Supplementary material - Analysis of variability in divergence and turn-over induced by three idealized convective systems with a 3D cloud resolving model

Edward Groot¹ and Holger Tost¹

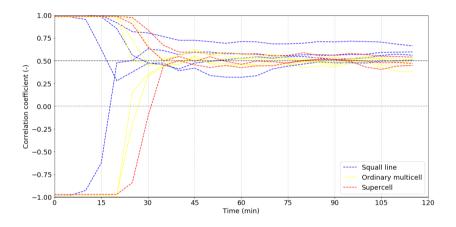
¹Institut für Physik der Atmosphäre, Johannes Gutenberg Universität, Johannes-Joachim-Becher-Weg 21, Mainz, Germany **Correspondence:** Edward Groot (egroot@uni-mainz.de)

S1 Experiment overview

Table S1 gives an overview with definitions of all experiments performed in this study.

Table S1. List of experiments with their respective settings. Each experiment was done with each of the cases.

$z_{top} = 6000.0 \text{ m} (case 1)$ $z_{top} = 2500.0 \text{ m} (case 2 \& 3)$ 200x200x100 m grid $L_v = L_{v,ref}$ $adv(z) = w \frac{\partial v_{har}}{\partial z}$, $adv(z) = w \frac{\partial q_{u}}{\partial z}$ ENS_01Ensemble member $z_{top} = 6095.9565472 \text{ m}$ $z_{top} = 2539.98189467 \text{ m}$ ENS_02Ensemble member5758.42068902 m // 2399.3419537ENS_03Ensemble member5887.00610239 m // 2452.9192093ENS_04Ensemble member6052.55517416 m // 2521.8979892ENS_05Ensemble member5695.83407152 m // 2373.2641964ENS_06Ensemble member5737.47939255 m // 2390.6164135ENS_08Ensemble member5968.36439833 m // 2486.8184993ENS_09Ensemble member6095.57941954 m // 2539.8247581ref_res_500mResolution (coarse grid)rof_res_200mResolution (coarse grid)controlling_lve_0.6Latent heatcontrolling_lve_0.8Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	
Control_referenceAll experiment collections200x200x100 m grid $L_v = L_{v,ref}$ $adv(z) = w \frac{\partial v_{har}}{\partial z}$, $adv(z) = w \frac{\partial q_w}{\partial z}$ ENS_01Ensemble member $z_{top} = 6095.9565472$ m $z_{top} = 2539.98189467$ mENS_02Ensemble member5758.42068902 m // 2399.3419537ENS_03Ensemble member5887.00610239 m // 2452.9192093ENS_04Ensemble member6052.55517416 m // 2521.8979892ENS_05Ensemble member5695.83407152 m // 2393.7151669ENS_06Ensemble member5744.91637676 m // 2393.7151669ENS_07Ensemble member5737.47939255 m // 2390.6164135ENS_08Ensemble member5968.36439833 m // 2486.8184993ENS_09Ensemble member6095.57941954 m // 2539.8247581ref_res_500mResolution (coarse grid)1000x1000x500 m gridcubic_res_200mResolution (fine cubic grid)200x200x200 m gridcubic_res_100mResolution (fine cubic grid)100x100x100 m gridcontrolling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$	
$ \begin{array}{c} L_v = L_{v,ref} \\ adv(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial v_{hor}}{\partial z} \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) \\ end v(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) \\ end v(z) = w $	
$ adv(z) = w \frac{\partial v_{hor}}{\partial z}, adv(z) = w \frac{\partial q_w}{\partial z} \\ ENS_01 & Ensemble member & z_{top} = 6095.9565472 m \\ z_{top} = 2539.98189467 m \\ ENS_02 & Ensemble member & 5758.42068902 m // 2399.3419537 \\ ENS_03 & Ensemble member & 5887.00610239 m // 2452.9192093 \\ ENS_04 & Ensemble member & 6052.55517416 m // 2521.8979892 \\ ENS_05 & Ensemble member & 5695.83407152 m // 2373.2641964 \\ ENS_06 & Ensemble member & 5744.91637676 m // 2393.7151569 \\ ENS_07 & Ensemble member & 5737.47939255 m // 2390.6164135 \\ ENS_08 & Ensemble member & 5968.36439833 m // 2486.8184993 \\ ENS_09 & Ensemble member & 6095.57941954 m // 2539.8247581 \\ ref_res_500m & Resolution (coarse grid) & 500x500x250 m grid \\ ref_res_11km & Resolution (coarse grid) & 1000x1000x500 m grid \\ cubic_res_00m & Resolution (fine cubic grid) & 100x100x500 m grid \\ cubic_res_100m & Resolution (fine cubic grid) & 100x100x100 m grid \\ controlling_lve_0.6 & Latent heat & L_v = 0.6L_{v,ref} \\ controlling_lve_0.8 & Latent heat & L_v = 0.8L_{v,ref} \end{cases}$	
