1 Reply to Referee 1

We are grateful to the referee for the encouraging comments and careful reviews which helped to
improve the quality of our paper. In the followings we quoted each review question in the square
brackets and presented our response after each paragraph.

5

6 [Review Comment: This work proposed that abnormal 'warm cover' in the middle troposphere could 7 suppress the convection and diffusion in the boundary layer, leading to haze pollution in Eastern China. It 8 is also indicated that such 'warm cover' is attributed to the warming of the Tibetan Plateau. I think this 9 work well fits the scope of this journal. Overall, this manuscript is well structured but needs more in-depth 10 analysis to further improve this article. Besides, the writing needs to be polished. It is worth being 11 published after addressing the following issues.]

12 **Reply:** Thank you for the encouraging comments.

13

14 *Major comments:*

15 [1. The introduction is too simple and is not sufficient to clearly demonstrate the background and scientific

16 significance of this work. Pre-existing literature on this subject is suggested to be fully reviewed, and a

17 comprehensive introduction ought to be provided in this part.]

Reply: Many thanks for the referee's discussion. For the introduction, we have adjusted it as required andadded new content.

20 "1 Introduction

- 21 In China, mainly over the region east of 100° E and south of 40° N (Tie et al., 2009), PM_{2.5} (particulate
- 22 matter with an aerodynamic diameter equal to or less than 2.5 µm) has become the primary air pollutant in

23	winter (Wang, et al., 2017). Therefore, in September 2013, the Chinese government launched the China's
24	first air pollution control action plan-'The Airborne Pollution Prevention and Control Action Plan
25	(2013-2017)' (State Council of the People's Republic of China, 2013). By 2017, about 64 % of China's
26	cities are still suffering from air pollution, especially Beijing-Tianjin-Hebei region and surrounding areas
27	(Wang et al., 2019; Miao et al., 2019). Then, in July 2018, the Chinese government launched the second
28	three-year action plan for air pollution control, 'the blue sky defense plan', which demonstrates China's
29	firm determination and new measures for air pollution control (State Council of the People's Republic of
30	China, 2018). After the implementation of air pollution control action plans, air quality in many regions in
31	China has been significantly improved.

Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded as two key factors for air pollution (Ding and Liu, 2014; Yim et al., 2014; Zhang et al., 2015). Air pollutants mainly come from surface emission sources, and most of air pollutants are injected from the surface to the atmosphere through the atmospheric boundary layer (ABL) (Quan et al., 2020). The ABL structures are the key meteorological conditions which influences the formation and maintenance of heavy air pollution episodes (Wang et al., 2015; Cheng et al., 2016; Wang et al., 2016; Tang et al., 2016; Wang et al., 2019).

Most of the previous studies focused on exploring the impact on the heavy air pollution in Eastern China (EC) from the meteorological conditions in ABL. However, the thermodynamic and dynamic structures of free troposphere can affect the meteorological conditions in ABL (Cai et al., 2020). The convection and diffusion in the ABL are suppressed by a relatively stable structure in the middle troposphere, leading to the ABL height decreases, which was favourable for the formation and persistence of heavy air pollution (Quan et al., 2013; Wang et al., 2015; Cai et al., 2020).

44 This study investigated whether the thermodynamic structure of the troposphere and its intensity

45	changes can be used as a 'strong warning signal' for the changes of $\text{PM}_{2.5}$ concentrations in heavy air
46	pollution, and whether this strong signal exists in the time scales of seasonal, interannual and interdecadal
47	changes. In order to explore the interaction between the free troposphere and the ABL and the impact on
48	the heavy air pollution in EC, this study extended the meteorological conditions for heavy air pollution
49	from the boundary layer to the middle troposphere. We identify a precursory 'strong signals' hidden in the
50	free troposphere for frequent haze pollution in winter in EC."
51	
52	We have accordingly cited the following article in the revised manuscript:
53	Miao, Y. C., Li, J., Miao, S. G., Che, H. Z., Wang, Y. Q., Zhang, X. Y., Zhu, R., and Liu, S. H.: Interaction
54	Between Planetary Boundary Layer and PM _{2.5} Pollution in Megacities in China: a Review. Curr. Pollut.
55	Rep., 5, 261–271, https://doi.org/10.1007/s40726-019-00124-5, 2019.
56	Quan, J. N., Gao, Y., Zhang, Q., Tie, X. X., Cao, J. J., Han, S. Q., Meng, J. W., Chen, P. F., and Zhao, D. L.:
57	Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol
58	concentrations, Particuology, 11(1), 34-40, https://doi.org/10.1016/j.partic.2012.04.005, 2013.
59	Quan, J. N., Xu, X. D., Jia, X. C., Liu, S. H., Miao, S. G., Xin, J. Y., Hu, F., Wang, Z. F., Fan, S. J., Zhang,
60	H. S., Mu, Y. J., Dou, Y. W., and Cheng, Z.: Multi-scale processes in severe haze events in China and
61	their interactions with aerosols: Mechanisms and progresses (in Chinese). Chin. Sci. Bull., 65, 810-
62	824, https://doi.org/10.1360/TB-2019-0197, 2020.
63	State Council of the People's Republic of China: Notice of the General Office of the State Council on
64	Issuing the Air Pollution Prevention and Control Action Plan, State Council of the People's Republic
65	of China website. Available at: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm, 2013.
66	State Council of the People's Republic of China: Notice of the General Office of the State Council on

67	Issuing the Air Pollution Prevention and Control Action Plan, State Council of the People's Republic
68	of China website. Available at: http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm.
69	2018.
70	Wang, Y. S., Li, W. J., Gao, W. K., Liu, Z. R., Tian, S. L., Shen, R. R., Ji, D. S., Wang, S., Wang, L. L.,
71	Tang, G. Q, Song, T., Cheng, M. T., Wang, G. H., Gong, Z. Y., Hao, J. M., and Zhang, Y. H.: Trends in
72	particulate matter and its chemical compositions in China from 2013-2017. Sci. China Earth Sci., 62:
73	1857–1871, https://doi.org/10.1007/s11430-018-9373-1, 2019.

[2. The Great Smog of London in 1952 is one of the most well-known air pollution events across the world.
Comparatively speaking, the haze in the North China Plain in February 2014 is not that "eye-catching".
Why chose this pollution episode for comparison? 2013 Beijing Haze has drawn more attention from both scientific research and public concern.]

Reply: Meteorological conditions in February 2014 were worse than that in January 2013. In February 2014, a rarely persistent air pollution weather process occurred in central and eastern China, this process had caused severe air pollution in more than 50 cities, with an impact area of 2.07 million km². In the Beijing area during February 20–26, 2014, the regional average $PM_{2.5}$ concentration exceed the 'most-serious' air pollution level, and with a peak value of up to 456 µg m⁻³.

84

[3. It is plausible that 'Warm Cover' may intensify the haze pollution in Eastern China, theoretically.
However, as mentioned by the authors, the thermodynamical structure is closely related to circulation,
which can significantly influence the regional transport/ventilation of air pollutants. It needs to be clarified
whether the anomalous circulation or thermodynamical structure (ABL height decrease) is the main cause
of haze pollution. This work only provides correlation and cross-sections of temperature anomalies and
PM_{2.5} concentration, both of which are a little too descriptive. More in-depth discussion and some
quantitative analysis are suggested to be provided.]

