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Abstract. Atmospheric CO2 growth is the primary driver of the global warming and the rate of this growth is a valuable 

indicator of the interannual changes in carbon cycle. Despite atmospheric CO2 growth rate had been considered as the well-10 

known quantity, the latest findings indicated that CO2 models can considerably disagree in reproducing this rate. This study 

is aimed to advance our knowledge about temporal and spatial variations of annual CO2 growth rate (AGR) by using CO2 

observations from the Total Column Observing Network (TCCON), CO2 simulations from Carbon Tracker (CT) and 

Copernicus Atmospheric Monitoring System (CAMS) models being compared with the previously-reported global 

references of AGR from Global Carbon Budget (GCB) and satellite observations (SAT) for 2004-2019 years. TCCON and 15 

the CO2 models revealed temporal AGR variations (AGRTCCON = 1.71 – 3.35 ppm, AGRCT = 1.64 – 3.15 ppm, AGRCAMS = 

1.66 – 3.13 ppm) of very similar magnitude to the global CO2 growth references (AGRGCB = 1.59 – 3.23 ppm, AGRSAT = 

1.55 – 2.92 ppm). However, AGRTCCON estimates agree well with the references only during the 2010s (correlation 

coefficient, r = 0.68 vs GCB and r = 0.75 vs SAT) as the TCCON observational coverage has been substantially expanded 

since 2009. Moreover, AGRTCCON reasonably agrees (r = 0.67) with the strength of El-Nino Southern Oscillations (ENSO) in 20 

the 2010s. The highest atmospheric CO2 growth (2015-2016) driven by the very strong El-Nino was accurately reproduced 

by TCCON which provided AGR of 2015-2016 years (3.29 ± 0.98 ppm) in very close agreement to the AGRSAT reference 

(3.23 ± 0.50 ppm). We further validated AGR simulations (CT and CAMS) versus the newly-acquired AGRTCCON (as point-

location reference) for every TCCON site and found low agreement between the models and TCCON (r < 0.50) only at 3 out 

of 20 stations. This minor caveat has not affected the accuracy of global AGR simulations as they showed high agreement 25 

with SAT (r ≈ 0.76 - 0.78) and GCB (r ≈ 0.72 – 0.78) and reasonable agreement with TCCON (r = 0.65) global-scale 

references. The spatial correlation between CT and CAMS in simulating AGR (applied for every 3o x 2o grid cell) is perfect 

(r = 0.99) for the modeling period (2004-2016). Similarly, land-wise intercomparison between CAMS and CT simulations of 

AGR yielded in perfect correlation for most MODIS land classes (median of land-dependent r > 0.98). From spatial 

perspective, the highest AGR estimates (> 20% from the median) were observed in the regions of intense fossil fuel 30 

combustion (East Asia) or biomass burning (Amazon, Central Africa). Lack of ideal correlation and small disagreement 
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between CT and CAMS (< 3.9 % difference between medians of global AGR estimates) are likely driven by the slight 

spatial disagreement between CT and CAMS in the aforementioned regions. To validate this statement, a sensitivity 

experiment is needed where in CO2 inverse model, alongside with the current setup of a priori biomass burning fluxes, an 

alternative setup is assembled (multiple independent estimates of burned area and fire-dependent emission factors for various 35 

type of tropical fires can be used). In overall, our study showed that the current estimates of global atmospheric growth rate 

of CO2 are consistent across a wide range of the different data sources and strengthening of carbon observational 

infrastructure (like covering more developing countries with ground-based CO2 observations and providing more satellite 

CO2 observations from cloudy and hazy regions) should improve the accuracy of CO2 growth rate estimates on both local 

and global scales. 40 

1. Introduction 

During the last 50 years, the world has been witnessing a permanent growth in the atmospheric CO2 concentration (Betts et 

al., 2016; Keenan et al., 2016), a principal driver of the global warming (Lacis et al, 2010; Stips et al., 2016). Atmospheric 

CO2 growth rate (GR) is steadily sustained in the modern times given constantly increasing fossil fuel CO2 emissions 

(FFCO2) and weakening of carbon sinks due to global warming (Canadell et al., 2007; Schneising et al., 2014; Friedlingstein 45 

et al., 2015). As the stability and the precision of direct observations are high (0.09 ppm), the temporal variability of GR in 

the entire atmosphere is known with high confidence and the latest estimates are uploaded to the Global Carbon Budget 

(GCB) at regular basis (Le Quere et al., 2018). The estimates of global-scale GR are fairly robust since they are derived from 

stable surface atmospheric measurement of CO2 mole fraction taken at the multiple stations worldwide (Dlugokencky and 

Tans 2018). Despite that, it has been recently shown than different models can disagree in reproducing global CO2 growth 50 

and this disagreement constrains accurate partitioning between various carbon fluxes (terrestrial and ocean) in the models 

(Gaubert et al., 2019). The gaps in the knowledge about GR can stem from poorly understood spatio-temporal characteristics 

of GR in the atmosphere. The temporal changes of GR are prominently manifested at yearly scales and above all indicate the 

climate-driven changes in terrestrial fluxes (Alden et al., 2010). Hence, annual growth rate of atmospheric CO2 (AGR) 

naturally varies and these variations are fundamentally controlled by El-Nino Southern Oscillation (ENSO), FFCO2 and the 55 

dynamics of terrestrial carbon sink (Buchwitz et al., 2007; Keenan et al., 2016; Kim et al., 2016; Ekwurzel et al., 2017; 

Buchwitz et al., 2018). The role of FFCO2 in AGR variations is fairly simple as the emissions load extra carbon to the 

atmosphere, thus increasing the atmospheric CO2 (Ekwurtzel et al., 2017). In turn, ENSO is a more intricate driver since it 

indirectly affects AGR by altering the temperature-water regime of ecosystems (Zeng et al., 2005; Wang et al., 2013; Kim et 

al., 2017) or by causing fires and vegetation disturbances (Jones and Cox 2005; Liu et al., 2017; Chylek et al., 2018) that 60 

ultimately alter terrestrial carbon sink. At global scales, AGR exhibits strong temporal variations (~ 2.0 ppm yr-1) whereas 
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the anomalies beyond this rate are either caused by the outstanding El-Nino events (like in 2015/2016 according to Betts et 

al., 2018) or by the powerful volcanic eruptions (like Pinatubo eruption of 1992 according to Frolicher et al., 2013). 

From a spatial perspective (at point locations or within constrained spatial domain), AGR may differ from global-scale 

growth. This difference stems not only from the time lag between the moment when CO2 is released to the atmosphere (or 65 

absorbed by land) and the moment when CO2 is well-mixed throughout the entire atmosphere. It also stems from the unique 

response of local carbon pools to extreme meteorological conditions, forest fires and to deforestation process (House et al.,  

2002). Supposedly, AGR spatial variations are mainly controlled by anomalies of temperature (Rafelski et al., 2009; 

Schneising et al., 2014) and precipitation (Poulter et al., 2014). Furthermore, the meteorological anomalies can trigger sound 

changes in terrestrial water storage which is a strong driver of spatial AGR changes per se (Jung et al., 2017; Piao et al., 70 

2019). The roles of ecosystem and their vegetation are therefore pivotal for AGR spatial heterogeneity and the strongest 

drivers originate in tropical (Cox et al., 2013; Wang et al., 2013; Kim et al., 2017; Rodenbeck et al., 2018) and semiarid 

regions (Ahlstrom et al., 2015). Despite the regions that drive global-scale AGR were explicitly determined in the aforesaid 

studies, the AGR spatial variability is still poorly understood. The evidences of AGR spatial variability at various scales are 

occasionally reported by using ground-based observations (Fang et al., 2014), spaceborne measurements (Schneising et al., 75 

2014; Liang et al., 2017; Buchwitz et al., 2018) and CO2 inverse models (Cheng et al., 2013; Nayak et al., 2014; Labzovskii 

et al., 2019). From the satellite data, we learned about the large-scale spatial variations of AGR (~ 0.5 ppm yr-1) that emerge 

at latitude bands comparable to the geographically extensive climate zones (Buchwitz et al., 2018). In turn, at local scales, 

the information about AGR variability is available only for the limited number of stations (Fang et al., 2014). In an ideal 

position, a global observational network could provide regular CO2 measurements, so GR at monthly and annual scales 80 

would be calculated for nearly each location in the world (being included by the measurement footprint of a certain station). 