ENS_01 Ensemble member $z_{top} = 6095.9565472 \text{ m}$ $z_{top} = 2539.98189467 \text{ m}$ ENS_02 Ensemble member 5758.42068902 m // 2399.3419537 ENS_03 Ensemble member 5887.00610239 m // 2452.9192093 ENS_04 Ensemble member 6052.55517416 m // 2521.89798922 ENS_05 Ensemble member 5695.83407152 m // 2373.2641964 ENS_06 Ensemble member 5737.47939255 m // 2390.6164135 ENS_07 Ensemble member 5737.47939255 m // 2390.6164135 ENS_08 Ensemble member 5968.36439833 m // 2486.8184993 ENS_09 Ensemble member 6095.57941954 m // 2539.8247581 ref_res_500m Resolution (coarse grid) 500x500x250 m grid ref_res_200m Resolution (coarse grid) 1000x1000x500 m grid cubic_res_200m Resolution (fine cubic grid) 200x200x200 m grid cubic_res_100m Resolution (fine cubic grid) 100x100x100 m grid controlling_lve_0.6 Latent heat $L_v = 0.6L_{v,ref}$	
ENS_01Ensemble member $z_{top} = 2539.98189467 \text{ m}$ ENS_02Ensemble member $5758.42068902 \text{ m} // 2399.3419537$ ENS_03Ensemble member $5887.00610239 \text{ m} // 2452.9192093$ ENS_04Ensemble member $6052.55517416 \text{ m} // 2521.89798922$ ENS_05Ensemble member $5695.83407152 \text{ m} // 2373.2641964$ ENS_06Ensemble member $5744.91637676 \text{ m} // 2393.7151569$ ENS_07Ensemble member $5737.47939255 \text{ m} // 2390.6164135$ ENS_08Ensemble member $5968.36439833 \text{ m} // 2486.8184993$ ENS_09Ensemble member $6095.57941954 \text{ m} // 2539.8247581$ ref_res_500mResolution (coarse grid) $500x500x250 \text{ m}$ gridref_res_1kmResolution (coarse grid) $1000x1000x500 \text{ m}$ gridcubic_res_200mResolution (fine cubic grid) $100x100x100 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $100x100x100 \text{ m}$ gridcontrolling_lve_0.6Latent heat $L_v = 0.8L_{v,ref}$	
$z_{top} = 2539.98189467 \text{ m}$ ENS_02Ensemble member $5758.42068902 \text{ m} // 2399.3419537$ ENS_03Ensemble member $5887.00610239 \text{ m} // 2452.9192093$ ENS_04Ensemble member $6052.55517416 \text{ m} // 2521.8979892$ ENS_05Ensemble member $5695.83407152 \text{ m} // 2373.2641964$ ENS_06Ensemble member $5744.91637676 \text{ m} // 2393.7151569$ ENS_07Ensemble member $5777.47939255 \text{ m} // 2390.6164135$ ENS_08Ensemble member $5968.36439833 \text{ m} // 2486.8184993$ ENS_09Ensemble member $6095.57941954 \text{ m} // 2539.8247581$ ref_res_500mResolution (coarse grid) $500x500x250 \text{ m}$ gridref_res_1kmResolution (coarse grid) $200x200x200 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $100x100x100 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $100x100x100 \text{ m}$ gridcontrolling_lve_0.6Latent heat $L_v = 0.8L_{v,ref}$	
ENS_03Ensemble member $5887.00610239 \text{ m} // 2452.9192093$ ENS_04Ensemble member $6052.55517416 \text{ m} // 2521.8979892$ ENS_05Ensemble member $5695.83407152 \text{ m} // 2373.2641964$ ENS_06Ensemble member $5744.91637676 \text{ m} // 2393.7151569$ ENS_07Ensemble member $5737.47939255 \text{ m} // 2390.6164135$ ENS_08Ensemble member $5968.36439833 \text{ m} // 2486.8184993$ ENS_09Ensemble member $6095.57941954 \text{ m} // 2539.8247581$ ref_res_500mResolution (coarse grid) $500x500x250 \text{ m}$ gridcubic_res_200mResolution (fine cubic grid) $200x200x200 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $1000x1000x500 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $100x100x100 \text{ m}$ gridcubic_res_100mLatent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	
