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Abstract. Eastern China (EC), located on the downstream region of Tibetan Plateau (TP), is a large area
that has become vulnerable to frequent haze. In addition fo air pollutant emissions, meteorological
conditions were a key ‘inducement’ for air pollution episodes. Based on the study of the Great Smog of
London in 1952 and haze pollution in EC over recent decades, it is found that the abnormal ‘warm cover’

(air_temperature anomalies) in the middle troposphere, as a precursory ‘strong signal’, could connect to

severe air pollution events. The convection and vertical diffusion in the atmospheric boundary layer (ABL)
were suppressed by a relatively stable structure of ‘warm cover’ in the middle troposphere, leading to the
ABL height decreases, which were favourable for the accumulation of air pollutants in the ambient

atmosphere. The anomalous structure of the troposphere’s “warm cover” not only exist in _heavy haze

pollution on the daily scale, but also provide seasonal and interdecadal ‘strong signals’ for frequently
occurring regional haze pollution. It is revealed that a close relationship existed between interannual

variations of the TP’s heat source and the ‘warm cover’ strong-signal in the middle troposphere over EC.

The warming TP could lead tq,the anomalous ‘warm cover’ in the middle troposphere from the plateau to

the downstream EC region and even the entire East Asian region,

1 Introduction

In China, mainly over the region east of 100 °E and south of 40 °N (Tie et al., 2009), PM, s (particulate

matter with an aerodynamic diameter equal to or less than 2.5 pm) has become the primary air pollutant in

winter (Wang, et al., 2017). Therefore, in September 2013, the Chinese government launched the China's

first_air pollution control action plan-‘The Airborne Pollution Prevention and Control Action Plan

(2013-2017)’ (State Council of the People’s Republic of China, 2013). By 2017, about 64% of China’s

cities are still suffering from air pollution, especially Beijing-Tianjin-Hebei region and surrounding areas
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MIBXEIAZ: The frequent haze
events in EC is connected with a
significantly strong ‘warm cover’ in
the interdecadal variability. It is also
revealed that a close relationship
existed between interannual variations
of the TP’s heat source and the ‘warm
cover” hidden in the middle

troposphere over EC.
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(Wang et al., 2019; Miao et al., 2019). Then, in July 2018, the Chinese government launched the second

three-year action plan for air pollution control, the "blue sky defense plan", which demonstrates China's

firm determination and new measures for air pollution control (State Council of the People’s Republic of

China, 2018). After the implementation of air pollution control action plans, air quality in many regions and
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cities in China has been significantly improved.

Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded
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as two key factors for haze pollution,(Ding and Liu, 2014; Yim et al., 2014; Zhang et al., 2015). Air

pollutants mainly come from surface emission sources, and most of air pollutants are injected from the

surface to the atmosphere through the atmospheric boundary layer (ABL), (Quan et al., 2020). The ABL,

MBI ZE: with excessive
concentrations of PM, 5

(s,

structures are the key meteorological conditions which influences, the formation and maintenance of heavy

air pollution episodes (Wang et al., 2015; Cheng et al., 2016; Wang et al., 2016; Tang et al., 2016; Wang et

al., 2019).

Most of the previous studies focused on exploring the impact on the heavy air pollution in Eastern

China (EC) for the meteorological conditions in ABL. However, the thermodynamic and dynamic

structures of free troposphere can affect the meteorological conditions in ABL (Cai et al., 2020). The

convection and diffusion in the ,ABL, are suppressed by a relatively stable structure in the middle )

troposphere, leading to the ABL height decreases, which were favourable for the formation and persistence

of heavy air pollution (Quan et al., 2013; Wang et al., 2015; Cai et al., 2020).

This study investigated whether the thermodynamic structure of the troposphere and its intensity

changes can be used as a "strong warning signal" for the changes of PM,s concentration in heavy air

pollution, and whether this strong signal exists in the time scales of seasonal, interannual and interdecadal

changes,, In order to explore the interaction between the free troposphere and the ABL, and the impact on

the heavy air pollution in Eastern China_(EC), this study extended the meteorological conditions for heavy

air pollution from the boundary layer to the middle troposphere. We identify a precursory ‘strong signals’

hidden in the free troposphere for frequent haze pollution in winter in EC.