4

92	Reply: Your constructive suggestions are greatly appreciated and very helpful for our further study. Due to
93	the limited space of the article, some quantitative analysis will be given in the future, such as the
94	contribution of each meteorological element to polluted weather. This study focused on exploring whether
95	the thermodynamic structure of the troposphere and its intensity changes can be used as a 'strong warning
96	signal' for the changes of $PM_{2.5}$ concentrations in heavy air pollution, and whether this strong signal exists
97	in the time scales of seasonal, interannual and interdecadal changes.
98	
99	Minor comments:
100	[1. Line 26: "In addition to"]
101	Reply: Following this comment, we have adjusted it as required.
102	
103	[2. Line 43: Delete "with excessive concentrations of PM2.5"]
104	Reply: It has been deleted in the revised manuscript.
105	
106	[3. Line 87: the North China Plain. Please check it throughout the manuscript.]
107	Reply: Following this comment, we have checked it throughout the manuscript.
108	
109	[4. Line 88-89: Change to "for the long-lasting and heavy haze pollution". This statement needs to be
110	rephrased. "sulfur-dioxide pollutants" is not appropriate.]
111	Reply: It has been done in the revised manuscript.
112	
	5

113	[5. Line 98: What do you mean by "long heavy air pollution "?]	
114	Reply: Following this comment, we have adjusted it as required.	
115	"persistent air pollution".	
116		
117	[6. The labels in the contour plot in Fig.3-4 are overlaid and need to be optimized.]	
118	Reply: Following this comment, we have adjusted it as required.	
119		
120	[7. All the abbreviations should be defined for the first time. Please check throughout the article.]	
121	Reply: Following this comment, we have adjusted it as required.	
122		
123	Reply to Referee 2	
123 124	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to	
123 124 125	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square	
123 124 125 126	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square brackets and presented our response after each paragraph.	
123 124 125 126 127	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square brackets and presented our response after each paragraph.	
123 124 125 126 127 128	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square brackets and presented our response after each paragraph. [Review Comment: Anthropogenic pollutant emissions and unfavorable meteorological conditions are	
123 124 125 126 127 128 129	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square brackets and presented our response after each paragraph. [Review Comment: Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded as two key factors for haze pollution. This study investigated whether the structure of	
123 124 125 126 127 128 129 130	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square brackets and presented our response after each paragraph. [Review Comment: Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded as two key factors for haze pollution. This study investigated whether the structure of atmospheric thermodynamics in the troposphere and its intensity variation could act as a 'strong	
123 124 125 126 127 128 129 130 131	Reply to Referee 2 We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square brackets and presented our response after each paragraph. [Review Comment: Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded as two key factors for haze pollution. This study investigated whether the structure of atmospheric thermodynamics in the troposphere and its intensity variation could act as a 'strong forewarning signal' for surface PM2.5 concentration variations. It is a very interesting topic and significant	
123 124 125 126 127 128 129 130 131 132	Reply to Referee 2We are grateful to the referee for the encouraging comments and careful reviews which helped to improve the quality of our paper. In the followings we quoted each review question in the square brackets and presented our response after each paragraph.[Review Comment: Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded as two key factors for haze pollution. This study investigated whether the structure of atmospheric thermodynamics in the troposphere and its intensity variation could act as a 'strong forewarning signal' for surface PM2.5 concentration variations. It is a very interesting topic and significant for air pollution control. However, I think the current analysis is not sufficient to support the conclusion.	

134 *detailed reason and suggestions are listed below.*]

135 **Reply:** Thank you for the encouraging comments.

136

137 [1. Fig 1 and Fig 2 demonstrate the key role of "warm cover" in the haze process. However, the illustration
138 of the connection of "warm cover" with the Tibetan Plateau has lacked. The "warm cover" shown in
139 Figure S1 is below 900 hPa, which is similar to the height of the PBL top. It results in a very stable ABL
140 and further improves the surface PM_{2.5} concentration. However, the "warm cover" induced by Tibetan
141 Plateau is about 600 hPa, which is 4 km. The mechanisms of the impact of "warm cover" in such altitude
142 on PBL is needed to be illustrated in the manuscript.]

143 **Reply:** Many thanks for the referee's discussion. We agree with the suggestion. Following this comment,
144 the content of Section 3.3 have adjusted (lines 168-173 and Figure 5) with following sentences:

"The concept of variations of the tropospheric 'warm cover' has been proposed in this work. Under 145 146 the background of climate change, it is worth considering whether the variational tendency of the structure of the plateau's heat source induces variations of the tropospheric thermal structure in downstream areas of 147 148 the Plateau, leading to the interdecadal variations of the frequency of haze events seen in Eastern China 149 since the 21th century. Thermal anomalies of the TP also play an important role in the variations of the 150 frequency of haze events in EC apart from the anthropogenic pollutant emission related to the rapid 151 industrialization of China. The observational and modeling studies have demonstrated that the interannual 152 variations in the thermal forcing of TP are positively correlated with the incidences of wintertime haze over 153 EC (Xu et al., 2016). The TP induced changes in atmospheric circulation, increasing atmospheric stability and driving frequent haze events in EC (Xu et al., 2016). In this study, the data analysis concerning the 154 interannual variations of the TP's apparent heat source and air temperature in wintertime at the TP with the 155

altitudes above 3000 meters showed that since the 1960s the heat source in areas vulnerable to TP climate change strengthen continuously as the surface temperature increased (Fig. 5a). Furthermore, the TP's apparent heat and air temperature of the middle troposphere over EC presented the significant positive correlation passing (90 % confidence level), which is similar to 'warm cover' structures (Fig. 5b). Therefore, we considered that the 'warm cover' change in the middle troposphere over EC was closely related to TP's apparent heat and the surface temperature. The TP induced changes in thermodynamic structure of atmospheric provided favorable climatic backgrounds driving air pollution events in EC."

163

Figure 5. (a) Interanual variations of TP's apparent heat source (Q₁) and air temperature of meteorological stations in the TP
with the altitudes above 3000 meters in the winters during 1960-2014; (b) Vertical cross sections of the correlations between
TP's apparent heat (Q₁) and air temperature latitude-averaged along 30-35 °N in the winters during 1960-2014.

167

168 We have accordingly cited the following article in the revised manuscript:

169 Xu, X. D., Zhao, T. L., Liu, F., Gong, S. L., Kristovich, D., Lu, C., Guo, Y., Cheng, X. H, Wang, Y. J., and

170 Ding, G.: Climate modulation of the Tibetan Plateau on haze in China, Atmos. Chem. Phys., 16, 1365–1375,

171 https://doi.org/10.5194/acp-16-1365-2016, 2016.

172

173 [2. Fig 3 shows that the "upper warming and bottom cooling" vertical structure in Autumn and Winter

174 favors haze formation. It is interesting. However, the analysis is on the seasonal scale and did not directly

175 support the haze formation on the daily scale.]

