

The authors have obviously taken on board all of the reviewer's suggestions, and done their utmost to address them. The manuscript is much improved as a result, and crucially more readable and accessible. This is an excellent paper, with some really novel results that have been carefully analysed. I particularly thought that the section on the influence of gravity waves on PSC precursors was interesting and novel. However, there are still some minor comments that I have listed below, which should be straightforward to address given the competence of the team, but nevertheless important. I particularly feel that much of these changes are necessary to increase the authority of the paper.

More importantly, there is maybe a more major issue of the use of reanalysis being used to semi-validate the nested simulations in section 5.1, which is misplaced and undermines section 5.3 - surely a more coherent order would be to combine these two sections and/or just focus on the use of AIRS and keep the reanalysis data solely for describing the synoptic conditions responsible for the wave event. I'm sure that would result in a much cleaner and stronger paper, and a very strong argument for both the dynamical and PSC chemistry benefits of the nested ICON-ART configuration.

Once these comments are addressed I recommend that the manuscript is accepted.

Major/minor comments

- Figure 5: You have mentioned that reanalysis resolves the gravity wave / temperature amplitude (e.g. your Figure 4). If you wanted to properly test this (and I would have thought show conclusively that it only partially resolves this, at least when compared to the 40 km model), then you could include a column in Figure 5 that shows results based on reanalysis. Or perhaps, this could be included as a supplementary figure. I have to say that the paper does give a rather confusing message as to what are the limitations of reanalysis / coarse resolution (of order ~100 km), so this would go a long way to clarifying this.

However, if you would rather not do this, then please include clear evidence in the manuscript in the form of citations that details the ability of modern reanalysis to capture small-scale orographic gravity waves. Four other comments related to this issue are also on lines #195, #230, #243, and #375 as well as Section 5.3. Even better, as I explain below, it would surely be much better to just stick to comparing the model against AIRS, which shows great promise. This is honestly all that you need, and any other argument just gets confusing and convoluted.

- Line #195: There seems to some confusion here. You wisely have included AIRS to validate the model representation of the gravity wave event (as done elsewhere), particularly I assume the temperature perturbation induced by the wave. Therefore, why is there considerable mention of the model being compared to the reanalysis representation of the wave event? Surely this is flawed and/or redundant?
- Line #230: Here you are explaining that (relatively coarse resolution, resolution ~80 km) ERAI is able to resolve the temperature minimum induced by gravity waves to the lee of the Peninsula. How can a grid spacing of 80 km resolve a mountain wave of around 300 km wave length? Especially as your Figure 5 shows a marked difference between 80 and 40 km results. Please modify/soften the language so that this remark is less glaring. Maybe comment that there is evidence of a wave in ERAI, but given the resolution it is likely poorly

resolved, amplitude underestimated, etc.... See Alexander and Teitelbaum (2007), which you refer to. See also comment above.

- Line #243: Why would you expect temperatures to be in agreement with ERA-Interim? As mentioned above, your 40 v 80 km results are not in agreement, so why should ERAI v 40 km results be in agreement? Perhaps the agreement is because the location is over the base of the Peninsula, so conducive to more broader horizontal scale waves that reanalysis products can resolve, compared to waves forced by the much narrower Peninsula region further north (width ~100km). My understanding is that it is well established that reanalysis products fail to capture the detailed temperature structure associated with gravity waves, which is why you have included AIRS data in your analysis. Maybe Alexander and Teitelbaum (2007) is appropriate, as it states that the fine details apparent in AIRS is not evident in ECMWF data. See also comment above.
- Section 5.3: My initial reaction to section 5.3 is that is a repeat of 5.1, and why are two separate sub-sections required? Surely a better place for the AIRS comparison would be 5.1, so that the dynamics / simulation of the mountain wave is dealt with in one place. This would also be a lot cleaner and enable you to easily remove all comparisons/mention of agreement with reanalysis that are currently in 5.1. In any case, how can Sect. 5.1 improve on 5.3? Surely a state of the art comparison with AIRS in 5.3 makes the results of 5.1 largely redundant, and in doing so lessens the impact of 5.3?
- Line #375: Here you categorically state that the model matches AIRS. Excellent result, which negates the need for any earlier and confusing mentioning of the good agreement with reanalysis.

