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Abstract. The anthropogenic impact is a major factor of the climate change which is highest in industrial regions and 

modern megacities. Megacities are a significant source of emissions of various substances into the atmosphere, including 

CO2 which is the most important anthropogenic greenhouse gas. In 2019 and 2020, the mobile experiment EMME (Emission 

Monitoring Mobile Experiment) was carried out on the territory of St. Petersburg which is the second largest industrial city 

in Russia with a population of more than 5 million people. In 2020, several measurement data sets were obtained during the 15 

lockdown period caused by the COVID-19 (COronaVIrus Disease of 2019) pandemic. One of the goals of EMME was to 

evaluate the CO2 emission from the St. Petersburg agglomeration. Previously, the CO2 area flux has been obtained from the 

data of the EMME-2019 experiment using the mass balance approach. The value of the CO2 area flux for St. Petersburg has 

been estimated as 89±28 kt km-2 yr-1 which is three times higher than the corresponding value reported in the official 

municipal inventory. The present study is focused on the derivation of the integral CO2 emission from St. Petersburg by 20 

coupling the results of the EMME observational campaigns of 2019 and 2020 and the HYSPLIT (HYbrid Single-Particle 

Lagrangian Integrated Trajectories) model. The ODIAC (Open-source Data Inventory for Anthropogenic CO2) database is 

used as the source of the a priori information on the CO2 emissions for the territory of St. Petersburg. The most important 

finding of the present study based on the analysis of two observational campaigns is a significantly higher CO2 emission 

from the megacity of St. Petersburg as compared to the data of municipal inventory: ~75800±5400 kt yr-1 for 2019, 25 

~68400±7100 kt yr-1 for 2020 versus ~30000 kt yr-1 reported by official inventory. The comparison of the CO2 emissions 

obtained during the COVID-19 lockdown period in 2020 to the results obtained during the same period of 2019 

demonstrated the decrease in emission of 10% or 7400 kt yr-1. 

Keywords: ground-based remote sensing, portable spectrometers, FTIR spectroscopy, mobile experiments, anthropogenic 

emissions in megacities, transport modelling of air pollutants, CO2, ODIAC, HYSPLIT 30 
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1 Introduction 

Accurate quantitative assessment of anthropogenic emissions into the atmosphere is necessary for studying the mechanisms 

and factors that determine the impact of changes in atmospheric composition on climate, ecosystems and human health. 

Also, such an assessment is important for the development and control of compliance of the national policies in the field of 

environmental and climate protection to international agreements, regulations and standards (Pacala et al., 2010; Ciais et al., 35 

2015; UNFCCC, 2015). In 2018, World Meteorological Organisation (WMO) established the IG3IS division (Integrated 

Global Greenhouse Gas Information System). Its activities are related to international efforts relevant to the implementation 

of the Paris Agreement under the United Nations Framework Convention on Climate Change (UNFCCC, 2015). The main 

goal of IG3IS is “to expand the observational capacity for greenhouse gases (GHG), extend it to the regional and urban 

domains, and develop the information systems and modelling frameworks to provide information about GHG emissions to 40 

society” (IG3IS, 2020). 

According to statistics for 2018 (UN, 2021), 4.2 billion people or about 55% of the World's population live in cities. 

Urban areas are responsible for more than 70% of global energy-related CO2 emissions (Canadell et al., 2010). The vast 

majority of anthropogenic CO2 emissions in developed countries are associated with the burning of fossil fuels (FF) and can 

be estimated with good accuracy on the basis of the total fuel consumption. At the same time, available data on regional and 45 

local emissions have a significantly lower level of confidence (Ciais et al., 2015; Bréon et al., 2015; Kuhlmann et al., 2019). 

Usually, to check the accuracy of the CO2 emission inventories (the so-called "bottom-up" data), the independent "top-down" 

approach is applied which is based on a combination of atmospheric observations and numerical simulations. Currently, the 

efforts in this direction are being made by international scientific communities in the framework of such large-scale projects 

as, for example, the VERIFY project (https://verify.lsce.ipsl.fr/) and the CO2 Human Emissions (CHE) project 50 

(https://www.che-project.eu/). As an example of successful implementation of the “top-down” approach one can mention the 

experience of the United Kingdom in the evaluation of greenhouse gas emission national inventory (Stanley et al., 2018; 

WMO Greenhouse Gas Bulletin, 2018). Disaggregation of national FF CO2 emission estimates provided the possibility to 

compile ODIAC (Open-source Data Inventory for Anthropogenic CO2) which is a high resolution global open database of 

anthropogenic CO2 emissions (Oda and Maksyutov, 2011; Oda et al. 2018). 55 

Recently, much attention has been paid to the improvement of the estimates of the CO2 emissions by the world's 

largest megacities (Mays et al., 2009; Wunch et al., 2009; Bergeron and Strachan, 2011; Levin et al., 2011; Silva et al., 2013; 

Hase et al., 2015; Vogel et al., 2019; Babenhauserheide et al., 2020). A lot of studies are based on the results of routine 

observations by the international ground-based monitoring networks: ICOS (ICOS, 2020), NOAA ESRL (NOAA ESRL, 

2020), TCCON (TCCON, 2021), COCCON (COCCON, 2021), FLUXNET (FLUXNET, 2020). Also, national instrumental 60 

air quality control systems were used (Airparif, 2020) as well as the satellite measurement systems (Kuhlmann et al., 2019, 

Oda et al. 2018) and individual observational stations (Zinchenko et al., 2002; Pillai et al., 2011). It is important to mention 
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measurement campaigns organized in the framework of major scientific projects, such as InFLUX (sites.psu.edu/influx; 

Turnbull et al., 2014), Megacities Carbon Project (https://megacities.jpl.nasa.gov/portal/; Duren and Miller, 2012), 

MEGAPOLI (http://www.megapoli.info, Lopez et al., 2013), CO2-Megaparis project in Paris (https://co2-65 

megaparis.lsce.ipsl.fr, Bréon et al., 2015), COCCON – Paris (http://www.chasing-greenhouse-gases.org/coccon-in-paris/), 

and VERIFY (https://verify.lsce.ipsl.fr/). The important goal is to improve existing techniques and to develop new 

algorithms for the space-borne detection of the CO2 plumes originating from intensive compact sources such as large cities 

and big thermal power plants (TPP) (Kuhlmann et al., 2019; SMARTCARB project, 

https://www.empa.ch/web/s503/smartcarb). Bovensmann et al. (2010) and Pillai et al. (2016) proposed to create and launch 70 

new specialised satellite instruments for studying natural and anthropogenic sources and sinks of carbon dioxide with high 

spatial resolution. At the same time, the variety of modelling tools used to simulate the atmospheric CO2 fields and 

assimilate the results of observations is also quite large: ranging from simple mass balance models (Hiller et al., 2014; 

Zimnoch et al., 2010, Makarova et al., 2018) to modern transport and photochemical models (Ahmadov et al., 2009; 

Göckede et al., 2010, Pillai et al., 2011, Pillai et al., 2012). 75 

The present study is focused on the CO2 emission by St. Petersburg, Russian Federation. The area of St. Petersburg 

urban agglomeration is about 1440 km2, while the city centre, which is characterized by high construction density, occupies 

