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Abstract 8 

Frequent and widespread wildfires in North Western United States and Canada has become 9 

the “new normal” during the northern hemisphere summer months, which degrades particulate 10 

matter air quality in the United States significantly. Using the mid-visible Multi Angle 11 

Implementation of Atmospheric Correction (MAIAC) satellite-derived Aerosol Optical Depth 12 

(AOD) with meteorological information from the European Centre for Medium-Range Weather 13 

Forecasts (ECMWF) and other ancillary data, we quantify the impact of these fires on fine 14 

particulate matter air quality (PM2.5) in the United States. We use a Geographically Weighted 15 

Regression method to estimate surface PM2.5 in the United States between low (2011) and high 16 

(2018) fire activity years.  Our results indicate that smoke aerosols caused significant pollution 17 

changes over half of the United States. We estimate that nearly 29 states have increased PM2.5 18 

during the fire active year and 15 of these states have PM2.5 concentrations more than 2 times 19 

than that of the inactive year. Furthermore, these fires increased daily mean surface PM2.5 20 

concentrations in Washington and Oregon by 38 to 259 µgm-3 posing significant health risks 21 

especially to vulnerable populations. Our results also show that the GWR model can be 22 
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successfully applied to PM2.5 estimations from wildfires thereby providing useful information for 23 

various applications including public health assessment. 24 

1. Introduction 25 

The United States (US) Clean Air Act (CAA) was passed in 1970 to reduce pollution levels 26 

and protect public health that has led to significant improvements in air quality (Hubbell et al., 27 

2010; Samet, 2011). However, the northern part of the US continues to experience an increase in 28 

surface PM2.5 due to fires in North Western United States and Canada (hereafter NWUSC) 29 

especially during the summer months and these aerosols are a new source of ‘pollution’ (Dreessen 30 

et al., 2016).  The smoke aerosols from these fires increase fine particulate matter (PM2.5) 31 

concentrations and degrade air quality in the United States (Miller et al., 2011). Moreover several 32 

studies have shown that from 2013 to 2016, over 76% of Canadians and 69% of Americans were 33 

affected by wildfire smoke (Munoz-Alpizar et al., 2017). Although wildfire pre-suppression and 34 

suppression costs have increased, the number of large fires and the burnt areas in many parts of 35 

western Canada and the United States have also increased. (Hanes et al., 2019; Tymstra et al., 36 

2019). Furthermore, in a changing climate, as surface temperature increases and humidity 37 

decreases, the flammability of land cover also increases, and thus accelerate the spread of  wildfires 38 

(Melillo et al., 2014; Coogan et al, 2019). The accumulation of flammable materials like leaf litter 39 

can potentially trigger severe wildfire events even in those forests that hardly experience wildfires 40 

(Calkin et al., 2015; Hessburg et al., 2015; Stephens, 2005). .  41 

Wildfire smoke exposure can cause small particles to be lodged in lungs that may lead to 42 

exacerbations of asthma chronic obstructive pulmonary disease (COPD), bronchitis, heart disease 43 

and pneumonia (Cascio, 2018). According to a recent study, a 10 𝜇𝑔𝑚ିଷ increase in PM2.5 is 44 

associated with a 12.4% increase in cardiovascular mortality (Kollanus et al.,  2016). In addition, 45 
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exposure to wildfire smoke is also related to massive economic costs due to premature mortality, 46 

loss of workforce productivity, impacts on the quality of life and compromised water quality 47 

(Meixner and Wohlgemuth, 2004). 48 

Surface PM2.5 is one of the most commonly used parameters to assess the health effects 49 

of ambient air pollution. Since surface monitors are limited, satellite data has been used with 50 

numerous ancillary data sets to estimate surface PM2.5 at various spatial scales. Several techniques 51 

have been developed to estimate surface PM2.5 using satellite observations from regional to global 52 

scales including simple linear regression, multiple linear regression, mixed-effect model, chemical 53 

transport model (scaling methods), geographically weighted regression (GWR), and machine 54 

learning methods (see Hoff and Christopher, 2009 for a review). The commonly used global 55 

satellite data product is the 550nm (mid-visible) aerosol optical depth (AOD) which is a unitless 56 

columnar measure of aerosol extinction (Wang and Christopher, 2006). Simple linear regression 57 

method uses satellite AOD as the only independent variable, which shows limited predictability 58 

compared to other method and correlation coefficients vary from 0.2 to 0.6 from the Western to 59 

Eastern United States (Zhang et al., 2009).  Multiple linear regression method uses meteorological 60 

variables along with AOD data, and the prediction accuracy varies with different conditions 61 

including the height of boundary layer and other meteorological conditions (Liu, et al, 2005; Gupta 62 

and Christopher, 2009b). For both univariate model and multi-variate models, AOD shows 63 

stronger correlation with PM2.5 during-fire episodes compared to pre-fire and post-fire periods 64 