Unfortunately, the carbon research infrastructure is technically far from the inception of all-encompassing CO2 observations. 

On the ground, both in-situ (Ciais et al., 2014) and remote sensing atmospheric observations (Wunch et al., 2014) of CO2 are 

substantially limited in the majority of developing countries. The modern satellites provide precise CO2 measurements that 

are still plagued by low signal-to-noise ratio in the cloudy and hazy regions (Kim et al., 2016; O’Dell et al., 2018). The 85 

inadequate understanding of land carbon sinks (Peylin et al., 2013), the lack of information about location of carbon sources 

and sinks (Peters et al., 2017), the weakness in attributing the physical drivers of anomalous AGR by both land carbon (Piao 

et al., 2019) and earth system models (Keppel-Aleks et al., 2014); all impose additional modelling-related limitations for 

regional AGR analysis.  

The main aim of this study is therefore to advance our knowledge about temporal and spatial variations of global CO2 90 

atmospheric growth. To pursue this aim, we intercompare versatile CO2 datasets including newly-analyzed data (ground-

based remote sensing and CO2 inverse modelling) and the existing AGR global-scale references in 2004-2019 years. Two 

new CO2 data sources include (1) globally-aggregated TCCON (Total Carbon Column Observing Network) observations 
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(Wunch et al., 2014) and (2) a set of two CO2 inverse models including CarbonTracker (Peters et al. 2007) and Copernicus 

Atmospheric Measurements System (Chevalier et al., 2013) that are referred to CT and CAMS, respectively. The existing 95 

global AGR references are Global Carbon Budget (Le Quere et al., 2018) and the satellite estimates from the previous 

impactful study about CO2 growth (Buchwitz et al., 2018). To advance our knowledge about AGR, this study pursues three 

objectives. At first, to (a) assess the consistency of global AGR estimates (from aggregated TCCON data and from CO2 

modelling) with the existing observational references. This is required not only to understand the consistency of AGR 

estimates across various datasets, but also to understand the TCCON suitability as a reference for validating point-scale 100 

simulations of AGR by the CO2 models. Once we approve the CO2 models’ ability to reproduce AGR spatial variations 

(using comparison with TCCON), the rest objectives are to (b) estimate spatio-temporal inconsistencies in AGR simulations 

by two CO2 inverse models (CAMS and CT) and to (c) determine which regions (i.e. which ecosystems) can drive these 

inconsistencies. The novelty of our study can be summarized by three points. At first, we deploy TCCON and CO2 inverse 

models to complement existing knowledge of AGR. At second, we explicitly investigate spatial variability of AGR using 105 

CO2 models. At third, we analyze whether CO2-associated factors (such as ENSO and vegetation type) can affect the overall 

agreement in the AGR intercomparison between  two different models. 

This manuscript is organized as follows. Sect. 2 presents methodology. Sect. 3 contains results. Sect.s 4 and 5 represent 

discussion and conclusions respectively. 

 110 

2. Data and methodology 

2.1 Main datasets 

This Sect. describes the data we use in this study. We present the main tools for retrieving CO2 atmospheric 

concentration, and also describe the additional datasets (used for determining strength of ENSO events and for checking the 

land cover type) that support our analysis. 115 

 

2.1.1 TCCON Network 

TCCON (the Total Carbon Column Observing Network) provides continuous measurements of column-averaged dry-air 

mole fractions of CO2 around the globe (XCO2). The XCO2 estimates are retrieved using the ratio of column abundance of 

CO2 to column abundance of O2. Observations of XCO2 are widely recognized as less sensitive to variations in surface 120 

pressure (and atmospheric vapor as well) so they are perfectly suitable for CO2 investigation at different geographic and 
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climate conditions. The TCCON observation principle is based on ground-based Fourier transform spectrometry (FTS) that 

offers high spectral (0.02 cm-1) and temporal resolution (~ 90 s) spectra by pointing on the sun in the near-infrared spectrum. 

The use of TCCON observations of XCO2 is advantageous as ground-based FTS are highly robust and allow calculating 

XCO2 parameters at ~ 0.8 ppm (~ 0.25%) accuracy after calibration (Wunch et al., 2011). It is to be noted that XCO2 125 

products from TCCON had been calibrated using collocated aircraft observations deployed with the reference 

instrumentation from World Meteorological Organization onboard (Messerschmidt et al., 2011). Moreover, TCCON 

provides quality-assured XCO2 data (Wunch et al., 2014) since the observations are acquired and processed using the same 

set of standardized tools and methods (including instrumentation, data acquisition routines, processing software and 

calibration procedures). Today, TCCON excels with a quasi-global observational cover (despite many gaps still exist) and 27 130 

operational sites are dispersed around the globe. A reader may familiarize with all stations used in this work from Fig. 1 (the 

full list of stations and the respective acronyms are shown in the supplementary material; see Table S.1.1). Our work 

addresses to the TCCON data from February 2004 to April 2019 and we use the data from both operational sites and the sites 

where the measurement activity has been halted. The entire study period for AGR examination is chosen to be consistent 

with the previous prominent study about AGR (Buchwitz et al., 2018). The accurate method for reproducing local-scale 135 

AGR (at point location) is certainly required to be accounted as the “fine-scale reference” for evaluating AGR simulations 

from the CO2 models. TCCON observations can fit the requirements to become such a reference since TCCON data had 

been numerously used for validation purposes against global-scale tools such as satellites (Morino et al., 2011; Liang et al., 

2017; Wunch et al., 2017) and CO2 models (Kulawik et al., 2016). Most importantly, TCCON showed great efficiency in 

reproducing AGR at a single location where the estimates have been compared with the CT results (Yuan et al., 2019). 140 

TCCON data were obtained from the online depository (http://tccon.ornl.gov) with the latest access on November 2019. 
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Figure 1. Geographical distribution of TCCON sites. Colors are shown for better distinguishing neighboring measurement sites. 

