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Abstract. Eastern China (EC), located on the downstream region of Tibetan Plateau (TP), is a large area 25 

that has become vulnerable to frequent haze. In addition to air pollutant emissions, meteorological 26 

conditions were a key ‘inducement’ for air pollution episodes. Based on the study of the Great Smog of 27 

London in 1952 and haze pollution in EC over recent decades, it is found that the abnormal ‘warm cover’ 28 

(air temperature anomalies) in the middle troposphere, as a precursory ‘strong signal’, could connect to 29 

severe air pollution events. The convection and vertical diffusion in the atmospheric boundary layer (ABL) 30 

were suppressed by a relatively stable structure of ‘warm cover’ in the middle troposphere, leading to the 31 

ABL height decreases, which were favourable for the accumulation of air pollutants in the ambient 32 

atmosphere. The anomalous structure of the troposphere’s “warm cover” not only exist in heavy haze 33 

pollution on the daily scale, but also provide seasonal and interdecadal ‘strong signals’ for frequently 34 

occurring regional haze pollution. It is revealed that a close relationship existed between interannual 35 

variations of the TP’s heat source and the ‘warm cover’ strong-signal in the middle troposphere over EC. 36 

The warming TP could lead to the anomalous ‘warm cover’ in the middle troposphere from the plateau to 37 

the downstream EC region and even the entire East Asian region. 38 

 39 

1 Introduction 40 

In China, mainly over the region east of 100 E and south of 40 N (Tie et al., 2009), PM2.5 (particulate 41 

matter with an aerodynamic diameter equal to or less than 2.5 μm) has become the primary air pollutant in 42 

winter (Wang, et al., 2017). Therefore，in September 2013, the Chinese government launched the China's 43 

first air pollution control action plan-‘The Airborne Pollution Prevention and Control Action Plan 44 

(2013-2017)’ (State Council of the People’s Republic of China, 2013). By 2017, about 64% of China’s 45 

cities are still suffering from air pollution, especially Beijing-Tianjin-Hebei region and surrounding areas 46 

(Wang et al., 2019; Miao et al., 2019). Then, in July 2018, the Chinese government launched the second 47 

three-year action plan for air pollution control, the "blue sky defense plan", which demonstrates China's 48 

firm determination and new measures for air pollution control (State Council of the People’s Republic of 49 

China, 2018). After the implementation of air pollution control action plans, air quality in many regions and 50 

cities in China has been significantly improved. 51 

 Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded 52 
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as two key factors for haze pollution (Ding and Liu, 2014; Yim et al., 2014; Zhang et al., 2015). Air 67 

pollutants mainly come from surface emission sources, and most of air pollutants are injected from the 68 

surface to the atmosphere through the atmospheric boundary layer (ABL) (Quan et al., 2020). The ABL 69 

structures are the key meteorological conditions which influences the formation and maintenance of heavy 70 

air pollution episodes (Wang et al., 2015; Cheng et al., 2016; Wang et al., 2016; Tang et al., 2016; Wang et 71 

al., 2019). 72 

 Most of the previous studies focused on exploring the impact on the heavy air pollution in Eastern 73 

China (EC) for the meteorological conditions in ABL. However, the thermodynamic and dynamic 74 

structures of free troposphere can affect the meteorological conditions in ABL (Cai et al., 2020). The 75 

convection and diffusion in the ABL are suppressed by a relatively stable structure in the middle 76 

troposphere, leading to the ABL height decreases, which were favourable for the formation and persistence 77 

of heavy air pollution (Quan et al., 2013; Wang et al., 2015; Cai et al., 2020). 78 