650 km2. The city has a population of ~5.4 million people (the official data for 2019, St. Petersburg Center for Information 

and Analytics, 2020); according to unofficial data the population is now more than 7 million (Shevlyagina, 2020). The 

population density is ~3800 people/km2 on average. It can reach ~7300 people/km2 on the territories with high construction 80 

density (Solodilov, 2005). The data on total emissions of anthropogenic air pollutants in St. Petersburg are provided in the 

annual reports of the municipal Environmental Committee (Serebritsky, 2018; Serebritsky, 2019). Published data are based 

on the emission sources inventory method ("bottom-up") where CO2 fluxes for urban areas are calculated on the basis of 

information about the landscape and the type of anthropogenic activity (e.g., number and type of buildings, location of roads, 

traffic intensity, the presence and type of TPP, etc.) using appropriate emission factors (Gurney et al., 2002; Serebritsky, 85 

2018). On average, the contribution of St. Petersburg to the total greenhouse gas emissions of the Russian Federation is 

about 1%. According to official inventory data for 2015, the integral CO2 emission from the territory of St. Petersburg is 

about 30 Mt/year and the inter-annual variability of this estimate in the period 2011-2015 did not exceed 1 Mt/year 

(Serebritsky, 2018). In the mentioned official inventory report, it is noted that most of St. Petersburg's emissions (more than 

90%) are associated with power production. These estimates differ, for example, from the results obtained in the study of the 90 

structure of anthropogenic CO2 emissions by the city of Baltimore (Maryland, USA): Roest et al. (2020) have reported that 

electricity production in Baltimore emits only 9% of CO2 and the main part of emissions is related to transport (automobile 

34%, marine 4%, air and rail transport 2%), as well as to the commercial sector (20%), industry (19%) and private residential 

housing (12%). 
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The main anthropogenic source of CO2 is associated with the consumption of fossil fuels. However, a number of 95 

studies have demonstrated that for the territories with high population density carbon dioxide produced by human respiration 

process can make a significant contribution to total emissions (Bréon et al., 2015; Ciais et al., 2007; Widory and Javoy, 

2003). According to some estimates, one person emits by breathing on average 1 kg of CO2 per day (Prairie and Duarte, 

2007), which would amount to about 3 Mt of CO2 per year for St. Petersburg. Bréon et al. (2015) have shown that for Paris 

the CO2 emission from human breathing constitutes 8% of the total inventory emissions of the metropolis due to the use of 100 

fossil fuels. 

Official inventory ("bottom-up") estimates of the CO2 emissions for St. Petersburg (Serebritsky, 2018) may have 

significant uncertainties both in the estimates of integral emissions and in the data on the spatial and temporal distribution of 

the CO2 fluxes. This suggestion is confirmed, in particular, by the significantly different values of the CO-to-CO2 emission 

ratio (ER) for St. Petersburg obtained by Makarova et al. (2021) from the field measurements (ERCO/CO2 ≈ 6 ppbv/ppmv) and 105 

calculated using the official emission inventory data reported by Serebritsky (2018) (ERCO/CO2 ≈ 21 ppbv/ppmv). The 

ERCO/CO2 ratio is one of the most important characteristics of the source of air pollution, since its value can indicate the 

nature of the emission. For cities, ERCO/CO2 mostly reflects the structure of FF consumption. 

In 2019, the mobile experiment EMME (Emission Monitoring Mobile Experiment) was carried out on the territory of 

the St. Petersburg agglomeration with the aim to estimate the emission intensity of greenhouse (CO2, CH4) and reactive (CO, 110 

NOx) gases for St. Petersburg (Makarova et al., 2021). St. Petersburg State University (Russia), Karlsruhe Institute of 

Technology (Germany) and the University of Bremen (Germany) jointly prepared and conducted this city campaign. The 

core instruments of the campaign were two portable FTIR (Fourier Transform InfraRed) spectrometers Bruker EM27/SUN 

which were used for ground-based remote sensing measurements of the total column amount of CO2, CH4 and CO at upwind 

and downwind locations on opposite sides of the city. The applicability and efficiency of this measurement scenario and 115 

EM27/SUN spectrometers have been shown by Hase et al. (2015), Chen et al. (2016), Dietrich et al., (2021). The description 

of the EMME experiment has been given in full detail in the paper by Makarova et al. (2021). This study has also reported 

the estimations of the area fluxes for the emissions of CO2, CH4, NOx and CO by St. Petersburg. In 2020, the EMME 

experiment was continued. It started in March before the COVID-19 pandemic lockdown and consisted of six days of field 

measurements (three days before the lockdown and three days during the lockdown). 120 

The present study continues the analysis of the data of EMME-2019 and demonstrates the first results of the 2020 

campaign. We concentrate our efforts on the CO2 emissions leaving the results relevant to other gases beyond the scope of 

the research. As an extension to the work by Makarova et al. (2021) our goal in this paper is to estimate the integral CO2 

emission by St. Petersburg megacity rather than area fluxes. Completing this task consists of the following basic steps: 

- We use mobile FTIR measurements to obtain CO2 column enhancements (ΔCO2) related to urban anthropogenic 125 

emissions. 
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- We adapt the ODIAC database (Oda and Maksyutov, 2011) to construct a priori information on the spatio-temporal 

distribution of anthropogenic CO2 emissions on the territory of St. Petersburg.  

- We initialize the HYSPLIT dispersion model, HYbrid Single-Particle Lagrangian Integrated Trajectories (Draxler and 

Hess, 1998; Stein et al., 2015) with the ODIAC emissions to simulate CO2 3D field over the city of St. Petersburg. 130 

- We evaluate the performance of our HYSPLIT model setup by calculating the surface CO2 concentrations and 

comparing them with the routine in-situ measurement results (Foka et al., 2019). 

- We scale the emission input data for the HYSPLIT model simulations in order to reproduce the observed ΔCO2. 

- Finally, from the scaled emission a priori data we get the estimate of integral CO2 emission by St.Petersburg. 

The paper is organized as follows. Section 2 describes the methods and instruments, including a description of the 135 

EMME measurement campaign and the equipment used, methods for processing the measurement results, the configuration 

of the HYSPLIT model and its evaluation based on calculations of ground-level CO2 concentrations. Section 3 presents  

main results of EMME-2019 and EMME-2020 including estimates of integrated CO2 emissions derived from FTIR 

measurements of the 2019 and 2020 field campaigns, combined with HYSPLIT model simulations. Section 4 contains a 

summary of our findings. 140 

 

2 Methods and instrumentation 

The main goal of the EMME measurement campaigns in 2019 and 2020 organized jointly by SPbU (St. Petersburg State 

University, Russia), KIT (Karlsruhe Institute of Technology, Germany) and UoB (University of Bremen, Germany) was to 

evaluate emissions of CO2, CH4, CO and NOx from the territory of St. Petersburg. Similar to 2019, the EMME-2020 145 

campaign was conducted in spring (March - early May). This time of the year is preferable for a successful study of urban 

emissions, especially CO2, due to the following reasons: (1) a daylight duration is sufficient for FTIR remote sensing 

measurements; (2) the influence of vegetation processes on the daily evolution of the CO2 concentration in the atmosphere is 

negligible; (3) the winter heating of the city buildings is still active which is a significant source of the CO2 emissions for 

northern cities such as St. Petersburg. In contrast to the 2019 campaign, when two mobile EM27/SUN FTIR spectrometers 150 

were used in the field experiment for simultaneous measurements inside and outside of the air pollution plume, all 

measurements in 2020 were performed with one spectrometer which was moved between clean and polluted locations within 

one day. In 2019, the field measurements were carried out during 11 days in total, and on 6 days in 2020. The number of 

observations in 2020 was smaller than in 2019 due to the quarantine restrictions related to the COVID-19 pandemic. These 

restrictions were imposed in St. Petersburg on 28 March, 2020. During several days of the 2020 campaign, measurements 155 

inside the city pollution plume were made at two locations, which allowed to increase the total number of observations. 