(Mirzaei et al., 2018). Chemistry transport models (CTM) that scale the satellite AOD by the ratio 65 

of PM2.5 to AOD simulated by models can provide PM2.5 estimations without ground 66 

measurements, which are different than other statistical methods (Donkelaar et al, 2006). However, 67 

the CTM models that depend on reliable emission data usually show limited predictability at 68 
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shorter time scales, and is largely useful for studies that require annual averages (Hystad et al., 69 

2012).  70 

The relationship among PM2.5, AOD and other meteorological variables is not spatially 71 

consistent (Hoff and Christopher, 2009; Hu, 2009) and therefore methods that consider spatial 72 

variability can replicate surface PM2.5 with higher accuracy. One such method is the GWR, which 73 

is a non-stationary technique that models spatially varying relationships by assuming the 74 

coefficients in the model are functions of locations (Brunsdon et al., 1996; Fotheringham et al., 75 

1998, 2003). In 2009, satellite-retrieved AOD was introduced in the GWR method to predict 76 

surface PM2.5 (Hu, 2009) followed by the use of meteorological parameters and land use 77 

information (Hu et al., 2013). Other studies  (Ma et al., 2014; You et al., 2016) successfully applied 78 

GWR model in estimating PM2.5 using AOD and meteorological features as predictors. Similar 79 

to most statistical methods, however, the GWR relies on adequate number and density of surface 80 

measurements (Chu et al., 2016; Gu, 2019), underscoring the importance of adequate ground 81 

monitoring of surface PM2.5.  82 

In this paper, we use satellite data products from the Moderate Resolution Imaging 83 

Spectroradiometer (MODIS) and surface PM2.5 data combined with meteorological and other 84 

ancillary information to develop and use the GWR method to estimate PM2.5. The use of the GWR 85 

method is not novel and we merely use an existing method to apply this towards surface PM2.5 86 

estimations for forest fires. We calculate the change in PM2.5 between a high fire activity (2018) 87 

with low fire activity (2011) periods during summer to assess the role of NWUSC wildfires on 88 

surface PM2.5 in the United States. The paper is organized as follows: We describe the data sets 89 

used in this study followed by the GWR method. We then describe the results and discussion 90 

followed by a summary with conclusions.  91 
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2. Data 92 

A 17-day period (August 9th to August 25th) in 2018 (high fire activity) and 2011 (low fire 93 

activity) was selected based on analysis of total fires (details in methodology section) to assess 94 

surface PM2.5 (Table 1). 95 

2.1 Ground level PM2.5 observations: Daily surface PM2.5 from the Environment Protection 96 

Agency (EPA) are used in this study. These data are from Federal Reference Methods (FRM), 97 

Federal Equivalent Methods (FEM), or other methods that are to be used in the National Ambient 98 

Air Quality Standards (NAAQS) decisions. A total of 1003 monitoring sites in the US are included 99 

with 949 of those having valid observations in the study period in 2018, and a total of 873 sites 100 

with 820 having valid observations in the study period in 2011. PM2.5 values less than 2 µgm-3  101 

are discarded since they are lower than the established detection limit  (Hall et al., 2013).  102 

2.2 Satellite Data: The MODIS mid visible AOD from the Multi-Angle Implementation of 103 

Atmospheric Correction (MAIAC) product (MCD19A2 Version 6 data product) is used in this 104 

study. We used MAIAC retrieved  Terra and Aqua MODIS AOD product at 1 km pixel resolution 105 

(Lyapustin et al., 2018) and different orbits are averaged to obtain mean daily values. Validation 106 

with AERONET studies show that 66% of the MAIAC AOD data agree within േ0.5~േ0.1 AOD 107 

(Lyapustin et al., 2018). Largely due to cloud cover, grid cells may have limited number of AOD 108 

observations within a certain period. On average, cloud free AOD data are available about 40% of 109 

the time during August 9th to August 25th in 2018 when fires were active in the region bounded by 110 

25~50°N, 65~125°W.  111 

We also use the MODIS level-3 daily FRP (MCD14ML) product which combines Terra 112 

and Aqua fire products to assess wildfire activity. The fire radiative energy indicates the rate of 113 
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combustion and thus FRP can be used for characterizing active fires (Freeborn et al, 2014). For 114 

purposes of the study we sum the FRP within every 2.3°×3.5° box to represent the total fire activity 115 

in different locations. 116 

2.3 Meteorological data: Meteorological information including boundary layer height (BLH), 2m 117 

temperature (T2M), 10m wind speed (WS), surface relative humidity (RH) and surface pressure 118 