This study investigated whether the thermodynamic structure of the troposphere and its intensity 79 

changes can be used as a "strong warning signal" for the changes of PM2.5 concentration in heavy air 80 

pollution, and whether this strong signal exists in the time scales of seasonal, interannual and interdecadal 81 

changes. In order to explore the interaction between the free troposphere and the ABL and the impact on 82 

the heavy air pollution in Eastern China (EC), this study extended the meteorological conditions for heavy 83 

air pollution from the boundary layer to the middle troposphere. We identify a precursory ‘strong signals’ 84 

hidden in the free troposphere for frequent haze pollution in winter in EC. 85 

 86 

2 Data and methods 87 

The data used in this study included NCEP/NCAR and ERA-Interim reanalysis data of meteorology, as 88 
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well as data of surface PM2.5 concentration measurement, air temperature observation and L-band sounding, 110 

as briefly described as follows: 111 

The monthly NCEP/NCAR reanalysis data of meteorology with horizontal resolution of 2.5° for 112 

1960-2019 were obtained from the U.S. National Center for Environmental Protection (NCEP, 113 

https://www.esrl.noaa.gov/). 114 

The daily and monthly ERA-Interim reanalysis data of meteorology with horizontal resolution of 0.75° 115 

were derived from the European Center for Medium-range Weather Forecasts (ECMWF, 116 

https://www.ecmwf.int/), including air temperature, geopotential height, humidity, wind field and vertical 117 

velocity, etc. 118 

The hourly PM2.5 concentration data during 2013-2019 were collected from the national air quality 119 

monitoring network operated by the Ministry of Ecology and Environment the People’s Republic of China 120 

(http://www.mee.gov.cn/). In addition, we categorized air pollution levels with the surface PM2.5 121 

concentrations based on the National Ambient Air Quality Standards of China (HJ633-2012) released by 122 

the Ministry of Ecology and Environment in 2012 as shown in Table 1. 123 

We also used the monthly air temperature of surface observation data during 1960-2014 from 58 124 

meteorological observation stations in the plateau area with an altitude above 3000 meters, which were 125 

archived from the China Meteorological Information Center (http://cdc.cma.gov.cn/). 126 

Furthermore, the L-band sounding ‘seconds-level’ data of the site Beijing from 2010 to 2019 to were 127 

used to calculate the height of ABL (Liu and Liang, 2010). The height of ABL top is characterized by the 128 

L-band sounding observations at 20:00 (local time is used for this paper). The L-band sounding 129 

‘seconds-level’ data has been undergone the quality control before analysis (Zhu et al., 2018), and 130 

interpolation was implemented in a vertical direction at an interval of 2 hPa. The L-band detection data 131 
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provided by the Meteorological Observation Network (http://cdc.cma.gov.cn/) contains several automatic 140 

observation meteorological elements with time resolution of 1.2 s and vertical resolution of 8 m. More 141 

detail information can be found in Li et al. (2009) and Cai et al. (2014). 142 

Table 1. Air pollution degrees categorized with surface PM2.5 concentrations 143 

Air pollution degrees PM2.5 concentration ranges 

‘less-serious’ pollution 75µg∙m-3< PM2.5≤115 µg∙m-3 

‘serious’ pollution 115 µg∙m-3< PM2.5≤150 µg∙m-3 

‘more-serious’ pollution 150 µg∙m-3< PM2.5≤250 µg∙m-3 

‘most-serious’ pollution PM2.5>250 µg∙m-3 

 144 

3 Results 145 

3.1 A precursory ‘strong signal’ of ‘warm cover’ in the middle troposphere 146 

In February 2014, a rarely persistent air pollution weather process occurred in EC, this process had caused 147 

severe air pollution in more than 50 cities, with an impact area of 2.07 million square kilometers. In the 148 

Beijing area during February 20–26, 2014 the regional average PM2.5 concentration exceed the 149 

‘most-serious’ air pollution level, and with a peak value of up to 456 µg m
-3

. In addition, the Great Smog of 150 

London in 1952 was attributed to the long-lasting and heavy haze pollution under the influence of certain 151 

weather systems (Whittaker et al., 2004). To find the precursory ‘strong signals’ hidden in meteorology for 152 

heavy air pollution events, we retrieved the three-dimensional atmospheric dynamic and thermal structure 153 

during December in 1952 as well as February in 2014 by analyzing vertical anomalies of meteorology. 154 