Description of acronyms used for each measurement site and detailed maps of the regions congested with several TCCON stations 145 

are provided in the supplementary material. The satellite map provided by Google maps is embedded using QuickMapServices 

plugin 

 

2.1.2 Copernicus Atmospheric Monitoring Service   

Copernicus Atmospheric Monitoring System (CAMS) is based on data assimilation of CO2 observations and being 150 

developed by the Institute of Pierre Simon Laplace (LSCE). For CAMS, atmospheric observations of CO2 are compiled via 

several networks of near-surface observations including the NOAA Earth System Research Laboratory archive, the World 

Data Centre for Greenhouse Gases, the Integrated Carbon Observation System-Atmospheric Thematic Center and Réseau 

Atmosphérique de Mesure. For simulating the atmospheric transport of CO2, CAMS utilizes the LMDZ transport model 

(Locatelli et al., 2015). The mass fluxes are determined from a full General Circulation Model controlled by the ECMWF 155 

(European Centre for Medium-Range Weather Forecasts) winds (Chevallier et al., 2005; Chevallier et al., 2010; Chevallier, 

2013). Prior values of the fluxes are provided to the climatological land-atmosphere fluxes at a 3-hour resolution from the 

ORCHIDEE model (ORganizing Carbon and Hydrology In Dynamic EcosystEms), gridded annual anthropogenic emissions 

(combined by Carbon Dioxide Information Analysis Center i.e. CDIAC and Emission Database for Global Atmospheric 

Research; i.e. EDGAR). Ocean fluxes and biomass burning module are defined based on the sea-air fluxes and GFED 160 
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(Global Fire Emission Database), respectively (before 2014, in 2015 fire module uses Global Fire Assimilation System). In 

this study, we use CAMS v18.2 version of PYVAR atmospheric inversion with an initial spatial resolution of ~ 3.7 o x 1.9o 

(longitude-latitude) for the entire atmospheric column (integrated over 39 vertical levels). We note that we regridded CAMS 

results to 3o x 2o longitude-latitude grid (to be compatible with CarbonTracker) and this process did not cause serious error 

propagation to the estimates due to similarities in the models’ spatial resolutions. We downloaded CAMS XCO2 results from 165 

the online depository of ECMWF based on data request from November 2019 (https://apps.ecmwf.int/datasets/data/cams-

ghg-inversions). 

 

2.1.3 CarbonTracker 

CarbonTracker (CT) global version (Peters et al., 2007) is also based on the data assimilation of CO2 observations. CT was 170 

originally developed by the National Oceanic and Atmospheric Administration (NOAA) for better understanding the 

processes governing CO2 uptake and release at the Earth surface in high temporal and spatial resolution. CT exploits TM5 

(Transport Model 5) offline atmospheric transport model (Krol et al., 2005) forced by the ERA-Interim meteorological fields 

from the ECMWF (the European Centre for Medium-Range Weather Forecasts). CT offers CO2 simulations with global 

cover of 3o x 2o degree (longitude - latitude) resolution. Like other CO2 inverse models, CT uses various carbon fluxes 175 

(oceanic and land) to optimize with existing CO2 observations. To define the a priori CO2 fluxes from various carbon sources, 

CTA utilizes modules including the land-atmosphere carbon exchange (from Carnegie-Ames Stanford Approach model), 

wildfires (Global Fire Emissions Database; i.e. GFED), fossil fuel emissions (from “Miller” dataset and Open-Data 

Inventory for Anthropogenic Carbon Dioxide, i.e. ODIAC) and oceans (Ocean Inversion Fluxes). Kalman filter is used as an 

optimization method and the latest CT version (2017) assimilates hourly-averaged CO2 concentration from 254 observations 180 

sites worldwide. This study uses CO2 simulations from CarbonTracker 2017 version (denoted simply as CT). We emphasize 

that CT offers CO2 concentration at 25 height levels. We use pressure-weighted integrated columnar concentration of CO2 (to 

be consistent with CAMS integrated estimates of CO2) that was derived according to methodology shown in  Zhao et al., 

(2019). The details about this calculation are provided in the supplementary material (see Sect. S3). The CT datasets are 

downloaded from NOAA website being accessed on November 2019 185 

(ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/molefractions/).  

 

2.1.4 Datasets with global CO2 growth rate 

For global CO2 growth data, we exploited the two types of estimates. On the one part, we use Global Carbon Budget-2018 

dataset (Le Quere et al., 2018). GCB introduces the comprehensive investigation of the all four components of carbon cycle 190 
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(including FFCO2, land-use emissions, oceanic sink, land sink and the atmospheric CO2 growth rate) and being updated at a 

regular basis. Obviously, among all components we used atmospheric GR that had been taken from GCB-2018 (Le Quere et 

al., 2018). Estimates of AGR from GCB-2018 were directly provided by atmospheric CO2 concentration measurements with 

the uncertainties of ~ 0.2 Gt/C yr-1 (i.e. ~ 0.4 ppm) according to the data provider (Dlugokencky and Tans, 2018). We used 

only the data from 2004 onwards, with the latest available GR estimates on the time of manuscript preparation. GCB dataset 195 

was downloaded via the website of the journal of Earth System Data (https://www.earth-syst-sci-data.net/10/2141/2018/) 

with the latest access on November 2019. Another reference for large-scale AGR estimates (global scales, hemispheric 

scales and tropical latitude bands) are taken from the satellite data analysis conducted by Buchwitz et al., (2018) study (see 

Table A1 of the corresponding manuscript). Their satellite-based estimates (SAT hereafter) were acquired via combining 

spectrometric CO2 observations from SCIAMACHY (SCanning Imaging Absorption Spectrometer for Atmospheric 200 

CHartographY) and GOSAT (Greenhouse gas Observing SATellite) satellites for 2003-2016 period. 

 

2.1.5 Ancillary datasets  

We also use CO2-related data including ENSO indices and land cover classification data. El-Nino (warm) and La-Nina (cold) 

ENSO events were quantified using Oceanic Nino Index (ONI) obtained from the online platform 205 

(https://ggweather.com/enso/oni.htm) of Golden Gate Weather Services (Null et al., 2013). For comparing ENSO events 

with atmospheric growth rates projected for every month, we used the quantitative descriptors of ENSO (i.e. used running 3-

month mean ONI values). For comparing with AGR, we exploited quantitative metrics labeled “ENSO type”. According to 

this quantitative typology, ENSO events can be annually classified as weak, moderate, strong and very strong El-Nino 

(labeled as 1, 2, 3, 4 respectively in this work) and as weak, moderate, strong and very strong La-Nina (labeled as -1, -2 , -3, 210 

-4 respectively in this work). 

To understand which land type each grid cell (that contain CO2 data) belongs to, we acquired Land Cover data from 

Terra and Aqua of MODIS (Moderate Resolution Imaging Spectroradiometer) dataset (V3, 2013). This dataset is originally 

titled “Global Land Cover” and had been developed by the National Mapping Organizations (Tateishi et al., 2011, 2014; 

Kobayashi et al., 2017). Global land cover dataset offers high spatial resolution product (500 m). Land cover product 215 

includes 20 types of surfaces (the full list of the land types can be found in the supplementary Table S.2.1) whereas the land 

type largely depends on the vegetation features. The land cover product has been obtained in the form of raster files (4 

datasets with 90 x 180 tiles by latitude and longitude respectively) from the online file depository 

(https://globalmaps.github.io/glcnmo.html) with the latest access on November 2019.  

 220 
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2.2 Methodology for CO2 atmospheric growth rate calculation 

In the subsection devoted to the methodology of our research, we describe the principles of GR calculation. 

 

2.2.1 Calculation of CO2 growth rate at monthly and annual scales 

The recent comprehensive review about interannual variations of carbon cycle has emphasized that AGR may 225 

considerably vary depending on the methodology of calculation (Piao et al., 2019).  It implies that there is no conventional 

methodology for calculating AGR, and we suggest that the method should be selected according to the latest findings in the 

research literature. In this regard, we refer to the latest outcomes from the GR research and use the methodology of Buchwitz 

et al. (2018) whereas their method originates from the commonly-accepted GR calculation approach (Thoning et al., 1989). 

