On the Role of Aerosol Radiative Effect in the Wet Season Onset Timing over the Congo Rainforest during Boreal Autumn.

Sudip Chakraborty1*, Jonathon H. Jiang1, Hui Su1, and Rong Fu2

*Corresponding author: Sudip Chakraborty. Sudip.chakraborty@jpl.nasa.gov

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles

Keywords: Equatorial African Precipitation, dry season length, Wet season onset
Abstract

The boreal summer dry season length is reported to have been increasing in the last three decades over the Congo rainforest, which is the second-largest rainforest in the world. In some years, the wet season in boreal autumn starts early while in others it arrives late. The mechanism behind such a change in wet season onset date has not been investigated yet. Using multi-satellite datasets, we discover that the variation of aerosols in dry season plays a major role in determining the subsequent wet season onset. Dry season aerosol optical depth (AOD) influences the strength of the southern African easterly jet (AEJ-S) and thus the onset of the wet season. Higher AOD associated with a higher dust mass flux reduces the net downward shortwave radiation and decreases the surface temperature over the Congo rainforest region, leading to a stronger meridional temperature gradient between the rainforest and the Kalahari Desert as early as in June. The latter, in turn, strengthens the AEJ-S, sets in an early and a stronger easterly flow, leads to a stronger equatorward convergence and an early onset of the wet season in late August to early September. The mean AOD in the dry season over the region is strongly correlated ($r = 0.7$) with the timing of the subsequent wet season onset. Conversely, in low AOD years, the onset of the wet season over the Congo basin is delayed to mid-October.
1. Introduction

Wet season onset over the Congo rainforest marks the end of the dry season with increasing precipitation; thus it is important for the groundwater as well as soil moisture replenishments, photosynthetic rate, greenness, ecology, and sustainability of the rainforest, especially in a warming climate (Erfanian et al., 2017; Lewis et al., 2011, 2013; Marengo et al., 2008). Recent studies show that the Congo rainforest, which is the second-largest rainforest following the Amazon, has been experiencing a longer boreal summer dry season (Malhi and Wright, 2004; Zhou et al., 2014). The dry season length has increased by 6.4-10.4 days per decade between 1988-2013 and the rainfall is declining at a striking rate of -0.32 ± 0.10 mm/day per decade over the last 50 years (Jiang et al., 2019). Observations also indicate a long-term drying and declining of greenness in the Congo rainforest (Zhou et al., 2014). Annual rainfall over much of the Congo rainforest is marginal to sustain the rainforest (Mayer and Khalyani, 2011; Staver et al., 2011). A significant reduction of rainfall due to the delay of the main rainy season in boreal autumn can lead to significant water stress to the rainforest. Besides, continuous deforestation, droughts, and global warming pose serious threats to the rainforest, make it more vulnerable and unsustainable for future existence (Tyukavina et al., 2018).

Congo basin experiences two different rainy seasons during March-May (MAM) (Nicholson and Dezfuli, 2013) and September-December (SON) (Dezfuli and Nicholson, 2013) with the twice-annual passage of the intertropical convergence zone (ITCZ) (Nicholson, 2018; Nicholson and Dezfuli, 2013). The latter one (SON) during the boreal autumn is stronger, following the lengthening and widely spreading dry boreal summer (Jiang et al., 2019), and is associated with a different dynamical mechanism than that of the MAM rainy season (Jackson et al., 2009). Mid-level African Easterly jets (AEJ), especially the southern hemispheric branch (AEJ-S), are known...
to play a crucial role in the boreal autumn wet season (Adebiyi and Zuidema, 2016; Jackson et al., 2009; Nicholson and Grist, 2003). The AEJ-S is associated with equatorward convergence (Adebiyi and Zuidema, 2016) and is strong during the boreal autumn season, but absent during the boreal spring or MAM season (Adebiyi and Zuidema, 2016; Jackson et al., 2009). Very intense mesoscale convective systems (MCS) are associated with the presence of the AEJ-S and bring rainfall during boreal autumn (Jackson et al., 2009; Vondou et al., 2010). Thus, the AEJ-S timing and strength might play an important role in accelerating or delaying the wet season onset over the Congo basin.

