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Abstract 8 

Frequent and widespread wildfires in North Western United States and Canada has become 9 

the “new normal” during the northern hemisphere summer months, which significantly degrades 10 

particulate matter air quality in the United States. Using the mid-visible Multi Angle 11 

Implementation of Atmospheric Correction (MAIAC) satellite-derived Aerosol Optical Depth 12 

(AOD) with meteorological information from the European Centre for Medium-Range Weather 13 

Forecasts (ECMWF) and other ancillary data, we quantify the impact of these fires on fine 14 

particulate matter concentration (PM2.5) air quality in the United States. We use a Geographically 15 

Weighted Regression method to estimate surface PM2.5 in the United States between low (2011) 16 

and high (2018) fire activity years.  Our results indicate that smoke aerosols caused significant 17 

pollution changes over half of the United States. We estimate that nearly 29 states have increased 18 

PM2.5 during the fire active year and 15 of these states have PM2.5 concentrations more than 2 19 

times than that of the inactive year. Furthermore, these fires increased the daily mean surface PM2.5 20 

concentrations in Washington and Oregon by 38 to 259µgm-3 posing significant health risks 21 

especially to vulnerable populations. Our results also show that the GWR model can be 22 
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successfully applied to PM2.5 estimations from wildfires thereby providing useful information for 23 

various applications including public health assessment. 24 

1. Introduction 25 

The United States (US) Clean Air Act (CAA) was passed in 1970 to reduce pollution levels 26 

and protect public health that has led to significant improvements in air quality (Hubbell et al., 27 

2010; Samet, 2011). However, the northern part of the US continues to experience an increase in 28 

surface PM2.5 due to fires in North Western United States and Canada (hereafter NWUSC) 29 

especially during the summer months and these aerosols are a new source of ‘pollution’ (Coogan 30 

et al., 2019; Dreessen et al., 2016).  The smoke aerosols from these fires increase fine particulate 31 

matter (PM2.5) concentrations and degrade air quality in the United States (Miller et al., 2011). 32 

Moreover several studies have shown that from 2013 to 2016, over 76% of Canadians and 69% of 33 

Americans were at least minimally affected by wildfire smoke (Munoz-Alpizar et al., 2017). 34 

Although wildfire pre-suppression and suppression costs have increased, the number of large fires 35 

and the burnt areas in many parts of western Canada and the United States have also increased. 36 

(Hanes et al., 2019; Tymstra et al., 2019). Furthermore, in a changing climate, as surface 37 

temperature increases and humidity decreases, the flammability of land cover also increases, and 38 

thus accelerate the spread of  wildfires (Melillo et al., 2014). The accumulation of flammable 39 

materials like leaf litter can potentially trigger severe wildfire events even in those forests that 40 

hardly experience wildfires (Calkin et al., 2015; Hessburg et al., 2015; Stephens, 2005).  41 

Wildfire smoke exposure can cause small particles to be lodged in lungs that may lead to 42 

exacerbations of asthma chronic obstructive pulmonary disease (COPD), bronchitis, heart disease 43 

and pneumonia (Apte et al., 2018; Cascio, 2018). According to a recent study, a 10 𝜇𝑔𝑚ିଷ 44 

increase in PM2.5 is associated with a 12.4% increase in cardiovascular mortality (Kollanus et al.,  45 
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2016). In addition, exposure to wildfire smoke is also related to massive economic costs due to 46 

premature mortality, loss of workforce productivity, impacts on the quality of life and 47 

compromised water quality (Meixner and Wohlgemuth, 2004). 48 

Surface PM2.5 is one of the most commonly used parameters to assess the health effects of 49 

ambient air pollution. Given the sparsity of measurements in many parts of the world, it is not 50 

possible to use interpolation techniques between monitors to provide PM2.5 estimates on a square 51 

kilometer basis. Since surface monitors are limited, satellite data has been used with numerous 52 

ancillary data sets to estimate surface PM2.5 at various spatial scales. Several techniques have been 53 

developed to estimate surface PM2.5 using satellite observations from regional to global scales 54 

including simple linear regression, multiple linear regression, mixed-effect model, chemical 55 

transport model (scaling methods), geographically weighted regression (GWR), and machine 56 

learning methods (see Hoff and Christopher, 2009 for a review). The commonly used global 57 

satellite data product is the 550nm (mid-visible) aerosol optical depth (AOD) which is a unitless 58 

columnar measure of aerosol extinction. Simple linear regression method uses satellite AOD as 59 

the only independent variable, which shows limited predictability compared to other methods and 60 

correlation coefficients vary from 0.2 to 0.6 from the Western to Eastern United States (Zhang et 61 

al., 2009).  Multiple linear regression method uses meteorological variables along with AOD data, 62 

and the prediction accuracy varies with different conditions including the height of boundary layer 63 

and other meteorological conditions (Goldberg et al., 2019; Gupta and Christopher, 2009b; Liu et 64 

al., 2005). For both univariate model and multi-variate models, AOD shows stronger correlation 65 

with PM2.5 during-fire episodes compared to pre-fire and post-fire periods (Mirzaei et al., 2018). 66 

Chemistry transport models (CTM) that scale the satellite AOD by the ratio of PM2.5 to AOD 67 

simulated by models can provide PM2.5 estimations without ground measurements, which are 68 
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different than other statistical methods (Donkelaar et al., 2019, 2006). However, the CTM models 69 

that depend on reliable emission data usually show limited predictability at shorter time scales, 70 

and is largely useful for studies that require annual averages (Hystad et al., 2012).  71 

The relationship among PM2.5, AOD and other meteorological variables is not spatially 72 

consistent (Hoff and Christopher, 2009; Hu, 2009). Therefore, methods that consider spatial 73 

variability can replicate surface PM2.5 with higher accuracy. One such method is the GWR, which 74 

is a non-stationary technique that models spatially varying relationships by assuming that the 75 

coefficients in the model are functions of locations (Brunsdon et al., 1996; Fotheringham et al., 76 