According to this method, prior to calculating AGR we need to derive the annual growth of CO2 sampled for each month 230 

(MGR hereafter) during the year. In this way, the MGR concept of this study corresponds to what was referred as “annual 

CO2 growth rate of specific month” (Wang et al., 2014) or as “monthly sampled XCO2 annual growth rate” (Buchwitz et al., 

2018) in the previous studies. Eq. (1) shows that MGR simply represents the difference between XCO2 of each month during 

a year (i) and the corresponding same month of the previous year (i-12). Therefore, MGR can be calculated if CO2 estimates 

are available for a certain month in two consecutive years.  235 

 

)12()(2 22
)( −−= ii XCOXCOXCOMGR  

(1) 

 

At the next step, AGR is calculated by taking all-month (12 months in perfect case) median of MGR during the same 240 

year. The corresponding uncertainties are taken from the standard deviation of AGR (stemming from MGR variability within 

the same year). 
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3. Results 

3.1 Analyzing TCCON ability to provide point-based AGR 245 

3.1.1 Aggregated global-scale AGR from TCCON versus global-scale references (Global Carbon Budget and 

Satellites) 

In the first instance, we evaluate the ability of TCCON observations to reproduce accurate GR using the chosen 

methodology. To this end, we collected all available observations from the TCCON sites from February 2004 onwards and 

calculated monthly medians of XCO2 for each station. For the 2004-2019 period, we initially had 30 stations with available 250 

observations. At each station, the number of available XCO2 observations (further used for global-scale MGR calculation) 

vary from 2 to 60 per month. We omitted all MGRs that had been calculated using less than 2 observations during a month 

due to lack of confidence in such averages. In general, the perfect temporal observational cover was not expected given 

regular forfeiture of FTS observations due to cloudy conditions (Wunch et al., 2011). Thus, the total number of MGR values 

at the TCCON station greatly varies depending on the geographic location and consequently most MGR estimates were 255 

collected from the stations in North America, Australia and Europe. The total final number of stations that meet the aforesaid 

requirements is 20. We collected all TCCON-based MGR estimates (MGRTCCON) from these stations and aggregated them 

together (the bottom part of Fig. 2, panel a) for further calculation of global-wide AGR using TCCON measurements (the 

upper part of Fig. 2, panel a). Then, we compare the resulted TCCON-based AGR (AGRTCCON) estimates with the referenced 

global data (GCB and SAT) and also analyze the agreement of all types of AGR with ENSO metrics (given the strong 260 

fundamental linkage between AGR and ENSO).  

At first sight, MGR estimates reasonably reflect one-year growth of CO2 over a certain location (thin bars of Fig. 2, top 

panel). Given constantly increasing CO2 in the entire atmosphere around the globe, it is reasonable that ~98% of all 

MGRTCCON are positive connoting location-independent CO2 growth. Then, we calculate global-scale AGRs in 2006-2019 

period using the aforementioned MGRTCCON (2004 and 2005 years are missing due to absence of sufficient FTS 265 

observations). In 2006-2019 years, AGRTCCON ranges from 1.71 ppm (2009) to 3.35 ppm (2008). There is no large difference 

in the magnitude of AGR variations between the global references (AGRSAT = 1.59 - 3.23 ppm, AGRGCB = 1.55 - 2.95 ppm). 

However, AGRTCCON poorly agrees with both GCB and SAT estimates as correlation coefficient (r) in TCCON-to-GCB 

agreement is 0.32 and in TCCON-to-SAT agreement it is 0.28 (see top panel of Fig. 2). Notably, the global references (SAT 

and GCB) exhibit much stronger agreement with each other (r = 0.88) in AGR reproduction. Nevertheless, we suppose that 270 

the poor agreement of TCCON with the references is not an indication of inadequate accuracy of AGR retrieved by TCCON 

observations. The disagreement most likely stems from the uneven presence of TCCON observations. More specifically, the 

total number of MGRs (see bottom panel of Fig. 2) has been steadily increasing over a study period from MGRs based on 2 

TCCON stations (2007) to MGRs based on 21 stations (2018). Due to this, for the latest decade (2010-2019) AGRTCCON has 

higher agreement with the referenced AGRs (r = 0.61 for TCCON-SAT, r = 0.49 for TCCON-GCB). It is unlikely that 275 
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shortening of the analyzed period is the driver of the improved agreement, since similar curtailment of analysis to 2004-2009 

period does not affect the agreement of global-scale AGRTCCON with the global references (r < 0.30 for both SAT and GCB).  

ENSO strength and ONI indices are illustrated on Fig. 2 (bottom panel) right below GR plot for better comprehension of 

qualitative agreement between GR and ENSO parameters. From Fig. 2, we evidence the ENSO role in forming wave-shape 

fluctuations of MGR (from TCCON) throughout the study period. One can suspect that seasonality (i.e. vegetation cycles) is 280 

responsible for wave-shape fluctuations of MGR but it is scarcely probable since seasonal medians of MGR  are nearly equal. 

Namely, medians of MGR are 2.39 ppm, 2.29 ppm, 2.36 ppm and 2.36 ppm for winter, spring, summer and autumn 

respectively (see Fig. S.4.1 in the supplementary material for further details). Alas, it is challenging to approve the 

quantitative agreement between MGR and ENSO due to difficulties in matching three-month period ONI indices with 1-

month based MGRs. MGR response on short-scale ENSO condition can substantially vary by time so the ultimate agreement 285 

will depend on the chosen “lag” between ENSO event and MGR (Kim et al., 2016). Meanwhile, the agreement between the 

annual strength of ENSO (right axis of Fig. 1, panel b) with the referenced AGR is easily discernible and seems reasonable (r 

= 0.67 for AGRGCB and r = 0.64 for AGRSAT). At the same time, the agreement between ENSO strength and AGRTCCON is yet 

very low (r = 0.27). Once again, when only observation-abundant decade (2010-2019) is analyzed, AGRTCCON exhibits as 

reasonable agreement with ENSO (r = 0.67) as the global references do. Moreover, the improvement in AGR-to-ENSO 290 

agreement is not only associated to data availability but also to the enhanced role of ENSO in global CO2 growth. It is 

known, that the current role of ENSO (post-2010 period) in forming interannual fluctuations of GR is pivotal (94%) 

compared to the earlier periods of time (63% in post-2003 period) (Buchwitz et al., 2018). This effect is clearly manifested 

in our analyzed data by the presence of stronger AGR-ENSO agreement in 2010-2016 period (r = 0.76 for AGRGCB and r = 

0.66 for AGRSAT) compared to 2004-2009 period (r = 0.57 for AGRGCB and r = 0.56 for AGRSAT). Besides 15-year pattern, 295 

we noticed that the aggregated TCCON data can provide global-scale AGR that is sensitive to strong ENSO events. More 

specifically, during the record El-Nino event (Betts et al., 2016; Liu et al., 2017; Paek et al., 2017; Betts et al., 2018; 

Buchwitz et al., 2018) TCCON observations yield in very high AGR (3.29 ppm ± 0.98 ppm) similar to the highest AGRSAT 

(3.23 ppm ± 0.50 ppm) or AGRGCB (2.85 ppm ± 0.09 ppm) estimates during that year (see year 2015/2016 on Fig. 2, panel b). 

