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Comments from referees/public 

Author responses are indented and italicized below specific comments. Page and line numbers refer to the original 

draft. 5 

Anonymous Referee #1 

General remarks This is an interesting paper, and likely a precursor of a heavily populated suite of studies to come, looking at 

the many profound impacts of the pandemic. The paper strives to show that methane emissions from the US Permian Basin 

are closely linked to the oil price and hence to major economic factors such as the impact of Covid.   

I have a general comment and some very minor specific notes listed below. The general comment is that the paper links 10 

emissions to oil price, not to gas price. Yes, I agree that gas emissions from oil production are important, but surely the obvious 

first link will be gas price rather than oil price? There is a gnomic remark in the abstract: "a state of overcapacity in which 

production exceeds midstream capacity and leads to high methane emissions". This then leads to the statement in L 407 

“consequence of associated gas production increasing at a faster rate than midstream infrastructure capacity, which leads to 

extensive flaring and anomalous conditions related to excess gas throughput (e.g. pressure relief venting).” I’m not wholly 15 

clear here. Does that mean that more oil is being produced (because the oil price has gone up) and because the associated gas 

cannot go down the over-stuffed pipe, it is then vented? OK, might be so, but that hypothesis appears out of nowhere. Maybe 

explain this a bit more? The paper has been rapidly done, but the findings appear soundly based and very interesting indeed. 

Publish with minor revisions. 

 20 

We thank the reviewer for their comments.  In the introduction (P2 L60), we have added the statement “In the Permian 

Basin, oil price is a stronger driver of well development than natural gas price.” For our concluding hypothesis (P22 

L407), we have expanded the sentence to better explain the causal relationship of oil price and methane emissions.  

 

Page 2 Line 35 maybe an extra line to explain further this huge discrepancy?  25 

 

P2 L35: We added an explanation of the discrepancy between top-down and bottom-up approaches to the end of the 

sentence: “…primarily due to abnormal emissions that are difficult to quantify with bottom-up approaches”. 

 

P2 L38. Paragraph break before ‘The Permian Basin? 30 

  

 P2 L38: paragraph break added  

 

P5 Fig 2 caption needs to give the sources of data for this plot.  

 35 

 P5 Figure 2: source added (Baker Hughes, 2020) 

 

P6 L115 “used ‘the’ Weather.”  

 

 P6 L115: “the” added before WRF-CHEM model 40 

 

P7 L134 and also L136. Delaware sub-basin?  

 

 Changed “Delaware Basin” to “Delaware sub-basin” throughout manuscript 

 45 
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P7 L143 the emissions magnitude are not. Trivial comment but the subject - ‘magnitude’ - is singular! Maybe say magnitudeS: 

: :.(apologies – too much zoom frizzles the brain)  

 

 P7 L143: changed “are” to “is”  

 50 

P9 L183 – likewise – timeS are adjusted  

 

P9 L183: changed “are” to “is”  

 

P10 L215 – dramatic rechange??? What does that mean? 55 

 

 P10 L215: replaced “rechange in behavior” with “decline in”  

 

P10 L224 – remove 5 days – this is a bit obscure: I’m not sure what is meant here. Explain further? Is this simply excluding 

3-sigma outliers? What’s the impact of leaving them in? – in gasfield leaks 60 

the outliers can be significant.  

 

After checking the data, we determined that 4 days were removed due to methane enhancements that exceeded the 

modeled concentration by 3 sigma or greater. In all four cases, the enhancement was ~10x higher than expected due 

to unknown circumstances, such as a very large, nearby upwind source.  The outlier days have emission estimates in 65 

the range of 500 – 600 Mg/hr, ~3 – 9x higher than average emissions, but comprise less than 4% of the data so have 

minor impact on the overall results.  

 

P14 L274 and also L288 – is there a connection between weather (i.e. clouds) and emissions? Is the prevalence of cloudy days 

in any way linked to the amount of gas pumped (and vented)? – or is the market so far away that distant gas demand and local 70 

weather are wholly disconnected. I’d assume most demand is from electric power needs (and heating) in Texas and nearby 

states? Is that correct?  

 

We do not expect there is a relationship between regional cloud cover and methane emissions in the Permian Basin.  

There are several markets that purchase oil and gas from the Permian including petrochemical facilities, so economic 75 

metrics such as oil price should have much greater impacts than local demand.  Although clouds should not affect 

emission rates, it is possible that some emission detection approaches would be less effective on cloudy days, which 

potentially could result in less effective leak mitigation. However, this likely has minimal impact on study area 

emissions since most operators only perform leak detection at most a few times per year.  Our study also utilizes two 

approaches: the towers and aircraft, that can quantify emissions on cloudy days. 80 

 

P21 L368-370. “Pandemic-related oil price crash” – yes, but this remark needs to be buttressed by a reference or other factual 

proof. A casual concurrence is not necessarily proof of a causal connection. Also this is oil price. All this discussion has its 

focus on oil price, not gas. How about Henry Hub gas price?- surely that is the parameter to postulate as the controlling factor, 

not oil price? – although I’d agree that contractual gas prices tend to be ratio-ed to oil price.  85 

 

P21 L368-370: changed “pandemic-related” to “pandemic-associated”.  In the introduction (P2 L57), we cite a 

source (Reed and Krauss, 2020) about the likely causal relationship between the pandemic, lower economic activity, 

decreased fuel consumption, and lower oil prices. As discussed in response to the first comment, Permian basin 

development rates are controlled more by oil price than natural gas price. 90 

 

P20 and 21 “G&P” – acronym soup – I know this is defined in L 378 but why not say ‘gathering and processing’. It’s not much 

longer and saves a lot of misery. O&G is another, especially as the paper 

conflates gas price into oil price. 

 95 
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We have removed the acronym “G&P” and replaced throughout with “gathering and processing” or “midstream”.  

We believe O&G is a commonly used acronym and have retained it when used to describe the oil and natural gas 

supply chain or companies, but replaced “O&G production” with “oil and natural gas production” when directly 

referring to production data. 

 100 

Anonymous Referee #2 

This manuscript describes a combination of different atmospheric measurements airborne and tower-based with inversion 

analysis to estimate changes in methane emissions from oil and gas production in the Permian Basin over a period of large 

fluctuations in the price of oil. The authors report a large decrease (more than a factor of 3) in methane emissions from the 

study region coincident with a threefold reduction in oil prices comparing Jan-mid Mar 2020 with late Mar through the end of 105 

April. 

 

The analysis convincingly documents a change in emissions through several different lines of evidence, and is a laudable step 

forward in process understanding of methane emissions from oil and gas production in North America. 

 110 

Overall, the study is clear, but some improvements to organization could be made to improve communication with the readers 

of ACP. I recognize that the authors are presenting many different datasets from many different techniques, which is 

challenging to do. Currently there is too much mixing of methods and results, and the order of things appears to be a bit off. 

Most of the data (results, I would say, including the most important figures/tables) were presented in the methods section 

(section 2) rather that in the results section (section 3). I would recommend the authors carefully separate the methods and 115 

results sections, and put all data (findings: figures, tables, etc.) in the results. It would be helpful for the authors to use sub-

heads in the results section to help guide the flow of data, including results from the main atmospheric analyses and the 

supporting information about flares and well starts. 

 

It was also a bit unusual that there was no discussion section, instead this section was titled “conclusions”. There was some 120 

mixing of methods even into the results section. Line 342 is the first time VIIRS data is mentioned, and this should probably 

be at least mentioned in the methods. Upon re-reading, I saw that it was mentioned in lines 111-112, but a bit more context in 

the first description would be helpful. Methods to describe results presented in Figure 7 need to be fleshed out more as well in 

the methods section preferably. Some figures were presented out of sequence (e.g. Figure 4). A revision of the text with some 

attention to readability and a consistent order of data presentation is recommended. 125 

 

We thank the reviewer for their comments. We have reorganized the paper so that all the tower and TROPOMI results 

(and corresponding figures and tables) are first presented in the results section. We add a description of VIIRS when 

the data are first mentioned in line 111. The caption of Figure 7 has been expanded to describe its relationship to 

Appendix 2.  The sequence of figures and tables have been corrected to match the order they first referred to in the 130 

texts. We have changed the heading “Conclusions” to “Discussion”. 

 

Minor comments: 

 

Incorrectly capitalized letters randomly scattered throughout (e.g., Figure 1 caption: lowercase “black” when referring to a 135 

color, Emissions on line 320) 

 

 We have corrected improperly capitalized letters. 

 

Lines 146-7: “Our assumption that emissions are proportional to gas production should provide a reasonable estimate of the 140 

spatial pattern of emissions corresponding to well locations.” Can you provide a citation or further information for this 

reasoning? 