1998, 2003). In 2009, satellite-retrieved AOD was introduced in the GWR method to predict 77 

surface PM2.5 (Hu, 2009) followed by the use of meteorological parameters and land use 78 

information (Hu et al., 2013). Meteorological variables are crucial for simulating surface PM2.5 79 

since they interact with PM2.5 through different processes which will be discussed in detail in the 80 

data section (Chen et al., 2020). Several studies  (Guo et al., 2021; Ma et al., 2014; You et al., 81 

2016) successfully applied the GWR model in estimating PM2.5 in China by using AOD and 82 

meteorological features as predictors. Similar to all the statistical methods, however, the GWR 83 

relies on adequate number and density of surface measurements (Chu et al., 2016; Gu, 2019; Guo 84 

et al., 2021), underscoring the importance of adequate ground monitoring of surface PM2.5.  85 

In this paper, we use satellite data from the Moderate Resolution Imaging 86 

Spectroradiometer (MODIS) and surface PM2.5 data combined with meteorological and other 87 

ancillary information to develop and use the GWR method to estimate PM2.5. The use of the GWR 88 

method is not novel and we merely use a proven method to apply this towardsestimate surface 89 

PM2.5 estimations fromor forest fires. We calculate the change in PM2.5 between a high fire activity 90 

(2018) with low fire activity (2011) periods during summer to assess the role of NWUSC wildfires 91 
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on surface PM2.5 in the United States. The paper is organized as follows: We describe the data sets 92 

used in this study followed by the GWR method. We then describe the results and discussion 93 

followed by a summary with conclusions.  94 

 95 

2. Data 96 

A 17-day period (August 9th to August 25th) in 2018 (high fire activity) and 2011 (low fire 97 

activity) was selected based on analysis of total fires (details in methodology section) to assess 98 

surface PM2.5 (Table 1). 99 

2.1 Ground level PM2.5 observations: Daily surface PM2.5 from the Environment Protection 100 

Agency (EPA) are used in this study. These data are from Federal Reference Methods (FRM), 101 

Federal Equivalent Methods (FEM), or other methods that are to be used in the National Ambient 102 

Air Quality Standards (NAAQS) decisions. A total of 1003 monitoring sites in the US are included 103 

in our study with 949 having valid observations in the study period in 2018, and a total of 873 sites 104 

with 820 having valid observations in the study period in 2011. PM2.5 values less than 2 µgm-3  are 105 

discarded since they are lower than the established detection limit  (Hall et al., 2013).  106 

2.2 Satellite Data: AOD which represents the total column aerosol mass loading is related to 107 

surface PM2.5 as a function of aerosol vertical properties and physical properties (Koelemeijer et 108 

al., 2006):  109 
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Where H is the aerosol layer height, f(RH) is the ratio of ambient and dry extinction 111 

coefficients, Qext,dry is the extinction efficiency under dry conditions, reff is the particle effective 112 
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radius,  is the aerosol mass density and S is the specific extinction efficiency (m2 g-1) of the 113 

aerosol at ambient conditions. Therefore AOD usually has a strong positive correlation with PM2.5, 114 

and the relationship varies depending on other meteorological parameters which will be discussed 115 

in detail in the following section. 116 

The MODIS mid visible AOD from the Multi-Angle Implementation of Atmospheric 117 

Correction (MAIAC) product (MCD19A2 Version 6 data product) is used in this study. We used 118 

the MAIAC- retrieved Terra and Aqua MODIS AOD product at 1 km pixel resolution (Lyapustin 119 

et al., 2018).  Different orbits are averaged to obtain mean daily values. Since thick smoke plumes 120 

generated by wildfires can be misclassified as cloud, we preserve possible cloud contaminated 121 

pixels to preserve the thick smoke pixels, and only AOD less than 0 will be discarded. Validation 122 

with AERONET studies show that 66% of the MAIAC AOD data agree within േ0.5~േ0.1 AOD 123 

(Lyapustin et al., 2018). Largely due to cloud cover, grid cells may have limited number of AOD 124 

observations within a certain period. On average, cloud free AOD data are available about 40% of 125 

the time during August 9th to August 25th in 2018 when fires were active in the region bounded by 126 

25~50°N, 65~125°W. Smoke flag from the same product is used as a predictor in estimating 127 

surface PM2.5. The smoke detection is performed using MODIS red, blue and deep blue bands, and 128 

smoke pixels are separated from dust and clouds based on absorption parameter, size parameter 129 

and thermal thresholds (see Lyapustin et al., 2012; 2018, 2012 for further discussion). Smoke flag 130 

data can provide the percentage of smoke pixel in each grid, which is related to smoke coverage. 131 

We also use the MODIS level-3 daily FRP (MCD14ML, fire radiative power) product 132 

which combines Terra and Aqua fire products to assess wildfire activity. The fire radiative energy 133 

indicates the rate of combustion and thus FRP can be used for characterizing active fires (Freeborn 134 
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et al, 2014). For purposes of the study we sum the FRP within every 2.3°×3.5° box to represent 135 

the total fire activity in different locations. 136 

2.3 Meteorological data: Meteorological information including boundary layer height (BLH), 2m 137 

temperature (T2M), 10m wind speed (WS), surface relative humidity (RH) and surface pressure 138 

(SP) are obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) 139 

reanalysis (ERA5) product, with a spatial resolution of 0.25 degrees and temporal resolution of 1 140 

hour and is matched temporally with the satellite overpass time. The meteorological parameters 141 

provide important information of different processes affecting surface PM2.5 concentration, which 142 

can also be seen as supplements of the AOD-PM2.5 relationship as previously discussed.  143 