We underscore that AGR-2016 from TCCON is not the highest during the study period of TCCON observations due to year 300 

2010 when the accuracy of TCCON estimates of AGR (3.35 ppm) has been seemingly affected by high uncertainty (5.02 

ppm)  given scarcity of stations used for AGR calculation during that year. 
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Figure 2. Panel a: Comparison of AGRTCCON (gray line) versus AGRGCB (brown line) and AGRSAT (black line). Vertical thin 

bars stand for MGR (that are used for ultimate AGR calculation). AGRs are plotted on x-axis versus eighth month (August) of 305 

each year; second months of the year (February) are shown alongside since the first observation from TCCON is available starting 

from February 2004. Error bars of AGRTCCON (gray vertical dashed line) are defined based on standard deviation of AGR 

across all stations using monthly-mean-based weighting (see details in supplementary material in Table S.1.2 and the 

corresponding description). Errorbars for AGRSAT and AGRGCB are omitted since their corresponding uncertainties are lower 

and temporally less variable than the uncertainties of AGRTCCON (0.27 - 0.50 ppm for SAT and 0.4 ppm for GCB). Panel b: ONI 310 

indices (vertical bars) for various three-months periods (see bar colors where JJA stands for June-July-August, JAS for July-

August-September etc.) during the year where periods starting from winter months are shown with green tones, from spring with 

gray tones, from summer with golden tones, from autumn with red tones. Annual ENSO strength is plotted (bold line) with the 

information about ENSO year-to-year transition (red line - transition towards warmer anomaly, blue line - transition towards 

colder anomaly, black line - no interannual change). 315 

 

3.1.2 Evaluating sensitivity of AGR estimates from TCCON depending on data abundance on the monthly scales 

The agreement between AGRTCCON with the references (and with ENSO as well) during the entire period of study is low and 

the concerns about the suitability of TCCON data for retrieving AGR data can be risen. Due to this, a brief sensitivity 

analysis is given below. We examine how the threshold for calculating MGRs (based on one-time TCCON observations) 320 

may affect the error spread of AGR by TCCON estimates. Namely, spread expresses the range of AGR variability just due to 

MGR type that used in the AGR calculation input. To this end, we tested seven sub-monthly thresholds for calculating MGR 

data (2, 3, 5, 10, 15, 20 and 30 observations) as shown on Fig. 3. Tightening the threshold from 2 to 3 points (or to 5 points) 

would not result in any significant loss of MGR data. However, switching 2-point-based threshold to more stringent options 

would result in significant loss of data with 8-22% of annual MGR forfeited at 10 points (compared to 2 points availability), 325 

8-35% at 15 points and 13-39% at 20 points. Bottom panel of Fig. 3 shows that shifting to 30-points threshold results in 

critical loss of MGR data (38-100% of data loss per year compared to 2 points availability). At the same time, the magnitude 

of AGR estimates (depending on MGR abundance) would not be soundly affected during most years (see lines at bottom 

panel of Fig. 3). The standard deviation across various AGRs (calculated using different thresholds we mentioned above) 

would range between 0.03 ppm (2019) to 0.42 ppm (2006). In terms of potential error spread, AGR experiences from 1.5% 330 

(2019) to 21.0% (2006) spread depending on the MGR input (Fig. 3, top panel). It is reasonably to suggest that the error 

spread could be entirely driven by the number of available TCCON stations (i.e. less stations, higher error rate). However, it 

is unlikely the case since the correlation between AGR error spread and number of total available MGR (stemming from 

number of stations) is low (r = -0.42) and comparable to the strength of correlation between error spread and  ENSO (r = -

0.47). 335 
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Figure 3. Bottom panel: AGR global estimates depending on the threshold of TCCON observations used for MGR calculation per 

month (denoted as AGR-i format where i stands for the minimum threshold) are shown by bold colored lines. Bars represent the 

total number of available MGR used for AGR calculation per year (denoted as CNT-i format). Top panel: error spread across 

hypothetical AGR global estimates (gray bars) stemming from the range of used threshold (for MGR calculation) shown by 340 

percent. 

 

In Table 1, we present the final evaluation of this subsection where TCCON agreement with references and with ENSO (as 

shown in Fig. 2) is tested based on the various observation thresholds that we discussed above. We found that these 

agreements negligibly change over the range of thresholds from 2 to 15 (r < 0.50 in all cases) while dramatic improvement in 345 

the agreement is discerned at 20-point threshold (r = 0.61 for TCCON-SAT, r = 0.52 for both TCCON-GCB and TCCON-
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ENSO comparison). Shifting to more stringent thresholds (as 30 points) leads to a sharp deterioration of agreement rates 

(likely due to critical loss of MGR availability incompatible with global-scale AGR quantification). We underline that the 

current analysis approves the sanity of TCCON data (at annual scales). Since we are interested to keep  the most data-

abundant set of AGRTCCON estimates (for evaluating CO2 models) and there is no large difference between “2 points” and 350 

more stringent thresholds until “20 points”, we use the most data-abundant threshold of “2 points”. We emphasize that future 

studies should use as many points as possible where 20 sub-monthly TCCON observations (to provide robust MGR average) 

is preferable minimum threshold for further calculation of the aggregated global-scale AGRTCCON. 

 

Table 1. Sensitivity analysis of AGR due to MGR threshold (using TCCON data). MGR Threshold denotes the minimum number 355 

of sub-monthly observations that should be available for calculating MGR. Three last columns provide correlation coefficients for 

TCCON-SAT, TCCON-GCB and TCCON-ENSO agreement when global AGR is calculated for the period of study. The optimum 

threshold is highlighted by the bold font in the table. 

MGR 

Threshold 

 r (TCCON-

SAT) 

 r (TCCON-

GCB) 

 r (TCCON-

ENSO) 

2 0.27 0.32 0.27 

3 0.28 0.33 0.26 

5 0.27 0.32 0.27 

10 0.30 0.23 0.23 

15 0.29 0.18 0.31 

20 0.61 0.52 0.52 

30 0.23 0.27 0.29 

 

 360 

3.2 Evaluating simulated MGRs (CT and CAMS) compared to TCCON references 

In this paragraph, we compare all MGRs simulated by CAMS and CT versus TCCON estimates of MGR. This step is 

required to understand how well the CO2 models can simulate MGR at point locations (and therefore spatial variability of 

MGR as well). To this end, we compiled all data-abundant TCCON stations (where at least 18 of MGRs during > 1.5 year of 

observations should be available). The result is shown on Fig. 4 where correlation coefficients from TCCON-CT (blue) and 365 

TCCON-CAMS (red) comparisons for the 20 TCCON stations are given. The modeled MGRs agree well with the 

MGRTCCON references. For CT, correlation coefficient ranges from 0.12 to 0.87 (median = 0.66) and for CAMS from 0.11 to 
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0.89 (median = 0.64). We identified very high agreement between CT and TCCON (r ≥ 0.80) at 3 stations, high agreement at 

4 stations (0.70 ≤ r ≤ 0.79), reasonable agreement at 5 stations (0.60 ≤ r ≤ 0.69) and weak agreement at 4 stations (0.50 ≤ r ≤ 

0.59). For CAMS the results are similar as 4, 3, 5 and 4 stations exhibited very high, high, reasonable and weak agreements 370 

with TCCON references (with the same classification of agreement ranges as shown above). Since not all stations exhibit 

acceptable agreement rates in TCCON-to-model comparison (r ≥ 0.50), it is prudent to analyze what drives the deteriorated 

agreement at some stations.  