<table>
<thead>
<tr>
<th>Year</th>
<th>Onset Pentad</th>
<th>Day</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>59</td>
<td>295</td>
<td>Late-October</td>
</tr>
<tr>
<td>2004</td>
<td>51</td>
<td>255</td>
<td>Mid-September</td>
</tr>
<tr>
<td>2005</td>
<td>56</td>
<td>280</td>
<td>Early-October</td>
</tr>
<tr>
<td>2006</td>
<td>48</td>
<td>240</td>
<td>Late-August</td>
</tr>
<tr>
<td>2007</td>
<td>56</td>
<td>280</td>
<td>Early-October</td>
</tr>
<tr>
<td>2008</td>
<td>53</td>
<td>265</td>
<td>Late-September</td>
</tr>
<tr>
<td>2009</td>
<td>54</td>
<td>270</td>
<td>Late-September</td>
</tr>
<tr>
<td>2010</td>
<td>56</td>
<td>280</td>
<td>Early-October</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>250</td>
<td>Early-September</td>
</tr>
<tr>
<td>2012</td>
<td>48</td>
<td>250</td>
<td>Early-September</td>
</tr>
<tr>
<td>Solstice</td>
<td>35</td>
<td>171</td>
<td>June 20</td>
</tr>
</tbody>
</table>

Early: 1-10; Mid: 11-20; Late: 21-31 of a month

Table 1. Onset pentads between 2003-2012 from GPCP data.

Out of the entire Congo basin, only the Angolan coast in the west and the eastern Zaire basin are regulated by the sea surface temperature (SST) anomalies. Circulation features associated with El Nino (La Nina) conditions are strongly linked to wet (dry) conditions over the eastern Zaire basin. Warmer western Indian Ocean SST is somewhat weakly associated with the rainfall over
there compared to a strong association between the Atlantic SST and the rainfall over the Angolan Coast (Dezfuli and Nicholson, 2013). Since rainfall onsets in the late August to early September during the early onset years (Table 1), we plot tropical δSST (differences in SST between early- and late-onset years and henceforth for other parameters) during August and September in Fig. 1 from AIRS datasets. Fig. 1 shows that although SST over the Indian Ocean is higher, La Nina condition prevails over the Pacific Ocean during the early onset years. On the other hand, La Nina conditions, warm SST along the Benguela coast, colder western Indian Ocean are related to the wet conditions over the Angolan coast (Dezfuli and Nicholson, 2013). The rainfall variability over the Angolan coast exhibits the strongest correlation (r=0.74) with the SST differences between the warmer Benguela current (10°E–coast, 2°–16°S) and colder western equatorial Indian Oceans (coast–56°E, and 2°–14°S) (Dezfuli and Nicholson, 2013). Although La Nina condition develops and Benguela current is warmer, SST over the western equatorial Indian ocean is higher in August-September (Fig. 1) during the early onset years. As a result, SST differences between the western equatorial Indian Ocean and Benguela current decreases. Other regions over the Congo basin, such as the northern and southern areas of the Zaire basin, northern slopes of the Central African plateau, highlands of the central African Republic show weak relationships with the circulation features, sea level pressure, and SST (Dezfuli and Nicholson, 2013; Vondou et al., 2010). Rather, the rainfall variability over the central Congo basin (15°-25°E) is strongly associated with the stronger easterly tropical jet and local effects (Adebiyi and Zuidema, 2016; Dezfuli and Nicholson, 2013; Jackson et al., 2009; Nicholson and Grist, 2003; Vondou et al., 2010). Thus, these results explain that the SST patterns cannot solely explain the early arrival of the wet conditions over the Congo rainforest.
The moisture source during the wet season is the low-level westerly jet that brings moisture from the Atlantic Ocean below 850 hPa (Cook and Vizy, 2016; Neupane, 2016; Nicholson, 2018); however, we observe that the difference in the atmospheric moisture content (not shown) is insignificant between the early- and late-onset years (Dezfuli and Nicholson, 2013). Thus, over a large part of the rainforest, as indicated by many studies in the past (Adebiyi and Zuidema, 2016; Dezfuli and Nicholson, 2013; Jackson et al., 2009; Nicholson and Grist, 2003), zonal circulation and stronger tropical easterly jets might explain the rainfall variability and onset timing. Hence, we focus on the influence of the regional thermodynamic and dynamical conditions on the wet season onset over the Congo basin as suggested by previous studies (Jackson et al., 2009; Vondou et al., 2010).