 

P7 L155: We have changed “corresponding to well locations” to “corresponding to the location of oil and natural 

gas infrastructure” to clarify and added a reference (Maasakkers et al., 2016) 145 
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Line 201: “16Z (11 LST) through 22Z (17 LST)“ Don’t know what Z means in this case, and please spell out that LST=local 

standard time (I assume)  

  

P9 L209: We have spelled out “local standard time” and replace Z with “UTC” 150 

 

Line 208: Figure 4 presented out of sequence (prior to fig. 3)  

  

 Switched numbers of Figures 3 and 4 

 155 

Line 209: “Although though”  

 

 P9 L209: deleted “though” 

  

Line 215: what is “rechange”?  160 

 

Typo and awkward wording.  As discussed in response to referee 1, we replaced “rechange in behavior” with 

“decline in” 

 

Line 268: please provide a citation for this sentence: “Here we consider only higher-quality XCH4 measurements (quality 165 

assurance value > 0.5).“ Don’t know what a quality assurance value is.  

 

P11 268 and References:  We have added the reference describing how quality assurance values are calculated for 

TROPOMI XCH4 data (Apituley et al., 2017) 

 170 

Figure 3: how were aerial & tower-based measurements combined to get 1 estimate? Apologies if I missed this. 

 

For the monthly averages, we average all accepted aerial and tower-based estimates with equal weights.  To clarify, 

we edited the caption of Figure 4 (previously Figure 3) to add “which weights tower and aircraft-based estimates 

equally.” 175 

 

Author changes in manuscript 

 

In addition to the changes outlined above, we have made several updates to the manuscript by incorporating updated production 

and activity data.  Although we did not extend the emission time series featured in the paper, there was a small change in 180 

tower-based methane emission estimates (~10 Mg/hr increase) due to updated quality assurance metrics that remove outliers 

based new data past this time period. The updated production data changes the loss rate results from 3.4% to 3.3% (pre-crash) 

and 1.5% to 1.9% (minimum). 

 

Figures 2, 3, 4, E1, E2, and Tables 1 and D2 have been updated with more recent data. 185 

 

Appendix D has been updated with new well completion data (June – August 2020). 

 

Appendix E has been updated to reflect the addition of new oil and natural gas production data. 

 190 
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Abstract. Methane emissions associated with the production, transport, and use of oil and natural gas increase the climatic 

impacts of energy use; however, little is known about how emissions vary temporally and with commodity prices. We present 

airborne and ground-based data, supported by satellite observations, to measure weekly to monthly changes in total methane 

emissions in the United States’ Permian Basin during a period of volatile oil prices associated with the COVID-19 pandemic. 215 

As oil prices declined from ~$60 to $20 per barrel, emissions changed concurrently from 3.34% to 1.95% of gas production; 

as prices partially recovered, emissions increased back to near initial values. Concurrently, total oil and natural gas production 

only declined by a maximum of ~10% from the peak values seen in the months prior to the crash. Activity data indicate that a 

rapid decline in well development and subsequent effects on associated gas flaring and midstream infrastructure throughput 

are the likely drivers of temporary emission reductions. Our results, along with past satellite observations, suggest that under 220 

more typical price conditions, the Permian Basin is in a state of overcapacity in which rapidly growing natural gas production 

exceeds midstream capacity and leads to high methane emissions.  
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1 Introduction 

Accurate quantification of methane (CH4) emissions from the oil and natural gas (O&G) supply chain is critical for determining 

the climatic impact of O&G production and use (Alvarez et al., 2012). Alvarez et al. (2018) synthesized over 400 site- and 225 

basin-level measurements to estimate United States O&G supply chain emissions at 13 Tg CH4 in 2015, equivalent to 2.3% of 

the nation’s natural gas production and over 80% higher than the U.S. Environmental Protection Agency (USEPA)’s bottom-

up estimate (USEPA, 2020a). There is growing evidence of systematic underestimation of O&G methane emissions when 

bottom-up methods such as emission factors and engineering equations are used rather than top-down, atmospheric 

measurements, primarily due to abnormal emissions that are difficult to quantify with bottom-up approaches (Allen, 230 

2014;Brandt et al., 2014;Zavala-Araiza et al., 2017).  

The Permian Basin (Fig. 1) is the largest oil producing basin in the U.S. and rivals the Ghawar Field in Saudi Arabia for the 

global record (Jacobs, 2019). Although the first oil well was drilled in the Permian Basin nearly 100 years ago, the basin has 

experienced rapid growth in recent years as directional drilling and hydraulic fracturing allowed production from 

unconventional reservoirs (Enverus, 2021). In 2019, the Permian Basin had ~600 new wells drilled per month and produced 235 

an average of 4.3 million barrels (bbl) oil and 15 billion cubic feet (Bcf) natural gas per day, more than double the 2016 average 

values (Enverus, 2021). The Permian Basin’s limited midstream gathering and processing (G&P) infrastructure for delivering 

natural gas to market results in high rates of associated gas flaring relative to other U.S. basins. In 2019, average daily flared 

gas volumes were 0.8 Bcf, 5% of the basin’s natural gas production (Appendix A). There is limited methane emissions data 

from the Permian beyond two recent studies (Zhang et al., 2020;Robertson et al., 2020). Zhang et al. (2020) used satellite 240 

observations from May 2018 – March 2019 in an atmospheric inversion to estimate total O&G related emissions in the Permian 

Basin of 2.7 Tg CH4 annually, or 3.7% of regional gas production. Robertson et al. (2020) found higher well pad CH4 emission 

rates in the Permian Basin compared to most other U.S. basins based on over 70 site-level measurements made in 2018. Alvarez 

et al. (2018), which pre-dates these studies, had assumed other U.S. basins were representative of the Permian; updating their 

estimate with the Permian Basin loss rate from Zhang et al. (2020) results in a roughly 10% increase in the U.S. supply chain 245 

estimate to 14.2 Tg CH4, or 2.5% of total gas production. 

In January 2020, oil prices declined as the COVID-19 pandemic triggered a global slowdown in oil and natural gasO&G 

consumption; in March, there was a rapid price drop when the oil oversupply was exacerbated by both the Organization of the 

Petroleum Exporting Countries (OPEC) failing to reach a deal to cut production and global oil storage capacity reaching its 

limit (Reed and Krauss, 2020). Spot prices for the U.S. oil benchmark, known as West Texas Intermediate-Cushing (WTI-250 

Cushing), varied dramatically during this period; price per barrel was relatively stable at $50-60 (USD) for most of 2019, 

declined to $20 by late April 2020, briefly dropped below zero on April 20, then recovered to $40 by early July (USEIA, 

2020b). Natural gas spot prices (Henry Hub) were less volatile during this period ($1.50-2.00 per million British Thermal 

Units), continuing a gradual downward trend since late 2018 (USEIA, 2020a). In the Permian Basin, oil price is a stronger 

driver of well development than natural gas price. Lower commodity prices reduce investment in new well and infrastructure 255 
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development; in the Permian Basin, the number of active drilling rigs, which had averaged over 400 from April 2019 to March 

2020, dropped to approximately 300, 180, and 135 in April, May, and June 2020, respectivelybelow 200 by early May and 

reached a minimum of 123 in September (Baker-Hughes, 2020) (Fig. 2).  

We hypothesize that the rapid drop in oil price would be associated with a concomitant reduction in methane emissions due to 

lower rates of well development and a subsequent decline in O&Goil and natural gas production. The postulated causal 260 

mechanism for this relationship is the effect of natural gas production from new wells on midstream infrastructure throughput. 

During periods of higher commodity prices, the rapid growth in natural gas production likely exceeds the capacity of the 

pipelines, compressor stations, and processing plants that deliver and process gas to market, leading to associated gas flaring 

and anomalous conditions that increase emissions. Such trends were observed in an earlier drilling slowdown in the Bakken, 

another U.S. unconventional oil formation (Enverus, 2021) (Fig. F1). However, this effect might have been countered in the 265 

Permian if lower profit margins led operators to allocate fewer resources to infrastructure maintenance and emissions 

mitigation, or similarly, restrictions due to COVID-19 reduced the number of field staff performing tasks such as leak detection 

and repair (LDAR) (Gould et al., 2020).  
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 270 

 

 

Figure 1. Regional map with outlines of the Permian Basin (orange), Delaware and Midland sub-basins (dashed green and 

purple) and the 100 km x 100 km study area (Bblack).  Locations of the methane measurement tower sites are shown with red 

stars.  A heatmap displays combined gas and oil production from 2019 expressed in barrels-of-oil equivalents (BOE) and 275 

gridded to 0.1° x 0.1° resolution (Enverus, 2021). 
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 280 

Figure 2. Weekly count of active drilling rigs by type in the Permian Basin between Jaulynuary 2019 and JulySeptember 

August 2020 (Baker Hughes, 2020) 
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2 Study Area and Methods 

2.1 Study Area Description 285 

In January 2020, we began quantifying O&G methane emissions at varying spatiotemporal scales within the Permian Basin 

with a concentrated effort within a 100 km x100 km area of the Delaware sub-basin along the Texas/New Mexico border (Fig. 

