidation of the first-generation products are considered in the isoprene+NOQOs3 reaction. Comparing the potential
SOA yield produced by HOM with SOA vyields in the literature suggests that HOM may play an important role in the
SOA formation in the isoprene+NOs3 reaction.

The ROz lifetime is approximately 20-50 s in our experiments, which is generally comparable or shorter than
the lifetime of RO, in the ambient atmosphere at night, varying from several 10 s to several 100 s (Fry et al., 2018),
depending on the NO3, HO», and RO> concentrations. Assuming a HO», RO», and NOj3 concentration of 5 ppt, 5 ppt
(Tan et al., 2019), and 300 ppt (Brown and Stutz, 2012) respectively, the RO, lifetime in our study is comparable to
the nighttime RO; lifetime (50 s) found in urban locations and areas influenced by urban plume. In areas with longer

RO:; lifetime such as remote areas, the autoxidation is expected to be more important relative to bimolecular reactions.
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This may enhance HOM yield and thus enhance SOA yield. However, on the other hand, at lower RO, concentration
and thus longer RO; lifetime, reduced rates of RO,+RO; reactions producing low-volatility dimers can reduce the
SOA vyield via reducing dimer yield (McFiggans et al., 2019; Pullinen et al., 2020). The RO; fate in our experiments
is dominated the reaction RO,+NOs3 with significant contribution of RO,+RO,, which can also represent the RO, fate
in the urban areas and areas influenced by urban plume. Our experiment condition cannot represent the chemistry in
HO,-dominated regions such as clean forest environment (Schwantes et al., 2015).

We observed the second-generation products formed by the reaction of first-generation products. The
lifetime of first-generation nitrates in the ambient atmosphere, according their rate constants with OH and NO;
(Wennberg et al., 2018), are ~5 h and ~1.3-4 h, respectively, with respect to the reaction with OH and NO3 assuming
a typical OH concentration of 2x10° molecules cm™ (Lu et al., 2014; Tan et al., 2019) and NO5 concentration of 100-
300 ppt in urban areas (Brown and Stutz, 2012). Therefore, they have the chance to react further with OH and NO3
at dawn. In our experiments, the lifetimes of these first-generation nitrates with respect to OH and NOs are
comparable to the aforementioned lifetime due to comparable OH and NO; concentrations with these ambient
conditions. Therefore, our findings on the second-generation products are relevant to the ambient urban atmosphere
and areas influenced by urban plumes. Some of these products such as CsHg10N2Og and multi-generation
nitrooxyorganosulfates have been observed in recent field studies in polluted megacities in east China (Hamilton et

al., 2021; Xu et al., 2021).
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