176	Reply: Based on the study of the Great Smog of London in 1952 and the heavy pollution of Beijing in
177	February 2014, it is found that the abnormal 'warm cover' in the middle troposphere connected to both
178	severe air pollution events (Sect. 3.1 and in Sect. 3.2). This study attempts to explore that whether such the
179	similar structural characteristic of thermodynamic structure, i.e. the abnormal 'warm cover' in the middle
180	troposphere, also exist from the perspective of different time scales, we have further analyzed the $PM_{2.5}$
181	concentrations and the number of haze days with seasonal and interdecadal variations of the
182	thermodynamic structures in the atmosphere. We found that the thermal vertical structure of atmospheric
183	showed a 'upper warming and bottom cooling' vertical structure under heavy pollution conditions. The
184	concept of the tropospheric 'warm cover' has been confirmed on the seasonal and climatic scale.
185	Following this comment, we have added these in the revised Abstract (line 32) as follows:
186	"The anomalous structure of the troposphere's 'warm cover' not only exist in heavy haze pollution on the
187	daily scale, but also provide seasonal, interannual and interdecadal 'strong signals' for frequently occurring
188	regional haze pollution."
189	
190	[3. Fig 4 compares the interdecadal change of thermal structure in EC and eastern TP with haze days.
191	However, the anthropogenic emissions in EC have increased several times from 1961 to 2018. It is hard to
192	attribute the increase of haze days to the change of TP thermal structure.]
193	Reply: The pollutant emission with high intensity was the internal cause of frequent air pollution in EC,
194	and the adverse weather conditions were often the key 'inducement' for the accumulation of air pollutants
195	in the atmosphere. Although the variation trends of air pollution in EC depend on the air pollutant

197 conditions. Thus, we analyzed the anomalous thermodynamic structure (air temperature anomalies) from

196

emissions, the air pollution, including its intensity and duration, are closely related to meteorological

field of meteorological conditions on regional atmospheric dispersion conditions. Furthermore, we found
that the TP induced changes in thermodynamic structure of atmospheric provided favorable climatic
backgrounds driving air pollution events in EC.

the perspective of meteorological conditions, in order to reveal the influence difference of the background

202

209

198

203 [4. I guess the impact of TP thermal structure on air pollution may cover a large part of EC. Maybe

204 large-scale haze processes could be tried.]

Reply: Yes, the observational and modeling studies have demonstrated that the interannual variations in the
thermal forcing of TP are positively correlated with the incidences of wintertime haze over EC (Xu et al.,
2016). The TP induced changes in atmospheric circulation, increasing atmospheric stability and driving

208 frequent haze events in EC (Xu et al., 2016).

Figure 4. Interannual variability in the apparent heat source Q1 (the negative values denote cooling)
integrated vertically over the TP and haze event frequency averaged in the CEC in winter (December,
January and February) over 1980–2012 and their correlation (upper panel). The haze frequencies (days)

213	averaged in five	winters with mos	t positive (lower	left panel) and r	most negative Q1	anomalies (lower r	ight
-----	------------------	------------------	-------------------	-------------------	------------------	--------------------	------

- 214 panel) on the TP relative to the mean haze frequency from 1980 to 2012 (Xu et al., 2016).
- 215 References:
- 216 Xu, X. D., Zhao, T. L., Liu, F., Gong, S. L., Kristovich, D., Lu, C., Guo, Y., Cheng, X. H, Wang, Y. J., and
- 217 Ding, G.: Climate modulation of the Tibetan Plateau on haze in China, Atmos. Chem. Phys., 16, 1365–
- 218 1375, https://doi.org/10.5194/acp-16-1365-2016, 2016.

234 Reply to the Peer-Reviewer

[Supplementary suggestions for revision: As pointed out by RC2, I still think this manuscript is too descriptive and the majority of the main text is just describing the "warm cover" phenomenon. It does need more quantitative estimation before publication. Or some additional discussion on the implication of this finding can add more scientific significance to this work. In addition, the tense and some English expressions in this manuscript are too confusing and need to be double-checked. English language editing is suggested.]

Reply: Thank you very much to the reviewers. We agree with the comments and suggestions of the
reviewers. We have proofread and revised the language of the manuscript, and revised the content of
Section 4 of the manuscript:

"Based on the study of the Great Smog of London in 1952 and Beijing's heavy air pollution in 2014, as well as PM_{2.5} pollution over EC, the anomalous 'warm cover' in the middle troposphere was identified as a precursory 'strong signal' for severe air pollution events, which could be attributed to climate change. A stable thermal structure in the middle troposphere, i.e. a 'warm cover', suppressed the ABL development, which was a key 'inducement' for the accumulation of air pollutants in the ambient atmosphere.

From the perspective of the thermal vertical structure in the troposphere, the abnormal vertical structure in the troposphere during heavy air pollution were understood in this study. The thermal structure formed by the conventional decline rate of atmospheric air temperature often 'covers up' the anomalous 'strong signal' of the troposphere in air pollution process, such as the abnormal stable structure with the middle warm and bottom cold in the troposphere with air temperature anomalies. The 'strong signal' of the 'warm cover' of air temperature anomalies in the middle troposphere during heavy air pollution can be described by the method of statistical comprehensive diagnosis analysis.

A large-scale anomalous air temperature pattern of 'upper warming and bottom cooling' in the troposphere
appeared from the TP to the downstream EC region and even the entire East Asian region. The frequent

258	haze pollution events in EC since the start of the 21st century happens to be within a significant positive
259	phase in the interdecadal variations of 'warm cover' in the middle troposphere. A close relationship
260	between the TP's heat and the thermal structure in the atmosphere in EC and even the entire East Asian
261	region reflected an important role of TP's thermal forcing in environment change over China."
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	

281						
282	'Warm Cover'- Precursory 'Strong Signals' hidden in the Middle					
283	Troposphere for Haze Pollution					
284						
285	Xiangde Xu ¹ , Wenyue Cai ^{1, 2, 3} , Tianliang Zhao ⁴ , Xinfa Qiu ⁵ , Wenhui Zhu ⁶ , Chan Sun ¹ , Peng Yan ⁷ ,					
286	Chunzhu Wang ⁸ , and Fei Ge ⁹					
287	¹ State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences, Beijing,					
288	China.					
289	² National Climate Center, China Meteorological Administration, Beijing, China.					
290	³ School of Geographical Science, Nanjing University of Information Science and Technology, Nanjing,					
291	Jiangsu Province, China.					
292	⁴ Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing					
293	University of Information Science and Technology, Nanjing, Jiangsu Province, China.					
294	⁵ School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing,					
295	Jiangsu Province, China.					
296	⁶ Beijing Institute of Applied Meteorology, Beijing, China.					
297	⁷ Meteorological Observation Center, China Meteorological Administration, Beijing, China.					
298	⁸ Training Center, China Meteorological Administration, Beijing, China.					
299	⁹ School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan					
300	Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information					
301	Technology, Chengdu, <mark>Sichuan Province, China.</mark>					
302						
303						
304	Correspondence: Wenyue Cai (caiwy@cma.gov.cn) and Tianliang Zhao (tlzhao@nuist.edu.cn)					
305						