1). The 10,000 km2 study area includes ~11,000 active wells and accounts for 33% and 43% of the Permian Basin’s oil and 

natural gas production in 2019, respectively (Enverus, 2021). The study area has a high density of midstream O&G 

infrastructure including 125 gathering and transmission compressor stations, 44 processing plants, and ~32,000 kilometers of 290 

gathering pipeline (Enverus, 2021). Based on spatially allocated USEPA inventory data, O&G sources accounted for >90% of 

methane emissions in the study area in 2012; other sources, dominated by agriculture and waste, were responsible for ~0.5 Mg 

CH4 hr-1 (Maasakkers et al., 2016). Since the non-O&G sources account for only a small fraction of total emissions and there 

have been no major changes in these activities over the past few years, we have assumed all study area emissions are 

attributable to O&G sources beyond the 0.5 Mg CH4 hr-1. 295 

2.2 Method Overviews 

Between January and August 2020, we used two inversion approaches to quantify total methane emission flux from the study 

area at a weekly to monthly frequency. The first approach used aircraft-based instruments to measure atmospheric boundary 

layer (ABL) methane concentration ([CH4]) along the study area perimeter during six daytime flights (January 22, March 9, 

March 25, May 4, May 21, and July 13; Sect. 2.2.2). The second approach continuously quantified [CH4] from March through 300 

August 2020 using sensors installed at three tall towers and one mountaintop station located around the perimeter of the study 

area ((Richardson et al., 2017); Sect. 2.2.1). Both approaches estimated study area methane flux on a daily basis by optimizing 

a prior emissions inventory to minimize model-data differences between observed and simulated regional atmospheric [CH4] 

((Barkley et al., 2017); Sects. 2.2.1 and 2.2.3).  

We also evaluated satellite-based remote sensing observations of column methane enhancement (ΔXCH4) for evidence of 305 

basin-wide trends (Sect. 2.21.4). To provide insights about the contribution of natural gas flares to methane emissions, we 

qualitatively assessed over 300 flares across the basin in February, March, and June 2020 using helicopter-based infrared 

optical gas imaging (OGI) to visually detect the prevalence of unlit flares and combustion issues ((Lyon et al., 2016); Appendix 

B). We estimated flare-related methane emissions by applying combustion efficiency assumptions based on survey results to 

flared gas volume estimates based on satellite observations of flare radiant heat by Visible Infrared Imaging Radiometer Suite 310 

(VIIRS) ((Elvidge et al., 2016); Appendix A). 

2.2.1 Regional atmospheric [CH4] reanalysis 

An atmospheric reanalysis similar to the system used in previous studies (Barkley et al., 2019;Barkley et al., 2017) was used 

to create simulated regional atmospheric [CH4] estimates. The modeling system used the Weather Research and Forecasting 
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(WRF) model coupled with Chemistry v3.6 (Skamarock et al., 2008) configured to simulate two domains, an outer 2600 km 315 

x 2100 km domain with 9 km x 9 km horizontal resolution and 50 vertical levels, with about 30 of these levels in the lowest 3 

km above ground level, and an inner 830 km x 830 km domain with 3 km x 3 km horizontal resolution and the same vertical 

layers. The outer domain is nudged to ERA5 wind, temperature and water vapor reanalyses, and the inner domain is nudged 

to regional observations including ~50 National Weather Service / World Meteorological Organization surface stations, five 

National Weather Service rawinsonde site soundings launched at 0 and 12 UTC, and the meteorological measurements from 320 

commercial aircraft-ACARS. Our choice of parameterization schemes within WRF-Chem matches previous studies (Barkley 

et al., 2019;Barkley et al., 2017). 

Only atmospheric [CH4] from emissions within the model domain are simulated, using techniques demonstrated previously 

(Barkley et al., 2019;Barkley et al., 2017). Preliminary estimates of surface fluxes of [CH4] within the domain are taken from 

the EPA 2012 gridded inventory (Maasakkers et al., 2016), save for the Permian Basin where an updated, production-based 325 

inventory is used. This updated inventory is described in detail by Zhang et al. (2020). Briefly, production site CH4 emission 

factors were developed using methods in Zavala-Araiza et al. (2015) and based on measurements by Robertson et al. (2020), 

which accounted for complexity of well site infrastructure and their related CH4 emissions. Total basin-wide CH4 emissions 

were estimated using activity (Enverus, 2021) and disaggregated to individual sites based on their gas production. Additional 

facility-level CH4 emissions for gathering and boosting stations, gathering pipelines and processing plants were estimated 330 

based on activity data (Enverus, 2021) and CH4 emission factors from Marchese et al. (2015) and the EPA GHGI (USEPA, 

2020a). For the transmission and storage stations, CH4 emissions were taken from Maasakkers et al. (2016). For the Delaware 

sub-basin, total CH4 emissions were estimated at 1.2, 0.11, 0.04, and 0.01 Tg for production sites, gathering and boosting 

stations, gas processing plants and gas transmission and distribution stations, respectively. These point source oil and natural 

gasO&G CH4 emissions were then spatially allocated to a 0.1° × 0.1° grid over the entire basin. This update within the 335 

Delaware sub-bBasin is important to account for the rapid development within the basin since 2012. Different [CH4] sources 

(e.g. oil and natural gas production, landfills, agriculture) and sources inside and outside the study domain are tagged as 

independent tracers in the model. Oil and gas emissions outside of the study domain are multiplied by 1.6 to match estimates 

from Alvarez et al. (2018) and to better account for development in the areas surrounding the study domain. This atmospheric 

reanalysis system enables us to create a first estimate of atmospheric [CH4] consistent with the regional meteorology and the 340 

preliminary estimate of sources within the outer model domain. 

Note that the emissions magnitude from the preliminary [CH4] emissions estimates areis not highly important since the 

emissions estimate is not a Bayesian inversion that assigns an uncertainty estimate to this preliminary estimate. The spatial 

pattern of emissions, however, including the relative change in these spatial patterns, is important for the estimate of fluxes. 

Our assumption that emissions are proportional to gas production should provide a reasonable estimate of the spatial pattern 345 

of emissions corresponding to well locationsthe location of oil and natural gas infrastructure (Maasakkers et al., 2016).   
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2.2.2 Aircraft- based methane emission estimates 

The total CH4 emissions from the study area in the Permian Basin study area were determined using airborne data in 

conjunction with transport modeling. The airborne platform has been deployed and described previously (Conley et al., 

2017;Conley et al., 2016;Karion et al., 2015;Smith et al., 2017). In brief, a single-engine Mooney aircraft is outfitted with a 350 

Picarro CRDS instrument (G2210-m) to measure in-situ atmospheric CH4, CO2, H2O mole fractions, a differential GPS and 

aircraft data computer to enable computation of horizontal wind speeds and directions, and a Vaisala probe to measure ambient 

temperature and relative humidity.  

On each flight day, two laps consisting of a box enclosing the 100 km x 100 km study area were flown at 1100 ±100 ft above 

ground level (agl), with one complete lap taking ~ 2 h to complete. Two to three vertical profiles were also flown by the aircraft 355 

as pairs of ascents/descents between the lowest safe flight altitude (typically 200 to 500 ft agl) and the flight altitude at which 

significant changes are observed in measured species concentrations (e.g., CH4, water vapor, relative humidity and potential 

temperature)- typically 3,000 to 10,000 ft agl. Plots of agl altitude versus these species are used to assess the mixing height of 

surface emissions. Both CH4 concentrations along the flight path and the mixing height determined from the airborne vertical 

profiles are used in transport modeling to determine emissions from the entire study area.  360 

[CH4] emissions are computed from each complete circuit of the study area by the aircraft.  This is done by comparing the 

observed and simulated [CH4] enhancement, the increase in [CH4] downwind of the study area relative to a background value, 

and adjusting emissions within the study area to minimize the absolute error between the simulated and observed ABL 

atmospheric boundary layer [CH4].  The 10th percentile of [CH4] observations in the circuit determines the background.  This 

mole fraction value is subtracted from the observed [CH4] observations, resulting in an estimate of [CH4] enhancements. These 365 

observed enhancements are then compared to simulated [CH4] enhancements by matching observation and model at the nearest 

grid points in space and time. Simulated enhancements are split into two categories: study domain enhancements and 

enhancements originating from outside the study domain. Enhancements associated with sources outside the study domain are 

subtracted from the observed [CH4] enhancements, resulting in a set of observations whose enhancements can be directly 

attributed to emissions within the study domain. The simulated study domain enhancements are then compared to the observed 370 

study domain enhancement, and a scalar multiplier is applied to the simulated enhancements to minimize the absolute error 

between the two datasets. Because the emissions scale linearly with the simulated enhancements, this scalar multiplier, applied 

to the preliminary emissions estimate within the study area, provides a solution to the emissions within the study domain 

(Barkley et al., 2017).  The solution for each circuit is merged into a single daily estimate. 