On the other hand, it is known that dust aerosols are abundant with frequent outbreaks over the Congo rainforest (Laurent et al., 2008) and they can modulate the precipitation over Africa (N’Datchoh et al., 2018). Aerosols have a radiative cooling impact at the surface because they reflect, scatter, and absorb sunlight (Léon et al., 2002). Such a cooling effect can influence the meridional temperature gradient, which is the primary driver of the thermally driven jets. A few
attempts, mostly using model simulations, have been made to tease out the dust impacts on the west African monsoon (Lavaysse et al., 2011; Marcella and Eltahir, 2014); however, such studies over the Congo rainforest are absent. Adebiyi and Zuidema (2016) found out that a high amount of aerosol concentration (aerosol optical depth, AOD>0.5) coexists with the SAE-J. However, till date, it is not clear whether aerosols can influence the wet season onset timing over the Congo rainforest despite their well-known impact on the downward shortwave radiation over the rainforest (Konzelmann et al., 1996), and the impact of the meridional temperature gradient between the Congo rainforest and the Kalahari Desert on the AEJ-S (Adebiyi and Zuidema, 2016; Cook, 1999).

Improved understanding of the mechanisms that affect the timing of the wet season is important for an accurate representation of the wet season onset in climate models (Whittleston et al., 2017), for reducing the large uncertainty in the rainfall variability over the Congo rainforest (Whittleston et al., 2017), and assessing the future and sustainability of the rainforest under various global warming scenarios. The Congo rainforest has been far less studied compared to the Amazon rainforest (Wright et al., 2017). Although it is known that the AEJ-S is central to the boreal autumn wet season over the Congo rainforest, the reasons behind the early or late wet season onset are not clear. In particular, it is not clear whether and how aerosol loading, in addition to the meteorological, radiative, and dynamic parameters, affect the timing of the wet season onset.

In this study, we examine the wet season onset timing mechanism by analyzing the aerosol radiative effect on surface temperature (Ts), AEJ-S, and associated convergence. We use a suite of satellite measurements, ERA-Interim and Modern Era Retrospective-Analysis for Research and Applications (MERRA2) dataset over 10 years (2003-2012), focusing on the domain of 5°N-10°S,12°E-32°E to tease out the influence of the aerosol radiative effect on the wet season onset.
We analyze the differences in the above-mentioned conditions between three early-onset (2007, 2011, and 2012) and three late-onset (2003, 2006, and 2010) years (Table 1). Methods to detect the onset pentads from the Global Precipitation Climatology Project (GPCP) data are given in the methodology section. We calculate precipitation variability between the early- and late-years from GPCP data. We use cloud cover and surface irradiance data from the Cloud and the Earth’s Radiant Energy System (CERES). The AOD data from the Moderate Resolution Imaging Spectroradiometer (MODIS) is used. Ts is obtained from the Atmospheric Infrared Sounder (AIRS) and ERA-interim reanalysis is used to detect the AEJ-S and calculate divergence (see Supporting Material).