2 Data and methods

The data used in this study included NCEP/NCAR and ERA-Interim, reanalysis data of meteorology, as

MR B4 I 28: The thermodynamic
structures in atmospheric boundary

layer and the free troposphere
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MR B I 28 the structure of
atmospheric thermodynamics in the
troposphere and its intensity variation
could act as a ‘strong forewarning
signal’ for surface PM, s concentration

variations in heavy air pollution.
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well as data of surface PM, s concentration measurement, air temperature observation and L-band sounding,

as briefly described as follows:

The monthly NCEP/NCAR reanalysis data of meteorology with horizontal resolution of 2.5< for

1960-2019 were obtained from the U.S. National Center for Environmental Protection (NCEP,

https://www.esrl.noaa.gov/).

The daily and monthly ERA-Interim, reanalysis data of meteorology with horizontal resolution of 0.75<

were derived from the European Center for Medium-range Weather Forecasts (ECMWEF,

https://www.ecmwf.int/), including air temperature, geopotential height, humidity, wind field and vertical

velocity, etc.

The hourly PM,s concentration data during 2013-2019 were collected from the national air quality

monitoring network operated by the Ministry of Ecology and Environment the People’s Republic of China

(http://www.mee.gov.cn/). In addition, we categorized air pollution levels with the surface PM,s

concentrations based on the National Ambient Air Quality Standards of China (HJ633-2012) released by

the Ministry of Ecology and Environment in 2012 as shown in Table 1.

We also used the monthly air temperature of surface observation data during 1960-2014 from 58

meteorological observation stations in the plateau area with an altitude above 3000 meters, which were

archived from the China Meteorological Information Center (http://cdc.cma.gov.cn/).

Furthermore, the L-band sounding ‘seconds-level’ data of the site Beijing from 2010 to 2019 to were

used to calculate the height of ABL, (Liu and Liang, 2010). The height of ABL top is characterized by the

L-band sounding observations at 20:00 (local time is used for this paper). The L-band sounding

‘seconds-level’ data has been undergone the quality control before analysis_(Zhu et al., 2018), and

interpolation was implemented in a vertical direction at an interval of 2, hPa, The L-band detection data

| miRHp
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MIBR A9 P 28: atmospheric boundary
layer
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provided by the Meteorological Observation Network (http://cdc.cma.gov.cn/) contains several automatic
observation meteorological elements with time resolution of 1.2 s and vertical resolution of 8 m. More

detail information can be found in Li et al. (2009) and Cai et al. (2014).

<

Table 1. Air pollution degrees categorized with surface PM, s concentrations

Air pollution degrees PM, 5 concentration_ranges
‘less-serious’ pollution 75ugm>< PM,5<115 pgm?
‘serious’ pollution 115 pgm>< PM,5<150 pg'm™
‘more-serious’ pollution 150 pgm3< PM, <250 pgm’
‘most-serious’ pollution PM,5>250 pgm™

3 Results

3.1 A precursory ‘strong signal’ of ‘warm cover’ in the middle troposphere

In February 2014, a rarely persistent air pollution weather process occurred in EC, this process had caused

severe air pollution in more than 50 cities, with an impact area of 2.07 million square kilometers. In the

Beijing area during February 20-26, 2014 the regional average PM,s concentration exceed the

‘most-serious’ air pollution level, and with a peak value of up to 456 Lg m™. In addition, the Great Smog of

London in 1952 was attributed to the long-lasting and heavy haze pollution, under the influence of certain

weather systems (Whittaker et al., 2004). To find the precursory ‘strong signals’ hidden jn meteorology for

Jeavy air pollution events, we retrieved the three-dimensional atmospheric dynamic, and thermal structure

during December in 1952 as well as February in 2014 by analyzing vertical anomalies of meteorology.
There were high-pressure systems moved to London as well as Beijing and stagnated over the area at