According to CT and CAMS, the lowest agreement (in reproducing MGR) with TCCON (r < 0.50) is found for 3 stations 

including Tsukuba (r = 0.12 for CT and 0.11 for CAMS), Pasadena (r = 0.34 for CT and 0.38 for CAMS) and Ascension (r = 375 

0.39 for CT and 0.44 for CAMS). It is unlikely that the deteriorated agreement is entirely associated with regional vegetation 

patterns since there is no correlation between MGR and latitude in either of the models. Such vegetation proxy may seem 

plain but the latitude of station provides a simple and realistic indicator to vegetation activity when atmospheric CO2 is 

analyzed (Graven et al., 2013). Since these stations are located in the different ecosystem regions (see Table S.1.1. in 

supplementary material), the low agreement is also unlikely related to ecosystem flux prescription of the CO2 models. Closer 380 

examination of TCCON-to-model comparison hints that each station has some unique features of disagreement. For instance, 

at Tsukuba station (where the lowest agreement has been found), the largest discrepancy between the modeled and the 

observed MGRs is evidenced at the peak of land carbon sink activity in northern hemisphere (May-to-August). In particular, 

both strong overestimation of MGR (d = MGRTCCON - MGRMODEL < - 2.5 ppm) and underestimation (d = MGRTCCON - 

MGRMODEL > 3.0 ppm) of MGR by models can be marked at such periods. For the Ascension station, there is no season-385 

dependent agreement patterns. This can be explained by the overwhelming exposure of the station to oceanic carbon fluxes 

compared to diminished role of land fluxes. Most likely, Ascension is a small island, which cannot be resolved by the model 

resolutions as land and is rather treated as ocean. For the Pasadena station, due to abundant observations, it is relatively easy 

to identify the driver of disagreement. MGRTCCON at Pasadena exhibits such distinct seasonal cycle so MGR amplitude can 

be discerned. The MGR amplitude can be understood as a difference between the highest and the lowest value of MGR 390 

during the year (that is seemingly driven by CO2 amplitude as well). Simulated bottom-to-peak annual amplitude of MGR is 

nearly always lower than the observed MGR amplitude from TCCON. Namely, CT substantially underestimates the 

MGRTCCON amplitude by 2.61 (78%), 1.67 (45%) and 0.20 ppm (12%) in 2014, 2015 and 2016 years, respectively. CAMS 

exhibits even stronger underestimation of MGRTCCON amplitude by 2.86 (86%), 1.66 (44%) and 0.67 ppm (40%) ppm in 

2014, 2015 and 2016, respectively. The underestimation of simulated CO2 amplitude compared to TCCON observations is a 395 

common phenomenon in the northern hemisphere that most likely stems from underestimation of the carbon uptake by the 

models in high-latitudes (Peng et al., 2015). A reader can familiarize with the aforementioned station-wise MGR temporal 

dynamics we discussed above in the supplementary material (Fig. S.4.2 in the supplementary material).  
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Figure 4. Correlation coefficients between all available MGRs for various TCCON stations and MGRs modeled by CAMS (red) 400 

and CT (blue). Simulations are provided for the same location and given at monthly temporal resolution. 

 

3.3 Evaluating simulated global-scale AGRs (CT and CAMS) compared to TCCON, Global Carbon Budget and 

satellite global-scale references 

We further examine the ability of the CO2 models to reproduce global-scale AGR. We analyze simulated AGR (from CT and 405 

CAMS) versus global-scale AGR from the ground-based reference (TCCON) and the global references from the previous 

studies (SAT and GCB). Such evaluation of the models is a good functional quality test that may reveal hidden caveats of the 

CO2 modelling process at the spatial scale of interest (Chevallier et al., 2011). The evaluation encompasses broad spatial 
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scales including global cover, mid-latitudes of both northern hemisphere (a range of 30 - 60o N latitude bands denoted as NH 

hereafter) and southern hemisphere (defined within 60 - 30o S range and denoted as SH hereafter) as well as tropical band 410 

(30o S - 30o N). Global scale analysis (top-left panel of Fig. 5) shows that AGR varies from 1.66 to 3.13 ppm (CAMS) and 

from 1.64 to 3.15 ppm (CT). Simulated AGRs are generally consistent with the observational estimates according to AGRSAT 

(median = 2.21 ppm for this period), AGRGCB (2.09 ppm) and AGRTCCON (2.08 ppm) as well. For the entire period of study 

(including 2017, 2018 and 2019 years that are missing in the models), AGRTCCON is higher than AGRSAT, AGRGCB and 

modeled AGR (both CT and CAMS) on 54%, 46% and 62%, respectively. It is an interesting finding since the previous 415 

studies had shown that TCCON estimates may underestimate global CO2 atmospheric growth (Chevallier et al., 2011). From 

statistical perspective, we discern high agreement between the modeled AGRs and both AGRSAT (r = 0.78 for CAMS and r = 

0.76 for CT) and AGRGCB (r = 0.74 for CAMS and r = 0.72 for CT) at global scales. The agreement between modeled AGR 

and AGRTCCON is lower but yet reasonable (r = 0.65 for both models). We also notice the change in model-to-reference 

agreement patterns at the finer spatial scales. More specifically, in NH, the models exhibit perfect correlation with 420 

AGRTCCON (r = 0.90 for CAMS and r = 0.91 for CT). However, model-to-SAT agreement is weakened down to the 

reasonable rates of agreement in NH (r = 0 .61 for both models). In SH, we observe very similar but stronger agreement 

patterns in both TCCON-to-model (r = 0.96 for both models) and TCCON-to-SAT comparisons (r = 0.70 for CAMS and r = 

0.74 for CT). Likewise, in tropical regions, the TCCON-to-model agreement yields in 0.95 correlation coefficient for both 

models and TCCON-to-SAT agreement varies depending on the model (r = 0.78 for CAMS and r = 0.73 for CT).  425 
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Figure 5. Evaluating ability of CO2 inverse models (CT in red and CAMS in blue) to reproduce global CO2 growth at annual scales 

(AGR). Modeled results are compared with SAT (black), GCB (yellow) and TCCON (gray) references. Top panels represent 

analysis for global scales and mid-latitude (30o - 60o N) northern hemisphere (i.e. NH) scales. Bottom panels represent analysis for 

mid-latitude (60o S - 30o S) southern hemisphere (i.e. SH) and tropical (30o S - 30o N) scales.  430 

 

3.4 Analysis of AGR agreement between CT and CAMS. Spatial perspective. 

We have identified the high agreement between the modeled and referenced (i.e. observational-based) AGR estimates in the 

previous section. Since the CO2 inverse models may provide spatial variability of AGR far beyond the observational cover of 

TCCON network or the satellites, we use this opportunity to compare models’ ability to reproduce spatially heterogeneous 435 

AGR. To this end, we compare the modeled AGRs with each other (CT vs CAMS) at different dimensions. We note that the 
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difference between AGR estimates provided by two different models can be associated to the mismatch of the observation 

sites used for assimilation, to the transport-model-driven errors and to the time lag between the biosphere activity and CO2 

growth since end-year fluxes may affect AGR of the next year (van der Laan-Luijkx et al., 2017). At first, we analyze the 

finest spatial dimension of the agreement by testing grid cell correlation. Grid cell correlation is applied for every single grid 440 

cell that represents minimum spatial domain of the model (i.e. 3o x 2o) for the entire modelling period (2004-2016). Figure 6 

shows the spatial analysis with medians of AGRs (CT and CAMS), as well as the differences and a grid cell correlation 

between CAMS and CT medians of AGR. Median AGRCT in 2004-2016 period (calculated for each grid cell) spatially 

ranges from 1.77 to 2.35 ppm depending on the location (median of 2.01 ± 0.07 ppm). AGRCAMS grid cell-resolution 

estimates in 2004-2016 period are very similar and range from 1.82 to 2.40 ppm (median of 2.03 ± 0.08 ppm). These AGR 445 

estimates agree well to the widely-acknowledged average global AGR of ~ 2.00 ppm reported by most previous studies. We 

further try to detect long-term spatial anomalies from the AGR distribution. All the geographic regions with 20%-increased 