The BLH can provide information of aerosol layer height (H in equation 1) as aerosols are often 144 

found to be well-mixed within the boundary layer (Gupta and Christopher, 2009b). With same 145 

amount of pollution within the boundary layer, the higher the BLH is, the more PM2.5 is distributed 146 

within that layer and vice-versa (Miao et al., 2018; Zheng et al., 2017). Therefore, PM2.5 usually 147 

has an anticorrelation with BLH. However, for wildfire events, the aerosol layer height is 148 

sometimes higher than the BLH (Haarig et al., 2018), which leads to lower correlation between 149 

AOD and PM2.5 since we use only BLH to present the aerosol layer height. Thus BLH can provide 150 

aerosol vertical information in most cases except for suspended high-layer aerosol caused by fires, 151 

which leads to higher bias of the model for high-layer aerosols near the fire sources. Surface 152 

temperature (T2M) can affect PM2.5 through convection, evaporation, temperature inversion and 153 

secondary pollutants generation processes (Chen et al., 2020). The first two processes are 154 

negatively related to PM2.5 concentration: 1) higher temperature increases turbulence and 155 

atmospheric convections which accelerate the pollution dispersion (PM2.5 decreases); 2) higher 156 

temperature increases evaporation loss of PM2.5 including ammonium nitrate and other volatile or 157 
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semi-volile components (Wang et al., 2017). The later two processes are positively related to PM2.5 158 

by limiting vertical motion and promoting photochemical reactions under high temperature (Xu et 159 

al., 2019; Zhang et al., 2015). Wind speed (WS) are often negatively related to PM2.5 since it 160 

increases the dispersion of pollutants. However, unique geographical conditions (such like 161 

mountains) with certain wind directions can cause accumulations of pollutants (Chen et al., 2017). 162 

RH may promote hygroscopic growth of particles to increase PM2.5 (Trueblood et al., 2018; Zheng 163 

et al., 2017), but it can also reduce PM2.5 through the deposition process. SP may influence the 164 

diffusion or accumulation of pollutants through formation of low-level wind convergence (You et 165 

al., 2017). 166 

3. Methodology  167 

To assess the impact of NWUSC fires on PM2.5 in the United States, we first estimate the 168 

PM2.5 over the study region during a time period with high fire activity (2018). We then use the 169 

same method during a year with low fire activity (2011) to compare the differences between the 170 

two years. The two years are selected based on the total FRP in August calculated within Canada 171 

(49~60°N, 55~135°W) and Northwestern (NW) US (35~49°N, 105~125°W). Table 2 shows the 172 

total FRP in Canada and Northwestern US in August from 2010 to 2018. The total FRP in the two 173 

regions is lowest in 2011 and highest in 2018 during the 9 years, which provides the basis for the 174 

study. In order to create a 0.1° surface PM2.5, the GWR model is used to estimate the relationships 175 

of PM2.5 and AOD. Detailed processing steps for GWR model are shown in Figure 1. 176 

3.1 Data preprocessing: The first step is to resample all datasets to a uniform spatial resolution 177 

by creating a 0.1° resolution grid covering the Continental United States. During this process, we 178 

collocate the PM2.5 data and average the values if there is more than one value in one grid. Then 179 

Formatted: Font:



Xue, Gupta, Christopher, submitted to Atmospheric Chemistry and Physics 

9 | P a g e  
 

the MAIAC AOD and smoke flagare averaged into 0.1° grid cells. Meteorological datasets are 180 

also resampled to the 0.1° grid cells by applying the inverse distance method. 181 

3.2 Time selecting & averaging: Next we select data where AOD and ground PM2.5 are both 182 

available (AOD > 0 and PM2.5 > 2.0 𝜇𝑔 𝑚ିଷ) and average them for the study period. This is to 183 

ensure that the AOD, PM2.5 and other variables match with each other, because PM2.5 is not a 184 

continuous measurement for some sites and AOD have missing values due to cloud cover and 185 

other reasons. Therefore, it is important to use data from days where both measurements are 186 

available to avoid sampling biases.  187 

3.3 GWR model development and validation: The Adaptive bandwidth selected by the Akaike’s 188 

Information Criterion (AIC) is used for the GWR model (Loader, 1999). For locations that already 189 

have PM2.5 monitors, we calculate the mean AOD of a 0.5×0.5° box centered at the ground location 190 

and estimate the GWR coefficients (β) for AOD and meteorological variables to estimate PM2.5. 191 

The model structure can be expressed as: 192 

𝑃𝑀ଶ.ହ௜ ൌ 𝛽଴,௜ ൅ 𝛽ଵ,௜𝐴𝑂𝐷௜ ൅ 𝛽ଶ,௜𝐵𝐿𝐻௜ ൅ 𝛽ଷ,௜𝑇2𝑀௜ ൅ 𝛽ସ,௜𝑈10𝑀௜ ൅ 𝛽ହ,௜𝑅𝐻௦௙௖௜ ൅ 𝛽଺,௜𝑆𝑃௜ ൅ 𝛽଻,௜𝑆𝐹௜193 

൅ 𝜀௜ 194 

where 𝑃𝑀ଶ.ହ௜  (𝜇𝑔 𝑚ିଷ) is the selected ground-level PM2.5 concentration at location 𝑖; 𝛽଴,௜ 195 

is the intercept at location 𝑖; 𝛽ଵ,௜~𝛽଼,௜ are the location-specific coefficients; 𝐴𝑂𝐷௜ is the resampled 196 

AOD selected from MAIAC daily AOD data at location 𝑖; 𝐵𝐿𝐻௜, 𝑇2𝑀௜, 𝑈10𝑀௜, 𝑅𝐻௦௙௖௜, 𝑆𝑃௜ are 197 

selected meteorological parameters (BLH, T2M, WS, RH and PS) at location 𝑖; 𝑆𝐹௜ (%) is the 198 

resampled smoke flag data at location i and 𝜀௜ is the error term at location 𝑖.  199 

We perform the Leave One Out Cross Validation (LOOCV) to test the model predictive 200 

performance (Kearns and Ron, 1999). Since the GWR model relies on adequate number of 201 
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observations, the prediction accuracy will be lower if we preserve too much data for validation. 202 