To test the uncertainty of the emission rate solution for each flight day, a 1000-iteration Monte Carlo uncertainty assessment 375 

was performed, adjusting various parameters to test how they impacted the solution. Through the iterations we examine the 

impact of various possible sources of error, including uncertainty in the background, uncertainty in the assumed influence from 

sources outside the domain, and uncertainty in the atmospheric transport. For uncertainty in the background, we select a random 
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percentile between 5th  and 15th  to use as the methane background in a flight lap. For uncertainty in sources outside of the 

domain that are subtracted from the observations, we multiply the “other” enhancement tracer by a random factor between 0.5 380 

and 1.5 to account for the possibility that regional emissions may be incorrect. For uncertainty in the transport, the time of the 

observations isare adjusted by ± 30 minutes. creating perturbations to the model output timeframe used to compare to the 

observations. From the 1000 iterations, the 2.5th and 97.5th percentile of solutions are chosen to represent the 95% confidence 

interval. 

2.2.3 Tower-based methane emissions estimates 385 

Atmospheric mole fraction measurements of CH4 and CO2 were collected at five locations in the Permian Basin beginning 1 

March 1st, 2020, using methods similar to those described in Richardson et al. (2017). A map of the measurement locations, 

along with oil and gas facilities in the Permian Basin, is shown in Fig. 1.  Note that only four of the five planned measurement 

sites are used in this analysis and shown on Fig. 1 due to instrument malfunctions at the northernmost site. Of these 

measurement locations, three were on towers at measurement heights of 91 – 134 m agl and the westernmost site was at a 390 

mountaintop station on a rooftop 4 m agl.  The measurements were made with wavelength-scanned cavity ring down 

spectroscopic instruments (Picarro, Inc., models G2301, G2401, G2204, and G2132-i).  The air samples were dried using 

Nafion dryers (PermaPure, Inc.) in reflux mode, with an internal water vapor correction applied for the effects of the remaining 

water vapor (< 1 %).  The instruments were calibrated in the laboratory prior to deployment and using quasi-daily field tanks 

traceable to the WMO X2004A scale (Dlugokencky et al., 2005;NOAA, 2015).  The CH4 measurement uncertainty (including 395 

instrument noise, uncertainty due to water vapor calibration and tank assignment uncertainty) for the four tower locations was 

0.6 ppb (Carlsbad), 0.6 ppb (Fort Stockton), 3.4 ppb (Hobbs), and 5.4 ppb (Notress), with the differences being attributable to 

different instrument type,  and short Nafion dryer in the case of Hobbs, and laser aging for (Notrees). 

[CH4] emissions in the study domain were calculated for each day of tower observations using a similar technique as used with 

the aircraft observations. Daily afternoon [CH4] at each tower site averaged from 16:00-22:00 UTC (11:00-17:00 local standard 400 

time) was computed from both the observations and the simulation. A background [CH4] value (both for the observations and 

the model) is selected based on the lowest measurement from the available tower sites.  This background is subtracted from 

all tower sites to create an observed [CH4] enhancement. Simulated enhancements from sources outside of the domain are 

subtracted from the observed enhancements to produce an observed [CH4] enhancement associated with sources inside the 

study domain. A scalar multiplier is then applied to minimize the absolute error between the observed and modelled 405 

enhancements, and a daily emission rate is solved for in the study domain (Fig. 3). 

Unlike the aircraft mass balance observations, which are collected on days where meteorological conditions are ideal for 

measuring emissions from the study domain, the tower dataset is continuous and many days may not be suitable for calculating 

an emission rate from the study domain. The most useful tower observations for solving for emissions within the study domain 

are those whose enhancements are influenced primarily by sources within the study domain and contain minimal enhancements 410 
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from sources outside of the domain. We select for these conditions by retaining days when >50% of the simulated downwind 

afternoon tower enhancements come from sources within the study domain. This filtering removes 85 of 184 available days, 

most of which have easterly winds and contain air masses heavily influenced by oil and gas basins in central and eastern Texas. 

For the remaining 99 days, we remove 4 days whose solutions are more than three median absolute deviations away from the 

median solution, presumably caused by issues in the model transport; excluding these outlier days has minor impact on overall 415 

results. In total, 945 days are used to calculate emissions and trends in the tower dataset between March 1st, 2020 and August 

30th, 2020.  

  

2.2.4 TROPOMI-derived column-averaged methane mixing ratios 

We use column-averaged dry air methane mixing ratios (XCH4) from the TROPOMI instrument from January to June 2020. 420 

TROPOMI was launched in October 2017 onboard the polar sun-synchronous Sentinel-5 Precursor satellite with an ~13:30 

local overpass time. It provides daily global coverage with 7 km x 7 km pixel resolution at nadir (Hu et al., 2018); the pixel 

resolution has changed to ~7 km x 5.5 km at nadir since August 2019. The XCH4 retrieval uses sunlight backscattered by the 

Earth’s surface and atmosphere in the shortwave infrared (SWIR) spectral range and has near-unit sensitivity down to the 

surface (Hasekamp et al., 2019). Here we consider only higher-quality XCH4 measurements based on published quality 425 

assurance metrics (quality assurance value > 0.5, Apituley et al., 2017). 

Figures 5a and 5b show mean methane column enhancements over the Permian basin, observed by TROPOMI in (a) January-

February 2020 and (b) April-May 2020. We calculate the daily methane enhancements over the Permian basin from 

topography-corrected XCH4, relative to a regional background column defined by the 10th percentile of XCH4 across the full 

Permian domain (29-34°N, 100-106°W). The topography correction is based on a linear regression of XCH4 against surface 430 

altitude (similar to the methodology presented in (Kort et al., 2014;Zhang et al., 2020), performed across the continental United 

States (25-48°N, 66-125°W). Roughly 5,000-14,000 TROPOMI observations are available per month across this domain, 

neglecting March and June (Fig. 5c). To mitigate the impact of reduced spatial coverage on our change analysis after February, 

we manually discard observations from days with little to no coverage of the Delaware and/or Midland sub-basins. Data from 

20-40% of observation days in January, February, April, and May (depending on the month) are discarded in this way, but the 435 

total number of observations is reduced by only 5%. Permian basin methane enhancements as observed by TROPOMI appear 

to decrease in early 2020, reaching a minimum in April before beginning to rise again in May.  

Repeating our analysis with the background defined at the 25th percentile level (rather than the 10th), we find that these trends 

are insensitive to the percentile value used. Furthermore, the trends are not explained by seasonal changes in wind speed across 

the Permian. Higher winds could lead to lower enhancements, but data from the NASA GEOS-FP meteorological reanalysis 440 

product indicate that the daily wind speed averaged over the full Permian basin domain, in the lowest 3 km of the atmosphere, 
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during the six hours closest to TROPOMI observation time (15:00-21:00 UTC) decreased from a mean of 7.02 m/s in January-

February to 5.48 m/s in April-May. 

 

3 Results 445 

3.1 Tower and aircraft-based methane emissions estimates 

Figure 3 presents the daily difference between the highest and lowest observed CH4 measurement across the tower network. 

Although the overall magnitude of the study area plume observed at the tower network can be affected by various 

meteorological factors (e.g. wind speed, direction, boundary layer height) large changes in the typical size of the observed 

plumes can be indicative of sudden shift in behaviorbehaviour of local emissions. From the tower network, we frequently 450 

observe large enhancements >200 ppb in March and mid-April, after which point the enhancement rarely increases above 150 

ppb for the remainder of the summer months. It should be noted that a slight decrease in the size of the enhancements would 

be expected during this period due to increased vertical mixing in a seasonally growing boundary layer; however, modelled 

results from this timespan exhibit a much smaller magnitude of change.  Therefore, the dramatic decline in CH4 enhancements 

coincident with the timing of the price crash is likely due to a change in the emissions rather than a change in the meteorology.  455 

 

 

Figure 34 presents a timeseries of CH4 emissions within the 100 x 100 km study area between March 1st, 2020 and June 

30thSetemberAugust 31, 2020 from both aircraft and tower-based approaches. The 95% CI ranges are derived from twice the 

standard error of all accepted daily tower-based estimates in each month. Both aircraft and tower-based methane flux data 460 

show consistent trends of declining then rebounding methane emissions in our Permian Basin study area during March – June 

2020 (Fig. 6). Between January 22 and March 19, 2020, Eemissions were 186 Mg CH4 hr-1 (95% confidence interval range: 

152 – 220 Mg CH4 hr-1). Following the rapid decrease in oil price, emissions between April 11 and May 5, 2020 reached a 

minimum of 65 Mg CH4 hr-1 (95% CI range: 36 – 93 Mg CH4 hr-1).  After the oil price partially recovered, emissions for the 

month of June had increased to 148 Mg CH4 hr-1 (95% CI range 113 – 182 Mg CH4 hr-1). Mean emission estimates for the 465 

remainder of the Summer months were slightly below those before the crash, although show much higher uncertainty due to 

increased difficulty in resolving the signal of emissions from within and outside of the study area boundary. 