2. Data and methodology

2.1 Data

GPGP pentad data

The Global Precipitation Climatology Project (GPCP) pentad rainfall data have been used to compute the climatological mean and the wet season onset dates. The data are provided in a 2.5° resolution at a 5 day (pentad) temporal average and available at https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00933. The version 2.2 data set has rainfall records from 1979 to present. GPCP pentad data have been used for wet season onset related analysis in previous studies (Li and Fu, 2006; Wright et al., 2017).

Cloud and the Earth’s Radiant Energy System (CERES)

CERES provides cloud cover and radiant information at 1° spatial resolution at daily scale. We use the SYN1deg data set (https://ceres.larc.nasa.gov/products.php?product=SYN1deg) for this study. The product uses 3 hourly radiances and cloud properties to provide cloud cover, surface radiance, 500 hPa radiance values. We use the longwave and shortwave data at both the upward
as well as downward direction in the all-sky and clear-sky conditions. CERES data have previously been used in wet season onset related studies (Wright et al., 2017) are well-validated against the in-situ measurements (Loeb et al., 2018).

Moderate Resolution Imaging Spectroradiometer (MODIS)

We use MODIS daily aerosol products to calculate daily aerosol optical depth (AOD) over the domain. MODIS provides AOD over the oceans and land at a spatial resolution of 10 x 10 km pixels by using the deep blue algorithm. The MODIS onboard the Aqua satellite data are available every day from 2002 (https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain/aerosol) and have been extensively used for scientific purposes in the past few decades (Adebiyi and Zuidema, 2016; Fan et al., 2016).

Atmospheric Infrared Sounder (AIRS)

AIRS data are available from 08-21-2002 (https://disc.gsfc.nasa.gov/datasets/AIRX3STD_006/summary?keywords=airs%20version%206) with a spatial coverage of 180°E to 180°W and 90°S to 90°N. We use the AIRS in combination with Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB) data. These data use visible, infrared, and microwave sensors to estimate water vapor and 2m surface temperature. AIRS is an instrument onboard the Aqua satellite, which is a part of the A-Train constellation. We use the AIRX3STD (Susskind et al., 2014) daily version 6 standard physical retrieval data at 1° horizontal resolution.

ERA-Interim

We use ERAi data that are available from 1979 to August 2019. We use the zonal and meridional wind data to analyze the wind field and the jet location for our study. Previous studies have already used ERAi data to detect the African jets (Cook, 1999; Jackson et al., 2009). The data are...
available at a 0.75 x 0.67 spatial resolution in the longitudinal and latitudinal direction, respectively at four different hours (00, 06, 12, 18) of temporal resolution. The data are available at 60 pressure levels from the surface to 0.1 hPa, which can be found at

https://www.ecmwf.int/en/forecasts/documentation-and-support/60-model-levels. We have used 673 hPa and 897 hPa levels wind data to calculate the intensity and direction of the Southern as well as Northern African Easterly jets (AEJ-S and AEJ-N) and low level African westerly jet, respectively.

Modern Era Retrospective-Analysis for Research and Applications (MERRA2)

We use two-dimensional hourly averaged surface and vertically integrated aerosol mass fluxes (tavg1_2d_aer_Nx) from the Modern Era Retrospective-Analysis for Research and Applications (MERRA2) data set (Gelaro et al., 2017). The gridded data are provided in 576 grids along the longitudinal and 361 grids along the latitudinal direction. The data provide five different aerosol mass fluxes, such as dust (DU), organic carbon (OC), black carbon (BC), sulfates (SU), and sea salt (SS) in the zonal and meridional direction. We use this dataset to estimate the dominant aerosol types that contribute to the largest fraction to the aerosol concentrations. The MERRA-2 aerosol reanalysis data are validated against 793 Aerosol Robotic Network (AERONET) stations (Guemard and Yang, 2020) and has already been used for scientific purposes (Sitnov et al., 2020; Xu et al., 2020).