Details of both field campaigns are given in Tables 1 and 2 for 2019 and 2020, respectively. The tables contain the Fourier 

transform spectrometer (FTS) instrument IDs (#80 and #84 in 2019, #84 in 2020), the position on the upwind and downwind 

sides of the city (latitude and longitude), and the duration of observations. Note that each experiment presented in the tables 
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consists of a pair of series of measurements – from the upwind and downwind sides. In 2019, observations of two FTS 160 

instruments (#80 and #84) simultaneously were used for this purpose (see Table 1). In 2020 the single FTS instrument (#84) 

was moved between the upwind and downwind positions (see Table 2). The average duration of measurements in 2019 was 

3 hours within the period of ~12:00-15:00. In 2020, the duration of the measurements was limited to about 1 hour 

(sometimes less), and the observation time varied from 11:00 to 19:00. Since a single instrument was used in 2020, the time 

difference between upwind and downwind measurements in 2020 ranged from 3 to 5 hours. 165 

 

2.1 Bruker EM27/SUN FTS and spectra processing  

Bruker EM27/SUN (Gisi et al., 2012; Frey et al., 2015, Hase et al., 2016) is a portable robust FTS having low spectral 

resolution of 0.5 cm-1. It was designed for accurate and precise ground-based observations of CO2, CH4 and CO column-

averaged abundances (XCO2, XCH4 and XCO) in the atmosphere. These FTIR spectrometers were used to build the COCCON 170 

network (COCCON, 2021; Frey et al., 2019). EM27/SUN is equipped with a Camtracker, a solar tracking system developed 

by KIT (Gisi et al., 2011). A Camtracker consists of an altazimuthal solar tracker, a USB digital camera and “CamTrack” 

software which processes an image acquired by a camera and controls the tracker’s movement. EM27/SUN FTS is designed 

on the basis of a robust RockSolid™ interferometer having high thermal and vibrational stability; the detailed description of 

the instrument is given by Gisi et al. (2012). Therefore, this type of instruments is being successfully implemented for setting 175 

up fully automated stationary city network MUCCnet (Munich Urban Carbon Column network, Dietrich et al., 2021) and for 

performing a number of mobile campaigns (Klappenbach et al., 2015; Luther et al., 2019; Makarova et al., 2021). 

In our study, we used the dual-channel EM27/SUN with quartz beamsplitter. Additionally, two detectors allow 

observing XCO and future improvements of the XCO2 retrieval (Hase et al., 2016). FTS registers an interferogram which is the 

Fourier transform of the infrared spectrum of direct solar radiation. The processing of data acquired by EM27/SUN 180 

spectrometer consists of the following stages:  

- deriving spectra from raw interferograms including a DC-correction and quality assurance procedures (Keppel-Aleks et al., 

2007); 

- deriving O2, CO2, CO, H2O, and CH4 total columns (TCs) from FTIR spectra by scaling a priori profiles of retrieved gases 

(Frey et al., 2019; COCCON, 2021). 185 

To process the spectral data we used the free software PROFFAST which had been specially developed for COCCON 

network (COCCON, 2021; Frey et al., 2019). PROFFAST has been developed by KIT in the framework of several ESA 

projects for processing the raw data delivered by the EM27/SUN FTS. For the retrievals of total columns (TCs) of target 

species the following spectral bands are used (Frey et al., 2015; Hase et al., 2016; Frey et al., 2019): 4210-4320 cm-1 (target 

gas – CO, interfering gases – H2O, HDO, CH4), 5897-6145 cm-1 (target gas – CH4, interfering gases – H2O, HDO, CO2), 190 

6173-6390 cm-1 (target gas – CO2, interfering gases –  H2O, HDO, CH4), 7765-8005 cm-1 (target gas – O2, interfering gases –  
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H2O, HF, CO2),  and 8353-8463 cm-1 (target gas – H2O). The retrieval algorithm requires the following input: temperature 

profile in the atmosphere, pressure at the ground level, and the a priori data on the mole fraction vertical distribution of the 

atmospheric trace gases. These data are generated by the TCCON network software which ensures their compatibility over 

the TCCON network (TCCON, 2021). The close agreement of EM27/SUN observations analyzed with PROFFAST with a 195 

collocated TCCON spectrometer has been demonstrated in the framework of the ESA project FRM4GHG (Sha, 2020). 

In order to obtain a reliable value of the CO2 emission for St. Petersburg, it is necessary to eliminate possible 

systematic error caused by the instrument bias. This goal was reached by carrying out a cross-calibration of the instruments. 

In April-May 2019 both instruments passed a four day cross-calibration. The comparison of side-by-side measurements of 

XCO2 by FTS#80 and FTS#84 allowed determining calibration factor which was used for converting XCO2 measured by 200 

FTS#80 to the scale of FTS#84. Detailed information about side-by-side calibration of FTIR-spectrometers is given in the 

paper by Makarova et al. (2021). 

2.2 A priori data on FF CO2 emissions 

The global emission inventory ODIAC (Oda and Maksyutov, 2011; Oda, Maksyutov and Andres, 2018) is used in the 

present study for characterisation of the area fluxes of the CO2 emission from the territory of St. Petersburg and its suburbs. 205 

ODIAC provides global information on monthly average CO2 emissions due to consumption of fossil fuels. The high spatial 

resolution of ODIAC (1 km × 1 km) is achieved through a joint interpretation of the existing global inventory of 

anthropogenic CO2 sources, data on FF consumption, and satellite observations of the night-time glow of densely populated 

areas of the Earth. We use the data for 2018 emissions given in the ODIAC2019 version (Oda and Maksyutov, 2020). 

The CO2 emission data have been extracted from the ODIAC database for the domain that includes St. Petersburg and 210 

its suburbs (59.60-60.29° N, 29.05-31.33° E, Fig. 1). The sources of anthropogenic CO2 emissions are concentrated within 

the administrative borders of the city. Most of these sources have intensities of ~4000 tons/month/km2 and higher and are 

located within the borders of the city ring road. Summing up the ODIAC data within the city borders gives an estimate of the 

average integrated CO2 emission of ~2710 kt per month with variations from 2429 kt in July to 3119 kt in March (Fig. 2). 

The emissions are maximal in late winter and early spring, and are minimal in summer. In general, the seasonal variability of 215 

emissions is insignificant (~8%), therefore the data for 12 months of 2018 were averaged in order to obtain an estimate of the 

mean annual distribution of urban CO2 emissions. The integrated annual emission of St. Petersburg equals to 32529 kt, 

which is in good agreement with published official estimates: about 30 million tons for the period from 2011 to 2015 

(Serebritsky, 2018). 