Therefore, we choose the LOOCV method, which preserve only one data for validation at a time 203 

and repeat the process until all the data are used. In addition, R2 and RMSE are calculated for both 204 

model fitting and model validation process to detect overfitting. Model overfitting will lead to low 205 

predictability, which means it fits too close to the limited number of data to predict for other places 206 

and will cause large bias. 207 

3.4 Model prediction: While predicting the ground-level PM2.5 for unsampled locations, we make 208 

use of the estimated parameters for sites within a 5° radius to generate new slopes for independent 209 

variables based on the spatial weighting matrix (Brunsdon et al., 1996). The closer to the predicted 210 

location, the closer to 1 the weighting factor will be, while the weighting factor for sites further 211 

than the 5° in distance is zero. It is important to note that AOD and other independent variables 212 

used for prediction in this step are averaged values for days that have valid AOD, which is different 213 

from the data used in the fitting process since PM2.5 is not measured every day in all locations.  214 

4. Results and Discussion 215 

We first discuss the surface PM2.5 for a few select locations that are impacted by fires 216 

followed by the spatial distribution of MODIS AOD and the FRP for August 2018. We then assess 217 

the spatial distribution of surface PM2.5 from the GWR method. The validation of the GWR method 218 

is then discussed. To further demonstrate the impact of the NWUSC fires on PM2.5 air quality in 219 

the United States, we show the spatial distribution of the difference between August 2018 and 220 

August 2011. We further quantify these results for ten US EPA regions. 221 

4.1 Descriptive statistics of satellite data and ground measurements  222 
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The 2018 summertime Canadian wildfires started around the end of July in British 223 

Columbia and continued until mid-September. The fires spread rapidly to the south of Canada 224 

during August, causing high concentrations of smoke aerosols to drift down to the US and affecting 225 

particulate matter air quality significantly. From late July to mid-September, wildfires in the 226 

northwest US that burnt forest and grassland also affected air quality. Starting with the Cougar 227 

Creek Fire, then Crescent Mountain and Gilbert Fires, different wildfires in in NWUSC caused 228 

severe air pollution in various US cities. Figure 2a shows the rapid increase in PM2.5 of selected 229 

US cities from July 1st to August 31st, due to the transport of smoke from these wildfires. For all 230 

sites, July had low PM2.5 concentrations (<10 𝜇𝑔 𝑚ିଷ ) and rapidly increases as fire activity 231 

increases. Calculating only from the EPA ground observations, the mean PM2.5 of the 17 days for 232 

the whole US is 13.7 𝜇𝑔 𝑚ିଷ and the mean PM2.5 for Washington (WA) is 40.6𝜇𝑔𝑚ିଷ, which 233 

indicates that the PM pollution is concentrated in the northwestern US for these days. This trend 234 

is obvious when comparing the mean PM2.5 of all US stations (black line with no markers) and the 235 

mean PM2.5 of all WA stations (grey line with no markers). Ground-level PM2.5 reaches its peak 236 

between August 17th-21st and daily PM2.5 values during this time period far exceeds the 17-day 237 

mean PM2.5.  For example, mean PM2.5 in WA on August 20th is 86.75 𝜇𝑔 𝑚ିଷ, which is more 238 

than two times the 17-day average of this region. On August 19th, Omak which is located in the 239 

foothills of the Okanogan Highlands in WA had PM2.5 values exceed 250 𝜇𝑔 𝑚ିଷ. According to 240 

a review of US wildfire caused PM2.5 exposures, 24-h mean PM2.5 concentrations from wildfires 241 

ranged from 8.7 to 121 𝜇𝑔 𝑚ିଷ, with a 24 h maximum concentration of 1659 𝜇𝑔 𝑚ିଷ (Navarro et 242 

al., 2018). 243 

Table 3 shows relevant statistics of 15 states that have at least one daily record of non-244 

attainment of EPA standard (>35 μg m-3  . From the frequency records of non attainment in the 245 
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17-day period (last column), four states (Montana, Washington, California and Idaho) were 246 

consistently affected by the wildfires, and large portion of ground stations in these states were 247 

influenced by smoke aerosols. Most of the neighboring states also suffered from short-term but 248 

broad air pollution (third column). Noticeable from these records is that the total number of ground 249 

stations in some of the highly affected states (such as Idaho) is not sufficient for capturing the 250 

smoke. Although there are total 8 EPA stations in Idaho, only two of them have consistent 251 

observations during the fire event; the other two stations have no valid observations, and the 252 

remaining four stations have only 2~6 observations during the 17-day period. Limited valid data 253 

along with unevenly distributed stations makes it hard to quantify smoke pollution in Northwestern 254 

US during the fire event period. Therefore, we utilize satellite data to enlarge the spatial coverage 255 

and estimate pollution at a finer spatial resolution. 256 

The spatial distribution of AOD shown in Figure 2b indicates that the smoke from Canada 257 

is concentrated mostly in Northern US states such as WA, Oregon, Idaho, Montana, North Dakota 258 

and Minnesota. The black arrow shows the mean 800hPa-level mean wind for 17 days, and the 259 

length of the arrow represents the wind speed in ms-1. Also shown in Figure 2b are wind speeds 260 

close to the fire sources which are about 4~5 ms-1, and according to the distances and wind 261 

directions, it can take approximately 28~36 hours for the smoke to transport southeastward to 262 

Washington state. Then the smoke continues to move east to other northern states such as Montana 263 

and North Dakota. In addition, the grey circle represents the total fire radiative power (FRP) of 264 

every 2.3×3.5-degree box. The reason for not choosing a smaller grid for the FRP is to not clutter 265 

