
1 
 

Improved representation of the global dust cycle using 
observational constraints on dust properties and abundance 
 

Jasper F. Kok1, Adeyemi A. Adebiyi1, Samuel Albani2,3, Yves Balkanski3, Ramiro Checa-
Garcia3, Mian Chin4, Peter R. Colarco4, Douglas S. Hamilton5, Yue Huang1, Akinori Ito6, 5 
Martina Klose7, Danny M. Leung1, Longlei Li5, Natalie M. Mahowald5, Ron L. Miller8, 
Vincenzo Obiso7,8, Carlos Pérez García-Pando7,9, Adriana Rocha-Lima10,11, Jessica S. Wan5, and 
Chloe A. Whicker1 

1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA 
2Department of Environmental and Earth Sciences, University of Milano-Bicocca, Milano, Italy 10 
3Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-UPSaclay, Gif-sur-Yvette, France 
4Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, 
USA 
5Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA 
6Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa 236-0001, Japan 15 
7Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain 
8NASA Goddard Institute for Space Studies, New York NY10025 USA 
9ICREA, Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain  
10Physics Department, UMBC, Baltimore, Maryland, USA 
11Joint Center Joint Center for Earth Systems Technology, UMBC, Baltimore, Maryland, USA 20 

Correspondence to: Jasper F. Kok (jfkok@ucla.edu) 

Abstract. Even though desert dust is the most abundant aerosol by mass in Earth’s atmosphere, atmospheric models 
struggle to accurately represent its spatial and temporal distribution. These model errors are partially caused by 
fundamental difficulties in simulating dust emission in coarse-resolution models and in accurately representing dust 
microphysical properties. Here we mitigate these problems by developing a new methodology that yields an 25 
improved representation of the global dust cycle. We present an analytical framework that uses inverse modeling to 
integrate an ensemble of global model simulations with observational constraints on the dust size distribution, 
extinction efficiency, and regional dust aerosol optical depth. We then compare the inverse model results against 
independent measurements of dust surface concentration and deposition flux and find that errors are reduced by 
approximately a factor of two relative to current model simulations of the Northern Hemisphere dust cycle. The 30 
inverse model results show smaller improvements in the less dusty Southern Hemisphere, most likely because both 
the model simulations and the observational constraints used in the inverse model are less accurate. On a global 
basis, we find that the emission flux of dust with geometric diameter up to 20 µm (PM20) is approximately 5,000 
Tg/year, which is greater than most models account for. This larger PM20 dust flux is needed to match observational 
constraints showing a large atmospheric loading of coarse dust. We obtain gridded data sets of dust emission, 35 
vertically integrated loading, dust aerosol optical depth, (surface) concentration, and wet and dry deposition fluxes 
that are resolved by season and particle size. As our results indicate that this data set is more accurate than current 
model simulations and the MERRA-2 dust reanalysis product, it can be used to improve quantifications of dust 
impacts on the Earth system. 
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1. Introduction 

Desert dust produces a wide range of important impacts on the Earth system, including direct and indirect 
interactions with radiation, clouds, the cryosphere, biogeochemistry, atmospheric chemistry, and public health (Shao 
et al., 2011). Despite the importance role of dust in the Earth system, simulations of the global dust cycle suffer from 
several key deficiencies. For instance, models show large differences relative to observations for critical aspects of 45 
the global dust cycle, including dust size distribution, surface concentration, dust aerosol optical depth (DAOD), and 
deposition flux (e.g., Huneeus et al., 2011; Albani et al., 2014; Ansmann et al., 2017; Adebiyi and Kok, 2020; Wu et 
al., 2020). Moreover, models struggle to reproduce observed interannual and decadal changes in the global dust 
cycle over the observational record (Mahowald et al., 2014; Ridley et al., 2014; Smith et al., 2017; Evan, 2018; Pu 
and Ginoux, 2018), and it remains unclear whether atmospheric dust loading will increase or decrease in response to 50 
future climate and land use changes (Stanelle et al., 2014; Kok et al., 2018). 

One key reason that models struggle to accurately represent the global dust cycle and its sensitivity to climate and 
land use changes is that dust emission is a complex process for which the relevant physical parameters vary over 
short distances of about 1 m to several km (Okin, 2008; Bullard et al., 2011; Prigent et al., 2012; Shalom et al., 
2020). As such, large-scale models with typical spatial resolutions on the order of 100 km are fundamentally ill-55 
equipped to accurately simulate dust emission. Confounding the problem is the non-linear scaling of dust emissions 
with near-surface wind speed above a threshold value (Gillette, 1979; Shao et al., 1993; Kok et al., 2012; Martin and 
Kok, 2017). As such, dust emissions are especially sensitive to variations in both wind speed and the soil properties 
that set the threshold wind speed. Despite some recent progress, accounting for the effect of sub-grid-scale wind 
variability on dust emissions remains a substantial challenge that causes the simulated global dust cycle to be 60 
sensitive to model resolution (Cakmur et al., 2004; Comola et al., 2019), especially at low resolution (Ridley et al., 
2013). An even more substantial challenge for models is likely the small-scale variability of vegetation (Raupach et 
al., 1993; Okin, 2008), surface roughness (Menut et al., 2013), soil texture (Laurent et al., 2008; Martin and Kok, 
2019), mineralogy (Perlwitz et al., 2015a), and soil moisture (McKenna Neuman and Nickling, 1989; Fécan et al., 
1999). These and other soil properties control both the dust emission threshold, and the intensity of dust emissions 65 
once wind exceeds the threshold (Gillette, 1979; Shao, 2001; Kok et al., 2014b). Models lack accurate high-
resolution data sets of pertinent soil properties, which also limits the use of dust emission parameterizations that 
incorporate the effect of these soil properties (e.g., Darmenova et al., 2009). As a result of these fundamental 
challenges in accurately representing dust emission, most models use both a source function map (Ginoux et al., 
2001) and a global dust emission tuning constant to produce a global dust cycle that is in reasonable agreement with 70 
measurements (Cakmur et al., 2006; Huneeus et al., 2011; Albani et al., 2014; Wu et al., 2020). 

A second key problem limiting the accuracy of model simulations of the global dust cycle is the challenge to 
adequately describe dust properties such as dust size, shape, mineralogy, and optical properties. All these dust 
properties have recently been shown to be inaccurately represented in many models (Kok, 2011b; Perlwitz et al., 
2015b; Pérez Garcia-Pando et al., 2016; Ansmann et al., 2017; Di Biagio et al., 2017; Di Biagio et al., 2019; Adebiyi 75 
and Kok, 2020; Huang et al., 2020). These and other dust properties are difficult to describe accurately in models 
because parameterizations are not always kept consistent with up-to-date experimental and observational constraints. 
In addition, models need to use fixed values for such physical variables and thus can only represent the uncertainties 
inherent in such constraints through computationally expensive perturbed parameter ensembles (Bellouin et al., 
2007; Lee et al., 2016).  80 

The nature of these challenges in accurately representing the global dust cycle is such that they are difficult to 
overcome from advances in modeling alone (e.g., Stevens, 2015; Kok et al., 2017; Adebiyi et al., 2020). We 
therefore develop a new methodology to obtain an improved representation of the present-day global dust cycle. We 
present an analytical framework that uses inverse modeling to integrate observational constraints on dust abundance 
and dust properties with an ensemble of global model simulations. Our procedure finds the emissions from different 85 
major source regions and particle size ranges that best match simultaneous observational constraints on the dust size 
distribution, extinction efficiency, and regional dust aerosol optical depth. This methodology propagates 
uncertainties in these observational constraints and due to the spread in simulations in the model ensemble. As such, 
our approach mitigates the consequences of the fundamental difficulty that models have in representing the 
magnitude and spatiotemporal variability of dust emission, and in representing the properties of dust and the 90 
uncertainty in those properties. Moreover, whereas the assimilation of observations in reanalysis products creates 
inconsistencies between the different components of the dust cycle (i.e., emission, loading, and deposition are not 
internally consistent), our framework integrates observational constraints in a self-consistent manner. 
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We detail our approach in Sect. 2, after which we summarize independent measurements used to evaluate our 
representation of the global dust cycle in Sect. 3, and present results and discussion in Sections 4 and 5. We find that 95 
our procedure results in a substantially improved representation of the Northern Hemisphere global dust cycle and 
modest improvements for the Southern Hemisphere. We provide a data set representing the global dust cycle in the 
present climate (2004-2008) that is resolved by particle size and season. Because comparisons against independent 
measurements indicate that this data set is more accurate than obtained by an aerosol reanalysis product and by a 
large number of climate and chemical transport model simulations, this data set can be used to obtain more accurate 100 
quantifications of the wide range of dust impacts on the Earth system. 