500,hPa geopotential height anomalies, as shown in Figs. 1a,and 1b. Prior to the heavy-pollution events,

a high-pressure system over London as well as Beijing gradually strengthened (Figs. 1c and 1d), and the
middle troposphere was characterized by a ‘warm cover’, i.e. a ‘upper warming and bottom cooling’

anomalies in vertical structure of air temperature (Figs. 1e,and 1f).
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regional average PM, 5 concentrations
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By comparing Fig. 1a and Fig. 1b, we found that two persistent heavy air pollution, events occurred,

during the maintenance stage of stable high pressure system._During stagnation of the blocking high

pressure system, the strength of the center of the geopotential height anomalies in the stable maintenance

region of the blocking exhibited a synchronous response to the ‘warm cover’ above areas (Figs. 1c—1f). It

can be seen that the local atmospheric thermal structure is, significantly modulated by the persistent

large-scale anomalous circulation. The ‘subsidence (temperature) inversion’ gffect of the blocking high

pressure system continuously strengthened the ‘warm cover’ structure in the middle troposphere, which

suppressed the vertical diffusion capacity in the atmosphere (Cai et al., 2020). Moreover, it was obvious

that ‘strong signals’ arising from the thick ‘warm cover’ persisted during the abnormal air-pollution episode

during December 5-9, 1952 in London as well as February 21-26, 2014 in Beijing. It is worth pointing out

that the bottom edge of ‘warm cover’ in the free troposphere declined day-by-day. During the heavy

BRI PY 2% two long heavy air
pollution
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MIBR AP 28: 3D dynamical and
thermodynamical structures were

inversion

BRI A Z8: The air temperature

2. _
pollution incident, the “warm cover’ dropped to 900, hPa (Figs. 1g and 1h). The above analysis shows that [M%%Wﬁ' }
A, ]
in the ABL over London during December 5-9, 1952 and Beijing during February 21-26, 2014, the {ﬂ]ﬂ[@%ﬁ@l’i%’-: upper air }
Jinversion, layer height decreased, which made the ABL structure stable for accumulation of air pollutants, [ﬂﬂﬂ[ﬁ%ﬁﬁl’i@: “subsidence }

The deep ‘warm cover’ structures in the middle troposphere acted as a precursory ‘strong signal’ of the

Great Smog of London and Beijing’s heavy air pollution.

MIBRFIPZE: of air temperature in the
high pressure system
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Figure 1. Dynamical and thermodynamical structures and ait, pollution variations; (a) geopotential height anomalies (unit: [ﬂﬂqj%ﬁgwg: R
dagpm) at 500,hPa during December 5;9, 1952 for the Great Smog of London, (b) the same as (a) but during February 2126, \ [ BERKAZ:.
2014. Time-vertical cross-sections of (c) the geopotential height anomalies (unit: dagpm) in the high pressure area (50-70N; |\ [WI‘%E‘JV‘J?& Geopotential
- i in the hi san || HIEREIAZ -
203V -10E) during November 20 to December 20, 1952, (d) the same as (c) but in the high pressure_areq, (40-63N; \
W -
115-138<E) during February 17-28, 2014. (e) Time-vertical cross-sections of air temperature anomalies_(unit: °C) over | MEREIR: p
BERBAR: to

London (the Red dotted arrow shows the bottom edge of the ‘warm cover’ during the Great Smog in London) during

HHIBR FA P9 2% (during

November 20 to December 20, 1952, (f) the same as (e) but during the heavy pollution in February 2014 over Beijing. (9) '1‘
L BRI A2 ; unit: dagpm)

Weekly death rate in London prior to, during and after the 1952 pollution episode (General Register Office Statistics,

BRHIAZE: to
inistry of Health Report, 1954; Whittaker et al., 2004). (h) The variation of surface PM, s concentrations (units: pg-m™ ‘
M y p )- () 25 ( pgm”) I £ 5 25 zone
during the heavy pollution in February 2014 over Beijing. TR P 2 -

BRI P2 zone

- . B 282 unit: °C, here
3.2 Effect of “Warm Cover’ in the free troposphere on ABL and surface PM, s variations BiERspy

BIEREIAA: .