Manuscript Revised edition Mark:

280

删除的内容: Sichuan

307	Abstract. Eastern China (EC), located in the downstream region of Tibetan Plateau (TP), is a large area		删
308	with frequent haze pollution. In addition to air pollutant emissions, meteorological conditions were a key		删
309	'inducement' for air pollution episodes. Based on the study of the Great Smog of London in 1952 and haze	\backslash	vul
310	pollution in EC over recent decades, it is found that the abnormal 'warm cover' (air temperature warm		删
311	anomalies) in the middle troposphere, as a precursory 'strong signal', could connect to severe air pollution		删
312	events. The convection and vertical diffusion in the atmospheric boundary layer (ABL) were suppressed by		
313	a relatively stable structure of 'warm cover' in the middle troposphere, leading to the ABL height decreases,		
314	which was favourable for the accumulation of air pollutants in the ambient atmosphere. The anomalous	/	删
315	structure of the troposphere's 'warm cover', not only exist in heavy haze pollution on the daily scale, but	_	删
316	also provide seasonal, interannual and interdecadal 'strong signals' for frequently occurring regional haze		
317	pollution. It is revealed that a close relationship existed between interannual variations of the TP's heat		
318	source and the 'warm cover' strong-signal in the middle troposphere over EC. The warming TP could lead		_
319	to the anomalous 'warm cover' in the middle troposphere from the plateau to the downstream EC region	/	删
320	and even the entire East Asian region for air pollution,	_	删
321			eve
322	1 Introduction		sig the
323	In China, mainly over the region east of 100° E and south of 40° N (Tie et al., 2009), PM _{2.5} (particulate		rev
			exi
324	matter with an aerodynamic diameter equal to or less than 2.5 μ m) has become the primary air pollutant in		oft
325	winter (Wang, et al., 2017). Therefore, in September 2013, the Chinese government launched the China's		troj
			删
326	first air pollution control action plan-'The Airborne Pollution Prevention and Control Action Plan	١	删
327	(2013-2017)' (State Council of the People's Republic of China, 2013). By 2017, about 64 % of China's		
328	cities are still suffering from air pollution, especially Beijing-Tianjin-Hebei region and surrounding areas		删
329	(Wang et al., 2019; Miao et al., 2019). Then, in July 2018, the Chinese government launched the second		
330	three-year action plan for air pollution control, 'the blue sky defense plan', which demonstrates China's	\langle	删
331	firm determination and new measures for air pollution control (State Council of the People's Republic of		1000
332	China, 2018). After the implementation of air pollution control action plans, air quality in many regions in		
333	China has been significantly improved.		
334	Anthropogenic pollutant emissions and unfavorable meteorological conditions are commonly regarded		

删除的内容: o 删除的内容: that has become vulnerable to 删除的内容: of 删除的内容: hidden

删除的内容: were 删除的内容: "warm cover"

删除的内容: built

删除的内容: The frequent haze events in EC is connected with a significantly strong 'warm cover' in the interdecadal variability. It is also revealed that a close relationship existed between interannual variations of the TP's heat source and the 'warm cover' hidden in the middle troposphere over EC.

删除的内容:

删除的内容:

删除的内容: the

删除的内容: " 删除的内容: "

删除的内容: the

删除的内容: and cities

359	as two key factors for air pollution (Ding and Liu, 2014; Yim et al., 2014; Zhang et al., 2015). Air		删除的内容: haze
360	pollutants mainly come from surface emission sources, and most of air pollutants are injected from the		删除的内容: with excessive concentrations of PM _{2.5}
361	surface to the atmosphere through the atmospheric boundary layer (ABL) (Quan et al., 2020). The ABL,		删除的内容:,
362	structures are the key meteorological conditions which influences, the formation and maintenance of heavy		删除的内容: The thermodynamic structures in atmospheric boundary layer and the free troposphere
363	air pollution episodes (Wang et al., 2015; Cheng et al., 2016; Wang et al., 2016; Tang et al., 2016; Wang et		删除的内容:
364	al., 2019).		删除的内容: influencing
365	Most of the previous studies focused on exploring the impact on the heavy air pollution in Eastern		
366	China (EC) from the meteorological conditions in ABL. However, the thermodynamic and dynamic		
367	structures of free troposphere can affect the meteorological conditions in ABL (Cai et al., 2020). The		
368	convection and diffusion in the ABL are suppressed by a relatively stable structure in the middle		删除的内容: atmospheric boundary layer (
369	troposphere, leading to the ABL height decreases, which was favourable for the formation and persistence		删除的内容:)
370	of heavy air pollution (Quan et al., 2013; Wang et al., 2015; Cai et al., 2020).		
371	This study investigated whether the thermodynamic structure of the troposphere and its intensity		
372	changes can be used as a 'strong warning signal' for the changes of PM _{2.5} concentrations in heavy air		
373	pollution, and whether this strong signal exists in the time scales of seasonal, interannual and interdecadal		
374	changes, In order to explore the interaction between the free troposphere and the ABL, and the impact on		删除的内容: the structure of atmospheric thermodynamics in the
375	the heavy air pollution in EC, this study extended the meteorological conditions for heavy air pollution		troposphere and its intensity variati could act as a 'strong forewarning
376	from the boundary layer to the middle troposphere. We identify a precursory 'strong signals' hidden in the		signal' for surface $PM_{2.5}$ concentrat variations in heavy air pollution.
377	free troposphere for frequent haze pollution in winter in <u>EC</u> .		删除的内容: atmospheric boundary
378		//	刷除的内容: Eastern China
270	2 Data and methods		删除的内容: Eastern China
515			

The data used in this study included NCEP/NCAR and ERA-Interim_reanalysis data of meteorology, as 380

於的内容: the structure of ospheric thermodynamics in the osphere and its intensity variation d act as a 'strong forewarning al' for surface $\ensuremath{\text{PM}_{2.5}}$ concentration ations in heavy air pollution.