2. Methods 

We seek to obtain an improved representation of the global dust cycle by integrating observational and modeling 
constraints on dust properties and abundance with an ensemble of simulations of the spatial distribution of dust 
emitted from different source regions. We achieved this with an analytical framework that uses optimal estimation to 105 
determine how many units of dust loading from different size ranges and main source regions are required to 
maximize agreement against observational constraints on the dust size distribution and dust aerosol optical depth 
near source regions (see Fig. 1). We then compare the results against independent measurements of dust surface 
concentration and deposition flux (Sect. 3.1). Although our methodology can be considered inverse modeling in that 
it inverts observational constraints to inform a model, the methodology used here differs substantially from standard 110 
inverse modeling studies used in atmospheric and oceanic sciences (e.g., Bennett, 2002; Dubovik et al., 2008; 
Escribano et al., 2016; Brasseur and Jacob, 2017; Chen et al., 2019). We summarize the methodology in the next 
few paragraphs and then describe each step in detail in the sections that follow.  

 
Figure 1. Schematic of the methodology used to obtain an improved representation of the global dust cycle. Yellow boxes 115 
denote inputs from an ensemble of global model simulations, blue boxes denote inputs from observational constraints on dust 
properties and abundance, and white boxes denote the inverse model. We report the resulting representation of the global dust 
cycle in the present paper (green boxes) and the partitioning of the global dust cycle by source region (magenta boxes) in our 
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companion paper, to be submitted soon. The subscripts r, s, and k respectively refer to the originating source region, the season, 
and a model’s particle size bin. Other variables are defined in the main text and the glossary. 120 

We first divided the world into nine major source regions (Fig. 2a), and obtained an ensemble of global model 
simulations of how a unit of dust mass loading (1 Tg) of different particle sizes from each of these source regions is 
distributed across the atmosphere (Sect. 2.1). We then used constraints on the globally averaged dust size 
distribution (Adebiyi and Kok, 2020) and the size-resolved dust extinction efficiency (Kok et al., 2017) to determine 
the column-integrated dust aerosol optical depth produced by a single unit of bulk dust loading (1 Tg) from each 125 
source region (Sect. 2.2). Then, we used an inverse model to determine the optimum number of units of loading that 
must be generated by each source region to best match joint observational-modeling constraints on the DAOD for 
fifteen regions (Fig. 2b) near major dust sources (Sect. 2.3). The calculations in Sections 2.2 and 2.3 are performed 
iteratively, because the fractional contribution to global dust loading from each source region affects the agreement 
against the constraint on the globally averaged dust size distribution. Since we have more regional DAOD 130 
constraints than we have source regions, the problem is over-constrained, allowing for lower uncertainties on our 
results.  

We summed the optimal dust loadings of the nine source regions to obtain the main properties of the global dust 
cycle, resolved by particle size, season, and location. Specifically, we obtained the dust emission flux, loading, 
concentration, deposition flux, and DAOD (Sect. 2.4), which we added to the Dust Constraints from joint 135 
Experimental-Modeling-Observational Analysis (DustCOMM) dataset (Adebiyi et al., 2020). Throughout these 
calculations, we used a bootstrap procedure to propagate uncertainties in the observational constraints on dust 
properties and abundance, and uncertainties due to the spread in our ensemble of model simulations of the spatial 
distributions of a unit of dust loading, concentration, and deposition (Sect. 2.5).  

Our methodology uses a large number of variables, which are all listed in the glossary for clarity. To further help 140 
distinguish between different variables, we denote input variables obtained directly from global model simulations 
with the accent “~” (yellow boxes in Fig. 1). These fields are seasonally averaged and either two-dimensional (2D; 
𝜃𝜃, 𝜙𝜙) or three-dimensional (3D; 𝜃𝜃, 𝜙𝜙,𝑃𝑃), where 𝜃𝜃, 𝜙𝜙, and P respectively denote longitude, latitude, and the vertical 
pressure level (see Table 1). Moreover, all model fields are “normalized”, meaning that they represent values 
produced per unit (1 Tg) of global loading of dust in a given particle size bin k from a given source region r and for 145 
a given season s (seasons are taken as December-January-February (DJF), March-April-May (MAM), June-July-
August (JJA), and September-October-November (SON)), We further use the accent “-“ to denote an observational 
constraint on dust properties or dust abundance (blue boxes in Fig. 1). These include constraints on the globally 
averaged dust size distribution (𝑑𝑑𝑉𝑉

�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

), the size-resolved extinction efficiency (𝑄𝑄�ext(𝐷𝐷)), and the regional DAOD 
(𝜏𝜏�̅�𝑠
𝑝𝑝). All these fields have a quantified uncertainty, which we propagated through our analysis using the bootstrap 150 

procedure discussed in Sect. 2.5. Finally, the accent “‿” denotes a product that results from our analysis, such as the 
3D dust concentration, resolved by particle size and season (white and green boxes in Fig. 1). Such variables are 
thus generated by combining normalized model simulations with observational constraints on the dust size 
distribution, size-resolved extinction efficiency, and the DAOD near source regions. 

2.1. Dividing the world into nine main source regions 155 

The first step in our methodology is to divide the world into its major source regions. Most dust is emitted from the 
so-called “dust belt” of Northern Africa, the Middle East, Central Asia, and the Chinese and Mongolian deserts 
(Prospero et al., 2002). In addition, dust is emitted in smaller quantities from Australia, South Africa, and North and 
South America. Correspondingly, we divided the world into nine source regions that together account for the 
overwhelming majority (>99%) of desert dust emissions simulated in models (Fig. 2a). Our analysis includes both 160 
natural and anthropogenic (land use) emissions of dust in those source regions, because our analysis is based on 
observations that by nature integrate both (but see further discussion in Sect. 5.1). However, our analysis explicitly 
does not include high-latitude dust sources, which produce dust through different mechanisms and with different 
properties than desert dust, yet likely dominate the dust loading for some high latitude regions (Prospero et al., 2012; 
Bullard et al., 2016; Tobo et al., 2019; Bachelder et al., 2020). The nine source regions partially follow the definition 165 
in Mahowald (2007), with the main difference that we divided the North African source region, which accounts for 
~half of global dust emissions (Wu et al., 2020), into western North Africa, eastern North Africa, and the Sahel. 
Similar dust source regions were also used in more recent studies (Ginoux et al., 2012; Di Biagio et al., 2017). 
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 170 
Figure 2. Coordinates of (a) the nine main source regions, (b) the 15 observed regions with constraints on the regional 
dust aerosol optical depth (DAOD), (c) dust surface concentration measurements, and (d) deposition flux measurements 
used in this study. The coordinates of the nine source regions are: (1) western North Africa (20W – 7.5E; 18N – 37.5N), (2) 
eastern North Africa (7.5E – 35E; 18N – 37.5N), (3) the Sahel (20W – 35E; 0N – 18N), (4) the Middle East & Central Asia (30E 
– 70E for 0N – 35 N, and 30 – 75E for 35 – 50N), (5) East Asia (70E – 120E; 35N – 50N), (6) North America (130W – 80W; 175 
20N – 45N), (7) Australia (110E – 160E; 10S – 40S), (8) South America (80W – 20W; 0S – 60S), and (9) Southern Africa (0E – 
40E; 0S – 40S). The coordinates and seasonal DAOD of the 15 observed regions are listed in Table 2. Symbols in (c) and (d) 
denote groupings of observations by different regions. Made with Natural Earth. 