ENS_04Ensemble member 6052.55517416 m // 2521.8979892 ENS_05Ensemble member 5695.83407152 m // 2373.2641964 ENS_06Ensemble member 5744.91637676 m // 2393.7151569 ENS_07Ensemble member 5737.47939255 m // 2390.6164135 ENS_08Ensemble member 5968.36439833 m // 2486.8184993 ENS_09Ensemble member 6095.57941954 m // 2539.8247581 ref_res_500mResolution (coarse grid) $500x500x250 \text{ m}$ gridref_res_1kmResolution (coarse grid) $200x200x200 \text{ m}$ gridcubic_res_200mResolution (fine cubic grid) $200x200x200 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $100x100 \text{ m}$ gridcubic_res_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	6 m
ENS_05Ensemble member 5695.83407152 m // 2373.2641964 ENS_06Ensemble member 5744.91637676 m // 2393.7151569 ENS_07Ensemble member 5737.47939255 m // 2390.6164135 ENS_08Ensemble member 5968.36439833 m // 2486.8184993 ENS_09Ensemble member 6095.57941954 m // 2539.8247581 ref_res_500mResolution (coarse grid) $500x500x250 \text{ m}$ gridref_res_1kmResolution (coarse grid) $1000x1000x500 \text{ m}$ gridcubic_res_200mResolution (fine cubic grid) $200x200x200 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $100x100x100 \text{ m}$ gridcontrolling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	3 m
ENS_06 Ensemble member 5744.91637676 m // 2393.7151569 ENS_07 Ensemble member 5737.47939255 m // 2390.6164135 ENS_08 Ensemble member 5968.36439833 m // 2486.8184993 ENS_09 Ensemble member 6095.57941954 m // 2539.8247581 ref_res_500m Resolution (coarse grid) $500x500x250 \text{ m}$ grid ref_res_1km Resolution (coarse grid) $1000x1000x500 \text{ m}$ grid cubic_res_200m Resolution (fine cubic grid) $200x200x200 \text{ m}$ grid cubic_res_100m Resolution (fine cubic grid) $100x100x100 \text{ m}$ grid controlling_lve_0.6 Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8 Latent heat $L_v = 0.8L_{v,ref}$	3 m
ENS_07 Ensemble member 5737.47939255 m // 2390.6164135 ENS_08 Ensemble member 5968.36439833 m // 2486.8184993 ENS_09 Ensemble member 6095.57941954 m // 2539.8247581 ref_res_500m Resolution (coarse grid) $500x500x250 \text{ m}$ grid ref_res_1km Resolution (coarse grid) $1000x1000x500 \text{ m}$ grid cubic_res_200m Resolution (fine cubic grid) $200x200x200 \text{ m}$ grid cubic_res_100m Resolution (fine cubic grid) $100x1000x100 \text{ m}$ grid controlling_lve_0.6 Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8 Latent heat $L_v = 0.8L_{v,ref}$	7 m
ENS_08Ensemble member 5968.36439833 m // 2486.81849933 ENS_09Ensemble member 6095.57941954 m // 2539.8247581 ref_res_500mResolution (coarse grid) $500x500x250 \text{ m grid}$ ref_res_1kmResolution (coarse grid) $1000x1000x500 \text{ m grid}$ cubic_res_200mResolution (fine cubic grid) $200x200x200 \text{ m grid}$ cubic_res_100mResolution (fine cubic grid) $100x100x100 \text{ m grid}$ controlling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	8 m
ENS_09Ensemble member 6095.57941954 m // 2539.8247581 ref_res_500mResolution (coarse grid) $500x500x250 \text{ m}$ gridref_res_1kmResolution (coarse grid) $1000x1000x500 \text{ m}$ gridcubic_res_200mResolution (fine cubic grid) $200x200x200 \text{ m}$ gridcubic_res_100mResolution (fine cubic grid) $100x1000x100 \text{ m}$ gridcontrolling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	6 m