During five heavy air pollution episodes over Beijing in December 2015 and 2016 the vertical structures of
B B A A

air temperature anomalies presented the ‘warm cover’ structure in the free troposphere (see Fig. S1). MIEREI I and boundary layer
with aerosol
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During winter 2014-2017, Figs. 2a and 2b demonstrated the significant negative correlations passing 0,001

gconfidence degree between the height of the ABL, and air temperature anomalies over same period and 24

hours ahead in Beijing, reflecting that the ‘warm cover’ structure hidden in the middle troposphere with

significant ‘strong-signal’ features is of persistent premonitory significance for the heavy pollution

episodes. Figs. 2c—2e presented the significant positive correlation passing, 0.001, confidence, degree
between PM, s concentrations and air temperature anomalies over same period and 24, 48 hours ahead in

Beijing. Based on the above mentioned results, air temperature anomalies over 24 and 48 hours ahead

could also be reflected that ‘warm cover’ hidden in the middle troposphere could be regarded as the
precursory ‘strong-signal’ for air pollution change. Furthermore, such a ‘stable’ structure also restricted
the transport of moist air from the lower to the middle troposphere for forming secondary aerosols, which

could dominate PM, 5 concentrations in air pollution over China (Huang et al., 2014; Tan et al., 2015).
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Figure 2. (a) The correlations between ABL height and air temperature anomalies, at 800,hPa. (b) 24 hours ahead at 650,hPa
in Beijing during winter 2014-2017. The correlations between PM, s concentration and air temperature anomalies, (c) at 850,

hPa; (d) 24 hours ahead, at 80Q,hPa; () 48 hours ahead, at 724,hPa in Beijing during winter 2014-2017.
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3.3 Changes of the ‘warm cover’ structure_in the middle troposphere

The ‘warm cover’ structure of air temperature anomalies in the middle troposphere indicated the

intensification of heavy air pollution. The ‘warm cover’ structure is a precursory ‘strong signal’ for the

frequent occurrence of regional haze events. The air pollution in EC, exhibited the significant seasonal

T I 2¢: Eastern China (

variations. Our study revealed that existed seasonal differences of the thermal structures in the atmosphere

over EC. In spring (Figs. 3a_and 3e) and summer (Figs. 3b_and, 3f), the middle troposphere was

MIEREIPIZE:)

HIEREIA A,

characterized by a ‘upper cooling and bottom warming’ vertical structure for less air pollution. When the

autumn (Figs. 3c and 3g) and, winter (Figs. 3d and 3h) arrived, the middle troposphere was characterized by

|

[

[W%E‘JV\]?&: in terms
{

mmtAE

o A A )

[W%E‘JV\J?&: (Fig. 3c, g) or

a ‘upper warming and bottom cooling’ vertical structure, which intensified the air pollution. In autumn,

atmospheric thermal structure over EC was marked with a transition between summer and winter (Fig. 3c).

The atmosphere condition reversed in winter, a large-scale anomalous air temperature pattern of ‘upper

warming and bottom cooling’ in the middle troposphere appeared from the plateau to downstream EC

region and even the entire East Asian region (Fig. 3d). The structure of ‘warm cover’ in winter was much

stronger than that in autumn, and its height of the former was much lower than that of the latter. Therefore,

the intensity of air pollution over EC during winter is significantly higher than other seasons (Fig. 3h).

From the perspective of interdecadal variations, our study revealed a close relationship between the

frequent occurrence of haze events in EC and the atmospheric thermal structure in the eastern Tibetan

Plateau (TP), Furthermore, the thermal structures of the troposphere exhibited the distinct interdecadal

variations (Figs. 4a-4c). A cooling structure was identified in the wintertime air temperature anomalies over

the east region of TP during 1961-1980 (Fig. 4a); the upper level of the eastern TP during 1981-2000

showed a ‘upper cooling and bottom warming’ vertical structure (Fig. 4b). The interdecadal changes of

vertical structure reversed during 2001-2018 with a significant ‘warm cover’ (Fig. 4c). The years of 2001—

2018 witnessed the highest frequency of haze days (Fig. 4f), and 1981-2000 saw a middle-level occurrence
9
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of haze days (Fig. 4e), while the lowest frequency of haze days occurred during 1961-1980 (Fig. 4d).