We use an ensemble of global chemical transport and climate models (see Table 1) to obtain simulations of 
emission, transport, and deposition of dust from each of the nine source regions. Specifically, we use simulations 180 
from the Community Earth System Model (CESM; Hurrell et al., 2013; Scanza et al., 2018), IMPACT (Ito et al., 
2020), ModelE2 (Miller et al., 2006; Kelley et al., 2020), GEOS/GOCART (Rienecker et al., 2008; Colarco et al., 
2010), MONARCH (Perez et al., 2011; Badia et al., 2017), and INCA/IPSL-CM6 (Boucher et al., 2020). These six 
models were forced with three different reanalysis meteorology data sets (Table 1), which helped sample the 
uncertainty due to the exact reanalysis meteorology used, which past work indicates is substantial (Largeron et al., 185 
2015; Smith et al., 2017; Evan, 2018). Most of the six models were ran for the years 2004-2008, or a subset thereof, 
to coincide with the analysis period of regional DAOD in Ridley et al. (2016), which provided most of observational 
DAOD constraints used in this study (see Table 1). Each model either ran a separate simulation for each source 
region, or used “tagged” dust tracers from each source region. The exact set-up of each model is described in the 
supplement. 190 

Our inverse model uses several results derived from model simulations (Fig. 1). First, for each model we obtained 
the “normalized” seasonally averaged column loading �̃�𝒍𝒓𝒓,𝒔𝒔,𝒌𝒌(𝜽𝜽,𝝓𝝓), which is the spatial distribution of a unit (1 Tg) 
of loading originating from source region r, for season s and particle size bin k. As such, the units of this field are m-

2 (Tg m-2 loading per Tg of loading from source r), and we show annual averages of the normalized bulk dust 
loading for each model and source region in Fig. S1. Additionally, we obtained the “normalized” 3D concentration 195 
(m-3) (𝑪𝑪�𝒓𝒓,𝒌𝒌,𝒔𝒔(𝜽𝜽,𝝓𝝓,𝑷𝑷), units of m-3) and the 2D dust emission (𝑭𝑭�𝒓𝒓,𝒌𝒌,𝒔𝒔(𝜽𝜽,𝝓𝝓), units of m-2 yr-1) and (dry and wet) 
deposition fluxes (𝑫𝑫�𝒓𝒓,𝒌𝒌,𝒔𝒔(𝜽𝜽,𝝓𝝓), units of m-2 yr-1) that are associated with a unit of global dust loading for each source 
region, season, and particle size bin. All model fields were regridded using a modified Akima cubic Hermite 
interpolation (Akima, 1970) to a common resolution of 1.9° latitude by 2.5° longitude and with 48 vertical levels 
(see Adebiyi et al. (2020) for further details). 200 

We restricted our analysis to dust with diameter D ≤ Dmax = 20 µm because there are insufficient measurements to 
constrain the abundance of coarser dust particles in the atmosphere (Adebiyi and Kok, 2020). Note, however, that 

c d 

a b 

https://doi.org/10.5194/acp-2020-1131
Preprint. Discussion started: 23 November 2020
c© Author(s) 2020. CC BY 4.0 License.



6 
 

the few measurements that have been made of dust with D > 20 µm suggest that it is abundant over and near source 
regions such as North Africa and accounts for a non-negligible fraction of shortwave and longwave extinction 
(Ryder et al., 2019). As such, more measurements of “giant” dust are needed, which would allow the analysis 205 
presented here to be extended to larger particle sizes in the future. Since some of the models in our ensemble do not 
account for dust with D up to 20 µm, we use the procedure in Adebiyi et al. (2020; see their section 2.3.1) to extend 
these models to 20 µm. In particular, we use the normalized 12 – 20 µm particle size bin simulated by the 
GEOS/GOCART model to estimate what the CESM and GISS ModelE2 models would have simulated for an 
additional particle size bin extending to 20 µm (see Table 1). We chose this bin specifically from the 210 
GEOS/GOCART model because it shows the best agreement against the observational constraint on regional DAOD 
(see Fig. 3). 

Table 1. Overview of global model set-ups used in this study. 

Model 
number 

Model 
name 

Spatial resolution** (longitude 
x latitude x level) 

Dust particle size bin 
diameter ranges (µm) 

Simulation 
period 

Meteorological 
dataset used 

 

1 
 

CESM/CAM4 
 

2.5° x 1.9° x 56 levels 0.1 – 1; 1.0 – 2.5; 2.5 – 5; 5 
– 10; 10 – 20* 

 

2004 - 2008 
 

ERA-Interim 
 

2 
 

IMPACT 
 

2.5° x 2.0° x 59 levels 0.1 – 1.26; 1.26 – 2.5; 2.5 – 
5; 5 - 20 

 

2004 - 2005 
 

MERRA2 
 

3 
 

GISS 
ModelE2 

 
2.5° x 2.0° x 40 levels 

0.2 – 0.36; 0.36 – 0.6; 0.6 – 
1.2; 1.2 – 2; 2 – 4; 4 – 8; 8 – 

16; 16 – 20* 

 
2004 - 2008 

 
NCEP 

 

4 GEOS/ 
GOCART 

 

1.25° x 1.0° x 72 levels 0.2 – 2; 2 – 3.6; 3.6 – 6; 6 – 
12; 12 – 20 

 

2004 - 2008 
 

MERRA2 

 
5 

 
MONARCH 

 
1.4° x 1.0° x 48 levels 

0.2 – 0.36; 0.36 – 0.6; 0.6 – 
1.2; 1.2 – 2; 2 – 3.6; 3.6 – 6; 

6 – 12; 12 - 20 

 
2004 - 2008 

 
ERA-Interim 

 

6 
 

INCA 
 

2.5° x 1.27° x 79 levels 0.2 – 2; 2 – 3.6; 3.6 – 6; 6 – 
12; 12 - 20 

 

2010 - 2014 
 

ERA-Interim 

*Denotes an additional bin added to the original model output in order to extend the particle diameter range to Dmax = 20 μm. 
This additional bin was derived from the GEOS/GOCART 12-20 μm particle size bin (see main text). 215 
**All model fields were regridded to a common resolution of 2.5° longitude by 1.9° latitude. 

2.2. Constraining the spatially resolved DAOD corresponding to a unit (1 Tg) of bulk dust loading 

We next implemented an inverse model to determine the optimal bulk dust loading that must be generated by each 
source region to produce the best match against constraints on regional DAOD. This inverse model thus requires the 
spatial pattern of DAOD produced per unit bulk dust loading from each source region, which is the Jacobian matrix 220 
of DAOD with respect to dust loading. We obtained this DAOD produced per unit (1 Tg) of bulk dust loading by 
combining the simulated distributions of a unit of size-resolved dust loading (𝑙𝑙𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)) with constraints on the 
globally averaged dust size distribution and extinction efficiency (Kok et al., 2017; Adebiyi and Kok, 2020). The 
calculations of the Jacobian matrix (this section) and the optimal bulk loading per source region (next section) are 
performed iteratively, because each source region’s fractional contribution to global dust loading from affects the 225 
agreement against the constraint on the globally averaged dust size distribution. 

The DAOD produced per unit of bulk dust loading originating from source region r in season s is (Kok et al., 2017) 

𝐽𝐽𝑟𝑟,𝑠𝑠(𝜃𝜃,𝜙𝜙) =
𝜕𝜕�̆�𝜏𝑟𝑟,𝑠𝑠(𝜃𝜃,𝜙𝜙)
𝜕𝜕𝐿𝐿�𝑟𝑟,𝑠𝑠

= � 𝜖𝜖�̅�𝑘𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘𝑙𝑙𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)
𝑁𝑁bins

𝑘𝑘=1

, 
 
(1) 

where 𝐿𝐿�𝑟𝑟,𝑠𝑠 is the globally integrated bulk dust loading generated by source region r in season s, �̆�𝜏𝑟𝑟,𝑠𝑠(𝜃𝜃,𝜙𝜙) is the 
spatial distribution of DAOD due to dust from source region r in season s, 𝐽𝐽𝑟𝑟,𝑠𝑠 is the Jacobian matrix (Tg-1) of �̆�𝜏𝑟𝑟,𝑠𝑠 
with respect to 𝐿𝐿�𝑟𝑟,𝑠𝑠, 𝑁𝑁bins is the number of particle size bins in a global model simulation (or derived from the 230 
simulated modes), 𝜖𝜖�̅�𝑘 is the size-dependent mass extinction efficiency (m2/g) of particle size bin k and is defined 
further below, 𝑙𝑙𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) (m-2) is the simulated seasonally averaged spatial distribution of a unit of dust loading 
from source region r and particle bin k, and 𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘 (unitless) is the fractional contribution of dust loading in size bin k 
to the seasonally averaged global dust loading generated by source region r (i.e., ∑ 𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘𝑘𝑘 = 1). As such, Eq. (1) 
obtains the DAOD produced per unit dust loading from a given source region and season by adding up the 235 
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normalized spatial distributions of the loading from each particle size bin, in proportion to each bin’s contribution to 
the globally integrated loading produced by the source region, and then multiplying the size-resolved loading by the 
mass extinction efficiency (MEE) to obtain the DAOD.  