2.2 Methods

We first compute mean rainfall over the domain (5°N-10°S,12°E-32°E) from 1979 for each pentad. GPCP Pentad data have often been used to detect wet season onset over other regions of the world (Li and Fu, 2006; Wright et al., 2017). The climatological (1979-2013) mean rainfall is 4.14 mm/day over the domain. We detect onset dates each year based on three criteria: 1) the rainfall
of that pentad is higher than the climatological mean, 2) five out of eight pentads before that pentad has rainfall less than the climatological mean, and 3) five out of eight pentads after that pentad has rainfall more than the climatological mean (Wright et al., 2017). Onset pentads between 2003-2012 are shown in Table 1. We used GPCP daily data to compute five days (pentad) rainfall. We compute rainfall time series during the three early (2007, 2011, 2012) and three late (2003, 2006, 2010) in Fig. 1A. The differences in rainfall and other parameters including cloud cover, AOD, wind speed of the AEJ-S, and radiation fluxes from June to September between the early- and late-onset years are computed.

We compute cloud cover from CERES and AOD from MODIS datasets. We compute pentad values of low, mid-low, mid-high, and high cloud cover (%) over the domain. To compute AOD, we used daily Aqua MODIS AOD data and averaged over five consecutive days to estimate pentad AOD values over the domain. To understand the relationships between rainfall onset and meteorological as well as dynamical conditions over the domain, we have computed various other parameters from various satellites and ERA-interim reanalysis datasets.

We compute net downward shortwave energy (SWnet) as a difference between the downward shortwave energy and upward shortwave energy at the surface from CERES data. We use daily AIRS 2m surface temperature (Ts) to calculate the pentad values over the domain. To detect the African Easterly Jets, we use ERA interim zonal and meridional wind data. For the Southern African Easterly Jet (AEJ-S), we use the 650 hPa between 5°-15°S and 12°-24° E (Adebiyi and Zuidema, 2016). We show the wind map of the jet over the domain in Figure 3. We also use wind speed and direction in our analysis to show the maps of the easterly jets at 650 hPa. To compute divergence, we have used the divergence equation as:

$$\text{div} = \frac{du}{dx} + \frac{dv}{dy}$$
Where u and v are the zonal and meridional wind and x and y are the longitudinal and latitudinal distances, respectively.

3. Results

Figure 2. (A) Mean precipitation time series during the early (blue) and late (red) onset years at each pentad. Blue stars (red circles) represent the timing of the early (late) onset years. Rainfall ranges represent precipitation of individual late- or late-onset years. Mean high and mid-high cloud cover (B) and low and mid-low cloud cover (C) during the early and late-onset years. Vertical lines show the ranges of onset times during the early (blue) and late (red) years. (D) Maps of precipitation differences between the late and early-onset years using GPCP data.

Figure 2A shows a time series of precipitation over the domain during the early and late-onset years. Precipitation (Fig. 2A) and high cloud cover (Fig. 2B) increases during August (42-48th pentads) when the wet season is early (blue stars, Fig. 2A) compared to their slower pick-up during the late-onset years (red circles, Fig. 2A). The wet season starts in late August to early September
during the early onset years, unlike the late-onset years when the onset delays until October (Table 250 1). The rainforest also receives less rain (~1 mm/day) during the late-onset years (Fig. 2D).

However, low cloud cover is higher during the late onset years after the 38th pentad as compared to the early-onset years (Fig. 2C).