The nominal latitude/longitude size of the ODIAC data pixel is 30 arcseconds (Oda and Maksyutov, 2011), which 220 

defines a global spatial resolution of about 1 km × 1 km. Since the length of a degree of longitude changes with the latitude, 
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the pixel size for St. Petersburg (~60° N) is smaller and equals to 0.93 km × 0.46 km (0.43 km2). It should be noted that the 

average annual urban emission flux is ~26 kt km-2 while in the central part of the city it can reach up to 80 kt km-2. There is 

one pixel in the ODIAC data located in the centre of St. Petersburg with an extremely high emission flux of 7000 kt km-2. 

Normally, power plants and industrial enterprises manifest themselves as point sources of strong emission. However, we 225 

cannot confidently attribute this particular ODIAC pixel to any source of this type, since there is no such object near it. 

There are about a dozen of large thermal power plants on the territory of St. Petersburg, but all of them appear to be rather 

far from this location. Despite the lack of published data on anthropogenic CO2 emissions at the city scale, we were able to 

explore detailed reports from municipal inventories of stationary air pollution sources (unpublished, but available on 

request). According to the inventories of NOx, CO, SO2, NH3, VOC and PM10 pollutants, there are no stationary objects of 230 

an extreme emission close to the point of our interest. Thus we feel confident to smooth out this outlier and replace it by the 

value averaged over the neighboring ODIAC pixels. As a result, it amounted to 42 kt km-2.  

2.3 The HYSPLIT model general setup 

The spatial and temporal evolution of the urban pollution plume was simulated using the HYSPLIT model (Draxler and 

Hess, 1998; Stein et al., 2015). Calculations were performed for the territory of the St. Petersburg agglomeration using the 235 

offline version of the HYSPLIT model with the setup similar to the one that was successfully used previously for the NOx 

plume modelling (Ionov and Poberovskii, 2019; Makarova et al., 2021).  A 3-dimensional field of anthropogenic air 

pollution was calculated for a spatial domain with coordinates 54.8°-61.6° N, 23.7°-37.8° E; the domain grid size was 

0.05°×0.05° latitude and longitude (see Fig. 3, top). The vertical grid of the model is set to 10 layers with the altitude of the 

upper level at 1, 25, 50, 100, 150, 250, 350, 500, 1000 and 1500 meters a.s.l., respectively. As a source of meteorological 240 

information (vertical profiles of the horizontal and vertical wind components, temperature and pressure profiles, etc.), the 

NCEP GDAS (National Centers for Environmental Prediction Global Forecast System) data were used, presented on a 

global spatial grid of 0.5° × 0.5° latitude and longitude with time interval of 3 hours (NCEP GDAS, 2020).  

To run HYSPLIT we used the software package: HYSPLIT 4, June 2015 release, subversion 761. The advanced setup 

of the HYSPLIT model was configured as follows (basic parameters): 245 

- default method of vertical turbulence computation, 

- horizontal mixing computed proportional to vertical mixing, 

- boundary layer stability computed from turbulent fluxes (heat and momentum), 

- vertical mixing profile set variable with height in the planetary boundary layer (PBL), 

- boundary layer depth set from the meteorological model (input meteorology data), 250 

- puff mode dispersion computation with a "tophat" concentration distribution on a horizontal and vertical scale. 
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Spatial distribution of FF CO2 emission sources and their intensities are taken from the ODIAC database. The original 

ODIAC data were converted into a set of larger pixels (~3.6 km2). Pixels with the area fluxes lower than 8 kt km-2 have been 

filtered out in order to keep only the urban sources which could be attributed to the St. Petersburg agglomeration. The 

resulting array which was used as the input for HYSPLIT consisted of 376 pixels and is shown in Fig. 3 (bottom). The 255 

integral CO2 emission that corresponds to this array equals to 26316 kt year-1; this is the value being used as a HYSPLIT first 

guess hereafter. 

2.4 Test simulations of ground-level CO2 concentrations 

Routine measurements of CO2 surface concentrations have been carried out at the atmospheric monitoring station of 

St. Petersburg University in Peterhof (59.88° N, 29.82° E) since 2013. These observations are the in situ measurements using 260 

a gas analyzer Los Gatos Research GGA 24r-EP. The instrument is installed on the outskirts of a small town of Peterhof in 

the suburbs of St. Petersburg (see location in Fig. 1). This place is far enough away from busy streets and other local sources 

of pollution, with an ambient air intake being 3 meters above the surface. To test the HYSPLIT model setup for the 

St. Petersburg region, we simulated the surface concentration of CO2 near Peterhof during the 2019 EMME measurement 

campaign – from March 20 to April 30, 2019. The results of the model calculations were compared to the data of in situ 265 

measurements (due to the instrument failure in 2020 the comparison is limited to the period of EMME campaign in 2019 

only). Observational data and simulation results were averaged over 3-hour intervals. The resulting comparison is shown in 

Fig. 4. The model reproduces the temporal variations of CO2 including the main periods of significant growth of 

concentration; the correlation coefficient between the calculation and measurements is equal to 0.72. The background value 

of the surface concentration is taken as 415 ppmv based on the local measurements (415 ± 2 ppmv is the mean value of 270 

diurnal minima during the campaign from March 20 to April 30, 2019). It is important to emphasize that quantitative 

agreement is achieved by linear scaling of the a priori integral urban CO2 emission.  The scaling coefficient for emissions 

corresponds to the value of the integral urban CO2 emission from the territory of St. Petersburg of 44800±1900 kt year-1 (the 

given uncertainty is due to the uncertainty of the fitted scaling factor). This value is noticeably higher than official estimates 

mentioned above and ODIAC data for 2018 (32529 kt). The average discrepancy between the measurement and simulation 275 

data shown in Fig. 4 is 2±9 ppmv (model calculations are systematically lower). 

3 Evaluation of integrated CO2 emissions from field FTIR measurements 

3.1 The results of the EMME-2019 campaign 

We simulated the CO2 total column (TC) spatial distributions over the territory of the St.Petersburg agglomeration for the 

time periods of FTIR mobile measurements conducted in the framework of the EMME-2019 experiment in March-April 280 

2019. Obviously, the anthropogenic contribution to the CO2 TC is concentrated mostly in the lower boundary layer, with a 



10 

top height of ~200 to ~1600 m. Therefore, HYSPLIT model was configured to simulate CO2 concentrations at 10 altitude 

levels (0-1500 m), which were then integrated to obtain the CO2 column in the boundary layer. The maps of the CO2 plume 

obtained in this way show that for all the analyzed experiments, the choice of the location of the upwind and downwind 

measurement points was correct (see Appendix A, Fig. A1). The differences between the results of FTIR measurements of 285 

the CO2 TC inside and outside the pollution plume (ΔCO2) were compared with the differences in the CO2 column in the 

boundary layer simulated by HYSPLIT at the corresponding locations. HYSPLIT calculations were performed with a 

temporal resolution of 15 minutes. The data series of measured and calculated CO2 contents for the experiments involved in 

the analysis are shown in separate plots in the Appendix B, Fig. B1. It is clearly seen from the plots that the "downwind-

upwind" enhancements in CO2 observed by the measurements are significantly higher than predicted by HYSPLIT, which 290 

indicates an underestimation of inventory CO2 emissions. An example of simulated CO2 plume and a time series of CO2 total 

column measurements and HYSPLIT calculations for a typical day of experiments in 2019 (April 4) is given in Fig. 5. For 

the sake of comparison, the simulation results and measurement data were averaged over time periods of field observations 

(the duration of each experiment is given in Table 1). 