Figure 2b with information from small fires. The bigger the circle is, the stronger the fire is in that 266 

grid and different sizes and its corresponding FRP values are shown in the lower right corner. It is 267 

clear that the strongest fires in 2018 are located in the Tweedsmuir Provincial Park of British 268 
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Columbia in Canada (53.333N, 126.417W). The four separate lightning-caused wildfires burnt 269 

nearly 301,549 hectares of the boreal forest. The total FRP of August 2018 in Canada is about 270 

5362 (*1000 MW), while the total FRP of August 2011 in Canada is 48 (* 1000 MW). The 2011 271 

fire was relatively weak compared to the 2018 Tweedsmuir Complex fire and we therefore use the 272 

2011 air quality data as a baseline to quantify the 2018 fire influence on PM2.5 in the United States.  273 

4.2 Model Fitting and validation 274 

The main goal for using GWR model is to help predict the spatial distribution of PM2.5 for 275 

places with no ground monitors while leveraging the satellite AOD and therefore it is important to 276 

ensure that the model is robust. Figure 3a and 3b show the results for 2018 for GWR model fitting 277 

for the entire US and the LOOCV models respectively. The color of the scatter plots represents 278 

the probability density function (PDF) which calculates the relative likelihood that the observed 279 

ground-level PM2.5 would equal the predicted value. The lighter the color is, the more points are 280 

present, with a higher correlation. The model fitting process estimates the slope for each variable 281 

and therefore the model can be fitted close to the observed PM2.5 and using this estimated 282 

relationship we are able to assess surface PM2.5 using other parameters at locations where PM2.5 283 

monitors are not available. The LOOCV process tests the model performance in predicting PM2.5. 284 

If the results of LOOCV has a large bias from the model fitting, then the predictability of the model 285 

is low. Higher R2 difference and RMSE difference value indicate that the model is overfitting and 286 

not suitable. The R2 for the model fitting is 0.834, and the R2 for the LOOCV is 0. 797; the RMSE 287 

for the GWR model fitting is 3.46 𝜇𝑔 𝑚ିଷ, and for LOOCV the RMSE is 3.84 𝜇𝑔 𝑚ିଷ. There are 288 

minor differences between fitting R2 and validation R2 (0.037) and between fitting RMSE and 289 

validation RMSE ሺ0.376 𝜇𝑔 𝑚ିଷሻ suggesting that the model is not over-fitting and has stable 290 

predictability further indicating that the model can predict surface PM2.5 reliably. In addition, we 291 



Xue, Gupta, Christopher, submitted to Atmospheric Chemistry and Physics 

14 | P a g e  
 

also performed a 20-fold cross validation by splitting the dataset into 20 consecutive folds, and 292 

each fold is used for validation while the 19 remaining folds form the training set. The 20-fold 293 

cross validation has R2 of 0.745 and RMSE of 4.3 𝜇𝑔 𝑚ିଷ. The increase/decrease in the cross 294 

validated R2 and RMSE indicates the importance of sufficient data used for fitting since a small 295 

decrease in the number of fitting data can reduce the model prediction accuracy. Overall, the 296 

prediction error of the model is between 3~5 𝜇𝑔 𝑚ିଷ, which is a reasonable error range for 17-day 297 

average prediction of PM2.5. For data greater than the EPA standard (35 𝜇𝑔 𝑚ିଷሻ, the model has 298 

a RMSE of 12.07 𝜇𝑔 𝑚ିଷ, which is a lot larger than the RMSE when using the entire model. 299 

Therefore, the model has a tendency for underestimating PM2.5 exceedances by around 12.07 300 

𝜇𝑔 𝑚ିଷ. The larger the PM2.5 is, the greater the model underestimates. To examine the model 301 

performance for high and low polluted areas, the results are divided into two parts (larger than 35 302 

𝜇𝑔 𝑚ିଷ and less than 35 𝜇𝑔 𝑚ିଷ). Aeras with high pollution have R2 of 0.64 and areas with low 303 

pollution have R2 of 0.67, therefore, the model performance is relative stable for both large and 304 

small PM2.5 values. Also, the inclusion of low aerosol concentration areas does not influence the 305 

model performance for high values (seen in supplemental material in Figures S1 and S2), which 306 

means that the high R2 is not a reason of large number of low values. 307 

4.3 Predictors’ influence during wildfires 308 

 Table 4 shows the GWR model mean coefficients for the whole US region and for different 309 

selected regions. The selected boxes are shown in figure 4c in different colors: box1 (red) located 310 

in NW US include major fire sources in US; box2 (gold) located in Montana state is influenced 311 

from both neighboring states and  smoke from Canada; box3 (green) in Minnesota which is located 312 

further from the fires and has minor increase in PM2.5 due to remote smoke; box4 (black) in NE 313 

(Northeast) US is the furthest from fires and has no obvious pollution increase. The second column 314 
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of the tables shows the conditions for sample selection and the third column shows the number of 315 

pixels selected for each box. By comparing the coefficients of samples selected in these boxes, 316 

predictors have different influence in different locations. AOD has stronger influence on predicting 317 

PM2.5 closer to fire sources, but local emissions become more dominant if the distances is large 318 

enough. The smoke flag is overall positive related to surface PM2.5, while it could slightly 319 

negatively relate to PM2.5 around fire sources and northeastern coasts. PBL is negatively related to 320 

PM2.5 when the pollution is concentrated near the surface (fires or human-made emissions), while 321 

it appears to be positively related to PM2.5 at locations where the main pollution source comes 322 

from remote wildfire smoke. Surface temperature have a relative stable positive correlation with 323 

surface PM2.5, however, surface pressure and wind speeds are negatively correlated with PM2.5. 324 

Relative humidity, on the other hand, shows large variations on PM2.5 influence across the nation. 325 