To obtain the Jacobian matrix in Eq. (1) we need to obtain 𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘, each particle bin’s fractional contribution to the 
globally integrated dust loading generated by source region r in season s. Because models as a group underestimate 240 
the mass of particles with larger diameters (D > ~5 µm; Kok et al., 2017), we adjust the model size distribution to 
match a constraint on the globally averaged dust size distribution derived from a combination of observations and 
models (Adebiyi and Kok, 2020). This procedure retains regional differences in the atmospheric dust size 
distribution that models simulated for the different source regions, while forcing the globally averaged dust size 
distribution that results from the summed contributions from all source regions to match the constraint on the 245 
globally averaged dust size distribution. That is, 

𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘 =
𝛼𝛼𝑘𝑘𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘

∑ 𝛼𝛼𝑘𝑘𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘
𝑁𝑁bins
𝑘𝑘=1

, 
 
(2) 

where 𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘 is the modeled mass fraction per particle size bin for a given source region r and season s, and 𝛼𝛼𝑘𝑘 is the 
global correction factor for particle size bin k, which is different for each model. We obtained 𝛼𝛼𝑘𝑘 by setting the 
fraction of atmospheric dust in particle size bin k, summed over all source regions and seasons, equal to the 
constraint on the fractional contribution of particle size bin k to the global dust loading from Adebiyi and Kok 250 
(2020). That is, 

𝛼𝛼𝑘𝑘 =
∫  𝑑𝑑𝑉𝑉

�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷 𝑑𝑑𝐷𝐷𝐷𝐷𝑘𝑘+

𝐷𝐷𝑘𝑘−

∑ ∑ 𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠
𝑁𝑁s
𝑠𝑠=1 /∑ ∑ 𝐿𝐿�𝑟𝑟,𝑠𝑠

𝑁𝑁s
𝑠𝑠

𝑁𝑁sreg
𝑟𝑟=1

𝑁𝑁sreg
𝑟𝑟

, 
 

(3) 

where Nsreg = 9 is the number of source regions (Fig. 2a) and 𝑑𝑑𝑉𝑉
�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

 is a realization of the size-normalized (that is, 

∫ 𝑑𝑑𝑉𝑉�atm
𝑑𝑑𝐷𝐷

𝑑𝑑𝐷𝐷 = 1𝐷𝐷max
0 , where Dmax = 20 µm) globally averaged volume size distribution from Adebiyi and Kok (2020), 

which was obtained by combining dozens of in situ measurements of dust size distributions with an ensemble of 
climate model simulations. Further, Dk- and Dk+ are respectively the lower and upper diameter limits of particle size 255 
bin k, and 𝐿𝐿�𝑟𝑟,𝑠𝑠 is the globally integrated and seasonally averaged bulk dust loading per source region (as obtained 
from the analysis below). As such, the denominator in Eq. (3) denotes the simulated globally averaged mass 
fraction, whereas the numerator denotes the globally averaged mass fraction in particle size bin k as constrained 
from in situ measurements and model simulations by Adebiyi and Kok (2020). 

The final ingredient needed to use Eq. (1) to obtain the DAOD produced by a unit (1 Tg) bulk dust loading from a 260 
given source region and season is the MEE (𝜖𝜖�̅�𝑘). We do not use each model’s assumed MEE because these tend to 
be substantially biased compared to measurements (Adebiyi et al., 2020). This bias is largely due to a neglect or 
underestimation of the asphericity of dust (Huang et al., 2020), which increases the surface-to-volume ratio and 
thereby enhances the MEE by ~40 % (Kok et al., 2017). We thus follow Kok et al. (2017) in obtaining the MEE 
from constraints on the dust size distribution and the extinction efficiency of randomly-oriented (Ginoux, 2003; 265 
Bagheri and Bonadonna, 2016) aspherical dust. That is, 

𝜖𝜖�̅�𝑘 = 3
2𝜌𝜌�𝑑𝑑

∫  𝑄𝑄
�ext(𝐷𝐷)

𝐷𝐷  𝑑𝑑𝑉𝑉
�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

𝐷𝐷𝑘𝑘+
𝐷𝐷𝑘𝑘−

𝑑𝑑𝐷𝐷

∫  𝑑𝑑𝑉𝑉
�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷 𝑑𝑑𝐷𝐷

𝐷𝐷𝑘𝑘+
𝐷𝐷𝑘𝑘−

. 
 
(4) 

where 𝑄𝑄�ext(𝐷𝐷) is a realization of the globally averaged size-resolved extinction efficiency from the analysis of Kok 
et al. (2017), which is defined as the extinction cross-section divided by the projected area of a sphere with diameter 
D (𝜋𝜋𝐷𝐷2/4). The term  𝑑𝑑𝑉𝑉

�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

 inside the integrals approximates the sub-bin distribution in particle size bin k as the 
globally averaged dust volume size distribution. Further, �̅�𝜌𝑑𝑑 = (2.5±0.2)×103 kg m-3 is the globally averaged density 270 
of dust aerosols (Fratini et al., 2007; Reid et al., 2008; Kaaden et al., 2009; Sow et al., 2009). This observationally 
constrained density of dust is lower than the 2600 to 2650 kg m-3 used in many models (Tegen et al., 2002; Ginoux 
et al., 2004), most likely because dust aerosols are aggregates with void space that lowers their density below that of 
individual mineral particles.  
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2.3. Constraining the bulk dust loading generated by each source region 275 

The above procedure combined model simulations of the 2D spatial variability of size-resolved dust loading with 
constraints on dust size distribution and MEE. This procedure yielded the spatial distribution of DAOD that is 
produced by a unit (1 Tg) of dust loading from a given source region and season. Next, we use an inverse modeling 
approach to determine the number of Tg of loading needed from each source region to produce optimal agreement 
against constraints on the seasonal DAOD over areas proximal to major dust source regions.  280 

We use joint observational-modeling constraints on regional DAOD at 550 nm from Ridley et al. (2016). This study 
used three different satellite AOD retrievals – from the Multi-angle Imaging Radiometer (MISR) and the Moderate 
Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites - and bias-corrected those 
satellite data using more accurate ground-based aerosol optical depth measurements from AERONET. Ridley et al. 
(2016) then used an ensemble of global model simulations to obtain the fraction of AOD that is due to dust in 15 285 
regions for which AOD is dominated by dust. Ridley et al. (2016) thus leveraged the strengths of these different 
tools by combining the accuracy of ground-based measurements with the global coverage of satellite retrievals and 
the ability of models to distinguish between different aerosol species. Furthermore, by averaging the resulting 
DAOD over large areas and long time periods (2004-2008 for each season), this study minimized representation 
errors that can affect model comparisons to data (Schutgens et al., 2017). An additional strength of the Ridley et al. 290 
(2016) analysis is that it propagates a range of uncertainties that are both observationally and modeling based, and 
which we propagate into our own analysis (see Sect. 2.5). Nonetheless, the Ridley et al. (2016) data are subject to 
some important limitations discussed further in Sect. 5.1. 