In order to obtain a quantitative agreement between simulated and observed ΔCO2, the inventory data (the ODIAC 295 

emissions), which are used as input information for the HYSPLIT dispersion model, should be scaled (Flesch et al., 2004). 

The scaling factor (SF) is derived as follows. The data from all days of measurements are compared to the corresponding 

model simulations, see Fig. 6 as an example of a scatter plot (left panel). The scaling factor is determined as a slope value of 

the following regression line (e.g. the slope is 2.88 ± 0.21 , as shown in Fig. 6): 

ΔCO2[FTIR]i = SF × ΔCO2[HYSPLITODIAC]i          (1) 300 

where ΔCO2[FTIR]i is is the difference between the downwind and upwind FTIR measurements averaged over the duration 

of experiment i (see Table 1 and Table 2, Appendix A and Appendix B for the details of every field experiment) and 

ΔCO2[HYSPLITODIAC]i is the averaged difference between the downwind and upwind CO2 column calculated using the 

HYSPLIT dispersion model for the location and time of FTIR observations, and initialized with ODIAC CO2 emissions. 

The error assessment for the scaling factor should be discussed in some detail. The 1σ precision for the XCO2 305 

individual measurement is of the order of 0.01 %–0.02 % (<0.08 ppm) (e.g. Gisi et al., 2012; Chen et al., 2016; Hedelius et 

al., 2016; Klappenbach et al., 2015; Vogel et al., 2019). The error of the scaling factor was estimated under the assumption 

that the measurement errors are the same for all days as well as the model simulation errors. The error bars indicated in 

Fig. 6 as boxes are in fact the variations of ΔCO2 obtained as standard deviation of observations and simulations within one 

observational series (see Appendix B, Fig. B1). Obviously, these quantities comprise both measurement errors and 310 

simulation errors (including those associated with wind direction and speed uncertainty), and temporal variability of the CO2 

TC. One can see that these quantities differ from day to day. 
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The right panel of Fig. 6 demonstrates that the model reproduces well the evolution of ΔCO2 recorded in field 

measurements; the correlation coefficient between the results of modelling and observations is 0.94. The derived scaling 

factor yields the integral anthropogenic CO2 emission value of 75800±5400 kt year-1; i.g. the value of 75800 results from the 315 

multiplication 26316×2.88 (the 2.88 here is the slope on the scatter plot, and 26316 is the model first guess, see Section 2.3). 

Resulting CO2 emission rate is almost twice as high as the above estimate, based on the analysis of ground-level CO2 

measurement data (Section 2.4, 44800±1900 kt year-1). This difference may indicate a significant contribution of elevated 

CO2 sources (industrial chimneys) that could not be registered by the ground-level in situ measurements, as the elevated 

exhausts of pollution are more likely to further rise up, rather than descend to the ground. In contrast, FTIR measurements of 320 

the total column keep being sensitive to this kind of emissions. In addition, while FTIR measurements implement a "cross 

section" of the urban pollution emission zone in a series of multidirectional trajectories (depending on the wind direction), 

local ground-level in situ measurements at a specific location (Peterhof) can not capture the contribution of the entire mass 

of urban emissions. Thus, estimates of integral CO2 emissions based on the interpretation of ground-level measurements in 

Peterhof can be considered as a lower limit of an estimate. 325 

An earlier analysis of the results of the EMME-2019 measurement campaign focused in particular on inferring the 

area fluxes of urban CO2 emissions from St. Petersburg. In order to achieve this goal, the simplified mass balance approach 

was applied to the observed CO2 enhancements (ΔCO2) which were attributed to the accumulation of pollution during the air 

mass movement on its way from the upwind side to the downwind side of the megacity (see Makarova et al., 2021 for full 

details). Basically, the mass balance approach was adopted in the form of a one-box model, and the area flux F was 330 

calculated using the following equation: 

L

VCO
F

⋅∆
=

2
              (2) 

where F is the CO2 area flux, ΔCO2 is the difference between the downwind and upwind FTIR measurements, V is the mean 

wind speed and L is the mean path length of an air parcel which goes through the urban area (Chen et al., 2016). The 

obtained mean value of the CO2 area flux was equal to 89±28 kt yr-1 km-2 and was attributed to the emission from the city 335 

centre. As shown above, in the current study, the application of the HYSPLIT model allowed us to estimate the integral 

anthropogenic CO2 emission of the entire megacity. In order to check the consistency with previous results, in the present 

study we made calculations of area fluxes on the air trajectories of field measurements using the ODIAC emission database 

scaled to the integral CO2 emission derived from the results of EMME-2019 combined with the HYSPLIT simulations 

(75800±5400 kt year-1). Schematically, the air trajectories corresponding to the 2019 FTIR measurement locations are shown 340 

in Fig. 7. These trajectories were simulated as backward trajectories by the HYSPLIT model in the boundary layer of the 

atmosphere. The resulting values of anthropogenic CO2 area fluxes calculated by integrating the ODIAC data along these 

trajectories, are shown in Fig. 8 in comparison with the experimental estimates by Makarova et al., 2021. As in the study by 
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Makarova et al., 2021, the width of the air paths was assumed to be 10 km. On average, according to ODIAC data, the area 

flux for the 2019 measurement trajectories was 106±9 kt yr-1 km-2, that is somewhat higher than the experimental estimates 345 

(89±28 kt yr-1 km-2) but agree within the error limits. Significantly higher variability in the experimental data may be related 

to the variability of the wind field, which is not taken into account in the simplified mass balance approach. 

3.2 The results of EMME-2020 and comparison with EMME-2019 

The data of mobile FTIR measurements performed in March-early May 2020 were processed and analysed in the same way 

as it was done for data acquired during the measurement campaign in 2019. An example of simulated CO2 plume and a time 350 

series of CO2 total column measurements and HYSPLIT calculations for a typical day of experiments in 2020 (April 8) is 

given in Fig. 9. The comparison of the observed and simulated mean values of ΔCO2 is shown in Fig. 10. Similar to the 

results of 2019, the HYSPLIT simulations reproduce well the observed evolution of ΔCO2. The correlation coefficient 

between the simulations and observations is 0.78. The estimation of the CO2 emission was done using the described above 

approach based on the pollution plume modelling by HYSPLIT and scaling the ODIAC data which were taken as an a priori 355 

guess. For the EMME-2020 campaign, the derived integral anthropogenic CO2 emission is 68400±7100 kt yr-1, which is 

about 10% lower than the estimate obtained for 2019 (75800±5400 kt yr-1). 