的内容: atmospheric boundary

删除的内容:

404	well as data of surface $PM_{2.5}$ concentration measurement, air temperature observation and L-band sounding,	
405	as briefly described as follows:	
406	The monthly NCEP/NCAR reanalysis data of meteorology with horizontal resolution of $2.5 \circ \underline{of}$	删除的内容: for
407	1960-2019 were obtained from the U.S. National Center for Environmental Protection (NCEP,	
408	https://www.esrl.noaa.gov/).	
409	The daily and monthly ERA-Interim reanalysis data of meteorology with horizontal resolution of 0.75°	删除的内容:
410	were derived from the European Center for Medium-range Weather Forecasts (ECMWF,	
411	https://www.ecmwf.int/), including air temperature, geopotential height, humidity, wind field and vertical	
412	velocity	删除的内容:,etc
413	The hourly PM _{2.5} concentration data during 2013-2019 were collected from the national air quality	
414	monitoring network operated by the Ministry of Ecology and Environment the People's Republic of China	
415	(http://www.mee.gov.cn/). In addition, we categorized air pollution levels with the surface $PM_{2.5}$	
416	concentrations based on the National Ambient Air Quality Standards of China (HJ633-2012) released by	
417	the Ministry of Ecology and Environment in 2012 as shown in Table 1.	
418	We also used the monthly air temperature of surface observation data during 1960-2014 from 58	
419	meteorological observation stations in the plateau area with an altitude above 3000 meters, which were	
420	archived from the China Meteorological Information Center (<u>http://data.cma.cn/</u>).	删除的内容: http://cdc.cma.gov.cn/
421	Furthermore, the L-band sounding 'seconds-level' data of Beijing from 2010 to 2019 to were used to	删除的内容: the site
422	calculate the height of ABL (Liu and Liang, 2010). The height of ABL top is characterized by the L-band	删除的内容: atmospheric boundary layer
423	sounding observations at 20:00 (local time is used for this paper). The L-band sounding 'seconds-level'	删除的内容: ABL,
424	data has been undergone the quality control before analysis (Zhu et al., 2018), and interpolation was	删除的内容:5
425	implemented in a vertical direction at an interval of 2, hPa, The L-band detection data provided by the	删除的内容:-

删除的内容: (Zhu et al., 2018)

437 China Meteorological Information Center, (http://data.cma.cn/) contains several automatic observation

438 meteorological elements with time resolution of 1.2 s and vertical resolution of 8 m. More detail

439 information can be found in Li et al. (2009) and Cai et al. (2014).

440

Table 1. Air pollution degrees categorized with surface PM_{2.5} concentrations

Air pollution degrees	PM _{2.5} concentration <u>range</u> s
'less-serious' pollution	$75 \mu g \cdot m^{-3} < PM_{2.5} \le 115 \mu g \cdot m^{-3}$
'serious' pollution	115 $\mu g \cdot m^{-3} < PM_{2.5} \le 150 \ \mu g \cdot m^{-3}$
'more-serious' pollution	150 $\mu g \cdot m^{-3} < PM_{2.5} \leq 250 \ \mu g \cdot m^{-3}$
'most-serious' pollution	$PM_{2.5} > 250 \ \mu g \cdot m^{-3}$

删除的内容: the Meteorological Observation Network

删除的内容: http://cdc.cma.gov.cn/

带格式的: 居中

	'most-serious' pollution $PM_{2.5}>250 \ \mu g \cdot m^{-3}$	
441		
442	3 Results	
443	3.1 A precursory 'strong signal' of 'warm cover' in the middle troposphere	
444	In February 2014, a rarely persistent air pollution weather process occurred in EC with severe air pol	lution
445	in more than 50 cities, with an impact area of 2.07 million km ² . In the Beijing area during February 2	<u>20–26,</u>
446	2014 the regional average $PM_{2.5}$ concentration exceed the 'most-serious' air pollution level, and v	with a
447	peak value of up to 456 µg·m ⁻³ . In addition, the Great Smog of London in 1952 was attributed	to the
448	long-lasting and heavy haze pollution, under the influence of certain weather systems (Whittaker	et al.,
449	2004). To find the precursory 'strong signals' hidden in meteorology for heavy air pollution even	ts, we
450	retrieved the three-dimensional atmospheric dynamic, and thermal structures during December in 19	952 as
451	well as February in 2014 by analyzing vertical anomalies of meteorology. There were high-pre-	essure
452	systems moved to London as well as Beijing and stagnated over both areas at 500 hPa geopot	ential
453	height anomalies, as shown in Figs. 1a, and 1b. During the heavy, air pollution events, a high-pro-	essure
454	system over London as well as Beijing gradually strengthened (Figs. 1c and 1d), and the m	niddle
455	troposphere was characterized by a 'warm cover' <u>with</u> 'upper warming and bottom cooling' anomal	<u>lies in</u>
456	vertical structure of air temperature (Figs. 1e, and 1f).	
I	18	

删除的内容: square kilometers
带格式的: 上标
带格式的: 字体:五号
删除的内容: In the Beijing area and
surroundings over North China Plain
during February 18-27, 2014, the
regional average $\rm PM_{2.5}$ concentrations
reached up to 250 $\mu g m^{-3}$ for the
prolong heavy air pollution. T
删除的内容: the accumulation of
low-level smoke and sulfur-dioxide
pollutants
删除的内容: of the
删除的内容: both
删除的内容:s
删除的内容: the
删除的内容:-
删除的内容:
删除的内容: Prior to
删除的内容:-
删除的内容:
删除的内容: , i.e. a

删除的内容:--

481	By comparing Figs. 1a and 1b, we found that two persistent heavy air pollution events occurred during
482	the maintenance stage of stable high pressure system. During stagnation of the blocking high pressure
483	system, the strength of the center of the geopotential height anomalies in the stable maintenance region of
484	the blocking exhibited a synchronous response to the 'warm cover' above areas (Figs. 1c-1f). It can be seen
485	that the local atmospheric thermal structure is, significantly modulated by the persistent large-scale
486	anomalous circulation. The 'subsidence-induced air temperature, inversion' effect of the blocking high
487	pressure system continuously strengthened the 'warm cover' structure in the middle troposphere, which
488	suppressed the vertical diffusion capacity in the atmosphere (Cai et al., 2020). Moreover, it was obvious
489	that 'strong signals' arising from the thick 'warm cover' persisted during the abnormal air-pollution episode
490	during December 5–9, 1952 in London as well as February 21–26, 2014 in Beijing. It is worth pointing out
491	that the bottom edge of 'warm cover' in the free troposphere declined day-by-day. During the heavy
492	pollution incident, the 'warm cover' dropped to 900 hPa (Figs. 1g and 1 h). The above analysis shows that
493	in the <u>ABL</u> over London during December 5–9, 1952 and Beijing during February 21–26, 2014, the
494	inversion, layer height decreased, which made the ABL structure stable for accumulation of air pollutants,
495	The deep 'warm cover' structures in the middle troposphere acted as a precursory 'strong signal' of the
496	Great Smog of London and Beijing's heavy air pollution.

删除的内容: Fig.

删除的内容: two long heavy air pollution

删除的内容:

删除的内容: 3D dynamical and thermodynamical structures were 删除的内容: (删除的内容:) 删除的内容: The air temperature inversion

删除的内容:-

删除的内容:-
删除的内容:,
删除的内容: upper air
删除的内容: 'subsidence
删除的内容: of air temperature in the high pressure system
删除的内容: and the inversion layerABL
删除的内容: atmospheric

删除的内容: aerosols

删除的内容: unit: ℃, here 删除的内容: . 删除的内容: 删除的内容: and boundary layer with aerosol

删除的内容:3

删除的内容: d

删除的内容:-

删除的内容:.