AGR (arbitrary threshold) by CT seemingly represent the areas where the strong biomass burning events frequently occur 

(minor part of Amazon, Central Africa) or the areas with active fossil fuel combustion (East Asia). The same regions are 

visible from AGRCAMS distribution. Despite minor discrepancies, the models almost perfectly agree with each other. Left-450 

bottom panel of Fig. 6 shows that the mean difference (d) between AGRCT and AGRCAMS estimates (in 2004-2016 period) 

spatially varies from -0.06 to 0.16 ppm range (median d = 0.01 ppm ± 0.02). Likewise, the correlation between CT and 

CAMS (right-bottom panel of Fig. 6) in reproducing spatial variability of AGR is very high and ranges from 0.88 to 1.00 (r = 

0.99 in median that indicates perfect agreement). From spatial perspective, the agreement is very high whereas the small 

geographic variability of the agreement is yet visible. Correlation and difference analyses (bottom panels of Fig. 6) show that 455 

nearly perfect agreement between CAMS and CT is found over the Oceans, Australia and over all land surfaces with sparse 

vegetation. The only areas with slightly deteriorated agreement between the models are seen over the regions with abundant 

and productive vegetation and in the areas where biomass burning (and combustion) is very intense.  
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Figure 6. Top panel: median estimates of AGR from the models (CT on the left side and CAMS on the right side) in 2004-2016 460 

period. Bottom panel: left subplot represents difference (d) between AGR estimates (CT and CAMS) in 2004-2016 period (median 

for the entire period is shown), right subplot represents grid cell correlation (r) between two modeled AGRs (CT and CAMS). All 

estimates are provided with 3o x 2o resolution. 

 

Based on the findings shown above, we suggest that there is a relationship between inter-model agreement rate (in 465 

reproducing AGR) and the vegetation type. To check this premise, we analyze AGR correlations (rAGR) and differences 

(dAGR) between CAMS and CT in details. Thus, we classify all the grid cells that contain AGR information according to land 

cover classification (using MODIS data). We take into account that land cover analysis is not a main objective of this study 

and we maximally simplify this analysis by assuming that every model grid cell (3o x 2o) corresponds to one specific land 

type (detailed description is given in supplementary Sect. S.2). Therefore, rAGR and dAGR are calculated for each land type 470 

(among 20 types) as shown in Fig. 7. We found out that the agreement between the models in reproducing AGR is almost 

perfect across all land types. Namely, mean rAGR ranges from 0.98 (paddy field) to 1.00 (snow surfaces, water bodies and 

bare areas). Since rAGR negligibly varies within each land cover type (σ of  rAGR < 0.01 within any land cover type), first and 

third quartile of  rAGR both vary in narrow range of 0.98 - 1.00 (that is is also very similar to median of rAGR). It should be 
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noted that the analysis of model differences indicates to sources of model disagreements in a better way. General agreement 475 

between models is very high that is evident from the following statistics. Median dAGR ranges from 0.00 ppm (snow surfaces) 

to 0.04 (urban areas, paddy fields, wetland and herbaceous tree/shrub cover). All the latter land cover types l exhibit the 

highest variability of model agreement within their domains as σ of dAGR for these land covers is the highest (0.04 ppm for 

urban areas and 0.03 ppm for the rest aforementioned land covers and mangrove as well). The first quartile (25%) are equal 

to 0.03 ppm (urban), 0.03 ppm (herbaceous tree/shrub), 0.02 ppm (wetland) and 0.02 ppm (mangrove) for these land cover 480 

types. The third quartile (75%) are 0.05, 0.06, 0.04, 0.05 ppm for the same respective land cover types. The highest 

agreement is found over all land cover types with no vegetation (snow surfaces and water bodies with median dAGR = 0.01 ± 

0.01 ppm). Such vegetation-dependent agreement between models is explainable given the pivotal role of biosphere in the 

modelling of interannual signal of CO2 atmospheric growth. 

 485 
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Figure 7. Top panel: boxplot with correlation coefficients AGRCAMS and AGRCT for different land types. Bottom panel: boxplot 

with differences between AGRCAMS and AGRCT for different land types. Colors denote different land types. 
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Despite nearly ideal spatial agreement in reproducing AGR between CAMS and CT, we have noticed some model 490 

differences in several regions arguably related to areas of strong biomass burning and intense fossil fuel combustion. 

Regional analysis shown in Table 2 approves our suggestion about weakening of model AGR agreement in such regions. 

Despite perfect spatial agreement (r = 0.99 - 1.00), the largest model differences in simulating AGR are reported over East 

Asia (d = 0.04 ppm) that is the strongest FFCO2 source region in the world (Le Quere et al., 2018) and over the Middle-West 

Africa (d = 0.04 ppm) where biomass events are frequently reported using MODIS data by GFED (Randerson et al., 2012). 495 

If frequent biomass burning is a driver of a discrepancy, the absence of South-East Asia is rather surprising. The latter region 

is also prone to frequent wildfires and largely located in the tropical zone where the highest discrepancies in biosphere fluxes 

from various CO2 inversions was recently reported (Kenea et al., 2020). Oppositely, the smallest and the most negligible 

differences are found over the regions with no vegetation (d = 0.00 ppm over Antarctica) or where ocean fluxes are 

predominant (d = 0.01 ppm over oceans and Australia-Oceania as well). We note that the differences between the regions 500 

with the best and the worst agreements is minimal given nearly perfect agreement of the models at spatial dimension analysis. 

Despite this fact, persistent but maximal discrepancy between the models (such as in Mid-West Africa) can highlight 

important contrasts between the models’ setups. Such contrasts can arise due to the differences in the model’s biosphere a 

priori estimates of by discrepancies in atmospheric transport where CO2 level is high. Since this analysis encompasses the 

finest spatial domain of a single grid cell as a subject of analysis, one can state that the important discrepancies between 505 

modeled AGRs at global scales (due to these spatial discrepancies) could be overlooked. To this end, we also quantify 

temporal (annual) agreement (as median correlation coefficient for the entire broad spatial domain for every single year). 

Hence, temporal correlation can be retrieved for every year and embraces the broad spatial domain (such as global, NH, SH 

or tropical scales). Temporal (annual) correlation in AGR estimates between CAMS and CT is also perfect. We omitted the 

plot about temporal agreement since median annual AGR estimates by the models were shown on Fig. 5 and the temporal 510 

correlation insignificantly varies from year to year. More specifically, temporal correlation is always perfect between CAMS 

and CT. It ranges from 0.97 to 0.99 at global scales, from 0.94 to 0.99 in NH, from 0.96 to 0.99 in SH and from 0.96 to 0.99 

in tropics.  

 

Table 2. Calculating median differences (CAMS - CT) and correlation coefficients (CAMS vs CT) of AGR for various regions 515 

worldwide. Spatial boundaries of these regions can be found in the supplementary material (Fig. S.2.2).  