It should be noted that one can expect lower anthropogenic CO2 emissions in the 2020 measurement data compared to 

the same period in 2019, since restrictive measures were imposed in St. Petersburg on March 28 due to the COVID-2019 

pandemic. A number of studies have already reported significant reductions of air pollution that followed the lockdown 360 

events in different regions of the world (see e.g. Petetin et al., 2020; Pathakoti et al., 2020; Koukouli et al., 2020). According 

to Yandex data (https://yandex.ru/covid19/stat) the traffic intensity in the city of St. Petersburg decreased to 12-26% of the 

usual value on weekdays in the first week of quarantine (from March 30 to April 3) and amounted to 28-33% in the 

following week (from April 6 to April 10). Since we have no official data on the CO2 emissions by traffic at our disposal, we 

used the average estimate for European countries, according to which the contribution of traffic to total emission constitutes 365 

30% (European Parliament News, 2020). Under this assumption, a reduction in traffic activity down to 30% of the normal 

level should result in a reduction in total anthropogenic CO2 emissions by 21% ((1.0-(0.7+0.3×0.3))×100%).  

The weak response of urban CO2 emissions to restrictive quarantine measures may indicate a relatively small 

contribution of traffic to the total CO2 emissions from the territory of St. Petersburg. This may be due to the higher 

contribution of emissions associated with residential heating (including consumption of natural gas in private residences, e.g. 370 

stoves and water boilers), which is more important for such a northern city as St. Petersburg, unlike many European cities. 

Normally, the heating is still working in St. Petersburg in March and April, and the corresponding CO2 emissions cannot be 

reduced due to the quarantine. Our confident expectation to detect the transport contribution is based on the high sensitivity 

of FTIR measurements of XCO2 using EM27/SUN spectrometers and COCCON methodology. If the emission from traffic 
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were higher it would have been definitely identified during the campaign. The high sensitivity of our measurements to the 375 

CO2 pollution from different sources is demonstrated by the following examples. The results of EMME-2019 revealed that 

the emission of a single TPP located on the north-eastern side of the city (see Fig. 11) can add ~5×1019 molecules/cm2 to the 

CO2 TC (Makarova et al., 2021). During the 2020 measurement campaign, one of the series of FTIR measurements was 

performed near the Waste Processing Plant (WPP) on the eastern side of the city (see Fig. 11). The contribution of this local 

CO2 source was ~1×1019 molecules/cm2. We emphasise that these measurements, being significantly affected by local 380 

sources, were excluded from statistical analysis. In general, for these reasons (including unfavorable weather conditions and 

wrong location of FTIR measurement points), data from only a few experiments were excluded: No.8 on April 18, 2019, 

No.10 on April 25, 2019, No.11 on April 30, 2019 (see Table 1) and No.4 on March 27, 2020 (see Table 2). However, the 

given examples indicate the crucial role of stationary, non-transport sources of emissions, which were not subject to 

restrictive quarantine measures. 385 

A thorough analysis of all experiments performed during the 2019 and 2020 measurement campaigns has shown that 

there were days with similar air trajectories and similar downwind measurement locations. These situations occurred twice: 

on March 27, 2019 and April 5, 2020, and on April 1, 2019 and April 8, 2020 (see Fig. 11). Both series of 2020 

measurements, on April 5 and April 8, were performed during the COVID-19 quarantine period. We calculated the CO2 area 

fluxes for these days applying the mass balance approach which was used by Makarova et al., 2021. The results are 390 

presented in Table 3. Unexpectedly, the estimates indicate an increase of area fluxes during the quarantine period in 2020, 

compared to the same period in 2019. According to the data of weather archive 

(http://rp5.ru/Weather_archive_in_Saint_Petersburg, last access 3 November 2020), the mean ambient temperature in 

St. Petersburg was +5.0 °C  and +3.2 °C  for the period from March 27 to April 8 in 2019 and 2020, accordingly. Thus, 

somewhat colder weather in 2020 may contribute to the increase of CO2 emission due to the more intense residential heating. 395 

However, the high uncertainty of the CO2 area flux estimates due to the uncertainties of the wind field and of the effective 

path length (for details, see Makarova et al., 2021) does not allow us to gain sufficient confidence in the nature of the 

detected differences. 

To our opinion, the most important finding of our study based on the analysis of two observational campaigns is a 

significantly higher CO2 emission from the megacity of St. Petersburg as compared to the data of municipal inventory: 400 

~75800±5400 kt yr-1for 2019, ~68400±7100 kt yr-1 for 2020 versus ~30000 kt yr-1 reported by official inventory. Besides, 

this finding is consistent with the estimate of the CO2 emission area flux by Makarova et al., 2021 which was about double 

of the EDGAR inventory for St. Petersburg (EDGAR, 2019). The difference can be partly explained by the impact of diurnal 

and seasonal variations of anthropogenic activity, since our measurements were conducted during the period of maximum 

CO2 emission (early spring and afternoon) and therefore represent the upper limit of the emission estimates. According to the 405 

ODIAC data (see Fig. 2) emissions in March and April have to be scaled down by the factor of ~1.07 to represent the annual 
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average. The global database of hourly scaling factors (Nassar et al. 2013) gives also a factor of ~1.07 for St. Petersburg to 

scale down the afternoon emission rates to the daily average. So, dividing our estimates twice by 1.07 gives 

~59000÷66000  kt yr-1, which is still higher than the official inventory value. Compared to other world cities, the integral 

CO2 emission of St. Petersburg is not that high – e.g, the ODIAC inventory reports: ~18000 kt yr-1 for San Francisco, 410 

~37000 kt yr-1 for Paris, ~51000 kt yr-1 for Mexico, ~88000 kt yr-1 for Delhi, ~106000 kt yr-1 for Moscow, ~136000 kt yr-1 

for Hong Kong, ~172000 kt yr-1 for Tokyo and ~227000 kt yr-1 for Shanghai (the data are taken from the paper by Umezawa 

et al., 2020, Fig. 3). Typically, these estimates of urban CO2 emissions are strongly correlated with the city's population – 

e.g. ~1 million people at San Francisco and ~23 million people at Shanghai. 

4 Summary and conclusions 415 

In 2019 and 2020, in spring, the mobile experiment EMME (Emission Monitoring Mobile Experiment) was carried out on 

the territory of St. Petersburg, which is the second largest industrial city in Russia with a population of more than 5 million . 

In 2020, several measurement series were obtained during the lockdown period caused by the COVID-19 pandemic. 

Previously, the CO2 area flux has been obtained from the data of the EMME-2019 experiment using the mass balance 

approach. The present study is focused on the derivation of the integral CO2 emission from St. Petersburg by combining the 420 

results of the EMME observational campaigns of 2019 and 2020 and the HYSPLIT model simulations. The ODIAC database 

is used as the source of the a priori information on the CO2 emissions for the territory of St. Petersburg. 

A number of studies (Pillai et al., 2016; Broquet et al. 2018; Kuhlmann et al., 2019; Babenhauserheide et al., 2020) 

have shown that emissions from large CO2 sources (cities, thermal power plants) can be characterized by the difference 

between the results of measurements of the carbon dioxide concentration in the dry  atmospheric  column inside and outside 425 

of the pollution plume (ΔXCO2). The results of measurement campaigns in 2019 and 2020 have shown that for St. 