删除的内容: -

删除的内容:p

删除的内容: to **带格式的:** 字体: 小五

删除的内容: to

删除的内容:(c)

删除的内容: zone

删除的内容: zone 删除的内容:-

删除的内容:-

删除的内容: (during

删除的内容:; unit: dagpm)

删除的内容: Geopotential

555	During winter 2014-2017, Figs. 2a and 2b demonstrated the significant negative correlations between the
556	height of the ABL, and air temperature anomalies over same period and 24 hours ahead in Beijing, and the
557	correlation coefficients were 0.41 and 0.34 (99.9 % confidence level), reflecting that the 'warm cover'
558	structure hidden in the middle troposphere with significant 'strong-signal' features is of persistent
559	premonitory significance for the heavy pollution episodes. Figures, $2c-2e$ presented the significant
560	positive correlations between PM _{2.5} concentrations and air temperature anomalies over same period and 24,
561	48 hours ahead in Beijing, and the correlation coefficients were 0.42, 0.56 and 0.37 (99.9 % confidence
562	level). Based on the above mentioned results, air temperature anomalies over 24 and 48 hours ahead
563	could also be reflected that 'warm cover' hidden in the middle troposphere could be regarded as the
564	precursory 'strong-signal' for air pollution change. Furthermore, such a 'stable' structure also restricted
565	the <u>vertical</u> transport of moist air from the lower to the middle troposphere for forming secondary aerosols,
566	which could dominate PM _{2.5} concentrations in air pollution over China (Huang et al., 2014; Tan et al.,
567	2015).

Figure 2., The correlations between ABL height and air temperature anomalies in Beijing during winter 2014–2017. (a) same
period, at 800 hPa; (b) 24 hours ahead, at 650 hPa. The correlations between PM_{2.5} concentration and air temperature

删除的内容:-
删除的内容: Fig.
删除的内容:
passing 0.001 confidence degree
带格式的: 字体:五号
删除的内容: atmospheric boundary
layer (
删除的内容:)
删除的内容:
删除的内容: passing 0.001 confidence
degree

删除的内容: (a)
删除的内容: atmospheric boundary
layer (
删除的内容:)
删除的内容:-
删除的内容:
删除的内容:-
删除的内容: in Beijing during winter
2014–2017

591	anomalies in Beijing during winter 2014-2017, (c) same period, at 850 hPa; (d) 24 hours ahead, at 800 hPa; (e) 48 hours	刪	除的
592	ahead, at 724 hPa	刪	除的
593			除的
594	3.3 Changes of the 'warm cover' structure in the middle troposphere	删 20)除的)14-2
595	The 'warm cover' structure of air temperature anomalies in the middle_troposphere indicated the		
596	intensification of heavy air pollution. The 'warm cover' structure is a precursory 'strong signal' for the		
597	frequent occurrence of regional haze events. The air pollution in EC exhibited the significant seasonal		除的
598	variations. Our study revealed that existed seasonal differences of the thermal structures in the atmosphere	副	l除的 l除的
599	over EC. In spring (Figs. 3a, and 3e) and summer (Figs. 3b and, 3f), the middle troposphere was		除的
600	characterized by a 'upper cooling and bottom warming' vertical structure for less air pollution. When the	נימג	1际11、
601	autumn (Figs. 3c and 3g) and winter (Figs. 3d and 3h) arrived, the middle troposphere was characterized by		除的
602	a 'upper warming and bottom cooling' vertical structure, which intensified the air pollution. In autumn,	Ħ	除的
603	atmospheric thermal structure over EC was marked with a transition between summer and winter (Fig. 3c).		
604	The atmosphere condition reversed in winter, a large-scale anomalous air temperature pattern of 'upper		
605	warming and bottom cooling' in the middle troposphere appeared from the plateau to downstream EC		
606	region and even the entire East Asian region (Fig. 3d). The structure of 'warm cover' in winter was much		
607	stronger than that in autumn, and its height of the former was much lower than that of the latter. Therefore,		
608	the intensity of air pollution over EC during winter is significantly higher than other seasons (Fig. 3h).		
609	From the perspective of interdecadal variations, our study revealed a close relationship between the		
610	frequent occurrence of haze events in EC and the atmospheric thermal structure in the eastern Tibetan	_	
611	Plateau (TP), Furthermore, the thermal structures of the troposphere exhibited the distinct interdecadal	Ħ	除的
612	variations (Figs. 4a-4c). A cooling structure was identified in the wintertime air temperature anomalies over		
613	the east region of TP during 1961–1980 (Fig. 4a); the upper level of the eastern TP during 1981–2000		

除的内容:-	
除的内容:-	
除的内容:-	
除的内容:	in Beijing during winter
014-2017	

删除的内容: Eastern China (删除的内容:) 删除的内容: in terms 删除的内容:, 删除的内容:,

删除的内容: (Fig. 3c, g) or 删除的内容: . 3d,

删除的内容: TP

627	showed a 'upper cooling and bottom warming' vertical structure (Fig. 4b). The interdecadal changes of	
628	vertical structure reversed during 2001–2018 with a significant 'warm cover' (Fig. 4c). The years of 2001–	
629	2018 witnessed the highest frequency of haze days (Fig. 4f), and 1981-2000 saw a middle-level occurrence	
630	of haze days (Fig. 4e), while the lowest frequency of haze days occurred during 1961–1980 (Fig. 4d).	
631	The concept of variations of the tropospheric 'warm cover' has been proposed in this work. Under the	/
632	background of climate change, it is worth considering whether the variational tendency of the structure of	
633	the plateau's heat source induces variations of the tropospheric thermal structure in downstream areas of the	/
634	Plateau, Jeading to the interdecadal variations of the frequency of haze events seen in Eastern China since	/
635	the 21th century. Thermal anomalies of the TP also play an important role in the variations of the frequency	
636	of haze events in EC apart from the anthropogenic pollutant emission related to the rapid industrialization	
637	of China. The observational and modeling studies have demonstrated that the interannual variations in the	
638	thermal forcing of TP are positively correlated with the incidences of wintertime haze over EC (Xu et al.,	
639	2016). The TP induced changes in atmospheric circulation, increasing atmospheric stability and driving	
640	frequent haze events in EC (Xu et al., 2016). In this study, the data analysis concerning the interannual	
641	variations of the TP's apparent heat source and air temperature in wintertime at the TP with the altitudes	
642	above 3000 meters showed that since the 1960s the heat source in areas vulnerable to TP climate change	
643	strengthen continuously as the surface temperature increased (Fig. 5a). Furthermore, the TP's apparent heat	
644	and air temperature of the middle troposphere over EC presented the significant positive correlation passing	
645	(90 % confidence level), which is similar to 'warm cover' structures (Fig. 5h). Therefore, we considered	
646	that the 'warm cover' change in the middle troposphere over EC was closely related to TP's apparent heat	
647	and the surface temperature, The TP induced changes in thermodynamic structure of atmospheric provided	
648	favorable climatic backgrounds driving air pollution events in EC.	

删除的内容: interdecadal

删除的内容:in

删除的内容: and whether these could also

删除的内容: the
删除的内容:(
删除的内容:)
删除的内容: the significant positive
删除的内容: characteristic
删除的内容:(
删除的内容:)

删除的内容: It is worth considering whether the variations of the plateau's heat structures could lead to the interdecadal variations of the 'warm cover' in the troposphere for the frequent occurrence of haze in EC since the 21st20th century (Fig. 4c, f). By analyzing TP's apparent heat source (Q1) and air temperature observed at meteorological stations over the TP in the winters during 1960-2014 (Fig. 5a, b), we found that the 'warm cover' changes in the middle troposphere over EC and even in East Asia was closely related to the surface temperature and TP's apparent heat.