Figures 3A-3D show the differences in the δTs (shaded contours,) and the 650 hPa wind speed (arrows, δWind) and wind direction over the domain between the early- and late-onset years from June to August. They show that the Congo rainforest is cooler by more than 3°K in June-August prior to the early-onsets. Such a cooling creates an early and stronger meridional temperature gradient throughout boreal summer before the wet season starts during the early onset years. As a result, δWind at 650 hPa is easterly as early as in June between 8°S -16°S (Fig. 3A). The wind speed difference between the early and late-onset years is significant (>3 m/s) with respect to the climatological mean speed of ~7 m/s (Adebiyi and Zuidema, 2016). The AEJ-S is known to form over the Southern hemisphere and gradually move towards the equator as the wet season approaches. In July (Fig 3B), the easterly δwind spreads over most of the domain. δWind is cyclonic in the Southern hemisphere in August (Fig. 3C) and over the Congo rainforest in September (Fig. 3D) during the early-onset years compared to the late-onset years. Consequently, Figure 5 shows that the southern hemisphere is more convergent during the early-onset years. As a result, high cloud cover (Fig. 2B) and precipitation (Fig. 2A) increase from August and wet season onsets as precipitation gradually increases. These findings suggest that stronger surface cooling and earlier formation of the AEJ-S lead to an earlier wet season onset.
Figure 3. Map of differences in 2m skin temperature (ΔT_s, shaded contours) from AIRS and 650 hPa Δwind (arrows) from ERA-interim between (A) 30th-36th pentads or June, (B) 36th-42nd pentads or July, (C) 42nd-48th pentads or August, and (D) 48th-54th pentads or September between three early-onset years (2007, 2011, and 2012) and three late-onset years (2003, 2006, 2010). Only the easterly winds are shown in (A) and (B) to show the location of AEJ-S.

Figure 4 shows the differences in various parameters related to the wet season onset between the early- and late-onset years. Figure 4A shows that ΔAOD is positive during the early-onset years from the 28th pentad (late May). The accumulation of aerosols in the early-onset years is higher during the 30th-39th pentads and continues until the 45th pentad. The surface during the early-onset years is cooler (Fig. 4B) than the late-onset years, with the strongest cooling coinciding to (domain mean $\Delta T_s \sim -0.7^\circ$ K) with the higher ΔAOD during the 30-38th pentads in June-mid July. All-sky ΔSWnet is less (Fig. 4C) compared to the late-onset years. The reduced all-sky ΔSWnet can be attributed to higher ΔAOD (Fig. 4A) during the 30-38th pentads as cloud cover difference is insignificant (Figs. 2B and C) during that time. The role of AOD on the surface cooling is confirmed in Figure 4D, which shows that the clear-sky ΔSW$_{net}$ reaches up to -10 W/m2 during the 30-38th pentads. A strong negative correlation exists between the clear-sky
Figure 4. (A) Differences in MODIS AOD (ΔAOD) from the 24th (day 120) pentad to 72nd pentad (day 360), (B) As in A, but for ΔTs from AIRS. Values up to 66th pentad are shown due to data unavailability in some days after the 66th pentad, (C) as in A, all-sky net downward shortwave energy difference at the surface (ΔSWnet) from CERES, (D) As in A, but for clear-sky net downward shortwave energy difference at surface (ΔSWnet) between the early and late-onset years from CERES. (E) Correlation between ΔAOD difference (in Fig. 3A) and clear-sky ΔSWnet (in Fig. 3D) between the early and late-onset years at the surface.

ΔSWnet and ΔAOD during the 30-48 pentads (r=-0.9, Fig. 4E), suggesting that aerosols play a significant role in reducing the SWnet over the rainforest during the early-onset years. A lower all-sky and clear-sky ΔSWnet give rise to a lower ΔTs. Hence, these results suggest that aerosols have a strong impact on the timing and strength of the AEJ-S by reducing SWnet at the surface.
and Ts over the Congo rainforest. Such a cooling begins as early as in June and continues throughout the summer during the early onset years.

Figure 5. Differences in the mean meridional divergence between 10N to 20S between 1000 hPa to 500 hPa (Y axis) averaged over 12°E-32°E over between the early- and late-onset years during (A) 30th-36th pentads or June, (B) 36th-42nd pentads or July, (C) 42nd-48th pentads or August, and (D) 48th-54th pentads or September.