Although we consider the Ridley et al. (2016) constraints on DAOD to be more accurate than constraints from 
individual satellite products, AERONET data, or aerosol reanalysis products, this study’s results for the Southern 295 
Hemisphere (SH) are susceptible to substantial biases. This is because dust makes up a substantially lower fraction 
of total AOD in the SH than for the main Northern Hemisphere (NH) source regions (e.g., Fig. S2 in Kok et al., 
2014a). Therefore, we did not use the Ridley et al. (2016) results for the SH and instead used the seasonally 
averaged DAOD estimated by Adebiyi et al. (2020) over the three SH regions. These DAOD constraints are based 
on an ensemble of four aerosol reanalysis products, namely the Modern-Era Retrospective analysis for Research and 300 
Applications, Version 2 (MERRA-2; Gelaro et al., 2017), the Navy Aerosol Analysis and Prediction System 
(NAAPS; Lynch et al., 2016), the Japanese Reanalysis for Aerosol (JRAero; Yumimoto et al., 2017), and the 
Copernicus Atmosphere Monitoring Service (CAMS) interim Reanalysis (CAMSiRA; Flemming et al., 2017). The 
resulting regional DAOD product also includes an error estimation based partially on the spread in DAOD in the 
four reanalysis products. In addition, we added a region over North America, for which Ridley et al. (2016) did not 305 
obtain results, and for which we also use the reanalysis-based results of Adebiyi et al. (2020). In total, we thus have 
constraints with error estimates on the seasonal and area-averaged DAOD over 15 regions (see Fig. 2b and Table 2). 

Table 2. Constraints on seasonal dust aerosol optical depth (DAOD) at 550 nm averaged over 15 regions. Regional DAOD 
constraints for regions 1-11 are from Ridley et al. (2016) and were obtained using data from AERONET, MODIS, MISR, and a 
model ensemble. Regional DAOD constraints for regions 12-15 are from Adebiyi et al. (2020) and were obtained from an 310 
ensemble of aerosol reanalysis products. All constraints use data for the years 2004-2008. 

Region 
number p 

Region 
name 

Region 
coordinates 

DJF MAM JJA SON 

1 Mid-Atlantic 20 - 50° W;  
4 – 40° N 

0.064 ± 0.013 0.106 ± 0.008 0.143 ± 0.005 0.084 ± 0.006 

2 African West 
Coast 

20 – 5° W;  
10 – 34° N 

0.180 ± 0.010 0.250 ± 0.019 0.365 ± 0.016 0.233 ± 0.022 

3 Northern 
Africa 

5° W – 30° E; 
26 – 40° N 

0.118 ± 0.011 0.219 ± 0.010 0.207 ± 0.016 0.151 ± 0.016 

4 Mali/Niger 5° W – 10° E;  
10 – 26° N 

0.257 ± 0.019 0.441 ± 0.022 0.462 ± 0.044 0.277 ± 0.023 

5 Bodele/Suda
n 

10 – 40° E;  
10 – 26° N 

0.191 ± 0.006 0.339 ± 0.023 0.310 ± 0.018 0.212 ± 0.021 

6 Northern 
Middle East 

30 – 50° E;  
26 – 40° N 

0.112 ± 0.011 0.223 ± 0.011 0.164 ± 0.015 0.113 ± 0.019 

7 Southern 
Middle East 

40 – 67.5° E;  
0 – 26° N 

0.123 ± 0.018 0.204 ± 0.021 0.330 ± 0.044 0.150 ± 0.020 

8 Kyzyl Kum 50 – 67.5° E;  
26 – 50° N 

0.115 ± 0.017 0.176 ± 0.026 0.154 ± 0.034 0.101 ± 0.018 

9 Thar 67.5 – 75° E;  0.130 ± 0.029 0.238 ± 0.033 0.319 ± 0.029 0.135 ± 0.037 
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20 – 50° N 
10 Taklamakan 75 – 92.5° E;  

30 – 50° N 
0.119 ± 0.013 0.275 ± 0.027 0.171 ± 0.026 0.104 ± 0.011 

11 Gobi 92.5 – 115° E; 
 36 – 50° N 

0.093 ± 0.022 0.192 ± 0.022 0.102 ± 0.035 0.047 ± 0.021 

12 North 
America 

80 – 130° W; 
20 – 45° N 

0.010 ± 0.005 0.029 ± 0.011 0.028 ± 0.010 0.012 ± 0.006 

13 South 
America 

80 – 55° W;  
0 – 55° S 

0.019 ± 0.011 0.013 ± 0.007 0.010 ± 0.006 0.016 ± 0.009 

14 Southern 
Africa 

10 – 40° E;  
10 – 35° S 

0.016 ± 0.007 0.011 ± 0.005 0.013 ± 0.005 0.016 ± 0.007 

15 Australia 110 – 160° E;  
10 – 40° S 

0.025 ± 0.013 0.013 ± 0.006 0.010 ± 0.005 0.023 ± 0.011 

 

We then used an inverse modeling approach to determine the optimal combination of dust loadings from the nine 
source regions (denoted with subscript r) that minimizes the disagreement against the DAOD constraint of these 15 
observed regions (denoted with subscript p) for each season. We thus need to account for the contribution of each of 315 
the nine source regions (Fig. 2a) to the DAOD in each of these 15 observed regions. The seasonally averaged 
DAOD over the observed region p is  

𝜏𝜏�̅�𝑠
𝑝𝑝 = ∑ 𝐽𝐽𝑟𝑟,𝑠𝑠

𝑝𝑝 𝐿𝐿�𝑟𝑟,𝑠𝑠
𝑁𝑁sreg
𝑟𝑟=1 , (5) 

where 𝜏𝜏�̅�𝑠
𝑝𝑝 is the DAOD averaged over observed region p and season s, and 𝐽𝐽𝑟𝑟,𝑠𝑠

𝑝𝑝  (Tg-1) is the Jacobian matrix of �̆�𝜏𝑟𝑟,𝑠𝑠
𝑝𝑝  

with respect to 𝐿𝐿�𝑟𝑟,𝑠𝑠, where �̆�𝜏𝑟𝑟,𝑠𝑠
𝑝𝑝  denotes the area-averaged and seasonally averaged DAOD over observed region p 

that is produced by dust from source region r. The Jacobian matrix 𝐽𝐽𝑟𝑟,𝑠𝑠
𝑝𝑝  is the area-weighted DAOD over observed 320 

region p that is produced per unit of bulk dust loading originating from source region r in season s. We obtain 𝐽𝐽𝑟𝑟,𝑠𝑠
𝑝𝑝  by 

integrating Eq. (1) over Ap, the area of the observed region p (Table 2), 

𝐽𝐽𝑟𝑟,𝑠𝑠
𝑝𝑝 = 𝜕𝜕𝜏𝜏�𝑟𝑟,𝑠𝑠

𝑝𝑝

𝜕𝜕𝐿𝐿�𝑟𝑟,𝑠𝑠
=

∫ ∑ 𝜖𝜖�𝑘𝑘�̆�𝑓𝑟𝑟,𝑘𝑘𝑙𝑙𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)𝑁𝑁bins
𝑘𝑘 𝑑𝑑𝑑𝑑 

𝐴𝐴𝑝𝑝

∫ 𝑑𝑑𝑑𝑑 
𝐴𝐴𝑝𝑝

. 
(6) 

The seasonally averaged globally integrated dust loading generated by each source region (𝐿𝐿�𝑟𝑟,𝑠𝑠) is thus determined 
from the number of units of dust loading from each source region r that results in best agreement against the 
constraint on DAOD (𝜏𝜏�̅�𝑠

𝑝𝑝) over the 15 observed regions. Eq. (5) thus represents a system of equations for each 325 
simulation in our global model ensemble, which we can write in explicit matrix form for clarity, 

�𝜏𝜏�̅�𝑠1 𝜏𝜏�̅�𝑠2 ⋯ 𝜏𝜏�̅�𝑠
𝑁𝑁τ,reg� = �𝐿𝐿�1,𝑠𝑠 𝐿𝐿�2,𝑠𝑠 ⋯ 𝐿𝐿�𝑁𝑁sreg,𝑠𝑠�

⎣
⎢
⎢
⎢
⎢
⎡ 𝐽𝐽1,𝑠𝑠

1 𝐽𝐽1,𝑠𝑠
2 ⋯ 𝐽𝐽1,𝑠𝑠

𝑁𝑁τ,reg

𝐽𝐽2,𝑠𝑠
1 𝐽𝐽2,𝑠𝑠

2 ⋯ 𝐽𝐽2,𝑠𝑠
𝑁𝑁τ,reg

⋮ ⋮ ⋱ ⋮
𝐽𝐽𝑁𝑁sreg,𝑠𝑠
1 𝐽𝐽𝑁𝑁sreg,𝑠𝑠

2 ⋯ 𝐽𝐽𝑁𝑁sreg,𝑠𝑠
𝑁𝑁τ,reg

⎦
⎥
⎥
⎥
⎥
⎤

. 