Petersburg in a set of mobile experiments the values of ∆XCO2 averaged over the duration of FTIR observations were in the 

range of 0.05-4.46 ppmv. For comparison, similar studies revealed the following values of ∆XCO2: 0.16-1.03 ppmv for 

Berlin, Germany (Kuhlmann et al., 2019), 0.80-1.35 ppmv for Paris, France (Pillai et al., 2016; Broquet et al. 2018), and 0-2 

ppmv for Tokyo, Japan (Babenhauserheide et al., 2020). So, for St. Petersburg, the highest values of ∆XCO2 were detected 430 

(4.46 ppmv), if compared to similar measurements in Berlin, Paris and Tokyo. It should be noted that the value of ∆XCO2 

depends not only on the integral emission of the source, but also on its spatial allocation (compact or distributed), the 

geometry of the field experiment (location of observations relative to the pollution plume) and on the meteorological 

situation during the measurements. This is why dispersion modeling, taking into account inventories of emission sources, is 

the most appropriate tool for interpreting the results of such observations. 435 

The HYSPLIT model coupled with the scaled input from the ODIAC database reproduces well the results of FTIR 

observations of the CO2 TC during both campaigns: the correlation coefficient between the results of modelling and 
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observations is 0.94 for 2019 and 0.78 for 2020. Lower value of the correlation coefficient for 2020 can be partly explained 

by the change in the spatial distribution of the CO2 emission sources during the COVID-19 pandemic lockdown which could 

differ from the ODIAC distribution of the FF CO2 sources. However, the number of data is not sufficient to confirm this 440 

suggestion. The most important finding of the study based on the analysis of two observational campaigns is a significantly 

higher CO2 emission from the megacity of St. Petersburg as compared to the data of municipal inventory: 

~75800±5400 kt yr-1 for 2019, ~68400±7100 kt yr-1 for 2020 versus ~30000 kt yr-1 reported by official inventory. The 

comparison of CO2 emissions obtained during the COVID-19 lockdown period in 2020 to the results obtained during the 

same period of 2019 demonstrated a decrease in emission of 10% or 7400 kt yr-1. 445 

There was an attempt to simulate the in situ measurements of the CO2 concentration performed at the observational 

site located in the suburb of the St. Petersburg megacity during the two-month period (March-April 2019). In this case the 

correlation coefficient between model simulations and observations was 0.72. In contrast to the estimates of the CO2 

emissions from FTIR measurements presented above, the simulation of in situ measurements gives a much lower value (by a 

factor of 1.5-1.7) of the CO2 integrated emission: 44800±1900 kt year-1. Similar differences were previously found between 450 

estimates of the CO2 area fluxes for the central part of St. Petersburg, obtained both from the analysis of FTIR 

measurements, and from in situ measurements of CO2 concentration (Makarova et al., 2021). This fact may indicate a 

significant contribution of elevated CO2 sources (industrial chimneys) that could not be registered by the ground-level in situ 

measurements (in contrast to FTIR measurements of the total column). The approach of monitoring the outflows of large 

cities using arrays of compact FTIR spectrometers seems a promising and cost-effective route for assessing and monitoring 455 

the CO2 emissions of these important sources. Recurring campaigns performed over extended periods or even the erection of 

permanent observatories as demonstrated by Chen et al. (Dietrichet et al., 2021) should be recognized as crucial components 

of strategies aiming at improved observational capacity for greenhouse gases on regional and urban domains. 
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Table 1. EMME-2019 field campaign details: the dates of experiments in 2019 and the locations of FTS instruments during 

the upwind and downwind observations. The data on the direction and speed of the surface wind correspond to observations 700 

at one of the meteorological stations in the center of St. Petersburg at local noon 

(http://rp5.ru/Weather_archive_in_Saint_Petersburg, last access: 11 March 2021). 

 

FTS 
identifier (instrument #) 

location (latitude, longitude) 
observation time (local) 

No. Date 
Wind  

speed, ms-1 
Wind 

direction 

upwind downwind 

1. 21 March 2019 3 WSW 
#80 

59.88°N, 29.83°E 
14:07-15:07 

#84 
59.95°N, 30.59°E 

13:08-15:36 

2. 27 March 2019 2 WSW 
#84 

60.01°N, 29.69°E 
11:49-15:08 

#80 
59.85°N, 30.54°E 

11:42-14:57 

3. 01 April 2019 3 WSW 
#84 

60.01°N, 29.69°E 
11:01-13:24 

#80 
59.85°N, 30.54°E 

11:15-14:31 

4. 03 April 2019 3 S 
#84 

59.88°N, 29.83°E 
14:47-16:02 

#80 
60.04°N, 30.47°E 

11:57-14:21 

5. 04 April 2019 3 SW 
#84 

59.81°N, 30.09°E 
11:59-14:16 

#80 
60.04°N, 30.47°E 

11:59-14:16 

6. 06 April 2019 2 SE 
no.84 

59.95°N, 30.59°E 
12:14-15:23 

no.80 
60.01°N, 29.69°E 

12:15-15:29 

7. 16 April 2019 2 NE 
#84 

60.01°N, 29.69°E 
11:13-15:08 

#80 
59.86°N, 30.11°E 

11:21-14:59 

8. 18 April 2019 2 NE 
#80 

60.04°N, 30.47°E 
12:07-14:56 

#84 
59.81°N, 30.09°E 

11:38-15:24 

9. 24 April 2019 1 WSW 
#84 

60.01°N, 29.69°E 
11:38-14:55 

#80 
59.85°N, 30.54°E 

11:52-15:22 

10. 25 April 2019 1 WSW 
#80 

60.04°N, 30.47°E 
12:07-14:49 

#84 
59.81°N, 30.09°E 

11:19-15:08 

11. 30 April 2019 2 SSE 
#80 

59.85°N, 30.54°E 
12:35-13:31 

#84 
60.01°N, 29.69°E 

12:22-13:46 
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Table 2. EMME-2020 field campaign details: the dates of experiments in 2020 and the locations of FTS instrument during 705 

the upwind and downwind observations. The data on the direction and speed of the surface wind correspond to observations 

at one of the meteorological stations in the center of St. Petersburg at local noon 

(http://rp5.ru/Weather_archive_in_Saint_Petersburg, last access: 11 March 2021). 

 

FTS 
identifier (instrument #) 

location (latitude, longitude) 
observation time (local) 

No. Date 
Wind  

speed, ms-1 
Wind 

direction 

upwind downwind 

1. 22 March 2020 1 N 
#84 

60.11°N, 30.48°E 
10:38-11:55 

#84 
59.94°N, 30.40°E 

13:17-14:38 

2. 22 March 2020 1 N 
#84 

60.11°N, 30.48°E 
10:38-11:55 

#84 
59.81°N, 30.14°E 

15:55-17:16 

3. 23 March 2020 2 W 
#84 

59.93°N, 29.64°E 
12:55-14:33 

#84 
59.90°N, 30.52°E 

16:24-18:02 

4. 27 March 2020 2 WSW 
#84 

59.88°N, 29.83°E 
10:35-11:51 

#84 
59.94°N, 30.60°E 

13:24-14:12 

5. 27 March 2020 2 WSW 
#84 

59.88°N, 29.83°E 
10:35-11:51 

#84 
59.96°N, 30.60°E 

14:34-15:15 

6. 05 April 2020 4 WSW 
#84 

59.82°N, 29.96°E 
12:44-13:43 

#84 
59.83°N, 30.52°E 

10:53-11:48 

7. 08 April 2020 3 WSW 
#84 

59.89°N, 29.89°E 
14:58-16:46 

#84 
59.83°N, 30.52°E 

11:09-13:43 

8. 01 May 2020 1 ESE 
#84 

59.73°N, 30.25°E 
18:01-19:03 

#84 
60.05°N, 30.06°E 

13:22-14:27 

9. 01 May 2020 1 ESE 
#84 

59.73°N, 30.25°E 
18:01-19:03 

#84 
60.03°N, 30.00°E 

15:10-16:11 
 710 
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Table 3. The CO2 area fluxes (kt yr-1 km-2) obtained from mobile FTIR measurements in 2019 and 2020 which were 

performed under similar observational configurations. 