 

Combining the monthly tower and aircraft-based estimates with reported gas production (Enverus, 2021), we calculate a March 

2020 loss rate of 3.31% of total gas production (95% CI range: 2.7 – 4.0%), slightly lower but within the uncertainty of 470 

previously reported basin wide estimates from 2018 – 2019 (3.7 ± 0.7 (1σ) %) (Zhang et al., 2020). The minimum loss rate 

calculated for April 2020 was 1.9% of gas production (95% CI range: 1.11 – 2.60%), increasing gradually for the summer 



16 

 

months to again exceed 3.0%. In the full Permian Basin, orbital observations of XCH4 indicate lower methane column 

enhancements in April – May versus January – February 2020, consistent with the aircraft and tower-based flux data (Fig. 5) 

3.2 TROPOMI-derived column-averaged methane mixing ratios 475 

Figures 5a and 5b show mean methane column enhancements over the Permian basin, observed by TROPOMI in (a) January-

February 2020 and (b) April-May 2020. Enhancements over the Permian basin appear to be lower in April-May compared to 

January-February, as indicated by an ~18% reduction in the regional mean between those two periods. This reduction may be 

due in part to lower spatial coverage after February 2020, likely caused by the introduction in March of a different cloud mask 

product in the TROPOMI retrieval algorithm (Siddans, 2020). Considering TROPOMI retrievals with quality assurance values 480 

of 0.5 or greater, we obtain roughly 6,000-32,000 enhancement measurements per month from January to June 2020 over the 

full Permian Basin (Fig. 5c). The limited number of satellite observations over our 100 km x 100 km study area for tower and 

aircraft measurements (Fig. 3) precludes direct comparison with the suborbital measurements, and therefore we provide here 

an analysis of TROPOMI methane enhancement over the broader Permian Basin. Coverage is particularly sparse in March and 

June, so we neglect those two months in the TROPOMI analysis presented here.  485 

Figure 5d shows frequency distributions of methane column enhancements observed by TROPOMI in January, February, 

April, and May 2020. For these monthly curves we restrict our attention to a smaller Permian domain that closely bounds the 

methane hotspots seen over the Delaware and Midland sub-basins (dashed lines in Figs. 5a,b; 31-34°N, 101.4-105.6°W). 

Permian basin methane enhancements as observed by TROPOMI appear to decrease in early 2020, reaching a minimum in 

April before beginning to rise again in May. The trends we identify in TROPOMI methane enhancement analysis across the 490 

Permian Basin are broadly consistent with our findings from tower and aircraft observations of reduced emissions particularly 

during April in our campaign domain of the Delaware sub-basin, but large uncertainties remain due to the different spatial 

domains and the reduced satellite coverage after February 2020. More data and/or more advanced analysis using inverse 

modelling techniques may be needed to reliably characterize Permian basin methane emission trends using TROPOMI satellite 

observations. 495 

3.3 Emission contribution from flaring and well completions 

Well pad development in the study area proceeded at an average rate of 71 new sites per month between August 2019 and 

March 2020, then dropped to a monthly average of 24 sites between April and July 2020 (Appendix C, Fig. 7). The number of 

well completions per month declined from 13488 to 53115 between January and April 2020 (Enverus, 2021); completion 

counts are higher than well pad development rates due to multiple wells being located on a single pad. After rising steadily 500 

throughout 2019, oil and gas production peaked in March 2020 and then declined 9 and 8%, respectively, in April. Based on 

adjusted, incomplete production data for May and June, gas production stayed relatively steady after April while oil production 

dropped an additional 3% (Appendix E). The relative decline in O&Goil and natural gas production between March and April 
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2020 was much greater among wells in the first two months of production, decreasing 50 and 45%, for oil and gas, respectively 

(Appendix E).  505 

The three flare surveys between February and June 2020 consistently found that 11% of flares had combustion issues, with 

5% unlit and emitting hydrocarbons. Even when using conservative assumptions of greater combustion efficiency, we estimate 

a basin-wide flare combustion efficiency of 93%, with the remaining gas (assuming 80% methane content) being emitted to 

the atmosphere (Appendix B). Satellite observations of radiant heat indicate that flared gas volumes were cut in half from 7.6 

to 3.2 Bcf between January and April 2020 (Fig. 8).  510 
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Figure 3. Comparison between modeled and observed differences in the maximum and minimum daily CH4 enhancement 

across the tower network.  Also shown are the 7-day moving averages of each trend.  

  515 
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Figure 4. Tower and aerial emission estimates from the 100 x 100 km study area through August 31, 2020.  Individual daily 

accepted estimates from the tower observations are shown in green diamonds while red circles with error bars represent the 520 

aerial estimate and 95% CI range.  The blue line represents the 7-datapoint moving average of the tower estimates and the light 

blue shading shows the 95% CI range expressed as twice the 7-datapoint moving standard error.  The orange line represents 

the monthly average estimate from the combination of aerial and tower-based methods which weights tower and aircraft-based 

estimates equally.   

525 
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Table 1. Numerical estimates of CH4 flux from the 100 x 100 km study area derived from the combination of tower and aerial 

measurements across several temporal ranges.   

Time Range 

Mean 

Emissions 

(Mg/hr) 

Number of accepted daily 

measurements (Tower, 

Aircraft) 

Standard 

Deviation 

(Mg/Hr) 

Standard 

Error 

(Mg/hr) 

95% CI 

Emission 

estimate 

Mar-2020 162 (17, 2) 67 15 131 - 193 

Apr-2020 84 (14, 0) 63 17 50 - 118 

May-2020 97 (22, 2) 47 10 78 - 116 

Jun-2020 148 (18, 0) 73 17 113 - 182 

Jul-2020 129 (14, 1) 93 24 82 - 177 

Aug-2020 156 (16, 0) 97 24 107 - 204 

‘Pre-Crash Period'     

Jan 22 - Mar 19 2020 
186 (10, 2) 59 17 152 - 220 

‘Emissions Minima' 

Apr 11 - May 5 2020 
65 (13, 1) 53 14 36 - 93 

 530 
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Figure 5. TROPOMI observations of topography-corrected methane column enhancements over the Permian basin, from 

January to June 2020. a-b: Mean methane column enhancements (ppb) over the Permian basin for the January-February and 535 

April-May 2020 time periods, gridded to 0.1° x 0.1° resolution. The thin solid lines indicate state and national borders; the 

thick solid lines describe the 100 km x 100 km tower and aircraft study region; and the dotted lines trace a smaller Permian 

domain that closely bounds the methane hotspots seen over the Delaware and Midland sub-basins. c: Number of TROPOMI 

column retrievals over the full Permian basin domain (29-34°N, 100-106°W) and over the smaller Permian basin domain (31-

34°N, 101.4-105.6°W; dashed lines in panels a, b), by month in 2020. d: Frequency distribution plots of methane column 540 

enhancements over the smaller Permian domain, by month, after removal of days without coverage of the Delaware and/or 

Midland sub-basins (see text). The gray vertical line indicates the distribution maximum for January. 
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Figure 6. Temporal variation in methane emissions and crude oil price. Top: Aerial (red circles with 95% CI error range) and 545 

tower based 7-point moving average and 95% CI (blue line and shading) atmospheric estimates of 100 km x 100 km study 

area CH4 emissions. Middle: 7-day moving average of WTI-Cushing daily oil price.  Bottom: Orange line and shading presents 

resulting CH4 loss rate combined aerial and tower-based measurements utilizing published monthly gas production within the 

study area (Enverus, 2021).  Red points present the loss rate utilizing only the aircraft-based emission estimates and the monthly 

gas production during the month of the flight.  550 
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 555 

Figure 7. Number of new well pads constructed per month between August 1, 2019 and July 31, 2020 in the full Permian 

Basin and our 10,000 km2 Delaware sub-basin study area based on satellite imagery and machine learning (Appendix C). 
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 560 

Figure 8. VIIRS-derived gas flaring in the study region. (A) Spatial distribution of the cumulative adjusted radiant heat over 

the period between January 2019 and June 2020 aggregated over a 0.05 x 0.05° grid resolution. (B) Histogram of VIIRS-

derived source temperatures. Dotted lines show the temperature regime characteristic of gas flaring sources (1400—2500 K). 

