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In this supplementary information we include:- 41 

 42 

Figure S1. SF6 model/measurement comparison from the AGAGE 12-box model. 43 

A detailed description of the InTEM and EBRIS inversion models used to estimate regional 44 

emissions. 45 

Table S1. InTEM Meteorology.  46 

Table S2. Rand Corporation sales of SF6 to End-Use applications. 47 

Table S3. InTEM emissions estimates for South Korea. 48 

 49 

 50 

Figure S1.  SF6 model/measurement comparison from the AGAGE 12-box model.  51 

 52 

InTEM model description 53 

InTEM is a Bayesian system that minimises the mismatch between the model and the 54 

atmospheric observations given the constraints imposed by the observation and model 55 

uncertainties and prior information with its associated uncertainties. The horizontal and vertical 56 

resolution of the meteorology has improved over the modelled period and is described in Table 57 

ST1. The direction (latitude and longitude) and altitude varying background concentration and 58 

observation station bias are solved for within the inverse system along with the spatial 59 

distribution and magnitude of the emissions. The time-varying prior background concentration 60 

for the DECC network stations is derived from the MHD observations when they are very 61 

largely sensitive only to Northern Canada (Arnold et al., 2018), JFJ and CMN prior baselines 62 
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are derived separately for each station using times when the land influence at these high altitude 63 

stations is small. The prior bias (that can be positive or negative) for each station is set to zero 64 

with an uncertainty of 0.02 ppt. The population-weighted prior has a total domain uncertainty 65 

of 200% and has a domain-wide emission of 2 Gg yr-1. The observations from each station are 66 

assumed to have an exponentially decreasing 12-hr time correlation coefficient and, between 67 

stations, a 200 km spatial correlation coefficient. The observations are averaged into 2-hr 68 

periods. The uncertainty of the observations is derived from the reported daily observation 69 

precision uncertainty and the variability of the observations within a 6-hr period. The modelling 70 

uncertainty for each 2-hr period at each station varies and is defined as the larger of; the median 71 

pollution event in that year at that station, or 16.5% of the magnitude of the pollution event. 72 

These values have been derived from analysis of the observations of methane at multiple 73 

heights at each station across the DECC network. Each inversion (2-month with 7-sites, 2-yr 74 

with 3-sites or 3-yr when only MHD is available) is repeated 24 times, each time 10% of the 75 

observations per year per station are randomly removed in 5-day intervals and the results and 76 

uncertainty averaged. This random removal of observations allows a greater exploration of the 77 

uncertainty, given the potential for some of the emission sources to be intermittent within the 78 

time-period of the inversion. 79 

 80 

TABLE ST1.   3-DIMENSIONAL METEOROLOGY USED TO DRIVE NAME FOR DIFFERENT 81 

YEARS. FOR DECC OBSERVATIONS FROM 2012 ONWARDS THE HIGH RESOLUTION UM 82 

METEOROLOGY (LAST LINE) CALCULATED OVER THE UK IS USED NESTED INSIDE THE 83 

GLOBAL METEOROLOGY DATA. 84 

Year 
Horizontal 

Resolution 

Number Vertical 

Levels 

Time 

Resolution 

Aug 2002 – Dec 2005 ~60 km 32  

Dec 2005 – Mar 2011 ~40km 32 3hr 

Mar 2011 – Jul 2014 ~25 km 53 3hr 

Jul 2014 – Jul 2017 ~17 km 53 3hr 

Jul 2017 – Dec 2018 ~12 km 53 3hr 

Jan 2012 – Dec 2018 

(MHD and TAC only) 
~ 1.5 km 58 1hr 

 85 
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Definite Empa Bayesian Regional Inversion System (EBRIS) 95 

 96 

Surface source sensitivities used by the Empa inverse modelling system were derived with 97 

the Lagrangian Particle Dispersion Model (LPDM) FLEXPART (Version 9.1, Stohl et al., 98 

2005) driven by analysis/forecasts from the operational runs of the Integrated Forecast Systems 99 

(IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The horizontal 100 

resolution of the input data was 0.2°x0.2° over the larger Alpine area and 1°x1° elsewhere. For 101 

each observation site 3-hourly release intervals using 50’000 model particles each were 102 

defined. These particles were traced backward in time for 10 days. Residence times of the 103 

model particles within a regular geographic grid covering Europe and North America and 104 

below a sampling height of 100 m were evaluated to derive the source sensitivities. 105 