(SP) are obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) 119 

reanalysis (ERA5) product, with a spatial resolution of 0.25 degrees and temporal resolution of 1 120 

hour and is matched temporally with the satellite overpass time. The BLH can provide information 121 

of aerosol layer height as aerosols are often found to be well-mixed within the boundary layer 122 

(Gupta and Christopher, 2009b). A higher RH will increase the hygroscopicity, change scattering 123 

properties of certain aerosol types and can lead to a higher AOD value (Zheng et al., 2017). In 124 

addition, high surface temperatures can also accelerate the formation of secondary particles in the 125 

atmosphere.  126 

2.4 Land cover and population data: Land cover and population density is highly related to 127 

anthropogenic aerosol emissions, which also affects surface PM2.5. Land cover information from 128 

the European Space Agency (ESA) with a spatial resolution of 300m and temporal resolution of 129 

one year (ESA, 2017) and population data from ‘Gridded Population of the World’, v4 (GPWv4) 130 

with a spatial resolution of 5 km are used as variables for the GWR method used in this study. The 131 

ESA land cover product uses global time series input datasets acquired by the Envisat Medium 132 

Resolution Imaging Spectrometer (MERIS) and from the SPOT-Vegetation (SPOT-VGT) sensors. 133 

The global land surface reflectance values are produced from the MERIS level-1 dataset, which 134 

along with SPOT-VGT S1 (daily synthesis product) are used as input to the classification module 135 
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and interprets into land cover classes. The population data uses results of the 2010 Population and 136 

Housing Census as input data. 137 

3. Methodology  138 

To assess the impact of NWUSC fires on PM2.5 in the United States, we first estimate the 139 

PM2.5 over the study region during a time period with high fire activity (2018). We then use the 140 

same method during a year with low fire activity (2011) to compare the differences between the 141 

two years. The two years are selected based on the total FRP in August calculated within Canada 142 

(49~60°N, 55~135°W) and Northwestern (NW) US (35~49°N, 105~125°W). Table 2 shows the 143 

total FRP in Canada and Northwestern US in August from 2010 to 2018. The total FRP in the two 144 

regions is lowest in 2011 and highest in 2018 during the 9 years, which provides the basis for the 145 

study. In order to create a 0.1° surface PM2.5, the GWR model is used to estimate the relationships 146 

of PM2.5 and AOD. Detailed processing steps for GWR model are shown in Figure 1. 147 

3.1 Data preprocessing: The first step is to resample all datasets to a uniform spatial resolution 148 

by creating a 0.1° resolution grid covering the Continental United States. During this process, we 149 

collocate the PM2.5 data and average the values if there is more than one value in one grid. Then 150 

the MAIAC AOD, land cover and population data are averaged into 0.1° grid cells. Meteorological 151 

datasets are also resampled to the 0.1° grid cells by applying the inverse distance method. 152 

3.2 Time selecting & averaging: Next we select data where AOD and ground PM2.5 are both 153 

available (AOD > 0 and PM2.5 > 2.0 𝜇𝑔 𝑚ିଷ) and average them for the study period. This is to 154 

ensure that the AOD, PM2.5 and other variables match with each other, because PM2.5 is not a 155 

continuous measurement for some sites and AOD have missing values due to cloud cover and 156 
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other reasons. Therefore, it is important to use data from days where both these measurements are 157 

available to avoid sampling biases.  158 

3.3 GWR model development and validation: The strength of GWR is its ability to model 159 

complex spatially varying relationships which is well suited for assessing surface PM2.5 and 160 

ancillary data. It is an extension of the least regression method but it allows the relationship 161 

between dependent and independent variables to vary by location and also accounts for spatial 162 

auto-correlation of variables. Since the GWR fits a separate equation for each grid, a bandwith 163 

must be selected for each location. In this study we use thecommonly used Adaptive bandwidth 164 

method selected by the Akaike’s Information Criterion (AIC) is used for the GWR model (Loader, 165 

1999). For locations that already have PM2.5 monitors, we calculate the mean AOD of a 0.5×0.5° 166 

box centered at the ground location and estimate the GWR coefficients (β) for AOD and 167 

meteorological/land cover variables to estimate PM2.5. The model structure can be expressed as: 168 

𝑃𝑀ଶ.ହ ൌ 𝛽,  𝛽ଵ,𝐴𝑂𝐷  𝛽ଶ,𝐵𝐿𝐻  𝛽ଷ,𝑇2𝑀  𝛽ସ,𝑈10𝑀  𝛽ହ,𝑅𝐻௦  𝛽,𝑆𝑃  𝛽,𝐿𝐶169 

 𝛽଼,𝑃𝑂𝑃  𝜀 170 

where 𝑃𝑀ଶ.ହ  (𝜇𝑔 𝑚ିଷ) is the selected ground-level PM2.5 concentration at location 𝑖; 171 