There were high-pressure systems moved to London as well as Beijing and stagnated over the area at 155 

500 hPa geopotential height anomalies, as shown in Figs. 1a and 1b. Prior to the heavy-pollution events, 156 

a high-pressure system over London as well as Beijing gradually strengthened (Figs. 1c and 1d), and the 157 

middle troposphere was characterized by a ‘warm cover’, i.e. a ‘upper warming and bottom cooling’ 158 

anomalies in vertical structure of air temperature (Figs. 1e and 1f). 159 
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By comparing Fig. 1a and Fig. 1b, we found that two persistent heavy air pollution events occurred 176 

during the maintenance stage of stable high pressure system. During stagnation of the blocking high 177 

pressure system, the strength of the center of the geopotential height anomalies in the stable maintenance 178 

region of the blocking exhibited a synchronous response to the ‘warm cover’ above areas (Figs. 1c–1f). It 179 

can be seen that the local atmospheric thermal structure is significantly modulated by the persistent 180 

large-scale anomalous circulation. The ‘subsidence (temperature) inversion’ effect of the blocking high 181 

pressure system continuously strengthened the ‘warm cover’ structure in the middle troposphere, which 182 

suppressed the vertical diffusion capacity in the atmosphere (Cai et al., 2020). Moreover, it was obvious 183 

that ‘strong signals’ arising from the thick ‘warm cover’ persisted during the abnormal air-pollution episode 184 

during December 5–9, 1952 in London as well as February 21-26, 2014 in Beijing. It is worth pointing out 185 

that the bottom edge of ‘warm cover’ in the free troposphere declined day-by-day. During the heavy 186 

pollution incident, the ‘warm cover’ dropped to 900 hPa (Figs. 1g and 1h). The above analysis shows that 187 

in the ABL over London during December 5–9, 1952 and Beijing during February 21–26, 2014, the 188 

inversion layer height decreased, which made the ABL structure stable for accumulation of air pollutants. 189 

The deep ‘warm cover’ structures in the middle troposphere acted as a precursory ‘strong signal’ of the 190 

Great Smog of London and Beijing’s heavy air pollution. 191 
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  209 

Figure 1. Dynamical and thermodynamical structures and air pollution variations: (a) geopotential height anomalies (unit: 210 

dagpm) at 500 hPa during December 5-9, 1952 for the Great Smog of London, (b) the same as (a) but during February 21-26, 211 

2014. Time-vertical cross-sections of (c) the geopotential height anomalies (unit: dagpm) in the high pressure area (50-70°N; 212 

20°W -10°E) during November 20 to December 20, 1952，(d) the same as (c) but in the high pressure area (40-63°N; 213 

115-138°E) during February 17-28, 2014. (e) Time-vertical cross-sections of air temperature anomalies (unit: ℃) over 214 

London (the Red dotted arrow shows the bottom edge of the ‘warm cover’ during the Great Smog in London) during 215 

November 20 to December 20, 1952, (f) the same as (e) but during the heavy pollution in February 2014 over Beijing. (g) 216 

Weekly death rate in London prior to, during and after the 1952 pollution episode (General Register Office Statistics, 217 

Ministry of Health Report, 1954; Whittaker et al., 2004). (h) The variation of surface PM2.5 concentrations (units: µg∙m-3) 218 

during the heavy pollution in February 2014 over Beijing. 219 

 220 

3.2 Effect of ‘Warm Cover’ in the free troposphere on ABL and surface PM2.5 variations 221 

During five heavy air pollution episodes over Beijing in December 2015 and 2016 the vertical structures of 222 

air temperature anomalies presented the ‘warm cover’ structure in the free troposphere (see Fig. S1). 223 
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During winter 2014-2017, Figs. 2a and 2b demonstrated the significant negative correlations passing 0.001 243 

confidence degree between the height of the ABL and air temperature anomalies over same period and 24 244 

hours ahead in Beijing, reflecting that the ‘warm cover’ structure hidden in the middle troposphere with 245 

significant ‘strong-signal’ features is of persistent premonitory significance for the heavy pollution 246 

episodes. Figs. 2c–2e presented the significant positive correlation passing 0.001 confidence degree 247 

between PM2.5 concentrations and air temperature anomalies over same period and 24, 48 hours ahead in 248 