ref_res_500mResolution (coarse grid) $500x500x250$ m gridref_res_1kmResolution (coarse grid) $1000x1000x500$ m gridcubic_res_200mResolution (fine cubic grid) $200x200x200$ m gridcubic_res_100mResolution (fine cubic grid) $100x100x100$ m gridcontrolling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	m
ref_res_1kmResolution (coarse grid) $1000x1000x500 \text{ m grid}$ cubic_res_200mResolution (fine cubic grid) $200x200x200 \text{ m grid}$ cubic_res_100mResolution (fine cubic grid) $100x100x100 \text{ m grid}$ controlling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	4 m
cubic_res_200mResolution (fine cubic grid) $200x200x200$ m gridcubic_res_100mResolution (fine cubic grid) $100x100x100$ m gridcontrolling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	
cubic_res_100mResolution (fine cubic grid) $100x100 \text{ m grid}$ controlling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	
controlling_lve_0.6Latent heat $L_v = 0.6L_{v,ref}$ controlling_lve_0.8Latent heat $L_v = 0.8L_{v,ref}$	
controlling_lve_0.8 Latent heat $L_v = 0.8L_{v,ref}$	
controlling_lve_0.9 Latent heat $L_v = 0.9L_{v,ref}$	
controlling_lve_1.1 Latent heat $L_v = 1.1 L_{v,ref}$	
controlling_lve_1.2 Latent heat $L_v = 1.2L_{v,ref}$	
controlling_vadv_0.0 Vertical advection of hor. momentum $adv(z) = 0 \frac{\partial v_{hor}}{\partial z}$	
controlling_vadv_0.5 Vertical advection of hor. momentum $adv(z) = 0.5w \frac{\partial v_{hor}}{\partial z}$	
controlling_vadv_0.8 Vertical advection of hor. momentum $adv(z) = 0.8w \frac{\partial v_{hor}}{\partial z}$	
controlling_vadv_1.5 Vertical advection of hor. momentum $adv(z) = 1.5w \frac{\partial v_{hor}}{\partial z}$	
controlling_qvadv_0.8 Vertical advection of water vapor $adv(z) = 0.8w \frac{\partial q_v}{\partial z}$	
controlling_qvadv_1.2 Vertical advection of water vapor $adv(z) = 1.2w \frac{\partial q_v}{\partial z}$	


S2 Decorrelation of ensemble members

In Figure S2 the decorrelation between ensemble pairs is shown per case (analogously to and based on Hohenegger and

5 Schär (2007)). The calculation of a zonal velocity deviation field is given in Equation S2. Subsequently, members have been paired to calculate the correlation coefficient between their zonal velocity deviation fields. Because for some simulations initial conditions or final conditions (after 0 and 120 minutes) were not stored properly in the netCDF files, some member pairs of the 10 member ensemble have been omitted. Additionally, if an odd number of members could be used due to such an error, one member has been used in two pairs.

(S2)

10 $U_{deviation.x} = U_{reference} - U_{member.x}$

Figure S2. Correlations between zonal velocity deviation fields as function of time. Initially, the errors behave nearly linearly (0-10 minutes), starting from nearly ± 1 . Then there is a transition stage (10-35 minutes). After the transition stage, all pairs of zonal velocity deviation fields but two (both from the squall line case) seem to behave randomly. After 70 minutes only one has not yet approached the random realization asymptote.

References

Hohenegger, C. and Schär, C.: Predictability and Error Growth Dynamics in Cloud-Resolving Models, Journal of the atmospheric sciences, 64, 4467–4478, 2007.