𝛽,  is the intercept at location 𝑖 ; 𝛽ଵ,~𝛽଼,  are the location-specific coefficients; 𝐴𝑂𝐷  is the 172 

resampled AOD selected from MAIAC daily AOD data at location 𝑖 ; 173 

𝐵𝐿𝐻, 𝑇2𝑀, 𝑈10𝑀, 𝑅𝐻௦, 𝑆𝑃 are selected meteorological parameters (BLH, T2M, WS, RH and 174 

PS) at location 𝑖; 𝐿𝐶 is the resampled land cover data at location 𝑖; 𝑃𝑂𝑃 (𝑝𝑒𝑟𝑠𝑜𝑛/𝑘𝑚ଶ ) is the 175 

resampled population density at location 𝑖; and 𝜀 is the error term at location 𝑖.  176 

We perform the Leave One Out Cross Validation (LOOCV) to test the model predictive 177 

performance (Kearns and Ron, 1999). Since the GWR model relies on adequate number of 178 
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observations, the prediction accuracy will be lower if we preserve too much data for validation. 179 

Therefore, we choose the LOOCV method, which preserve only one data point for at a time for 180 

validation and repeat the process until all the data are used. In addition, R2 and RMSE are 181 

calculated for both model fitting and model validation process to detect overfitting. Model 182 

overfitting will lead to low predictability, which means it fits too close to the limited number of 183 

data to predict for other places and will cause large bias. 184 

3.4 Model prediction: While predicting the ground-level PM2.5 for unsampled locations, we 185 

make use of the estimated parameters for sites within a 5° radius to generate new slopes for 186 

independent variables based on the spatial weighting matrix (Brunsdon et al., 1996). The closer to 187 

the predicted location, the closer to 1 the weighting factor will be, while the weighting factor for 188 

sites further than the 5° in distance is zero. It is important to note that AOD and other independent 189 

variables used for prediction in this step are averaged values for days that have valid AOD, which 190 

is different from the data used in the fitting process since PM2.5 is not measured every day in all 191 

locations.  192 

4. Results and Discussion 193 

We first discuss the surface PM2.5 for a few select locations that are impacted by fires 194 

followed by the spatial distribution of MODIS AOD and the FRP for August 2018. We then assess 195 

the spatial distribution of surface PM2.5 from the GWR method. The validation of the GWR 196 

method is then discussed. To further demonstrate the impact of the NWUSC fires on PM2.5 air 197 

quality in the United States, we show the spatial distribution of the difference between August 198 

2018 and August 2011. We further quantify these results for ten US EPA regions. 199 

 200 
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4.1 Descriptive statistics of satellite data and ground measurements  201 

The 2018 summertime Canadian wildfires started around the end of July in British 202 

Columbia and continued until mid-September. The fires spread rapidly to the south of Canada 203 

during August, causing high concentrations of smoke aerosols to drift down to the US and affecting 204 

particulate matter air quality significantly. From late July to mid-September, wildfires in the 205 

northwest US that burnt forest and grassland also affected air quality in the United States but the 206 

number and intensity of fires were less than the fires in Canada (Figure 2). Starting with the Cougar 207 

Creek Fire, then Crescent Mountain and Gilbert Fires, different wildfires in in NWUSC caused 208 

severe air pollution in various US cities. Figure 2a shows the rapid increase in PM2.5 of selected 209 

US cities from July 1st to August 31st, due to the transport of smoke from these wildfires. For all 210 

sites, July had low PM2.5 concentrations (<10 𝜇𝑔 𝑚ିଷ) and rapidly increased with fire activity. 211 

Calculating only from the EPA ground observations, the mean PM2.5 of the 17 days for the whole 212 

US is 13.7 𝜇𝑔 𝑚ିଷ and the mean PM2.5 for Washington (WA) is 40.6𝜇𝑔𝑚ିଷ, which indicates 213 

that the PM pollution is concentrated in the northwestern US for these days. This trend is obvious 214 

when comparing the mean PM2.5 of all US stations (black line with no markers) and the mean 215 

PM2.5 of all WA stations (grey line with no markers). Ground-level PM2.5 reaches its peak 216 

between August 17th-21st and daily PM2.5 values during this time period far exceeds the 17-day 217 

mean PM2.5.  For example, mean PM2.5 in WA on August 20th is 86.75 𝜇𝑔 𝑚ିଷ, which is more 218 

than two times the 17-day average of this region. On August 19th, Omak which is located in the 219 

foothills of the Okanogan Highlands in WA had PM2.5 values exceed 250 𝜇𝑔 𝑚ିଷ. According to 220 

a review of US wildfire caused PM2.5 exposures, 24-h mean PM2.5 concentrations from wildfires 221 

ranged from 8.7 to 121 𝜇𝑔 𝑚ିଷ, with a 24 h maximum concentration of 1659 𝜇𝑔 𝑚ିଷ (Navarro et 222 

al., 2018). 223 
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The spatial distribution of MAIAC AOD shown in Figure 2b indicates that the smoke from 224 