Beijing. Based on the above mentioned results, air temperature anomalies over 24 and 48 hours ahead 249 

could also be reflected that ‘warm cover’ hidden in the middle troposphere could be regarded as the 250 

precursory ‘strong-signal’ for air pollution change. Furthermore, such a ‘stable’ structure also restricted 251 

the transport of moist air from the lower to the middle troposphere for forming secondary aerosols, which 252 

could dominate PM2.5 concentrations in air pollution over China (Huang et al., 2014; Tan et al., 2015).  253 

 254 

Figure 2. (a) The correlations between ABL height and air temperature anomalies, at 800 hPa. (b) 24 hours ahead at 650 hPa 255 

in Beijing during winter 2014–2017. The correlations between PM2.5 concentration and air temperature anomalies, (c) at 850 256 

hPa; (d) 24 hours ahead, at 800 hPa; (e) 48 hours ahead, at 724 hPa in Beijing during winter 2014–2017.  257 

 258 
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3.3 Changes of the ‘warm cover’ structure in the middle troposphere 278 

The ‘warm cover’ structure of air temperature anomalies in the middle troposphere indicated the 279 

intensification of heavy air pollution. The ‘warm cover’ structure is a precursory ‘strong signal’ for the 280 

frequent occurrence of regional haze events. The air pollution in EC exhibited the significant seasonal 281 

variations. Our study revealed that existed seasonal differences of the thermal structures in the atmosphere 282 

over EC. In spring (Figs. 3a and 3e) and summer (Figs. 3b and 3f), the middle troposphere was 283 

characterized by a ‘upper cooling and bottom warming’ vertical structure for less air pollution. When the 284 

autumn (Figs. 3c and 3g) and winter (Figs. 3d and 3h) arrived, the middle troposphere was characterized by 285 

a ‘upper warming and bottom cooling’ vertical structure, which intensified the air pollution. In autumn, 286 

atmospheric thermal structure over EC was marked with a transition between summer and winter (Fig. 3c). 287 

The atmosphere condition reversed in winter, a large-scale anomalous air temperature pattern of ‘upper 288 

warming and bottom cooling’ in the middle troposphere appeared from the plateau to downstream EC 289 

region and even the entire East Asian region (Fig. 3d). The structure of ‘warm cover’ in winter was much 290 

stronger than that in autumn, and its height of the former was much lower than that of the latter. Therefore, 291 

the intensity of air pollution over EC during winter is significantly higher than other seasons (Fig. 3h). 292 

From the perspective of interdecadal variations, our study revealed a close relationship between the 293 

frequent occurrence of haze events in EC and the atmospheric thermal structure in the eastern Tibetan 294 

Plateau (TP). Furthermore, the thermal structures of the troposphere exhibited the distinct interdecadal 295 

variations (Figs. 4a-4c). A cooling structure was identified in the wintertime air temperature anomalies over 296 

the east region of TP during 1961–1980 (Fig. 4a); the upper level of the eastern TP during 1981–2000 297 

showed a ‘upper cooling and bottom warming’ vertical structure (Fig. 4b). The interdecadal changes of 298 

vertical structure reversed during 2001–2018 with a significant ‘warm cover’ (Fig. 4c). The years of 2001–299 

2018 witnessed the highest frequency of haze days (Fig. 4f), and 1981–2000 saw a middle-level occurrence 300 
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of haze days (Fig. 4e), while the lowest frequency of haze days occurred during 1961–1980 (Fig. 4d). 309 