Around the wildfires where the RH is relative low, RH has a positive correlation with PM2.5 since 326 

hygroscopicity would increase and leads to accumulation of PM2.5, but increasing RH can also 327 

decrease PM2.5 concentration by overgrowing  the PM2.5 particles to deposition at high RH 328 

environment (Chen et al., 2018). 329 

From table 4, we know that the weighting for AOD is much larger than other predictors, but 330 

predictors other than AOD are important for the prediction. We tested our model with AOD as the only 331 

predictor to conduct a comparison with the original model, and the R2 decreases from 0.83 to 0.79 and 332 

RMSE increases from 3.46 to 3.8. This is consistent with previous study (Jiang et al., 2017) which 333 

shows improvements of R2 from 0.69 to 0.78 and RMSE from 7.25 to 6.18 by adding 4 meteorological 334 

parameters in summer in easter China. Other predictors have higher weighting at the fire source region 335 

(box1) where BLH cannot provide the aerosol vertical distribution information since smoke tends to 336 

be injected to higher levels. For high AOD regions where aerosol tends to be suspended at high levels, 337 

adding other predictors other than AOD tends to have lower improvement of the model compared with 338 
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low AOD values, because adding BLH can significantly improve the prediction for low level aerosols. 339 

For regions with AOD less than 35, R2 increases 0.09 from AOD only model (0.6 to 0.69), while R2 340 

increases 0.05 for areas with AOD larger than 35. RMSE decreases 12% and 7% for AOD less and 341 

larger than 35 conditions, respectively. Overall, the meteorological factors have larger improvements 342 

for low polluted areas (low level aerosol in this case). 343 

4.4 Predicted PM2.5 Distribution 344 

The mean PM2.5 distributions over the United States shown in Figure 4a is calculated by 345 

averaging the surface PM2.5 data from ground monitors for the 17 days, which matches well with 346 

the GWR model-predicted PM2.5 distributions shown in Figure 4b. The model estimation extends 347 

the ground measurements and provide pollution assessments across the entire nation. Comparing 348 

the AOD map (Figure 2b) with the PM2.5 estimations (Figure 4b), demonstrates the differences 349 

between columnar and surface-level pollution. Differences between the AOD and PM2.5 350 

distributions are due to various reasons including 1) Areas with high PM2.5 concentrations in figure 351 

4b correspond to low AOD values in figure 2b (Southern California, Utah, and southern US); 2) 352 

and high AOD regions in figure 2b correspond to low PM2.5 concentrations in figure 4b 353 

(Minnesota). The first situation usually occurs at the edge of polluted areas that are relative far 354 

from the fire source, which is consistent with previous studies that reported smaller particles (<10 355 

𝜇𝑔) are able to travel longer distances compared to large particles (>10 𝜇𝑔) (Gillies et al., 1996), 356 

and that lager particles tend to settle closer to their source (Sapkota et al., 2005; Zhu et al., 2002).  357 

We use the same method for August 9th to August 25th in 2011 that had low fire activity, 358 

ensuring consistency for estimating coefficients for different variables for 2011. Figure 4c shows 359 

the difference in spatial distribution of mean ground PM2.5 of the 17 days between 2018 and 2011. 360 

High values of PM2.5 differences are in the Northwestern and central parts of the United States 361 
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with the Southern states having very little impact due to the fires. Of all the 48 states within the 362 

study region, there are 29 states that have a higher PM2.5 value in 2018 than 2011, and 15 states 363 

have 2018 PM2.5 value more than two times their 2011 value (shown in figure 5). The mean PM2.5 364 

for WA increases from 5.87 in 2011 to 46.47 𝜇𝑔 𝑚ିଷ  in 2018, which is about 8 times more than 365 

2011 values. The PM2.5 values in Oregon increases from 4.97 (in 2011) to 33.3 𝜇𝑔 𝑚ିଷ in 2018, 366 

which is nearly seven times more than in 2011. For states from Montana to Minnesota, the mean 367 

PM2.5 decreases from east to west, which reveals the path of smoke transport. As shown in Figure 368 

4c, there is a clear transport path of smoke from North Dakota all the way to Texas. Along the 369 

path, smoke increases PM2.5 concentrations by 168% in North Dakota and 27% in Texas. Smoke 370 

aerosols transported over long distances contains fine fraction PM which significantly affect the 371 

health of children, adults, and vulnerable groups.  372 

Figure 5 shows the mean PM2.5 predicted from the GWR model of different EPA regions 373 

for the 17 days in 2011 and 2018 (Hawaii and Alaska are not included). The most influenced region 374 

is region 10, which has a 2018 mean PM2.5 value of 34.2 𝜇𝑔 𝑚ିଷ that is 6 times larger than the 375 

values in 2011 (5.8 𝜇𝑔 𝑚ିଷ) values. The PM2.5 of region 8 and 9 have 2.4 and 2.6 times increase 376 

in 2018 compared to 2011. Region 1~4 have lower PM2.5 in 2018 than 2011 possibly due to Clean 377 

Air Act initiatives, absence of any major fire activites and further away for transported aerosols. 378 

The emission reduction improves the US air quality and lower the PM2.5 every year, but 6 out of 379 

10 EPA regions show significant increases in PM2.5 during the study period, which indicates that 380 

the long-range transported wildfire smoke has become the new major pollutant in the US. 381 

4.5 Estimation of Canadian fire pollution 382 

To evaluate the pollution caused only from Canadian fires, we did a rough assessment 383 

according to the total FRP and PM2.5 values. There are three states in the US have wildfires during 384 
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the study period: California, Washington and Oregon, and they have total FRP of 1186, 518 and 385 

439 (*1000 MW) respectively. Assuming that California was only influenced by the local fires, 386 

then fires of 1186 (*1000 MW) cause 13 𝜇𝑔 𝑚ିଷ increase in PM2.5. Accordingly, wildfires in 387 

Washington and Oregon State will cause 6 and 5 𝜇𝑔 𝑚ିଷ increase in state mean PM2.5. Therefore, 388 