 
 

(7) 

We used Eq. (7) to obtain the seasonally averaged global dust loading generated by each source region. Specifically, 
for each season s we used the simplex search optimization method (Lagarias et al., 1998) to determine the nine 
values of 𝐿𝐿�𝑟𝑟,𝑠𝑠 that minimize the summed squared deviation (𝜒𝜒𝜏𝜏2) between the 15 DAOD constraints and the 
corresponding regional DAOD calculated from Eq. (7). That is (e.g., Cakmur et al., 2006), 330 

𝜒𝜒𝜏𝜏2 = ∑ ∑ �𝐿𝐿�𝑟𝑟,𝑠𝑠𝐽𝐽𝑟𝑟,𝑠𝑠
𝑝𝑝 − 𝜏𝜏�̅�𝑠

𝑝𝑝�2𝑁𝑁sreg
𝑟𝑟

𝑁𝑁τ,reg 
𝑝𝑝=1 , (8) 

where Nτ,reg = 15 and 𝑁𝑁τ,reg = 9. Because the variables in Eqs. (1)-(8) are interdependent, we iterated these equations 
until convergence was achieved.  

2.4. Obtaining constraints on DAOD, emission, loading, deposition, and concentration 

After constraining the seasonal dust loading 𝐿𝐿�𝑟𝑟,𝑠𝑠 generated by each source region, we now obtain the 2D DAOD and 
the size-resolved dust loading, emission and deposition fluxes, and 3D concentration. We do so by using the fact that 335 
other dust cycle components (DAOD, concentration, deposition) scale linearly with dust loading because our model 
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simulations are driven by reanalysis products (Table 1), such that dust does not impact the meteorology. Each dust 
field can therefore be obtained by multiplying the simulated normalized dust field (e.g., seasonal dust concentration 
per unit dust loading) by the number of units of dust loading per source region and season (𝐿𝐿�𝑟𝑟,𝑠𝑠).  

The 2D DAOD is then: 340 

�̆�𝜏𝑠𝑠(𝜃𝜃,𝜙𝜙) = ∑ 𝐿𝐿�𝑟𝑟,𝑠𝑠𝐽𝐽𝑟𝑟,𝑠𝑠(𝜃𝜃,𝜙𝜙)𝑁𝑁sreg
𝑟𝑟=1 . (9) 

The size-resolved and bulk dust loadings are respectively: 

𝑙𝑙𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) = ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠𝑙𝑙𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)𝑁𝑁sreg
𝑟𝑟=1 , and (10) 

𝑙𝑙𝑠𝑠(𝜃𝜃,𝜙𝜙) = ∑ ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠𝑙𝑙𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)𝑁𝑁sreg
𝑟𝑟=1

𝑁𝑁bins
𝑘𝑘=1 . (11) 

Similarly, the 3D size-resolved and bulk concentrations produced by each source region are: 

�̆�𝐶𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙,𝑃𝑃) = ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠�̃�𝐶𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙,𝑃𝑃)𝑁𝑁sreg
𝑟𝑟=1 , and (12) 

�̆�𝐶𝑠𝑠(𝜃𝜃,𝜙𝜙,𝑃𝑃) = ∑ ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠�̃�𝐶𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙,𝑃𝑃)𝑁𝑁sreg
𝑟𝑟

𝑁𝑁bins
𝑘𝑘=1 , (13) 

where P is the vertical pressure level. And the size-resolved and bulk emission fluxes are: 

𝐹𝐹�𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) = ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠𝐹𝐹�𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)𝑁𝑁sreg
𝑟𝑟=1 , and (14) 

𝐹𝐹�𝑠𝑠(𝜃𝜃,𝜙𝜙) = ∑ ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠𝐹𝐹�𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)𝑁𝑁sreg
𝑟𝑟

𝑁𝑁bins
𝑘𝑘=1  . (15) 

Finally, the size-resolved and bulk deposition fluxes are: 

𝐷𝐷�𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) = ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠𝐷𝐷�𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)𝑁𝑁sreg
𝑟𝑟=1 , and (16) 

𝐷𝐷�𝑠𝑠(𝜃𝜃,𝜙𝜙) = ∑ ∑ 𝑓𝑓𝑟𝑟,𝑘𝑘𝐿𝐿�𝑟𝑟,𝑠𝑠𝐷𝐷�𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙)𝑁𝑁sreg
𝑟𝑟

𝑁𝑁bins
𝑘𝑘=1 . (17) 

See the glossary for further descriptions of each variable. In our companion paper, to be submitted soon, we further 345 
partition these fields into the originating source region. 

2.5. Improved model and inverse model results with uncertainty 

The results represented by Eqs. (9)-(17) require realizations of the various inputs (Fig. 1), which include both model 
fields and constraints on dust properties and abundance. Because each of these inputs is uncertain, and as such is 
represented by a probability distribution, we obtained two products that sample different aspects of this uncertainty 350 
of the inputs, namely “improved model” results and “inverse model” results. 

First, we obtained “improved model” results by sampling over different realizations of observational constraints on 
dust properties and abundance but using the output of only a single model. That is, we solved Eqs. (1)-(17) a large 
number of times (100; limited by computational resources), and for each iteration we drew a random realization of 
each of the observational constraints but used simulation results from a single model. This procedure thus includes a 355 
random drawing of realizations of the globally averaged dust size distribution (𝑑𝑑𝑉𝑉

�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

), the extinction efficiency 
(𝑄𝑄�ext(𝐷𝐷)), the particle density (�̅�𝜌𝑑𝑑), and the observed regional DAOD (𝜏𝜏�̅�𝑠

𝑝𝑝). As such, the improved model results 
represent output from a single model (see Table 1) for which DAOD is calculated from loading using the 
observational constraint on extinction efficiency (Eq. (4)), and for which the contributions from different source 
regions and particle bins are added in such a way to simultaneously match observational constraints on the dust size 360 
distribution (Eq. (2)) and DAOD (Eq. (8)). 

Second, we obtained our main product, namely the “inverse model” product that represents the optimal 
representation of the global dust cycle. We obtained this product by similarly sampling over different realizations of 
the input fields, but now including a random drawing of one of the six global model simulations in each of the 
bootstrap iterations. This additional step propagates uncertainty in model predictions of the normalized size-resolved 365 
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dust loading, concentration, and deposition fields into our results (Eqs. (9)-(17)). Because different models use 
different particle size bins (Table 1), we convert the size-resolved results from each bootstrap iteration to common 
particles size bins of 0.2-0.5, 0.5-1, 1-2.5, 2.5-5, 5-10, and 10-20 µm. We do so by assuming that sub-bin 
distributions follow the constraint on the globally averaged dust loading (Fig. 1). This assumption will introduce 
some further error in size-resolved results. For both the inverse model and improved model products, we retained 370 
only those bootstrap iterations that produced a root-mean-squared error of less than 0.05 relative to the DAOD 
constraints; this quality control retained approximately three quarter of the iterations. 