Canada is concentrated mostly in Northern US states such as WA, Oregon, Idaho, Montana, ND 225 

and Minnesota. The black arrows show the mean 800hPa-level mean wind for 17 days, and the 226 

length of the arrow represents the wind speed in ms-1. Also shown in Figure 2b are wind speeds 227 

close to the fire sources which are about 4~5 ms-1, and according to the distances and wind 228 

directions, it can take approximately 28~36 hours for the smoke to transport southeastward to 229 

Washington state. Then the smoke continues to move east to other northern states such as Montana 230 

and North Dakota. In addition, the grey circle represents the total fire radiative power (FRP) of 231 

every 2.3×3.5-degree box. The reason for not choosing a smaller grid for the FRP is to not clutter 232 

Figure 2b with information from small fires. The bigger the circle is, the stronger the fire in that 233 

grid. It is clear that the strongest fires in 2018 are located in the Tweedsmuir Provincial Park of 234 

British Columbia in Canada (53.333N, 126.417W). The four separate lightning-caused wildfires 235 

burnt nearly 301,549 hectares of the boreal forest. The total FRP of August 2018 in Canada is 236 

about 5362 (*1000 MW), while the total FRP of August 2011 in Canada is 48 (* 1000 MW). The 237 

2011 fire was relatively weak compared to the 2018 Tweedsmuir Complex fire and we therefore 238 

use the 2011 air quality data as a baseline to quantify the 2018 fire influence on PM2.5 in the 239 

United States.  240 

4.2 Model Fitting and validation 241 

The main goal for using GWR model is to help predict the spatial distribution of PM2.5 242 

for places with no ground monitors while leveraging the satellite AOD and therefore it is important 243 

to ensure that the model is robust. Figure 3a and 3b show the results for 2018 for GWR model 244 

fitting for the entire US and the LOOCV models respectively. The color of the scatter plots 245 

represents the probability density function (PDF) which calculates the relative likelihood that the 246 
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observed ground-level PM2.5 would equal the predicted value. The lighter colors indicate more 247 

data points with a higher correlation. The model fitting process estimates the slope for each 248 

variable and therefore the model can be fitted close to the observed PM2.5 and using this estimated 249 

relationship we are able to assess surface PM2.5 using other parameters at locations where PM2.5 250 

monitors were not available. The LOOCV process tests the model performance in predicting 251 

PM2.5. If the results of LOOCV has a large bias from the model fitting, then the predictability of 252 

the model is low. Higher R2 difference and RMSE difference value indicate that the model is 253 

overfitting the data and therefore not suitable. The R2 for the model fitting is 0.84, and the R2 for 254 

the LOOCV is 0.804; the RMSE for the GWR model fitting is 3.4 𝜇𝑔 𝑚ିଷ, and for LOOCV the 255 

RMSE is 3.77𝜇𝑔 𝑚ିଷ. There are minor differences between fitting R2 and validation R2 (0.036) 256 

and between fitting RMSE and validation RMSE ሺ0.37 𝜇𝑔 𝑚ିଷሻ suggesting that the model is not 257 

over-fitting and has stable predictability further indicating that the model can predict surface 258 

PM2.5 reliably. In addition, we also performed a 20-fold cross validation by splitting the dataset 259 

into 20 consecutive folds, and each fold is used for validation while the 19 remaining folds form 260 

the training set. The 20-fold cross validation has R2 of 0.76 and RMSE of 4.15 𝜇𝑔 𝑚ିଷ. The 261 

increase/decrease in the cross validated R2 and RMSE indicates the importance of sufficient data 262 

used for fitting since a small decrease in the number of fitting data can reduce the model prediction 263 

accuracy. Overall, the prediction error of the model is between 3~5 𝜇𝑔 𝑚ିଷ, which is a reasonable 264 

error range for 17-day average prediction of PM2.5. 265 

4.3 Predicted PM2.5 Distribution 266 

The mean PM2.5 distributions over the United States shown in Figure 4a is calculated by 267 

averaging the surface PM2.5 data from ground monitors for the 17 days, which matches well with 268 

the GWR model-predicted PM2.5 distributions shown in Figure 4b. The model estimation extends 269 
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the ground measurements and provide pollution assessments across the entire nation. Comparing 270 

the AOD map (Figure 2b) with the PM2.5 estimations (Figure 4b), demonstrates the differences 271 

between columnar and surface-level pollution. Differences between the AOD and PM2.5 272 

distributions are due to various reasons including 1) Areas with high PM2.5 concentrations in 273 

figure 4b correspond to low AOD values in figure 2b (Southern California, Utah, and southern 274 