(C) Monthly trend in VIIRS-derived gas flared volumes. The mean estimate in shown in solid line and the 95% CI on the mean 

is shown in the shaded area.   565 
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4 Discussion 

The pandemic-related associated oil price crash provided an unexpected opportunity to assess temporal variability in methane 

emissions during a period of volatile oil prices and associated operational changes. In support of our hypothesis that methane 

emissions would decline with oil price, we observed a three-fold reduction in Permian Basin study area methane emissions 

that was strongly correlated to the average daily oil price. Between Q1 and Q2 2020, Permian basin oil and natural gas 570 

production dropped about 12% and 8% respectively; the magnitude of change for oil and gas production was similarly about 

11% and 9% within the 100x100 km study area (reference to figure).  The relative decline in oil and natural gasO&G production 

during this period was less than 10%; aAccordingly, the loss rate temporarily decreased from 3.33.3% to 1.91.9% of gas 

production between January 22 – March 19 and April 11 – May 5, 2020 (Appendix E). It is important to note that even the 

minimum observed loss rate of 1.91.9% is several times higher than the performance targets committed to by major oil and 575 

natural gas production companies accounting for about one-third of global oil production, including some with operations in 

the Permian Basin (OGCI, 2020). We hypothesize that total methane emissions are positively correlated with oil price due to 

three interrelated factors associated with well development: 1) well completion rates, 2) associated gas flaring volumes, and 

3) indirect impacts of new gas production on the gathering and processing (G&P) system.  

Lower oil prices directly led to reduced emissions by decreasing well development activities, as we observed for rig count, 580 

new site construction, and well completions following the price crash. Well development activities are an intermittent source 

of methane emissions, particularly completion flowback, the typically multi-day period following hydraulic fracturing when 

fluids, excess proppant, and entrained gas are expelled from the wellbore (Allen et al., 2013). We estimate that the ~870 fewer 

well completions in April versus January 2020 caused average potential flowback emissions in our study area to decline from 

9 45 to 26 Mg CH4 hr-1 (Appendix D). At the time of the study, U.S. federal regulations mandated the use of reduced emission 585 

completions to control emissions in most situations; however, operator reported data suggest actual emissions (12 – 2.54 Mg 

CH4 hr-1) are of similar magnitude to our estimate ofless than ten percent of potential emissions. ((USEPA, 2019, 2020b); 

Appendix D).  

The observed two-fold reduction in flared gas volumes between January and April 2020 was likely the result of the large drop 

in gas production from new wells. Unconventional wells tend to have high initial gas production followed by steep declines. 590 

With lower rates of well development and new gas production in the area, competition for limited gas pipeline capacity likely 

was abated, leading to less flaring of stranded associated gas. Assuming a combustion efficiency of 93%, we estimate flare-

related methane emissions in our study area were approximately 8 and 3 Mg CH4 hr-1 in January and April 2020, respectively 

(Appendix A). Our combustion efficiency assumption, which is based on repeat observations of over 300 flares, is 

conservatively high and therefore our emission estimate represents a lower bound. However, even with worst-case assumptions 595 

of flare combustion efficiency it is unlikely that January and April flare-related emissions would have exceeded 20 and 7 Mg 

CH4 hr-1, respectively (Appendix B).  
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Our estimates of well completion and flare-related methane emissions account for less than 20% of the observed total reduction 

between pre-crash and minimum price conditions; therefore, we theorize that the primary driver of emission reductions is 

indirect improvements to midstream gathering and processingG&P system performance resulting from reduced inputs of gas 600 

from new wells. This result suggests that the high methane emission rate observed in the Permian Basin in recent years is in 

large part due to insufficient capacity of G&Pmidstream infrastructure for handling and delivering rapidly growing rates of 

natural gas production (Zhang et al., 2020). The drastic decline in flared gas volumes during the oil price crash suggests that 

the reduction in new gas production relieved G&Pmidstream  capacity issues. A similar pattern was observed in the Bakken 

formation during the oil price decline of 2015-2016: price drops caused only a small decrease in total production but a large 605 

decrease in drilling and flaring rates (Appendix F). Our study provides the first direct evidence of reduced methane emissions 

resulting from an apparent abatement of infrastructure capacity limitations. 

The high methane emission rate observed in the Permian Basin during periods of higher oil commodity prices is likely a 

consequence of associated gas production increasing at a faster rate than midstream infrastructure capacity for sending gas 

downstream. , whichThis leads to both extensiveintentional flaring of stranded gas and fugitive emissions from anomalous 610 

conditions related to excess gas throughput (e.g. pressure relief venting). Our observations of emissions declining concurrently 

with new well development suggest that methane emissions could be mitigated in the Permian Basin and similar oil-producing 

fields by better aligning development rates of wells and midstream infrastructure. For example, regulations could prohibit the 

drilling of wells in areas without sufficient capacity to transport newly produced gas to market. Our findings suggest that 

policies which tie the maximum rate of well development to infrastructure capacity, in addition to other approaches such as 615 

requiring high frequency or continuous monitoring to detect large emission sources (Alvarez et al., 2018), can facilitate lower 

methane emissions that reduce the climatic impact of oil and gas production. 
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Appendix A. VIIRS-derived flared natural gas volumes 620 

We assess the monthly trends in the volumes of natural gas flared in the study region using nighttime fire and flare data 

observed by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar-Orbiting 

Partnership satellite. Specifically, we use the VIIRS NightFire V3.0 data product to support our analysis (Elvidge et al., 2013) 

For the study region and for the period between January 2019 and June 2020, we retrieved 49,885 individual VIIRS detections 

for which it was possible to estimate flaring source temperatures based on Planck curve fitting of the source radiances Elvidge 625 

et al. (2013). During this period, the mean VIIRS-derived source temperature was 1869 K. The histogram of source 

temperatures is shown in Fig. 8b, indicating a strong gas flaring signal in the characteristic temperature regime of between 

1400 and 2500 K. Elvidge et al. (2015) developed a correlation between the VIIRS-derived radiant heat and reported gas flared 

volumes and derived the relationship: 

 630 

𝑉𝑎  =  0.0274 𝑅𝐻′(𝑅2 = 0.86)   

 

where 𝑉𝑎 is the annual volume of gas flared (in billion cubic meters) and 𝑅𝐻′ is the modified radiant heat for each individual 

flare, adjusted to account for the observed non-linear relationship between flared gas volume and radiant heat and was 

computed as:  𝑅𝐻′ =  𝜎𝑇4𝑆0.7 , where 𝜎 is the Stefan-Boltzmann constant (5.67 x 10-8 W m-2 K-1), T and S are the source 635 

temperature and area, respectively, and the exponent (0.7) was empirically developed by Elvidge et al. (2015) to address non-

linearity. Figure 8a shows the spatial distribution of the cumulative 𝑅𝐻′ in the study region over the period between January 

2019 and June 2020, as aggregated over a 0.05° ×  0.05° grid resolution. To estimate monthly gas flared volumes (𝑉𝑚 in billion 

cubic feet) for the study area, we modify equation the equation above, assuming the relationship holds over monthly intervals: 

 640 

𝑉𝑚  =  0.0274 𝑅𝐻′  ×  
1

12
 × 35.315 [

𝐵𝑐𝑓

𝐵𝑐𝑚
]  

 

We use the equation above to compute the mean monthly gas flared volumes (and 95% CI on the mean) in the study area based 

on the daily 𝑅𝐻′ aggregated from individual detected flares. The trend in the monthly gas flared volumes is shown in Fig. 8c. 

The average flaring rate in 2019 was 8.2 ± 2.2 Bcf/month. From February 2020, a sharp decline in the mean gas flaring rate 645 

was observed, with the lowest estimated flaring rate of 3.2 ± 0.4 Bcf in April. Following a similar procedure for the entire 

Permian region, the estimated mean monthly flaring rate declined from a mean of 23 ± 5 Bcf/month in 2019 to 8.1 ± 1.7 Bcf 

in May 2020. Thus, the lowest estimated monthly gas flared volumes in 2020 were a factor of 2.6 and 2.8 times lower than the 

monthly mean observed in 2019 for the 100 km x 100 km study region and full Permian Basin, respectively. 

  650 



28 

 

 

Appendix B. Aerial flare performance survey 

We compiled a list of potential locations of recently active flares in the Permian Basin (Delaware and Midland sub-Basins) 

based on a geospatial analysis of the SkyTruth Global Flaring Dataset, which is derived from heat sources detected by the 

Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the NOAA Suomi NPP satellite; SkyTruth has applied 655 

several filters to the VIIRS data including removing heat sources <1,500 ºC and with <3 detections per month (Skytruth, 2020). 

To account for spatial uncertainty of SkyTruth flare locations, we spatially joined their individual flare detections between 

October 1, 2019 and January 31, 2020 using a 100-meter buffer distance; the centroid latitude/longitude of the 1,014 joined 

detections were defined as likely locations of recently active O&G flares. Leak Surveys, Inc. (LSI), a leak detection company 

specializing in aerial optical gas imaging, was provided a list of 573 potential active flare locations from the original set of 660 

1,014. The site selection methodology balanced representativeness and survey efficiency by defining one contiguous, high 

flare density area in each sub-basin that could be surveyed over the course of approximately five days. For the Delaware sub-

Basin, we selected 323 locations located within our main study area (NW and SE corners are 32.325° N, 103.822° W and 

31.417° N, 103.202° W, respectively). For the Midland sub-Basin, we selected 250 locations from the two counties (Midland 

and Martin) with the highest flare counts from the analysis of VIIRS data. LSI surveyed these locations with a custom infrared 665 

camera (IR) deployed in a R44 helicopter. Potential flare locations were identified with spatial coordinates and a unique flare 

ID.  