Canadian fires caused PM2.5 increase in Washington and Oregon is about 35 and 23 𝜇𝑔 𝑚ିଷ. Since 389 

the FRP of Canadian wildfires are approximately 5 times larger than that of the California fires, 390 

which is the strongest fire in US, we assume the pollution affecting the states located in the 391 

downwind directions other than the three states are mainly coming from Canadian wildfires. States 392 

with no local fires such as Montana, North Dakota, South Dakota and Minnesota have PM2.5 393 

increase of 18.31, 12.8, 10.4 and 10.13 𝜇𝑔 𝑚ିଷ. The decrease of these numbers reveal that the 394 

smoke is transport in a SE direction. This influence of Canadian wildfires on US air quality is only 395 

a rough quantity estimation, thus additional work is needed for understand long-range transport 396 

smoke pollution and its impact on public health. One way to do this would be assessing the 397 

difference of pollution by turning on and off US fires in chemistry models. 398 

4.6 cComparison with previous studies 399 

Comparing with the Bayesian ensemble model developed by Geng et al. (Geng et al., 2018) 400 

using MAIAC AOD and CMAQ  (Community Multiscale Air Quality) model and ground PM2.5 401 

measurements, our GWR model has larger R2, but with the chemistry transport model (CTM), 402 

their method can provide more vertical distribution information which is important for wildfire 403 

smoke. GWR usually have better accuracy than CTM since there are large uncertainties related to 404 

different CTM inputs such as emission, meteorological and land cover data, but for regions with 405 

less or no ground measurements, CTM provide a great approach for estimating surface PM2.5. 406 

Other studies which used machine learning method to predict surface PM2.5  have better 407 
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performance for long-term prediction rather than monthly estimation (Liang et al., 2020; Xiao et 408 

al., 2018), but can better resolve complex relationship between different predictors than statistical 409 

models (Geng et al., 2020). For wildfire events, the available data is much less than the long-term 410 

aerosol analysis, so the performance of machine learning method could be less accurate compared 411 

to long-term prediction. Our study also shows slightly larger R2 compared to other GWR studies 412 

(Hu et al., 2013; Ma et al., 2014; You et al., 2016) due to the inclusion of more meteorological and 413 

other related predictors.  414 

4.76 Model uncertainties and limitations 415 

There are various sources of uncertainties and limitations for studies that use satellite data 416 

to estimate surface PM2.5 concentrations. Since wildfires develop quickly it is important to have 417 

continuous observations to capture the rapid changes. This study uses polar orbiting high-quality 418 

satellite aerosol products, but the temporal evolution can only be estimated by geostationary data 419 

sets. Although satellite observations have excellent spatial coverage, missing data due to cloud 420 

cover is a limitation. As discussed in the paper, the prediction error (RMSE) of the model is 421 

between 3~5 𝜇𝑔 𝑚ିଷ, while the RMSE increased for locations with high aerosol concentration. 422 

This is partly due to lack of accurate vertical distribution information which is very important for 423 

wildfire smoke.. The GWR model is largely influenced by the distribution of ground stations, and 424 

the prediction error will be different in different places due to unevenly distributed PM2.5 stations. 425 

For locations that have a dense ground-monitoring distribution, the prediction error will be low, 426 

while the prediction error will be relative larger at other places with sparse surface stations. 427 

Although there are obvious limitations, complementing surface data with satellite products and 428 

meteorological and other ancillary information in a statistical model like the GWR has provided 429 

robust results for estimating surface PM2.5 from wildfires. We also note that we did not consider 430 
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some variables used in other studies such as NDVI, forest cover, vegetation type, industrial 431 

density, visibility and chemical constituents of smoke particles  (Donkelaar et al., 2015; Hu et al., 432 

2013; You et al., 2015; Zou et al., 2016). Visibility mentioned in some studies may improve the 433 

model performance, but unlike AOD, it has limited measurement across the nation, which will 434 

restrict the applicability of training data. Another uncertainty comes from the 2011 wildfires which 435 

we assumed to be zero fire events but there are actually few fire events in EPA region 6, 8, 9 and 436 

10, and this will lead to underestimation of PM2.5 increase due to 2018 fires in these regions. 437 

One limitation of this study is that analysis based on 17-day mean values cannot capture 438 

daily pollution variations, which is also very important for pollution estimation during rapid-439 

changing wildfire events. To extend this analysis to daily estimation, the cloud contaminations of 440 

satellite observations become a major problem. Therefore, future work is needed using chemistry 441 

transport models and other data to fill in the gaps on missing AOD data due to cloud coverage. 442 

5. Summary and Conclusions 443 

We estimate the surface mean PM2.5 for 17 days in August for a high fire active year (2018) 444 

and compare that with a low fire activity year using the Geographically Weighted Regression 445 

(GWR) method to assess the increase in PM2.5 in the United States due to smoke transported from 446 

fires. The difference in PM2.5 between the two years indicates that more than half of the US states 447 

(29 states) are influenced by the NWUSC wildfires, and half of the affected states have 17-day 448 

mean PM2.5 increases larger than 100% of the baseline value. The peak PM2.5 during the wildfires 449 

can be much larger than the 17-day average and can affect vulnerable populations susceptible to 450 

air pollution. Some of the most affected states are in Washington, California, Wisconsin, Colorado 451 

and Oregon, all of which have populations greater than 4 million. According to CDC (Centers for 452 

Disease Control and Prevention), 8% of the population have asthma (CDC, 2011). Therefore, for 453 



Xue, Gupta, Christopher, submitted to Atmospheric Chemistry and Physics 

21 | P a g e  
 

asthma alone, there are about 3 million people facing significant health issue due to the long-range 454 

transport smoke in these states.  455 

For states that show decrease in PM2.5 due to the Clean Air Act, the mean decrease is about 456 

16% of the baseline after 7 years. This is consistent with EPA's report that there is a 23% decrease 457 

of PM2.5 in national average from 2010 to 2019(U.S. Environmental Protection Agency, 2019). 458 