In drawing the realizations of seasonally averaged observed DAOD (𝜏𝜏�̅�𝑠
𝑝𝑝), we need to account for correlations of 

errors between different seasons and regions. Specifically, some of the errors in the calculation of the DAOD in 
Ridley et al. (2016) and Adebiyi et al. (2020) are systematic, such as errors in satellite retrieval algorithms and 375 
systematic model errors in simulations of (dust and non-dust) aerosols. These errors are thus at least partially 
correlated between seasons and regions, although we cannot establish the exact degree of correlation. We can thus 
roughly divide the errors into three different categories: errors that are completely random between seasons and 
regions, systematic errors that are correlated between different seasons for the same region, and systematic errors 
that are correlated across regions for a given season. The sum of the squared contributions of these three errors 380 
equals the square of the total error 𝜎𝜎�𝑠𝑠

𝑝𝑝 reported in Table 2. Since we cannot determine what the relative contribution 
of each of these three types of errors is, we assume that the contribution of each of these three errors is equal. 
Although the uncertainty in our results as quantified from the bootstrap procedure increases if a larger fraction of the 
DAOD error is assumed to be systematic, the median results presented in Sect. 4 are not sensitive to the partitioning 
of this error. The details of the mathematical treatment for calculating these errors are provided in the Supplement.  385 

The bootstrap procedure used in the inverse model product propagates all the quantified random and systematic 
errors present in the inputs. Nonetheless, it cannot account for systematic biases in these inputs, such as the tendency 
of models to underestimate coarse dust lifetime (Ansmann et al., 2017; van der Does et al., 2018; Adebiyi et al., 
2020). As such, the obtained uncertainty ranges should be interpreted as a lower bound on the actual uncertainty. 

3. Comparison of inverse model results against independent measurements and model simulations 390 

We evaluate the results of the inverse model described in the previous section using independent measurements of 
dust surface concentration and deposition fluxes (Sect. 3.1). We also compare the inverse model results against the 
ensemble of AeroCom Phase 1 global dust cycle simulations (Huneeus et al., 2011) and the MERRA-2 dust product 
(Sect. 3.2).  

3.1. Independent dust measurements used to evaluate the inverse model 395 

We use two sets of independent measurements to evaluate the ability of the inverse model to reproduce the global 
dust cycle. The first data set is a compilation of dust surface concentration measurements. Of the 27 total stations in 
this compilation, 22 are measurements of the bulk dust surface concentration taken in the North Atlantic from the 
Atmosphere–Ocean Chemistry Experiment (AEROCE; Arimoto et al., 1995) and taken in the Pacific Ocean from 
the sea–air exchange program (SEAREX; Prospero et al., 1989) for observation periods noted in Table 2 of Wu et 400 
al. (2020). These data were obtained by drawing large volumes of air through a filter. To reduce the effects of 
anthropogenic aerosols, measurements were only taken when the wind was onshore and in excess of 1 m/s (Prospero 
et al., 1989). The mineral dust fraction of the collected particulates was determined either by burning the sample and 
assuming the ash residue to represent the mineral dust fraction, or from their Al content (assumed to be 8% for 
mineral dust, corresponding to the Al abundance in Earth’s crust) (Prospero, 1999). Note that since these 405 
measurements were taken during the period 1981-2000, the dust surface concentration “climatology” obtained from 
these measurements is for a different time period than that of the model simulations used in the inverse model (Table 
1). 

Since most of the AEROCE and SEAREX stations are located far downwind of source regions, we also added a data 
set of dust surface concentration in the Sahel from the African Monsoon Multidisciplinary Analysis (AMMA; Lebel 410 
et al., 2010; Marticorena et al., 2010). This data set contains measurements over 5-10 years of the surface 
concentration of aerosols with aerodynamic diameter ≤ 10 µm (PM10,aer) at four stations in the western Sahel 
(M’Bour, Bambey, Cinzana, and Banizoumbou; see http://www.lisa.u-pec.fr/SDT/). As with the AEROCE and 
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SEAREX data sets, only measurements were used for which the wind direction was predominantly coming from 
dust-dominated regions. As such, these measurements have at least two systematic errors: (i) the AMMA data 415 
reported the concentration of all particulate matter, so taking these measurements as being of dust concentration 
overestimates the true dust concentration, and (ii) measurements taken when wind was not coming from a dust-
dominated region were omitted, which could also cause an overestimation of the dust concentration. To mitigate the 
effect of this second error, we only use seasonally averaged dust concentrations for which >70% of data was 
retained. This resulted in the omission of the Winter and Spring seasons at the Bambey station. 420 

Following Huneeus et al. (2011) and Wu et al. (2020), we additionally added surface concentration measurements of 
PM10,aer dust from a long-term (May 1995-December 1996) filter-based deployment in Jabiru, in northern Australia 
(Vanderzalm et al., 2003). However, unlike Huneeus et al. (2011) and Wu et al. (2020), we do not use data obtained 
using a similar methodology in Rokumechi (Zimbabwe) because most of the dust at this site originated locally from 
within and near the national park where the station was located (p. 2649 in Nyanganyura et al., 2007). 425 

To use the measurements of PM10,aer dust in Jabiru and the Sahel, we obtained the PM10,aer dust concentration for 
those models with size-resolved surface concentrations, namely the inverse model and each model in our ensemble. 
We did so by first obtaining the geometric diameter that corresponds to an aerodynamic diameter of 10 µm, which is 
DPM10aer = 𝑐𝑐aer ∙ 10 μm = 6.8 μm. This uses the conversion factor 𝑐𝑐aer = 0.68 from Huang and Kok (2018), who 
accounted for the effects of particle shape (Huang et al., 2020) and density to link the aerodynamic and geometric 430 
diameters. For each model, we then summed the contributions from particle bins with diameters smaller than 
DPM10aer and used a correction factor cPM10,aer for particle size bins that straddle DPM10aer. This correction factor uses 
the result from Adebiyi and Kok (2020) that the globally averaged dust size distribution (𝑑𝑑𝑉𝑉

�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

) is approximately 
constant in the range of 5 - 20 µm, such that the fractional contribution to the PM10,aer concentration of a bin that 
straddles DPM10aer can be approximated as 435 

𝑐𝑐PM10,aer =  
ln(𝐷𝐷PM10aer/𝐷𝐷𝑘𝑘−)

ln(𝐷𝐷𝑘𝑘+/𝐷𝐷𝑘𝑘−) , 
 

(18) 

where 𝐷𝐷𝑘𝑘− and 𝐷𝐷𝑘𝑘+ are respectively the lower and upper limits of the particle size bin that straddles 10 µm 
aerodynamic diameter (D = 6.8 µm). 

The second independent data set that we used to evaluate the inverse model results is a compilation (110 stations) of 
the deposition flux of dust with geometric diameter ≤ 10 µm (PM10) from Albani et al. (2014). This study merged 
data from previous data sets (Ginoux et al., 2001; Tegen et al., 2002; Lawrence and Neff, 2009; Mahowald et al., 440 
2009) and adjusted these data to cover the 0.1 – 10 µm geometric diameter range. We obtained the PM10 deposition 
flux for the inverse model, the MERRA-2 data, and for each model in our ensemble following the approach above 
for the PM10,aer concentration data. Note that we cannot correct the concentration and deposition flux of the 
AeroCom Phase I models (next section) to the PM10,aer and PM10 size ranges because of a lack of size-resolved 
simulation data. We thus used the bulk concentration and deposition fluxes as many of these models simulated the 445 
PM10 size range (see Table 3 in Huneeus et al., 2011).  

3.2. Comparison of inverse model results against AeroCom models and MERRA-2  

In order to compare the inverse model’s representation of the global dust cycle against climate and chemical 
transport model simulations, we used the results of an ensemble of simulations for which the prognostic dust cycles 
were analyzed in detail, namely the AeroCom Phase I simulations of the dust cycle in the year 2000 (Huneeus et al., 450 
2011). As such, the AeroCom simulations were obtained for a year closer to the time period in which most 
concentration and deposition measurements were taken (see above). We do not use newer AeroCom Phase II and 
Phase III simulations because only the dust component of Phase I models has been analyzed in detail. We 
furthermore also do not use recently analyzed dust cycle results from CMIP5 models (Pu and Ginoux, 2018; Wu et 
al., 2020) because less than half of CMIP5 models with prognostic dust cycles reported total deposition fluxes, 455 
which are needed for the analyses against measurements (see previous section). In addition, many CMIP5 models 
did not include a prognostic dust cycle and instead read in pre-calculated dust emissions (Lamarque et al., 2010). 
But note that CMIP5 model errors against measurements are similar to those for AeroCom models and those for our 
model ensemble (e.g., compare Figs. 8 and 9 in Wu et al. (2020) against Figs. S9, S10, S12, and S13). 
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We analyzed the AeroCom Phase 1 model results to obtain the seasonally and annually averaged DAOD at 550 nm, 460 
the dust surface concentration, and the annually averaged total (wet and dry) deposition fluxes for comparisons 
against measurements and the inverse model results. We also obtained the globally integrated annually averaged 
dust emission flux, dust loading, and DAOD. We obtained these variables for each of the 13 AeroCom simulations 
available from the online AeroCom database (see https://aerocom.met.no/; this repository does not contain the 14th 
model simulation analyzed in Huneeus et al., from the ECMWF model, which is thus omitted here).  465 

We also analyzed the MERRA-2 dust product (Gelaro et al., 2017) in order to compare the inverse model’s 
representation of the global dust cycle against a leading aerosol reanalysis product. We obtained the same variables 
from the MERRA-2 data as from the AeroCom data, except that we analyzed the MERRA-2 data for the years 2004-
2008 to coincide with the regional DAOD constraints (Table 2).  