 

LSI performed three surveys of the potential flare locations during the weeks of February 17, March 23, and June 22, 2020 

(EDF, 2020). At each potential flare location, LSI determined if one or more flares was present at the spatial coordinates, and 670 

if so, observed the flare(s) for operational status. For flares with apparent combustion issues, LSI recorded 30 – 60 seconds of 

infrared and visual video footage of the flare plume to provide visual evidence of flare status. For each flare, LSI assigned a 

qualitative assessment of the apparent flare status at the time of survey from four categories: inactive and unlit with no 

emissions (inactive); active, lit, and operating properly (operational); active and lit but with operational issues such as 

incomplete combustion or excessive smoke (malfunction); or active, unlit, and venting methane (unlit). For survey 1, LSI 675 

observed 337 flares from the random selection of potential locations. For surveys 2 and 3, a random subset of the 337 flares 

was selected for re-survey, prioritizing locations that had previously observed issues. We observed similar flare performance 

in each of the three surveys:  11% of active flares had observed malfunctions, including 5% that were unlit and venting (Table 

B1). 

 680 

To estimate methane emissions from flaring, we used our qualitative flare performance data and conservatively high 

assumptions about the combustion efficiency of operational, malfunctioning, and unlit flares to estimate overall combustion 

efficiency, and then applied combustion efficiency to estimated flared volumes in 2019 based on an analysis of VIIRS data 

(Appendix B). We assume that operational flares perform at the EPA default combustion efficiency of 98% (Regulations, 
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2016). The 5% of flares that were unlit and venting were assumed to have a combustion efficiency of 0%. The 6% of flares 685 

that were lit with apparent combustion issues were assumed to have 90% combustion efficiency. If we assume flared gas 

volumes are proportional to the observed fraction of flares by performance, then the overall combustion efficiency of active 

flares in the Permian Basin is 93%, which means 7% of flared methane is emitted. Applying 93% combustion efficiency to the 

280 Bcf of gas flared in the Permian in 2019 (assuming 80% CH4 content) results in annual methane emissions of 

approximately 300,000 Mg CH4 from flaring in the Permian; unlit flares account for about 65% of these emissions, while 690 

operational and poorly combusting flares account for about 15 and 10%, respectively. As a sensitivity analysis, we use 

alternative combustion efficiency assumptions of 90%, 50%, and 0% for operational, malfunctioning, and unlit flares, 

respectively; this leads to an overall combustion efficiency of 83% and 2.3x more flare-related methane emissions that our 

conservatively low assumptions. 

 695 

EPA publishes two separate estimates of Permian flaring methane emissions, which incorporates the 98% combustion 

efficiency but different gas flared data. The 2020 Greenhouse Gas Inventory (USEPA, 2020a) reports 2018 Permian Basin 

methane emissions of 12,100 Mg CH4 from associated gas flaring, plus 8,500 and 4,600 Mg CH4 from associated gas venting 

and miscellaneous production flaring, respectively. The Greenhouse Gas Reporting Program (USEPA, 2020b) reports 18,800 

Mg CH4 from Permian Basin onshore production facilities. 700 

 

Table B1. The operational performance of Permian Basin flares as observed during three helicopter-based infrared optical gas 

imaging surveys. 

Surveyed Flares Survey 

1 

Survey 

2 

Survey 

3 

Average 

Operational 276 147 237 
 

Inactive 25 0 62 
 

Combustion Issue 23 9 18 
 

Unlit and Venting 13 10 12 
 

Total 337 166 329 
 

     

Malfunctioning (% of active) 11.5% 11.4% 11.2% 11.4% 

Unlit and Venting (% of active) 4.2% 6.0% 4.5% 4.9% 

 

  705 
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Appendix C. Satellite imagery and machine learning based estimates of well pad development 

We mapped new well pad construction in the Permian Basin using a two-step machine learning and remote sensing approach. 

First, well pad candidates were identified in satellite imagery with a convolutional neural network (CNN) model in individual 

scenes. The model predictions were then compared between the beginning and end of each month to identify the locations of 

newly constructed well pads. Second, by differencing before/after model outputs, persistent false-positives in the model were 710 

removed. The resulting model was deployed on imagery over the Permian Basin on a monthly cadence between August 1, 

2019 and July 1, 2020. 

 

We assessed the monthly trends in new well pad construction in the Permian Basin using a combination of satellite imagery 

from the European Space Agency Sentinel-2 satellite (ESA, 2020) and the National Aeronautics and Space Administration 715 

(NASA) Landsat-8 satellite (USGS, 2020). Imagery from Sentinel-2 has a pixel resolution of 10m, sufficient to clearly identify 

well pads, and is collected approximately once every 5 days for any location, providing an average of 6 collects per month. 

While this is generally sufficient for monthly monitoring, some areas experience high cloud cover in all the scenes, causing 

well pads to be missed. Imagery from Landsat-8 was used to fill in for such cloudy scenes. Despite the slower 16-day revisit 

rate and coarser (30m) pixel resolution of Landsat-8, well pads are still easily detectable. The combined use of these two 720 

satellites provided at least one cloud-free scene for all of the Permian Basin for each month within the time period we 

monitored. We use six spectral bands from both Sentinel-2 and Landsat-8: "red", "green", "blue", "NIR", "SWIR1", and 

"SWIR2". 

 

New well pad construction was detected in a two-step approach. Well pad candidates were first identified with a convolutional 725 

neural network (CNN) model in individual scenes. The model predictions were compared between the beginning and end of 

each month, and new well pads were identified. Well pads were detected using a semantic segmentation approach. We used a 

UNet architecture with a six-band input layer with shape (height, width, 12) and output predicting the presence or absence of 

well pads in each pixel. Landsat-8 imagery was resampled to 10m to match the resolution of Sentinel-2 imagery. 

 730 

The model was trained on a ground-truth dataset taken from well pads detected with a separate machine learning model run 

on high resolution (1.5m) imagery. We generated ~7000 training tiles, each of size 512 x 512 pixels and containing 0 to 400 

well pads each. The dataset was split into sets with 70 % for training, 10% for validation, and 20% for testing. Examples of 

image-target pairs are shown in Fig. C1. 

 735 

New well pads were detected by comparing model output heatmaps between the beginning and end of sequential monthly time 

periods (Fig. C2). Intuitively, pixel values in satellite imagery change frequently in irrelevant ways, so it is more effective to 

identify change in the model output. The heatmap from the earlier time was subtracted from the later time. A threshold operator 
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followed by a morphological opening operation were applied to these difference maps. New well pad detections were identified 

in the resulting binary map as shown in Fig. C3. 740 

 

To further remove false positives, we require that new well pad candidates should not have existed in multiple months leading 

up to the construction date, and should continue to exist for several months after. We thus used the three months before and 

the two months after to remove candidates that fail this condition. While the 10m resolution of the imagery makes it difficult 

to confirm with certainty that candidates contain oil and gas infrastructure, we suspect that the Permian Basin region is unlikely 745 

to experience a high volume of unrelated ground clearing for development. We confirm this with manual inspection, see details 

below. 

 

The CNN and change detection pipeline was run over the Permian Basin on monthly imagery composites between August 1, 

2019 to July 1, 2020. The deployment was done using the Descartes Labs platform. Tiled imagery was drawn on-the-fly, model 750 

inference was performed in a cloud-native kubernetes infrastructure, and results were stored in the commercial cloud. Finally, 

the authors hand-verified the candidates for each month.  

 

The change detection analysis has a precision of ~100%, since the final results have been hand-verified. It is infeasible to 

measure the model accuracy or recall directly, as these would require identifying a substantial number of newly constructed 755 

well pads as well as false negatives (newly constructed well pads that were missed by the model), which would require 

extensive hand-labeling; additionally, the model performance may vary across geographies, making a single metric less useful. 

Instead, we estimated the recall using a dataset of well pads identified with a separate machine learning model in high-

resolution imagery; we measured the fraction of these well pads that are detected as well pads by the UNet in single mosaics. 

Any well pads missed in this step will not be identified as new well pads. We measured this recall on four separate monthly 760 

mosaics, and found a recall of 90.0%, with a statistical uncertainty of less than a percent. Finally, the number of newly 

constructed well pads per month are shown in Fig. 7 with examples presented in Figs. C4 and C5. 
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 765 

Figure C1. Examples of image-target pairs: (left) Sentinel-2 RGB imagery (ESA, 2020); (right) Ground truth 
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Figure C2. CNN model example, showing Sentinel-2 imagery (left; ESA, 2020) and model output heatmap over the same 770 

area (right). 
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 775 

 

 

Figure C3. Before (top-left) and after (top-right) medium-resolution imagery (ESA, 2020).  Same area in model output 

(bottom, left to right): 1. before, 2. after, 3. difference, 4. detected new well pads. 