Several important changes in the cloud cover, SW_{net}, precipitation, and AOD occur after the 40th pentad during the early onset years. An early formation of AEJ-S and stronger easterly wind makes the southern hemisphere more convergent (Figs. 5). The domain (5°N-10°S) experiences a comparatively stronger convergence from August. Thus, high cloud cover (Fig. 2B) and precipitation (Fig. 2A) increase between the 42nd-48th pentads during the early-onset years as compared to late-onset years. ∆AOD also increases between the 40th-45th pentad (Fig. 4A). As a result, clear-sky ∆SW_{net} reduces by 5W/m² during 40-45 pentads (Fig. 4D), whereas all-sky ∆SW_{net} reduces by 18W/m² during 43-47 pentads (Fig. 4C) because of higher high cloud cover (Fig.2B). Although clear-sky ∆SW_{net} increases by ~10W/m² during 45-48 pentads as ∆AOD decreases due to higher precipitation and high/midhigh cloud cover, all-sky ∆SW_{net} only increases by 5 W/m² after the 47th pentad. Hence, ∆Ts decreases by up to 3K in August (Fig. 3C). Mean ∆Ts over the domain decreases by 0.2-0.5K (Fig. 4B) between 40-46th pentads. These
results point out that aerosol induced cooling in early boreal summer (June-mid July) leads to higher cloud cover and precipitation in the late summer by influencing the timing and strength of AEJ-S and associated convergence. Such changes in cloud cover in the late summer play a significant role on the all-sky δSW_{net} and the domain Ts during the late summer (August). As a result, the onset timing is highly correlated with the AOD over the domain. The correlation (r) between the onset dates and the AOD averaged over June-August is 0.57 (Fig. 6). When June AOD is correlated with the onset dates, correlation coefficient becomes even stronger ($r = 0.7$). These results indicate a close relationship between the dry period AOD and the wet season timing over the Congo basin.

Figure 6. Correlation between the domain mean AOD between June-August and June with the onset pentads.

Maps of δAOD from MODIS data are shown in Figs. 7A-C that confirm that the largest difference in AOD is seen in June when δTs is the highest and the AEJ-S begins (Fig.3A). We further analyze the integrated aerosol mass flux datasets from MERRA2 reanalysis products to understand what causes higher aerosol loading over the rainforest in June. The differences in
AOD between the early- and late-onset years is primarily due to the changes in the dust concentrations (Fig. 7D) based on the MERRA2 integrated aerosol mass flux data sets (Randles et al., 2017). The cause of the dust appears to be the long-range transport from the Eastern Saharan Desert and the Arabian Desert (Fig. 8). Figure 8 suggests that the strength and location of AEJ-N might play an important role in the aerosol transport from the Eastern Saharan Desert and the Arabian Desert, thus on the aerosol concentration over the Congo rainforest and associated early wet season onset.

Figure 7. Maps of MODIS AOD difference (ΔAOD) between the early and late-onset years in (A) June, (B) July, and (C) August. Differences in MERRA2 aerosol flux for five different species (D) dust, (E) organic carbon, (F) sea salt, (G), black carbon and (H) sulfate between the early and late-onset years during June.
Figure 8. Map of differences in dust mass flux between the early and late-onset years from MERRA2 data. Arrows show the direction of the dust mass flux difference.

Schematics in Figure 9 summarize the early- and late-onset mechanism and how aerosols play a vital role in such differences. Higher aerosol concentrations during the early-onset years enhance the reflection and scattering of the incoming solar energy in June. Thus, the rainforest receives a lesser amount of downward shortwave energy. Consequently, the T_s decreases and driven by the meridional temperature gradient between the rainforest and the Kalahari Desert, AEJ-S forms. In August, the Kalahari Desert warms up as the Sun moves equatorward and the meridional temperature gradient and AEJ-S strengthen. As a result, the equatorward convergence increases, a stronger cyclonic circulation develops over the region, high cloud cover increases that lead to a reduction in all-sky δSW_{net} and δT_s, and the wet season onsets in late August to early September.