Pressure (hPa)

删除的内容:,

Pressure (hPa)

Pressure (hPa)

100E

100E

100E

100E

6.6

110E

110E

110E

110E

Pressure (hPa)

693 Based on the study of the Great Smog of London in 1952 and Beijing's heavy air pollution in 2014, as well

(. . .

716	as PM _{2.5} pollution over EC, the anomalous 'warm cover' in the middle troposphere was identified as a	2	删除的
717	precursory 'strong signal' for severe air pollution events, which could be attributed to climate change. A		删除的
718	stable thermal structure in the middle troposphere, i.e. a 'warm cover', suppressed the <u>ABL</u> development,		删除的
719	which was a key 'inducement' for the accumulation of air pollutants in the ambient atmosphere.		删除的 layer
720	From the perspective of the thermal vertical structure in the troposphere, the abnormal vertical		删除的
721	structure in the troposphere during heavy air pollution were understood in this study. The thermal structure		
722	formed by the conventional decline rate of atmospheric air temperature often 'covers up' the anomalous		
723	'strong signal' of the troposphere in air pollution process, such as the abnormal stable structure with the		
724	middle warm and bottom cold in the troposphere with air temperature anomalies. The 'strong signal' of the		
725	'warm cover' of air temperature anomalies in the middle troposphere during heavy air pollution can be		
726	described by the method of statistical comprehensive diagnosis analysis.		
727	A large-scale anomalous air temperature pattern of 'upper warming and bottom cooling' in the		删除的
728	troposphere appeared from the TP, to the downstream EC region and even the entire East Asian region. The	\angle	删除的
729	frequent haze pollution events in EC since the start of the 21st century happens to be within a significant		删除的
730	positive phase in the interdecadal variations of 'warm cover' in the middle troposphere. A close relationship		
731	between the TP's heat and the thermal structure in the atmosphere in EC and even the entire East Asian		删除的
732	region reflected an important role of TP's thermal forcing in environment change over China.		
733	<u>۸</u>		带格式
734	Data availability. The monthly NCEP/NCAR reanalysis data of meteorology are collected from the U.S.		
735	National Center for Environmental Protection (NCEP, https://www.esrl.noaa.gov/); the daily and monthly		
736	ERA-Interim reanalysis data of meteorology are collected from the European Center for Medium-range		
737	Weather Forecasts (ECMWF, https://www.ecmwf.int/); the hourly PM2.5 concentration data are collected		

内内容: free

的内容:

的内容: atmospheric **竹内容:** atmospheric boundary

的内容:(ABL)

的内容:

内内容: middle 的内容: plateau

约内容: plateau

弋的:字体:五号

1		
748	from the national air quality monitoring network operated by the Ministry of Ecology and Environment the	
749	People's Republic of China (http://www.mee.gov.cn/); the air temperature of surface observation data and	
750	L-band sounding data are obtained from the China Meteorological Information Center (<u>http://data.cma.cn</u>).	删除的内容: http://cdc.cma.gov.cn/
751	All data presented in this paper are available upon request to the corresponding author (Wenyue Cai,	
752	caiwy@cma.gov.cn).	
753		
754	Author contributions. XDX and WYC designed the study. XDX, WYC and TLZ performed the research.	
755	WYC performed the statistical analyses. XDX, WYC and TLZ wrote the initial paper. TLZ, XFQ, WHZ,	
756	CS, PY, CZW and FG contributed to subsequent revisions.	删除的内容: and
757		
758	Competing interests. The authors declare that they have no conflict of interest.	
759		
760	Acknowledgements. This study is supported by the Atmospheric Pollution Control of the Prime Minister	
761	Fund (DQGG0104), the National Natural Science Foundation of China (91644223) and the Second Tibet	
762	Plateau Scientific Expedition and Research program (STEP, 2019QZKK0105).	
763		
764	Financial support. This research has been supported by the Atmospheric Pollution Control of the Prime	
765	Minister Fund (DQGG0104), the National Natural Science Foundation of China (91644223) and the	
766	Second Tibet Plateau Scientific Expedition and Research program (STEP, 2019QZKK0105).	
767		
768	References	
769 770 771	Cai, M., OU, J. J., Zhou, Y. Q., Yang Q., and Cai, Z. X.: Discriminating cloud area by using L-band sounding data (in Chinese), Chin. J. Atmos. Sci., 38, 213–222, https://doi.org/10.3878/j.issn.1006-9895.2013.12193, 2014.	

- Cai, W. Y., Xu, X. D., Cheng, X. H., Wei, F. Y., Qiu, X. F., and Zhu, W. H.: Impact of "blocking" structure
- in the troposphere on the wintertime persistent heavy air pollution in northern China, Sci. Total
 Environ., 741, 140325, https://doi.org/10.1016/j.scitotenv.2020.140325, 2020.
- Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B.,
 Carmichael, G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of
 sulfate during haze events in China, Sci. Adv., 2, e1601530, https://doi.org/10.1126/sciadv.1601530,
 2016.
- 781 China Ministry of Environmental Protection: Technical Regulation on Ambient Air Quality Index (On Trial)
- 782 (HJ633-2012), China Environmental Science Press, Beijing, China, 2012.
- 783 Ding, Y. H. and Liu, Y. J.: Analysis of long-term variations of fog and haze in China in recent 50 years and
- their relations with atmospheric humidity, <u>Sci. China Earth Sci.</u> 57, 36-46,
 https://doi.org/10.1007/s11430-013-4792-1, 2014.
- Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J. G.,
 Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z. S.,
 Szidat, S., Baltensperger, U., Haddad, I. E., 11, and Prevot, A-S. H.: High secondary aerosol
 contribution to particulate pollution during haze events in China, Nature, 514, 218–222,
 https://doi.org/10.1038/nature13774, 2014.
- Li, W., Li, F., Zhao, Z. Q., Liu, F. Q., Li, B., Li, H.: L-Band Meteorological Observation System
 Construction Technology Assessment Report (in Chinese), China Meteorological Press, Beijing, China,
- 794 2009.
- Liu, S. Y. and Liang, Z. X.: Observed diurnal cycle climatology of planetary boundary layer height, J.
 Climate, 23, 5790-5809, https://doi.org/10.1175/2010JCLI3552.1, 2010.
- 797 Miao, Y. C., Li, J., Miao, S. G., Che, H. Z., Wang, Y. Q., Zhang, X. Y., Zhu, R., and Liu, S. H.: Interaction
- 798 Between Planetary Boundary Layer and PM_{2.5} Pollution in Megacities in China: a Review. Curr. Pollut.
- **799** Rep., 5, 261–271, https://doi.org/10.1007/s40726-019-00124-5, 2019.