Minor comments/changes

- Line #2: Spelling. Surfaces.
- Line #4: Please mention the possible role of unresolved non-orographic waves somewhere in the manuscript, and how the ICON-ART model would possibly result in an improvement in this aspect. Please see Tritscher et al. (2021) for a (short) review/discussion of the possible role of non-orographic waves and PSCs.
- Line #29: This statement is not quite true. The requirement is that a sizeable component of the wind is perpendicular to the barrier, not all of the large scale flow. This is why south-easterly winds, which are common over the Peninsula, are closely associated with forcing orographic gravity waves.
- Line #60: Please revise sentence beginning 'Thus, a low resolution'. Its currently unclear.
- Line #75: Please revise use of 'large' here. Horizontal wavelengths of ~300 km are not large, but mesoscale.
- Line #183: The list of PSC types given here could do with a little more detail/explanation, rather than expecting the reader to work this out for themselves via Pitts et al. 2018. For example, what are enhanced NAT mixtures, Wave-ice, etc? How reliable are CALIOP measurements of the different PSC types?
- Figure 4 caption: What does 'dark shadow' refer to? It made me think of the Lord of the Rings!! I think this is a translation issue from German to English. Please correct.
- Line #239: I mentioned this in my first review. Please be careful how you word this. The interaction between the flow and the detailed orography is better captured at higher resolution, but you are saying something different (flow over the mountain in the Antarctic Peninsula nest is improved). Also, even if the model orography was to converge at higher

resolution (ie differences in orography between the different resolutions becomes small), you might still expect differences in the representation of the key features of the orographic gravity wave due to differences in the grid spacing / resolving finer details of the dynamics. Such features are reviewed by Smith et al. 1989.

Smith, R. B. (1989). Hydrostatic airflow over mountains. *Advances in Geophysics*, 31, 1-41, [https://doi.org/10.1016/S0065-2687\(08\)60052-7](https://doi.org/10.1016/S0065-2687(08)60052-7).

- Line #248: This argument is rather confused here. Is it the 40 km horizontal resolution or the 500 m vertical resolution that are important, or both. Please clarify.
- Line #257: Include a reference here after 'consistent with theory'. Smith (1989), mentioned above, is often acknowledged as being the classic paper for mountain waves.
- Line #284: Have these parameters (particularly the subscripts) been previously defined? What does the subscript 'NAT|ice' refer to? Please make sure that all parameters are clearly defined.
- Figure 6: I think it is worth commenting that in both the 40 km model and CALIOP that the fraction of Wave-ice PSCs is very small. Is this to be expected? How reliable are CALIOP measurements of Wave-ice PSCs?
- Line #321: I don't think that you can say with any certainty that a higher resolution is required to get the number of ice PSCs correct. Also, its not clear what would be the impact of higher resolution? Are you suggesting that the temperature perturbation amplitude would be larger at higher resolution, and hence more realistic? If so, then please make this clear. You also made a similar comment at line #339 and #348, so please amend this also.
- Line #330: You have identified a deficiency in the simulation of STS. But no explanation is given as to why this is occurring, or indication that this will be looked at later. Please amend this.
- Line #364: Again, you can not state that a higher resolution would resolve this issue. You don't know this for certain and its beyond the scope of your work to examine this. You need to soften this language, so say that it is perhaps probable that this is a resolution issue (or consistent with a resolution dependence issue), which would perhaps be corrected by going to higher grid spacings, as shown by
- Line #367: Please refer to Figures 5, 6 and 7 of Orr et al. 2020, which examine the impact of a higher resolution simulation (via a parameterisation) on the simulated temperatures relative to the ice temperature threshold, as well as the formation potential of ice PSCs.
- Line #370: I would suggest prefacing the reference to Figure 9 with something like 'Following Orr et al. (2015) ...', as this is the same model v AIRS comparison as that study undertook.
- Line #372: You could perhaps mention that an analogous study by Orr et al. (2015) using a 4 km model seems to suggest a better match between observed v simulated wave amplitudes over the Antarctic Peninsula, ie more realistic and larger at the higher resolution. This is perhaps the evidence that you need to suggest that a further extension of your study could be to perhaps go to higher grid spacings.
- Line #404: Meteorological models do not have 'ice schemes'. Not sure what you are meaning here, so please revise.
- Figure 14: Perhaps worth comparing this to the results of Figure 10 in Orr et al. (2020), which also looked at the effects on chlorine activation. Similarly, Figure 15 could also be compared to Fig 11 in Orr et al., which also looked at the impacts on ozone.
- Conclusions/outlook: Maybe a mention of the importance of unresolved non-orographic gravity waves could be included, e.g. from SH storm tracks.