Comparing with the dramatic increase (132%) caused by wildfires, pollution from the fires is 459 

counteracting our effort on emission controls. Although wildfires are often episodic and short-460 

term, high frequency of fire occurrence and increasing longer durations of summertime wildfires 461 

in recent years has made them now a long-term influence on public lives. Our results show a 462 

significant increase of pollution in a short time period in most of the US states due to the NWUSC 463 

wildfires, which affects millions of people. With wildfires becoming more frequent during recent 464 

years, more effort is needed to predict and warn the public about the long-range transported smoke 465 

from wildfires. 466 
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Table 1. Datasets used in the study with sources. 668 

 669 

1) https://www.epa.gov/outdoor-air-quality-data 670 

2) https://earthdata.nasa.gov/ 671 

3) https://earthdata.nasa.gov/ 672 

4) https://www.ecmwf.int/en/forecasts 673 

 674 

   675 

 

Data /Model Sensor 

Spatial 

Resolution 

Temporal 

Resolution Accuracy 

1 Surface PM2.5 TEOM Point data daily ±5~10%  

2 Mid visible aerosol 

optical depth (AOD) MAIAC_ MODIS 1km daily 

66% compared 

to AERONET 

3 Fire Radiative Power 

(FRP) 

Terra/Aqua-

MODIS 1km daily ± 7% 

4 ECMWF 

(Meteorological 

variables) 

 

0.25 degree hourly 
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 676 

Table 2. Total FRP in Canada and Northwestern US in August of Different Years (unit: 104 677 

MW) 678 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 

CA 148.24 4.84 19.93 70.54 107.78 10.39 4.6 307.3 542.99 

NW 
US 

16.41 42.84 320.39 192.06 67.01 339.58 112.9 195.64 296.91 

 679 

Table 3. statistics of 15 states that violate EPA standards (35 𝜇𝑔 𝑚ିଷ) during the 17-day wildfire 680 

period 681 

State 
number of site 
violate standard 

number of site 
in the state 

Percentage of site 
violate standard (%) 

number of days 
violate standard 

Montana  14  15  93.34 16

Washington  18  20  90 16

Oregon  12  14  85.71 5

North Dakota  7  11  63.63 4

Idaho  5  8  62.5 8

Colorado  11  21  52.38 2

South Dakota  5  10  50 1

California  57  119  47.9 14

Utah  7  15  46.67 4

Nevada  4  13  30.77 1

Wyoming  7  24  29.2 2

Minnesota  4  26  15.4 2

Texas  3  37  8.1 1

Louisiana  1  14  7.1 1

Arizona  1  20  5 1

 682 

Table 4. Coefficients of different predictors 683 

Mean 
coefficients 

sample 
selection  N  AOD 

smoke 
flag  PBL  T2M  RH  U  SP 

box1(red)  FRP>1000  213  91.94  ‐0.14 ‐2.25 0.33 0.08 ‐2 ‐0.06

box2(gold)  PM2.5>30  362  60.1  0.013 ‐2.9 0.23 ‐0.08 ‐1.6 ‐0.03

box3(green)  PM2.5>17  278  6.2  0.05 0.2 0.2 0.014 ‐0.3 ‐0.02

box4(black)  17>PM2.5>10  938  7.1  ‐0.02 ‐1.2 0.22 ‐0.035 0.06 ‐0.005

whole US 
region  ~  106352  28.1  0.024 ‐0.9 0.06 ‐0.04 ‐0.7 ‐0.002
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 684 

 685 

 686 

Figure 1. Flow chart for the Geographically Weighted Regression model used. All satellite, 687 

ground, meteorological data are gridded to 0.1 by 0.1 degrees. 688 

 689 

   690 
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691 

 692 

Figure 2. (a) Variations of EPA ground observed PM2.5 in different cities from July to August 693 

2018 (Omak-Washington, Seattle-Washington, Chicago-Illinois, Portland-Oregon, Billings-694 

Montana). Black line without markers shows the mean variation of the whole US stations and the 695 

grey line without markers shows the mean variation of stations in Washington state. (b) Mean 696 

MAIAC satellite AOD distribution from August 9th to August 25th, 2018. AOD values equal or 697 

larger than 0.5 are shown as the same color (yellow). Also shown are circles with Fire Radiative 698 

Power (FRP). Black arrow shows the wind direction and the length of it represents the wind 699 

speed.  The round spots of different colors on the map show the locations of the five selected 700 

cities (green-Omak, black-Seattle, yellow-Chicago, blue-Portland, red-Billings). 701 
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 702 

Figure 3. Results of model fitting and cross validation for GWR model for the entire US region 703 

averaged from August 9th to August 25th, 2018. (a) GWR model fitting results (b) GWR model 704 

LOOCV results. The dash line is the 1:1 line as reference and the black line shows the regression 705 

line. The color of the scatter plots represents the probability density function which provides a 706 

relative likelihood that the value of the random variable would equal a certain sample. 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 
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 715 

 716 

 717 

 718 

Figure 4. (a) EPA ground observed PM2.5 distribution over the US averaged from August 9th to 719 

August 25th, 2018. (b) GWR predicted 17-day mean PM2.5 distribution. (c) Difference map of 720 

predicted ground PM2.5 of the 17-day mean values between 2018 and 2011. PM2.5 values equal or 721 

larger than 60 𝜇𝑔 𝑚ିଷ are shown as the same color (red). Note that the D-PM2.5 has a different 722 

color scale to make the negative values more apparent (blue). 723 
 724 

725 
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 726 

Figure 5. Mean PM2.5 from August 9th to August 25th in 2018 and 2011 of most affected states 727 

 728 

 729 
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 730 

Figure 6. Mean PM2.5 of EPA regions from August 9th to August 25th in 2011 and 2018. Inset 731 
shows the map of 10 EPA regions in different colors. Yellow column represents the 2018 mean 732 

PM2.5 and green column represents for 2011 mean PM2.5. 733 

 734 

 735 