删除的内容: Science China: Earth Sciences

删除的内容: ent 删除的内容: ion 删除的内容: orts

805	Quan, J. N., Gao, Y., Zhang, Q., Tie, X. X., Cao, J. J., Han, S. Q., Meng, J. W., Chen, P. F., and Zhao, D. L.:								
806	Evolution of planetary boundary layer under different weather conditions, and its impact on aeroso								
807	concentrations, Particuology, 11(1), 34-40, https://doi.org/10.1016/j.partic.2012.04.005, 2013.								
808	Quan, J. N., Xu, X. D., Jia, X. C., Liu, S. H., Miao, S. G., Xin, J. Y., Hu, F., Wang, Z. F., Fan, S. J., Zhang,								
809	H. S., Mu, Y. J., Dou, Y. W., and Cheng, Z.: Multi-scale processes in severe haze events in China and								
810	their interactions with aerosols: Mechanisms and progresses (in Chinese). Chin. Sci. Bull., 65, 810-								
811	824, https://doi.org/10.1360/TB-2019-0197, 2020.								
812	State Council of the People's Republic of China: Notice of the General Office of the State Council or								
813	Issuing the Air Pollution Prevention and Control Action Plan, State Council of the People's Republic								
814	of China website. Available at: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm, 2013.								
815	State Council of the People's Republic of China: Notice of the General Office of the State Council on								
816	Issuing the Air Pollution Prevention and Control Action Plan, State Council of the People's Republic								
817	of China website. Available at: http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm.								
818	2018.								
819	Tan, C. H., Zhao, T. L., Cui, C. G., Luo, B. L., and Bai, Y. O.: Characterization of haze pollution over								
820	Central China during the past 50 years Science in China (in Chinese) China Environ Sci. 35, 2272-								
871	2280-2015								
021	2200, 2015.								
822	Tang, G. Q., Zhang, J. Q., Zhu, X. W., Tao, S., Munkel, C., Hu, B., Schaefer, K., Liu, Z. R., Zhang, J. K.,								
823	Wang, L. L., Xin, J. Y., Schaefer, P., and Wang, Y. S.: Mixing layer height and its implications for air								
824	pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459–2475,								
825	https://doi.org/10.5194/acp-16-2459-2016, 2016.								
826	Tie, X. X. and Cao, J. J.: Aerosol pollutions in eastern China: Present and future impacts on environment,								
827	Particuology, 7, 426-431, https://doi.org/10.1016/j.partic.2009.09.003, 2009.								
828	Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Zamora, M. L., Hu, M., Lin, Y., Peng, J. F., Guo, S.,								

- Meng, J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang, Y. S., Gao, J., Cao, J. J., An, Z. S.,
 Zhou, W. J., Li, G. H., Wang, J. Y., Tian, P. F., Marrero-Ortiz, W., Secrest, J., Du, Z. F., Zheng, J.,
- 831 Shang, D. J., Zeng, L. M., Shao, M., Wang, W. G., Huang, Y., Wang, Y., Zhu, Y. J., Li, Y. X., Hu, J. X.,
- 832 Pan, B., Cai, L., Cheng, Y. T., Ji, Y. M., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E.,
- and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese Haze, P. Natl. Acad. Sci.,
- 834 113, 13630–13635, https://doi.org/10.1073/pnas.1616540113, 2016.
- Wang, H., Li, J. H., Peng, Y., Zhang, M., Che, H. Z., and Zhang, X. Y.: The impacts of the meteorology
 features on PM_{2.5} levels during a severe haze episode in central-east China, Atmospheric Environ., 197,
 177–189, https://doi.org/10.1016/j.atmosenv.2018.10.001, 2019.
- 838 Wang, H., Xue, M., Zhang, X. Y., Liu, H. L., Zhou, C. H., Tan, S. C., Che, H. Z., Chen, B., and Li, T.:
- 839 Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze
- episode in Jing–Jin–Ji (China) and its nearby surrounding region Part 1: Aerosol distributions and
 meteorological features, Atmos. Chem. Phys., 15, 3257–3275,
 https://doi.org/10.5194/acp-15-3257-2015, 2015.
- Wang, J. J., Zhang, M. G., Bai, X. L., Tan, H. J., Li, S., Liu, J. P., Zhang, R., Wolters, M. A., Qin, X. Y.,
 Zhang, M. M., Lin, H. M., Li, Y. N., Li, J., and Chen, L. Q.: Large-scale transport of PM_{2.5} in the
 lower troposphere during winter cold surges in China, Sci. Rep., 7, 13238,
- 846 https://doi.org/10.1038/s41598-017-13217-2, 2017.
- Wang, Y. S., Li, W. J., Gao, W. K., Liu, Z. R., Tian, S. L., Shen, R. R., Ji, D. S., Wang, S., Wang, L. L.,
 Tang, G. Q. Song, T., Cheng, M. T., Wang, G. H., Gong, Z. Y., Hao, J. M., and Zhang, Y. H.: Trends in
 particulate matter and its chemical compositions in China from 2013–2017. Sci. China Earth Sci., 62:
 1857–1871, https://doi.org/10.1007/s11430-018-9373-1, 2019.
- Whittaker, A., Berube, K., Jones, T., Maynard, R., Richards, R.: Killer smog of London, 50 years on:
 particle properties and oxidative capacity, <u>Sci. Total Environ.</u> 334-335, 435–445, https://doi.org/10.1016/j.scitotenv.2004.047, 2004.
- Xu, X. D., Zhao, T. L., Liu, F., Gong, S. L., Kristovich, D., Lu, C., Guo, Y., Cheng, X. H, Wang, Y. J., and
 Ding, G.: Climate modulation of the Tibetan Plateau on haze in China, Atmos. Chem. Phys., 16, 1365–
 1375, https://doi.org/10.5194/acp-16-1365-2016, 2016.
- Yim, S-Y., Wang, B., Liu, J., and Wu, Z. W.: A comparison of regional monsoon variability using monsoon indices, Clim, Dynam, 43, 1423-1437, https://doi.org/10.1007/s00382-013-1956-9, 2014.

删除的内容: Environment

删除的内容:

删除的内容: Science China Earth Sciences,

删除的内容: Science of the Total Environment,

删除的内容: ate

删除的内容:ics

867	Zhang, X	K. Y.,	Wang, J. Z.,	Wang,	Y.	Q.,	Liu,	H.	L.,	Sun, J.	Y.,	, and Zhang,	Y.	M.:	Changes	in	chemical
-----	----------	--------	--------------	-------	----	-----	------	----	-----	---------	-----	--------------	----	-----	---------	----	----------

- components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution
 of meteorological factors, Atmos. Chem. Phys., 15, 12935–12952,
 https://doi.org/10.5194/acp-15-12935-2015, 2015.
- 871 Zhu, W. H., Xu, X. D., Zheng, J., Yan, P., Wang, Y. J., and Cai, W. Y.: The characteristics of abnormal
- 872 wintertime pollution events in the Jing-Jin-Ji region and its relationships with meteorological factors,
- 873 Sci. Total Environ., 626, 887-898, https://doi.org/10.1016/j.scitotenv.2018.01.083, 2018.