In contrast, aerosol concentrations are less during the late-onset years. Hence, a higher amount of solar energy reaches the surface and the rainforest T_s is higher than the early-onset years. Therefore, the meridional temperature gradient is weaker or becomes negative in the Southern Hemisphere with the Congo rainforest (Kalahari Desert) being warmer (cooler) during the boreal summer (Austral winter, June-August). Consequently, the AEJ-S is delayed. In September, as the Sun moves southward, the Kalahari Desert warms up. Compared to the early onset years, a weaker
meridional temperature gradient develops across the rainforest and the desert since the rainforest Ts is higher (Fig. 3D) during the late-onset years. As a result, the AEJ-S is weaker. Not only is the wet season delayed and the dry season lengthens, the Congo rainforest also receives lesser precipitation.

![Figure 9. Schematics showing the early- (left) and late- (right) wet season onset mechanism.](image)

4. Conclusion
These above analysis results highlight the interconnections between the aerosols radiative effect and the wet season onset timing by decreasing Ts, increasing meridional temperature gradient, and influencing onset timing and strength of AEJ-S as well as associated convergence. It is important to note that the meridional temperature gradient increases 2-3 months before the wet season onset due to the surface cooling, which is caused by the aerosols dimming effect as the Kalahari Desert is still cold during that time of the year. Because the main driver of the jet is the meridional temperature gradient between the warm/dry Kalahari Desert and the moist Congo
rainforest, a reduction in the rainforest Ts (Figs. 3A-D and 4B) in the summer leads to an earlier
and stronger AEJ-S during the early-onset years. Our results highlight an important connection
between the reductions in the clear-sky δSW_{net} in early summer (June-mid July) due to aerosols,
all-sky δSW_{net} in the late summer (August) due to a higher cloud cover, and early wet season
onset.

These results indicate a plausible significant threat to the future of the Congo rainforest.
Between 2003-2012, the regional temperature has increased by 1.1° C and the boreal summer dry
season is increasing (Zhou et al., 2014). Thus, a projected increase in the global temperature
anywhere between 1.1° to 5.4° C by 2100 (https://www.climate.gov) might be enough to offset a
net mean rainforest cooling of ~1°C required (Fig. 4B) for an early wet season onset over the
region. This study identifies the role of aerosols on the wet season onset timing over the Congo
Rainforest. Other factors, such as the location and strength of the AEJ-N and the tropical easterly
jet might play an important role in the AOD variation (Fig. 8). Further analysis is required to
understand the role of these jets and how their interannual variability in strength and location can
impact the dust mass flux and wet season onset in the future, especially as the global temperature
increases. Also, canopy cover reduction due to deforestation might affect the meridional
temperature gradient and subsequently AEJ-S and the wet season onset. It is necessary to continue
investigating the impacts of global warming, large-scale circulation change, land-use, and
deforestation on the wet season onset over the Congo rainforest.

Author Contribution:

SC: design the research, analyzed data, wrote the paper.

JHJ: design the research, wrote the paper.

HS: design the research, wrote the paper.
RF: design the research, wrote the paper.

Competing Interests:

The authors have no competing interests.

Acknowledgement

This work was conducted at Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This work was partly supported by NASA ROSES CCST Program.

Data and Code Availability

All satellite data used in this study can be downloaded at the EOSDIS Distributed Active Archive Centers (DAACs) at https://earthdata.nasa.gov/eosdis/daacs. Please contact the corresponding author for any questions about how to download the data that are publicly available and codes written in IDL and Python.

References

Erfanian, A., Wang, G. and Fomenko, L.: Unprecedented drought over tropical South America in

Vondou, D. A., Nzeukou, A., Lenouo, A. and Mkankam Kamga, F.: Seasonal variations in the