Type Difference Correlation 

Antarctica 0.04 0.99 

Australia-Oceania 0.05 0.97 
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Oceans 0.08 0.96 

Central America 0.10 0.94 

North Africa 0.10 0.94 

Middle East 0.14 0.93 

North America 0.13 0.93 

Europe 0.17 0.92 

South Asia 0.13 0.92 

South Africa 0.11 0.92 

South-East Asia 0.12 0.91 

Central Asia 0.16 0.91 

Asian Russia 0.18 0.90 

South America 0.14 0.90 

Middle-West Africa 0.14 0.89 

East Asia 0.20 0.88 

 

 

4. Discussion 

To advance our knowledge about CO2 atmospheric growth, this study profoundly investigated the temporal and spatial 520 

variations of CO2 atmospheric annual growth rate (AGR) using ground-based observations of XCO2 (TCCON), the CO2 

inverse models (CT and CAMS) alongside with the global-scale references of AGR from Global Carbon Budget (GCB) and 

from satellite data (SAT) for 2004-2019 years. 

At global scales, the newly-used datasets reveal temporal AGR variations (AGRTCCON = 1.71 – 3.35 ppm, AGRCT = 1.64 

– 3.15 ppm, AGRCAMS = 1.66 – 3.13 ppm) of similar magnitude to the referenced estimates (AGRGCB = 1.59 – 3.23 ppm, 525 

AGRSAT = 1.55 – 2.92 ppm). AGRTCCON shows low agreement with GCB (r = 0.32) and SAT (r = 0.28) in the period of 

2004-2016 years. The deteriorated agreement of TCCON with the references is not associated to the accuracy of TCCON 

observations (annual error propagation due to sub-annual input of AGR calculation varies in 1.5 - 21.0 % range). It is related 

to the temporal irregularity of data availability by the TCCON network. In the data-abundant decade (the 2010s), the 

agreements between AGRTCCON with the references are dramatically improved (r = 0.68 vs GCB, r = 0.75 vs SAT). Despite 530 

https://doi.org/10.5194/acp-2020-114
Preprint. Discussion started: 25 February 2020
c© Author(s) 2020. CC BY 4.0 License.



26 

 

spatial constraints of the TCCON network, globally-aggregated FTS observations are reasonably sensitive to ENSO-driven 

changes of AGR. In particular, the agreement between ENSO strength and AGRTCCON is reasonable (r = 0.67) in the 2010s 

when ENSO events played an exclusive role (94%) in forming AGR variability. The strongest atmospheric CO2 growth 

(2015-2016) caused by the very strong El-Nino event  was accurately reproduced by the aggregated TCCON data as well 

(3.29 ± 0.98 ppm). 535 

CAMS and CT accurately simulate CO2 growth rate at annual (AGR) and monthly (MGR) resolution for single-site and 

for global scales. From single-site perspective, the low agreement in MGR estimates between TCCON and both models was 

found (r < 0.50) only at 3 out of 20 stations. The low agreement was caused by the model-to-observation bias in CO2 

concentration during the peak of summer carbon sink season (Tsukuba), by the overwhelming role of ocean carbon fluxes at 

the model resolution (Ascension) and to underestimation of CO2 seasonal cycle by the models (Pasadena). These minor 540 

MGR caveats have not affected simulated global CO2 growth as CT and CAMS agree with other datasets well at global 

scales. Namely, perfect TCCON-to-model AGR agreements were observed in NH (r = 0.90 – 0.91), SH (r = 0.96 - 0.97) and 

tropics (r = 0.95) whereas only reasonable agreement was discerned for global growth (r = 0.65). Then, model-to-GCB 

agreement is high at global scales (r = 0.74 for CAMS and r = 0.72 for CT). Similarly, model-to-satellite agreement is high 

for global growth, in SH and tropics (r = 0.70 – 0.78 for CAMS and r = 0.73 – 0.78 for CT in all these spatial domains) but 545 

lower in NH (r = 0.61 for CAMS and r = 0.65 for CT). The modeled AGRs exhibited higher agreement with AGRSAT in SH 

than in NH which is a minor but interesting finding. This can either indicate (a) a partly erroneous representation of strong 

CO2 sources (or sinks) from NH by the models that cannot be seen in the model intercomparison but visible while the 

simulations are compared with observational data or indicate (b) the inability of spaceborne CO2 observations to constrain all 

strong CO2 fluxes from NH due to many forfeited measurements in cloudy, hazy and high-latitude regions.  550 

The grid cell correlation between AGR simulations from CAMS and CT (calculated all 3o x 2o cells in the 2004-2016 

period) was perfect (median r = 0.99) indicating nearly-ideal agreement in spatial heterogeneity of AGR simulated by the 

models. It is explainable as the interannual CO2 patterns in the models are on > 90% controlled by their surface fluxes 

(Schneising et al., 2014). Analysis of land-cover-specific AGR supports this explanation as for most land types correlation in 

AGR comparison between CAMS and CT is perfect (r ≥ 0.98). The best agreement of the land-cover-specific AGRs in the 555 

models was found for the oceans, snowy surfaces and the regions with no vegetation or with crucial role of ocean carbon 

fluxes (Antarctica, Oceans and Australia-Oceania). Despite nearly ideal grid-cell correlation between CT and CAMS, the 

largest discrepancies (0.02 - 0.03 ppm) were found in Middle-West Africa and East Asia. The largest spatial clusters with the 

most anomalous AGRs (> 20% from global median) were unsurprisingly found by both models in the related regions with 

frequent biomass burning (Middle-West Africa) or with intense fossil fuel combustion (East Asia). Since CT and CAMS 560 

define a priori biomass burning fluxes using GFED, we surmise that CO2 inverse models with different setups of flux models 

may exert much higher disagreement in AGR distribution. These discrepancies have not caused any disagreement between 
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global estimates of AGR by the models since the absolute differences between the CAMS and CT-simulated global AGRs 

are negligible (< 0.08 ppm, or < 3.9% per year) and temporal agreement is very high (r = 0.97 - 0.99 depending on year). 

5. Conclusions 565 

The results of this study have three vectors of implications. At first, we showed that the modern estimates of annual growth 

rate of CO2 are consistent across a wide range of datasets. This finding approves the validity of the old approach for 

calculating CO2 growth rate (Thoning et al., 1989) in terms of no consensus about universal method of CO2 growth rate 

quantification. At second, the good agreement between multiple datasets in reproducing CO2 atmospheric growth may look 

trivial but should not be disregarded in light of the recently reported disagreement between CO2 models that simulate 570 

atmospheric CO2 growth (Gaubert et al., 2019). Moreover, the ability of globally-aggregated TCCON data to reproduce 

global atmospheric CO2 growth auspiciously indicates that many observational gaps of the network are not a critical 

constraint for quantifying CO2 growth on global scales. Needless to say, that expansion of TCCON network would be still 

very beneficial (for CO2 growth rate estimation) especially in strong biomass burning or combustion regions where the 

models disagreed. The conclusion about TCCON network is important given a few globally-consistent datasets suitable for 575 

independent CO2 growth estimation and the weaknesses of the CO2 modeling tools for reproducing independent CO2 growth 

(Piao et al., 2019). At third, our results have beneficially indicated that intense CO2 release from the regions prone to 

biomass burning and intense fossil fuel combustion may potentially contribute to the models’ disagreement when spatial 

variability of CO2 growth is analyzed. Supposedly, a sensitivity experiment using CO2 inverse model should be conducted 

where alongside with the current setup of a priori biomass burning fluxes, these fluxes could be alternatively defined. 580 

Alternative setup could use several independent burned area detection mechanisms that are able to capture small fires more 

efficiently that it has been done by the current methods (Chuvieco et al., 2019) and could use more realistically-variable 

burning emissions factors for various types of tropical fires. 
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