US); 2) and high AOD regions in figure 2b correspond to low PM2.5 concentrations in figure 4b 275 

(Minnesota). The first situation usually occurs at the edge of polluted areas that are relative far 276 

from the fire source, which is consistent with previous studies that reported smaller particles (<10 277 

𝜇𝑔) are able to travel longer distances compared to large particles (>10 𝜇𝑔) (Gillies et al., 1996), 278 

and that lager particles tend to settle closer to their source (Sapkota et al., 2005; Zhu et al., 2002).  279 

We use the same method for August 9th to August 25th in 2011 that had low fire activity, 280 

ensuring consistency for estimating coefficients for different variables for 2011. Figure 4c shows 281 

the difference in spatial distribution of mean ground PM2.5 of the 17 days between 2018 and 2011. 282 

High values of PM2.5 differences are in the Northwestern and central parts of the United States 283 

with the Southern states having very little impact due to the fires. Of all the 48 states within the 284 

study region, there are 29 states that have a higher PM2.5 value in 2018 than 2011, and 15 states 285 

have 2018 PM2.5 value more than two times their 2011 value (shown in table 3). The mean PM2.5 286 

for WA increases from 5.87 in 2011 to 47.1 𝜇𝑔 𝑚ିଷ  in 2018, which is about 8 times more than 287 

2011 values. The PM2.5 values in Oregon increases from 4.97 (in 2011) to 33.1 𝜇𝑔 𝑚ିଷ in 2018, 288 

which is nearly seven times more than in 2011. For states from Montana to Minnesota, the mean 289 

PM2.5 decreases from east to west, which reveals the path of smoke transport. As shown in Figure 290 

4c, there is a clear transport path of smoke from North Dakota all the way to Texas. Along the 291 

path, smoke increases PM2.5 concentrations by 173% in North Dakota and 26.2% in Texas. Smoke 292 
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aerosols transported over long distances contains fine fraction PM which significantly affect the 293 

health of children, adults, and vulnerable groups.  294 

Figure 5 shows the mean PM2.5 predicted from the GWR model of different EPA regions 295 

for the 17 days in 2011 and 2018 (Hawaii and Alaska are not included). The most influenced region 296 

is region 10, which has a 2018 mean PM2.5 value of 34.7 𝜇𝑔 𝑚ିଷ that is 6 times larger than the 297 

values in 2011 (5.8 𝜇𝑔 𝑚ିଷ) values. The PM2.5 of EPA regions 8 and 9 have 2.7 and 2.5 times 298 

increase in 2018 compared to 2011. Region 1~4 have lower PM2.5 in 2018 compared to 2011 299 

possibly due to Clean Air Act initiatives, absence of any major fire activites and therefore further 300 

away for transported aerosols. The emission reduction improves the US air quality and lower the 301 

PM2.5 every year, but 6 out of 10 EPA regions show significant increases in PM2.5 during the 302 

study period, which indicates that the long-range transported wildfire smoke has become the new 303 

major pollutant in the US. 304 

4.4 Estimation of Canadian fire pollution 305 

To evaluate the pollution caused only from Canadian fires, we did a rough assessment 306 

according to the total FRP and PM2.5 values. There are three states in the US have wildfires during 307 

the study period: California, Washington and Oregon, and they have total FRP of 1186, 518 and 308 

439 (*1000 MW) respectively. Assuming that California was only influenced by the local fires, 309 

then fires of 1186 (*1000 MW) cause 13 𝜇𝑔 𝑚ିଷ increase in PM2.5. Accordingly, wildfires in 310 

Washington and Oregon State will cause 6 and 5 𝜇𝑔 𝑚ିଷ increase in state mean PM2.5. Therefore, 311 

Canadian fires caused PM2.5 increase in Washington and Oregon is about 35 and 23 𝜇𝑔 𝑚ିଷ. 312 

Since the FRP of Canadian wildfires are approximately 5 times larger than that of the California 313 

fires, which is the strongest fire in US, we assume the pollution affecting the states located in the 314 

https://doi.org/10.5194/acp-2020-1152
Preprint. Discussion started: 9 December 2020
c© Author(s) 2020. CC BY 4.0 License.