  780 
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Figure C4. Example of an area where new development was found, before (top) and after (bottom) shown in Sentinel-2 

imagery (ESA, 2020). Points in yellow indicate the locations of new well pad development. 785 
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Appendix D. Well completion emission estimates 

Well completion flowback refers to the unconventional well development period following hydraulic fracturing in which water, 

proppant, and entrained natural gas flow out of the wellbore to prepare a well for production (Allen et al., 2013). As of 2015, 790 

U.S. federal regulations require all oil and gas wells except exploratory and low-pressure wells to utilize reduced emission 

completions (RECs), which separate the natural gas and send to a pipeline as soon as technically feasible (USEPA, 2019); 

occasionally, flaring or a combination of REC and flaring is used to partially control emissions. Previous research has 

demonstrated that RECs control flowback emissions by an average of 99% (Allen et al., 2013). To estimate monthly 

completion-related methane emissions within our 100 km x 100 km study area during the study period, we compiled a list of 795 

every well located within our study area with a completion date between January 1 and April 30, 2020 (Enverus, 2021) and 

applied two approaches to estimate potential and actual emissions. The first approach estimated actual emissions by applying 

an emission factor (total methane emitted per well completion) based on 2018 data from 3,359 completions in the Permian 

Basin reported to the EPA Greenhouse Gas Reporting Program, which operators estimate with a choice of measurements or 

engineering equations (USEPA, 2019, 2020b). To convert total emissions into an hourly emission rate, we assumed that 800 

completions emit at a constant rate over 4 days, the average duration from Allen et al. (2013).  The second approach, which 

estimated potential emissions, assumes that wells emit their initial gas production for 4 days following the completion date; 

we assumed 80% methane content of natural gas and used the daily average production rate from the first complete month of 

gas production (referred to as PracIP by (Enverus, 2021)). 

 805 

The number of monthly well completions per month in the study area dropped from 134188 in January to 115 in April and 

then to a minimum of 29 in June 2020 (Table D2)53 in April 2020. Based on our first approach, January and 

April 2020 completion-related actual emissions were 2.53.6 and 12.2 Mg CH4 h-1, respectively, with an average emission 

factor of 19 kg CH4 h-1 per completion and 93% of completions utilizing a REC or REC plus flaring (Table D1). Based on the 

second approach, the average potential emission rate per completion was 612.0 kMg CH4 h-1 in January and 231.7 kMg CH4 810 

h-1 in April 2020; this results in total study area completion-related emissions of 9.345 and 1.926 Mg CH4 h-1 in January and 

April, respectively (Table D2).  

 

 

 815 
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Table D1. Estimate of Permian Basin well completion emission factors based on US EPA Greenhouse Gas Reporting Program 

data. 

 

Permian Basin 

Annual 

Completions 

(#) 

Total 

Methane 

Emissions 

(Mg CH4) 

Average 

Emissions (Mg 

CH4 completion-1) 

Average Emission 

Rate assuming 4 day 

duration (kg CH4 

completion-1) 

Reduced Emission 

Completion (REC) 
1,162 376 0.3 3 

REC & Flared 1,955 4,673 2.4 25 

Uncontrolled 14 35 2.5 26 

Flared 228 1,202 5.3 55 

Total 3,359 6,287 1.9 19 

 

  825 
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Table D2. Estimate of average monthly potential completion-related emissions from our study area from January 2019 – April 

September 2020 based on initial gas production data and the assumption of 4 day completion duration. 

Year Month Average Ongoing 

Daily Well 

Completions (wells) 

Average Aggregate 

Completion-Related 

Emissions (Mg CH4 h-1) 

2019 1 13435 247.1 

2019 2 21616 4315.2 

2019 3 17570 3912.3 

2019 4 23706 4312.0 

2019 5 18595 3711.0 

2019 6 18569 359.3 

2019 7 23762 4414.7 

2019 8 25884 5013.6 

2019 9 16492 4012.1 

2019 10 22658 4210.5 

2019 11 26720 5214.6 

2019 12 20461 439.4 

2020 1 22505 459.3 

2020 2 24335 477.7 

2020 3 22259 343.7 

2020 4 15212 261.9 

2020 5 5 10 

2020 6 4 9 

2020 7 8 19 

2020 8 8 12 

2020 9 10 26 
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 830 

Appendix E. Oil & Gas production data and assessment of database completeness 

Production quantities of oil and gas from individual wells is reported to public state databases (RRC, 2020;NMOCD, 2020); 

however, the best results are achieved by analyses from an external database (Enverus, 2021) which filters and aggregates all 

of the publicly available datasets from all reporting agencies.  Oil and natural Ggas production data from New Mexico is 

updated on a monthly cadence, while data from Texas is updated twice each month but still only at monthly resolution.  835 

Timeseries of Ooil and natural , Ggas and combined barrels-of-oil equivalent (BOE) production within the greater Permian 

basin and 100 x 100 km study area are presented in Fig. E1.  Similarly, Fig. E2 presents a timeseries of the number wells 

reporting production each month within the basin and 100 x 100km study area as well as timeseries of the number of wells 

exhibiting their first month of Ooil and natural gGas production and their as their spud date: the date at which the subsurface 

drilling commences within the process of well development.  The typical lag in data reporting is at least 3 months (Enverus, 840 

2021) (e.g. O&Goil and natural gas production during the month of June is available on or shortly after the 1st of September); 

however in practice reporting delays upwards of 6 months have been observed. The draft version of this manuscript included 

an assessment of the database completeness for incomplete production.  At time of revised manuscript submission (March 

2021), we suspect the production database is complete through August 31 2020 for the data presented in this manuscript and 

therefore no longer anticipate the need to estimate the database completeness.   We anticipate additional delays in the reporting 845 

of production data related to the global COVID-19 pandemic, thus here we attempt to broadly assess the incompleteness of 

the production dataset and its related impact on our estimates of the study area CH4 loss rate.   
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Figure E1. Monthly timeseries of oil (top row) and natural gas (bottom row) production in both the Permian Basin (left 

column) and 100 x 100 km study area (right column) (Enverus, 2021). 850 
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Figure E2. Monthly timeseries of active wells (top row) and newly produced wells by spud date and month of first production 

(bottom row) in both the Permian Basin (left column) and 100 x 100 km study area (right column) (Enverus, 2021). 

 855 
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The number of active wells reporting production was relatively constant in the Permian basin was relatively consistent through 

March 2020, only exhibiting a drop from the trend in April 2020 suggesting that new wells were coming online at roughly the 

same rate of older, depreciated wells being shut in.  Alternatively, in the smaller 100 x 100 km study area which represents 7.4 

± 0.3 % (1σ) of the total Permian basin active well count for January 2019 – March 2020, the number of wells reporting 860 

production each month was increasing at a rate of 102 ± 58 (1σ) wells per month between January 2019 and March 2020.  

During the same time span in the study area, the rate of new well production (168 ± 27 wells/month, 1σ) significantly outpaced 

the rate of depreciated wells being shut in by roughly a factor of 3.  

 

Therefore, to estimate the complete dataset of total monthly production in the April-June 2020 under the timeframe of the 865 

observations of CH4 emissions presented in Fig. 2, we extrapolate the average well count for January to March 2020 to the 

subsequent three months as the dotted line on the Orange and Red traces of Fig. E2.  We assume the deficit in wells reported 

represent the same distribution of oil and gas reported from each well present in the database; therefore, we linearly scale the 

production upwards by this factor as shown in the dotted lines in Fig. E1. This assessment suggests that that production largely 

plateaued during the height of the COVID-19 pandemic, rather than the <10% decrease observed by the reported data at time 870 

of submission.  Therefore, using the projected gas production estimates, we calculate a projected loss rate in the basin from 

both the monthly mean tower data and May aerial measurements the as the purple dotted line and yellow points respectively 

in Fig. E3.   

 

This approach discussed above likely overestimates the oil and gas production due to the reduced activity observed from 875 

satellite well pad detection (Fig.7) and the reduced rate of new well development (Fig. E2).  Therefore, we consider this to be 

an upper limit on the study area gas production and therefore a lower limit on the CH4 loss rate, with the actual value likely 

falling between the two estimates.  Regardless, the adjusted loss rate represents a minimal adjustment within the 95% CI 

estimate expressed by the aerial and tower data temporal and analytical uncertainty that we do not consider it to differ 

significantly from the reported result in Fig. 6.  880 
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Appendix F. Supplementary data from Bakken Shale 

 885 

 

Figure F1. Number of wells drilled versus fraction of total gas production flared in the Bakken region (North Dakota, U.S.A.) 

from 2012 - 2017. Similar to trends observed in the Permian, there was a strong correlation between wells drilled and fraction 

of gas flared with both values decreasing rapidly when oil prices crashed in 2014.  

  890 
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