The concept of interdecadal variations of the tropospheric ‘warm cover’ has been proposed in this 310 

work. Under the background of climate change, it is worth considering whether the variational tendency of 311 

the structure of the plateau’s heat source induces variations of the tropospheric thermal structure in 312 

downstream areas of the Plateau, leading to the interdecadal variations of the frequency of haze events seen 313 

in Eastern China since the 21th century. Thermal anomalies of the TP also play an important role in the 314 

variations of the frequency of haze events in EC apart from the anthropogenic pollutant emission related to 315 

the rapid industrialization of China. The observational and modeling studies have demonstrated that the 316 

interannual variations in the thermal forcing of TP are positively correlated with the incidences of 317 

wintertime haze over EC (Xu et al., 2016). The TP induced changes in atmospheric circulation, increasing 318 

atmospheric stability and driving frequent haze events in EC (Xu et al., 2016). In this study, the data 319 

analysis concerning the interannual variations of the TP’s apparent heat source and air temperature in 320 

wintertime at the TP with the altitudes above 3000 meters showed that since the 1960s the heat source in 321 

areas vulnerable to TP climate change strengthen continuously as the surface temperature increased (Fig. 322 

5a). Furthermore, the TP’s apparent heat and air temperature of the middle troposphere over EC presented 323 

the significant positive, which is similar to ‘warm cover’ structure characteristic (Fig. 5b). Therefore, we 324 

considered that the ‘warm cover’ change in the middle troposphere over EC was closely related to TP’s 325 

apparent heat and the surface temperature. The TP induced changes in thermodynamic structure of 326 

atmospheric provided favorable climatic backgrounds driving air pollution events in EC. 327 
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 353 

Figure 3. Vertical cross sections of (a-d) air temperature anomalies (unit: ℃) , and (e-h) the PM2.5 concentrations (unit: 354 

µg∙m-3) averaged along 25-40°N in spring (a, e), summer (b, f), autumn (c, g), winter (d, h) from 2013 to 2018. 355 
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  358 

Figure 4. Vertical cross sections of (a-c) air temperature anomalies (unit: ℃) and (d-f) the number of haze days averaged 359 

along 25-40°N in winter during 1961-1980 (a, d), 1981-2000 (b, e) and 2001-2018 (c, f). 360 

 361 

 362 

Figure 5. (a) TP’s apparent heat source (Q1) and air temperature variations with interanual variations of TP’s apparent heat 363 

source (Q1) and air temperature of meteorological stations in the TP with the altitudes above 3000 meters in the winters 364 

during 1960-2014; (b) Vertical cross sections of the correlations between TP’s apparent heat (Q1) and air temperature 365 

latitude-averaged along 30-35°N in the winters during 1960-2014.  366 
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4 Conclusions and discussion 390 

Based on the study of the Great Smog of London in 1952 and Beijing’s heavy air pollution in 2014, as well 391 

as PM2.5 pollution over EC, the anomalous ‘warm cover’ in the free troposphere was identified as a 392 

precursory ‘strong signal’ for severe air pollution events, which could be attributed to climate change. A 393 

stable thermal structure in the middle troposphere, i.e. a ‘warm cover’, suppressed the ABL development, 394 

which was a key ‘inducement’ for the accumulation of air pollutants in the ambient atmosphere. 395 

A large-scale anomalous air temperature pattern of ‘upper warming and bottom cooling’ in the 396 

troposphere appeared from the TP to the downstream EC region and even the entire East Asian region. The 397 

frequent haze pollution events in EC since the start of the 21st century happens to be within a significant 398 

positive phase in the interdecadal variations of ‘warm cover’ in the middle troposphere. A close relationship 399 

between the TP’s heat and the thermal structure in the atmosphere in EC and even the entire East Asian 400 

region reflected an important role of TP’s thermal forcing in environment change over China. 401 

 402 

Data availability. The monthly NCEP/NCAR reanalysis data of meteorology are collected from the U.S. 403 

National Center for Environmental Protection (NCEP, https://www.esrl.noaa.gov/); the daily and monthly 404 
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author (Wenyue Cai, caiwy@cma.gov.cn). 411 
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