15 | P a g e  
 

downwind directions other than the three states are mainly coming from Canadian wildfires. States 315 

with no local fires such as Montana, North Dakota, South Dakota and Minnesota have PM2.5 316 

increase of 18.31, 12.8, 10.4 and 10.13 𝜇𝑔 𝑚ିଷ. The decrease of these numbers reveal that the 317 

smoke is transport in a SE direction. This influence of Canadian wildfires on US air quality is only 318 

a rough quantity estimation, thus additional work is needed for understand long-range transport 319 

smoke pollution and its impact on public health. One way to do this would be assessing the 320 

difference of pollution by turning on and off US fires in chemistry models. 321 

4.4 Model uncertainties 322 

There are various sources of uncertainties and limitations for studies that use satellite data 323 

to estimate surface PM2.5 concentrations. Since wildfires develop quickly it is important to have 324 

continuous observations to capture the rapid changes. This study uses polar orbiting high-quality 325 

satellite aerosol products, but the temporal evolution can only be estimated by geostationary data 326 

sets. Although satellite observations have excellent spatial coverage, missing data due to cloud 327 

cover is a limitation. As discussed in the paper, the prediction error (RMSE) of the model is 328 

between 3~5 𝜇𝑔 𝑚ିଷ. The GWR model is largely influenced by the distribution of ground stations, 329 

and the prediction error will be different in different places due to unevenly distributed PM2.5 330 

stations. For locations that have a dense ground-monitoring distribution, the prediction error will 331 

be low, while the prediction error will be relative larger at other places with sparse surface stations. 332 

Although there are obvious limitations, complementing surface data with satellite products and 333 

meteorological and other ancillary information in a statistical model like the GWR has provided 334 

robust results for estimating surface PM2.5 from wildfires. We also note that we did not consider 335 

some variables used in other studies such as NDVI, forest cover, vegetation type, industrial 336 

density, visibility and chemical constituents of smoke particles  (Donkelaar et al., 2015; Hu et al., 337 
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2013; You et al., 2015; Zou et al., 2016). While Land cover and land use information can improve 338 

PM2.5 estimation predictability, redundant information such as NDVI can cause overfitting of 339 

models. Therefore, in order to control the number of predictors used in the GWR model, we use 340 

only one piece of land cover information. However, which of the land cover and land use 341 

information performs better in predicting surface PM2.5 is still to be assessed in the future. 342 

Visibility mentioned in some studies may improve the model performance, but unlike AOD, it has 343 

limited measurement across the nation, which will restrict the applicability of training data.  344 

5. Summary and Conclusions 345 

We estimate the surface mean PM2.5 for 17 days in August for a high fire active year 346 

(2018) and compare that with a low fire activity year using the Geographically Weighted 347 

Regression (GWR) method to assess the increase in PM2.5 in the United States due to smoke 348 

transported from fires. We selected the GWR becaue it has the capability to model complex 349 

relationships that vary spatially. The difference in PM2.5 between the two years indicates that 350 

more than half of the US states (29 states) are influenced by the NWUSC wildfires, and half of the 351 

affected states have 17-day mean PM2.5 increases larger than 100% of the baseline value. The 352 

peak PM2.5 during the wildfires can be much larger than the 17-day average and can affect 353 

vulnerable populations susceptible to air pollution. Some of the most affected states are in 354 

Washington, California, Wisconsin, Colorado and Oregon, all of which have populations greater 355 

than 4 million. According to CDC (Centers for Disease Control and Prevention), 8% of the 356 

population have asthma (CDC, 2011). Therefore, for asthma alone, there are about 3 million people 357 

facing significant health issue due to the long-range transport smoke in these states.  358 

For states that show decrease in PM2.5 due to the Clean Air Act, the mean decrease is 359 

about 16% of the baseline after 7 years. This is consistent with EPA's report that there is a 23% 360 
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decrease of PM2.5 in national average from 2010 to 2019(U.S. Environmental Protection Agency, 361 

2019). Comparing with the dramatic increase (132%) caused by wildfires, pollution from the fires 362 

is counteracting our effort on emission controls. Although wildfires are often episodic and short-363 

term, high frequency of fire occurrence and increasing longer durations of summertime wildfires 364 

in recent years has made them now a long-term influence on public lives. Our results show a 365 

significant increase of pollution in a short time period in most of the US states due to the NWUSC 366 

wildfires, which affects millions of people. With wildfires becoming more frequent during recent 367 

years, more effort is needed to predict and warn the public about the long-range transported smoke 368 

from wildfires. 369 
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Table 1. Datasets used in the study with sources. 510 

 511 

1) https://www.epa.gov/outdoor-air-quality-data 512 

2) https://earthdata.nasa.gov/ 513 

3) https://earthdata.nasa.gov/ 514 

4) https://www.ecmwf.int/en/forecasts 515 

5) https://www.esa-landcover-cci.org 516 

6) https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 517 

 518 

   519 

 

Data /Model Sensor 

Spatial 

Resolution 

Temporal 

Resolution Accuracy 

1 Surface PM2.5 TEOM Point data daily ±5~10%  

2 Mid visible aerosol 

optical depth (AOD) MAIAC_ MODIS 1km daily 

66% compared 

to AERONET 

3 Fire Radiative Power 

(FRP) 