 715 

Measurement date 
CO2 area flux 

[kt yr-1 km-2] 

27/03/2019 76±60 

05/04/2020 116±92 

01/04/2019 48±38 

08/04/2020 89±70 

 

 



27 

 

 

 720 

Figure 1: Spatial distribution of anthropogenic CO2 emission intensity on the territory of the St. Petersburg agglomeration (59.60-

60.29° N, 29.05-31.33° E) according to ODIAC2019 data for April 2018. The red line indicates the administrative border 

of the city; the black dotted line indicates the city ring road. A white circle depicts the location atmospheric monitoring 

station of St. Petersburg University in Peterhof (see the text). 
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 725 

 

 

Figure 2: Integrated monthly mean FF CO2 emission from the territory of St. Petersburg according to ODIAC2019 data in 2018. 
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 730 

 

Figure 3: Top panel: Map of the spatial domain specified in the HYSPLIT model configuration – the city of St. Petersburg and the 

surrounding area (top image). Bottom panel: The pixel map of the CO2 emissions generated using ODIAC2019. 
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 735 

 

Figure 4: Comparison of the HYSPLIT simulations and the in situ measurements of surface CO2 concentration in Peterhof (59.88° 

N, 29.82° E) in March-April 2019. Left panel: The values of surface CO2 compared with the results of HYSPLIT 

simulations without scaling of the ODIAC emissions data. Right panel: HYSPLIT data obtained using scaled ODIAC 

CO2 emissions compared with observed surface CO2. Measurement and simulation data are averaged over 3-hour 740 

intervals. 
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Figure 5: Left panel: Urban pollution CO2 plume over St. Petersburg calculated by HYSPLIT model for April 4, 2019 (10:00 

UTC). The colour bar designates the CO2 total column in units 10
21

 cm
-2

. The blue and red circles indicate the locations 745 

of upwind and downwind FTS observations, accordingly. Right panel: Time series of measured (FTS) and simulated 

(HYSPLIT, without scaling of the ODIAC emissions data) CO2 total column at the upwind (blue lines) and downwind 

(red lines) locations for the same day. 
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 750 

 

Figure 6: Left panel: The values of ΔCO2 (see text) acquired during the field FTIR observations in 2019 compared with the results 

of HYSPLIT simulations without scaling of the ODIAC data. Measurement and simulation data are averaged over time 

intervals of FTIR measurements. Right panel: HYSPLIT data obtained using scaled ODIAC CO2 emissions compared 

with observed ΔCO2. Dots are connected by lines for illustrative purposes only. 755 
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Figure 7: Map of air mass trajectories corresponding to field measurements of EMME experiments in March-April 2019 (top) and 

March-April 2020 (bottom). For simplicity, the trajectories are designated by straight lines 50 km long, ending at the 760 

locations of downwind FTIR measurements. 
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Figure 8: The CO2 area flux (FCO2) obtained on the basis of the mass balance approach (EMME-2019) compared to the CO2 area 765 

flux derived from scaled ODIAC data. The calculations are made for the trajectories shown in Fig. 7. Dots are connected 

by lines for illustrative purposes only. 
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 770 

Figure 9: Left panel: Urban pollution CO2 plume over St. Petersburg calculated by HYSPLIT model for April 8, 2020 (10:00 

UTC). The colour bar designates the CO2 total column in units 10
21

 cm
-2

. The blue and red circles indicate the locations 

of upwind and downwind FTS observations, accordingly. Right panel: Time series of measured (FTS) and simulated 

(HYSPLIT, without scaling of the ODIAC emissions data) CO2 total column at the upwind (blue lines) and downwind 

(red lines) locations for the same day. 775 
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Figure 10: Left panel: The values of ΔCO2 (see text) acquired during the field FTIR observations in 2020 compared with the 

results of HYSPLIT simulations before the process of scaling of the ODIAC data. Measurement and simulation data are 780 

averaged over time intervals of FTIR measurements. Right panel: HYSPLIT data obtained using scaled ODIAC CO2 

emissions compared with observed ΔCO2. Dots are connected by lines for illustrative purposes only. 
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 785 

Figure 11: Map of similar air trajectories and similar downwind measurement locations for EMME-2019/2020 experiments. For 

simplicity, the trajectories are marked with straight lines 50 km long, ending at the locations of downwind FTIR 

measurements. The locations of a thermal power station (TPS) on the north-eastern side and a solid waste processing 

plant (WPP) on the eastern side are also indicated. 
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Appendix A: Location of ground-based measurement points with respect to the urban pollution plume 790 

The location of FTS field measurements is shown on the maps of vertically integrated CO2 (total column: TC) produced by 

HYSPLIT for selected campaign days in 2019 and 2020 (10:00 UTC), see Fig. A1 and A2. The locations of the FTS 

instruments on the upwind and downwind sides are indicated by blue and red circles, respectively. Note that in 2020 there 

were days when the downwind measurements were performed twice, at different locations – on March 23 and May 1 (see 

Fig. A2). 795 
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Figure A1: Urban pollution CO2 plume over St. Petersburg calculated with HYSPLIT model for the days of field campaign in 

2019 (10:00 UTC). The colour bar units for TCCO2 are 10
21

 cm
-2

. The blue and red circles indicate the locations of 

upwind and downwind FTS observations, accordingly. 
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Figure A2: Urban pollution CO2 plume over St. Petersburg calculated with HYSPLIT model for the days of field campaign in 

2020 (10:00 UTC). The colour bar units for TCCO2 are 10
21

 cm
-2

. The blue and red circles indicate the locations of 

upwind and downwind FTS observations, accordingly. 
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Appendix B: The data series of measured and calculated CO2 content 

The upwind and downwind CO2 total column values acquired from FTIR measurements and HYSPLIT calculations are 805 

shown for selected campaign days in 2019 and 2020 in Fig. B1 and B2. The HYSPLIT data are in fact the values of an 

integrated vertical column in the range of 0-1500 meters (10 altitude layers) calculated with the 15-minute time step. The 

background level of the CO2 column is set equal to an average of the FTIR upwind measurements during a day. Note that in 

2020, there were days when the downwind measurements were performed twice, at different locations – on March 22 and 

May 1 (see Fig. B2). 810 
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Figure B1: Time series of measured (FTS) and simulated (HYSPLIT, without scaling of the ODIAC emissions data) CO2 total 

column at the upwind (blue lines) and downwind (red lines) locations for selected campaign days in 2019. 



43 

 

Figure B2: Time series of measured (FTS) and simulated (HYSPLIT, without scaling of the ODIAC emissions data) CO2 total 815 

column at the upwind (blue lines) and downwind (red lines) locations for selected campaign days in 2020. 