The concept of interdecadal variations of the tropospheric ‘warm cover’ has been proposed in this

work. Under the background of climate change, it is worth considering whether the variational tendency of

the structure of the plateau’s heat source induces variations, of the tropospheric thermal structure in

downstream areas of the Plateau, Jeading to the interdecadal variations of the frequency of haze events seen

in Eastern China since the 21th century. Thermal anomalies of the TP also play an important role in the

variations of the frequency of haze events in EC apart from the anthropogenic pollutant emission related to

the rapid industrialization of China. The observational and modeling studies have demonstrated that the

interannual variations in the thermal forcing of TP are positively correlated with the incidences of

wintertime haze over EC (Xu et al., 2016). The TP induced changes in atmospheric circulation, increasing

atmospheric stability and driving frequent haze events in EC (Xu et al., 2016). In this study, the data

ir temperature in

anal the interannual variations of the TP’s apparent heat source and

wintertime at the TP with the altitudes above 3000 meters showed that since the 1960s the heat source in

areas vulnerable to TP climate change strengthen continuously as the surface temperature increased (Fig.

53). Furthermore, the TP’s apparent heat and air temperature of the middle troposphere over EC presented

the significant positive, which is similar to ‘warm cover’ structure characteristic (Fig. 5h). Therefore, we

considered that the ‘warm cover’ change in the middle troposphere over EC was closely related to TP’s

apparent heat and the surface temperature, The TP induced changes in thermodynamic structure of

atmospheric provided favorable climatic backgrounds driving air pollution events in EC.
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BRI 2 It is worth considering
whether the variations of the plateau’s
heat structures could lead to the
interdecadal variations of the ‘warm
cover’ in the troposphere for the
frequent occurrence of haze in EC
since the 21st20th century (Fig. 4c, f).
By analyzing TP’s apparent heat
source (Q1) and air temperature
observed at meteorological stations
over the TP in the winters during
1960-2014 (Fig. 5a, b), we found that
the ‘warm cover’ changes in the
middle troposphere over EC and even
in East Asia was closely related to the
surface temperature and TP’s apparent

heat.
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Figure 4. \ertical cross sections of (a-c) air temperature anomalies (unit: °C) and (d-f) the number of haze days averaged
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4 Conclusions and discussion

Based on the study of the Great Smog of London in 1952 and Beijing’s heavy air pollution in 2014, as well

as PM;s pollution over EC, the anomalous ‘warm cover’ in the free troposphere was identified, as a

precursory ‘strong signal’ for severe air pollution events, which could be attributed to climate change. A

stable, thermal structure in the middle troposphere, i.e. a ‘warm cover’, suppressed the ABL development,

| miRHp

| miRHp

atmospheric

which was a key ‘inducement’ for the accumulation of air pollutants in the ambient atmosphere.

A large-scale anomalous air temperature pattern of ‘upper warming and bottom cooling’ in the

Jroposphere appeared from the TP, to the downstream EC region and even the entire East Asian region. The

frequent haze pollution events in EC since the start of the 21st century happens to be within a significant

positive phase in the interdecadal variations of ‘warm cover” in the middle troposphere. A close relationship

between the TP,s heat and the thermal structure in the atmosphere in EC and even the entire East Asian

region reflected an important role of TP’s thermal forcing in environment change over China.

Data availability. The monthly NCEP/NCAR reanalysis data of meteorology are collected from the U.S.

National Center for Environmental Protection (NCEP, https://www.esrl.noaa.gov/); the daily and monthly

ERA-Interim reanalysis data of meteorology are collected from the European Center for Medium-range

Weather Forecasts (ECMWEF, https://www.ecmwf.int/); the hourly PM,s concentration data are collected

from the national air quality monitoring network operated by the Ministry of Ecology and Environment the

People’s Republic of China (http://www.mee.gov.cn/); the air temperature of surface observation data and

L-band sounding data are obtained from the China Meteorological Information Center

(http://cdc.cma.gov.cn/). All data presented in this paper are available upon request to the corresponding

author (Wenyue Cai, caiwy@cma.gov.cn).
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