The regional scale inversion method applied by Empa was described in detail by Henne et 106 

al. (2016), where it was applied to CH4 emissions in Switzerland. The system was applied to 107 

various halocarbon emission estimations in Europe (Brunner et al., 2017; Schoenenberger et 108 

al., 2018) and East Asia (Vollmer et al., 2018; Lunt et al., 2018; Rigby et al., 2019). The method 109 

follows a Bayesian approach in that it optimises the spatiotemporal emission distribution so 110 

that simulation and observation of atmospheric concentrations best agree under the restriction 111 

of a given a priori emission distribution and its uncertainties. The inversion grid contains 112 

variable grid resolution following the average simulated source sensitivity with smaller (larger) 113 

grid cells at location with larger (smaller) source sensitivities. The total simulated concentration 114 

is separated into the regional contribution covered by the transport model and a baseline 115 

fraction. Here, the baseline was estimated from the observed time series at each site separately 116 

using the method by Ruckstuhl et al. (2012). The resulting baselines were included as part of 117 

the state vector using linear interpolation for times between 5-daily baseline nodes.  118 

The inversion was applied to yearly batches of observations solving for mean annual 119 

emissions for the period 2007 to 2016. All valid observations form all sites were used in the 120 

inverse estimate. We did not apply any additional filtering of the observations by time-of-day, 121 

wind speed or direction. We followed the approach by Stohl et al. (2009) to avoid negative a 122 

posteriori emissions in individual grid cells. A priori emissions for SF6 were set to 0.46 Gg yr-123 
1 for the whole inversion domain, which covered Western and Central Europe. Emissions were 124 

spatially disaggregated proportionally to population densities (Center for International Earth 125 

Science Information Network, 2016). A-priori emissions were kept the same for all years. The 126 

structure and the values of the covariance matrices for the a priori and data-mismatch 127 

uncertainties were described by a set of parameters characterising absolute uncertainty levels 128 

and spatiotemporal correlations in the uncertainties (Henne et al., 2016). These parameters 129 

included the treatment of autocorrelation in the observations with a temporal correlation length 130 

of 0.25 days. A maximum likelihood approach to obtain the uncertainty parameters as used 131 

previously (Henne et al., 2016) did not converge for the current set of inversions. Therefore, 132 

these parameters were set based on expert judgment and using an iterative approach to 133 

determine the data-mismatch uncertainty (Stohl et al., 2009). The uncertainty of the a priori 134 

emissions for the entire inversion domain was set to 100 % .The spatial correlation length scale 135 

of the a priori was fixed to a value of 200 km. The uncertainty of the baseline was taken from 136 

the fit to the observations (36 ppt, 41 ppt, 80 ppt and 128 ppt for the sites MHD, TAC, JFJ and 137 

CMN). A common correlation length scale for the baseline of 30 days was assumed. 138 

 139 
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 188 

Table S2. Rand Corporation Sales of SF6 to End-Use applications. 189 

 

 

 

Utilities 

(Gg) 

Equipment 

(Gg) 

*Magnesium 

(Gg) 

*Electronics 

(Gg) 

Adiabatic 

(Gg) 

*Other 

Uses (Gg) 

*Combined 

Prompt 

Emissions  (Gg) 

1996 1.136 4.770 0.530 0.303 0.379 0.454 1.287 

1997 1.000 4.399 0.200 0.333 0.400 0.333 0.866 

1998 0.771 4.150 0.119 0.356 0.178 0.356 0.830 

1999 0.659 3.243 0.152 0.456 0.152 0.405 1.013 

2000 1.101 3.916 0.184 0.612 0.122 0.184 0.979 

2001 1.158 4.247 0.193 0.515 0.064 0.257 0.965 

2002 1.495 3.706 0.325 0.650 0.064 0.325 1.300 

2003 1.545 3.477 0.258 0.837 0.064 0.322 1.416 
 190 

Note: Values extracted from Rand Report. K. Symthe.: Trends in SF6 Sales and End-Use 191 

Applications: 1961-2003. Rand Corporation. 3rd International Conf. on SF6 and the 192 

Environment 1-2 December 2004.  193 

*Assumes worse case that sales=consumption=emission with Magnesium, Electronics and 194 

other uses all being prompt releases. 195 

 196 

Table S3. InTEM emissions estimates for South Korea.  197 

 198 

Year 
South Korea 

(t) 
Uncertainty 

(t) 

2007 190 (170-210) 

2008 230 (210-250) 

2009 280 (260-300) 

2010 250 (230-260) 

2011 190 (170-200) 

2012 210 (190-220) 

2013 240 (220-250) 

2014 300 (280-320) 

2015 350 (330-370) 

2016 310 (280-330) 

2017 300 (280-320) 

2018 280 (260-300) 

   

Average 260 (0.26Gg) (240-280) 
 199 