Terra/Aqua-

MODIS 1km daily ± 7% 

4 ECMWF 

(Meteorological 

variables)  0.25 degree hourly  

5 Land cover MERIS SR 300m Annual  

6 Population  5km   
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 520 

Table 2. Total FRP in Canada and Northwestern US in August of Different Years (unit: 104 521 

MW) 522 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 

CA 148.24 4.84 19.93 70.54 107.78 10.39 4.6 307.3 542.99 

NW 
US 

16.41 42.84 320.39 192.06 67.01 339.58 112.9 195.64 296.91 

 523 

 524 

Table 3. Mean PM2.5 from August 9th to August 25th in 2018 and 2011 of different states 525 

State  2018  2011 

WA  47.0  5.874 

OR  33.10  4.97 

ID  26.26  6.79 

MT  25.86  7.55 

CA  21.22  7.66 

ND  20.20  7.41 

NV  17.92  5.51 

SD  17.72  7.31 

MN  16.41  6.27 

WY  15.71  6.59 

NE  15.69  6.81 

UT  14.87  6.51 

IA  14.73  7.87 

KS  14.13  6.84 

AR  13.92  11.59 

WI  13.70  6.26 

OK  13.53  9.26 

MO  13.25  9.64 

LA  13.24  13.07 

IL  12.98  11.36 

MS  12.86  13.67 

CO  12.31  6.07 

MI  11.97  6.82 

TX  11.70  9.27 

TN  11.66  14.39 

AL  11.65  14.97 
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IN  11.50  12.51 

KY  11.02  13.19 

DC  10.65  13.16 

NJ  10.56  9.76 

DE  10.37  11.16 

GA  10.22  14.02 

CT  10.20  9.74 

OH  10.14  11.84 

FL  10.13  10.68 

MD  10.07  12.59 

NM  9.842  6.03 

SC  9.829  12.66 

PA  9.75  12.64 

NC  9.67  12.44 

RI  9.633  8.602 

MA  9.56  9.413 

VA  9.38  13.74 

NY  9.33  9.731 

WV  9.28  13.58 

NH  9.11  9.33 

AZ  9.08  7.00 

VT  8.96  9.34 

ME  7.972  10.52 

 526 

 527 

 528 

 529 

 530 

 531 

 532 
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 533 

Figure 1. Flow chart for the Geographically Weighted Regression model used. All satellite, 534 

ground, meteorological data are gridded to 0.1 by 0.1 degrees. 535 

 536 

   537 
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538 

 539 

Figure 2. (a) Variations of EPA ground observed PM2.5 in different cities from July to August 540 

2018 (Omak-Washington, Seattle-Washington, Chicago-Illinois, Portland-Oregon, Billings-541 

Montana). Black line without markers shows the mean variation of the whole US stations and the 542 

grey line without markers shows the mean variation of stations in Washington state. (b) Mean 543 

MAIAC satellite AOD distribution from August 9th to August 25th, 2018. AOD values equal or 544 

larger than 0.5 are shown as the same color (yellow). Also shown are circles with Fire Radiative 545 

Power (FRP). Black arrow shows the wind direction and the length of it represents the wind 546 

speed.  The round spots of different colors on the map show the locations of the five selected 547 

cities (green-Omak, black-Seattle, yellow-Chicago, blue-Portland, red-Billings). 548 
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 549 

Figure 3. Results of model fitting and cross validation for GWR model for the entire US region 550 

averaged from August 9th to August 25th, 2018. (a) GWR model fitting results (b) GWR model 551 

LOOCV results. The dash line is the 1:1 line as reference and the black line shows the regression 552 

line. The color of the scatter plots represents the probability density function which provides a 553 

relative likelihood that the value of the random variable would equal a certain sample. 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 
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 564 

 565 

Figure 4. (a) EPA ground observed PM2.5 distribution over the US averaged from August 9th to 566 

August 25th, 2018. (b) GWR predicted 17-day mean PM2.5 distribution. (c) Difference map of 567 

predicted ground PM2.5 of the 17-day mean values between 2018 and 2011. PM2.5 values equal 568 

or larger than 30 𝜇𝑔 𝑚ିଷ are shown as the same color (red). Note that the D-PM2.5 has a 569 

different color scale to make the negative values more apparent (blue). 570 
 571 
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 573 

 574 

Figure 5. Mean PM2.5 of EPA regions from August 9th to August 25th in 2011 and 2018. Inset 575 

shows the map of 10 EPA regions in different colors. Yellow column represents the 2018 mean 576 

PM2.5 and green column represents for 2011 mean PM2.5. 577 
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