We quantified the agreement of the various models against measurements using Taylor diagrams (Taylor, 2001) and 470 
by the correlation coefficients, bias, and root-mean-squared errors (RMSE). Because the surface concentration and 
deposition flux measurements span several orders of magnitude, their RMSEs are calculated in log-space. We 
furthermore quantified overall model agreement against measurements by calculating the normalized error Φ𝑚𝑚 
against the available data for each hemisphere: 

Φ𝑚𝑚
NH =

1
3

⎝

⎜
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Φ𝑚𝑚
SH =
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(20) 

where n and m index the different models, which include the inverse model, MERRA-2, the 6 model ensemble 475 
members, and the 13 AeroCom models, such that Nmodel = 21. Further, S denotes the RMSE of a model simulation 
with the DAOD (subscript 𝜏𝜏), surface concentration (subscript conc), and deposition flux (subscript dep) data sets on 
the annual timescale. These data are split into data sets for the Northern Hemisphere (superscript NH) and Southern 
Hemisphere (superscript SH). For the SH, there are no accurate observational constraints on DAOD available (see 
Sect. 2.3) so we calculate the error relative to only the surface concentration and deposition flux data sets. Note that 480 
Φ𝑚𝑚 is defined such that Φ𝑚𝑚 = 1 implies that a model is average among the 21 models in reproducing the global dust 
cycle. The lower Φ𝑚𝑚 is, the more accurately it reproduces measurements and observations of the various aspects of 
the global dust cycle. 

4. Results 

We first evaluate our methodology by verifying that the inverse model obtains improved agreement against the 485 
observed regional DAOD used in the inverse model (Sect. 4.1). We then obtain the predictions of the inverse model 
for the main properties of the global dust cycle, namely DAOD, dust emission, dust column loading, dust surface 
concentration, and dust deposition flux (Sect. 4.2). Subsequently, we evaluate whether the integration of 
observational constraints on dust properties and abundance indeed yields an improved representation of the global 
dust cycle by comparing our results against independent measurements and observations in the NH (Sect. 4.3.1) and 490 
the SH (Sect. 4.3.2).  

4.1. Evaluation of inverse model results against observed regional DAOD  

To verify the viability of our methodology, we first compare the inverse model’s DAOD against the observationally 
constrained seasonal DAOD of 15 regions (Table 2). As is expected from the inverse modeling methodology, the 
error is substantially reduced compared to the unmodified ensemble of simulations for all seasons (Figs. 3a-d). This 495 
decrease in error is particularly pronounced over North Africa, which we characterized using three different source 
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regions (western North Africa, eastern North Africa, and the Sahel; Fig. 2a), and which shows a decrease in the 
RMSE of a factor of approximately three to five, depending on the season. Note that the DAOD in the mid-Atlantic 
region is nonetheless systematically underestimated by both the models in our ensemble and the inverse model. This 
is a common problem in models that is likely in part due to too fast removal in models (Ridley et al., 2012; Yu et al., 500 
2019). The RMSE over the relatively minor dust source regions of North America, Australia, South America, and 
Southern Africa is similarly reduced by about a factor of five. For the East Asia and Middle East & Central Asia 
regions, the decrease in RMSE is about a factor of one-and-a-half to two. This relatively smaller decrease in the 
RMSE likely occurs because we used only one source region each for both these relatively extensive source regions. 
Consequently, our procedure is unable to eliminate some biases of the model ensemble in these regions, such as an 505 
underestimation of DAOD in the Thar desert, which could be due to model underestimations of emissions in this 
region (Shindell et al., 2013). Future work could thus improve upon our results by using more source regions to 
better constrain the contributions of the Middle East and Asian source regions to the global dust cycle.  

Overall, our procedure achieves a substantial reduction of the total DAOD error summed over the fifteen regions, 
reducing the RMSE by over a factor of two, from 0.092 to 0.041. This reduction in error is expected, as our 510 
methodology minimized the error against these regional DAOD data. Moreover, we find that the reduced chi 
squared statistic, which is of order 1 for a model that captures observations within the uncertainties (Bevington and 
Robinson, 2003), is indeed less than 1 for all seasons except boreal Spring. This implies that our methodology 
results in good agreement with the observational DAOD constraints. Further, the ability of the inverse model to 
reproduce the spatial pattern of DAOD is also substantially improved relative to both the six models in the model 515 
ensemble and the AeroCom Phase I models (Figs. 3e, f), and is similar to that of the MERRA-2 dust product, which 
assimilates satellite and ground-based AOD observations (Buchard et al., 2017; Gelaro et al., 2017; Randles et al., 
2017).  
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Figure 3. Assessment of the effectiveness of the inverse model in reducing errors against observational constraints on 525 
regional dust aerosol optical depth (DAOD). (a-d) Comparisons of the 15 observational constraints on regional DAOD (purple 
squares) against the inverse model results (blue circles) and the models in our ensemble (brown numbers; 1 = CESM, 2 = 
IMPACT, 3 = GISS ModelE2, 4 = GEOS/GOCART, 5 = MONARCH, 6 = INCA) for each of the four seasons. Results are 
grouped by the major source region nearest to each of the observed regions. Also listed are the root-mean-squared errors for each 
regional group for both the inverse model and model ensemble results, and the reduced chi squared metric (𝜒𝜒𝑣𝑣) for the 530 
comparisons of the inverse model results against all 15 DAOD constraints. Error bars denote one standard error. (e) Taylor 
diagram summarizing the statistics of the comparison against the seasonally averaged regional DAOD constraints for the 
different models (Taylor, 2001). The different symbols represent the measurements (purple triangle), the 13 AeroCom models 
(black letters; A = CAM, B = GISS ModelE, C = GOCART, D = SPRINTARS, E = MATCH, F = MOZGN, G = UMI, H = 
LOA, I = UIO_CTM, J = LSCE, K = ECHAM5, L = MIRAGE, M = TM5), the MERRA-2 dust product (red “R”), the six models 535 
in the model ensemble (brown numbers, as for panels a-d), the six improved model results (green numbers with a prime), and the 
inverse model results (blue star). The horizontal axis shows the standard deviation of the data set or model prediction, the curved 
axis shows the correlation, and the grey half-circles denote the centered root-mean-squared difference between the observations 
and the model predictions. As such, the distance between a model and the observations is a measure of the model’s ability to 
reproduce the spatiotemporal variability in the observations; Taylor diagrams do not capture biases between model predictions 540 
and observations. (f) Same as panel (b), except showing a comparison against the annually averaged regional DAOD constraints. 

4.2. Inverse modeling results of key aspects of the global dust cycle 

We present inverse model results for the dust emission rate, DAOD, column-integrated dust loading, dust surface 
concentration, and dust deposition flux (Table 3, Fig. 4) and compare these inverse model results against 
independent measurements in Sect. 4.3. We also provide median estimates with uncertainty of the main size-545 
resolved properties of the global dust cycle (Fig. 5). 
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Figure 4. Predictions of key aspects of the global dust cycle. Shown are inverse model results for (a) annual dust emission rate, 550 
(b) annual dust AOD, (c) column-integrated dust loading, (d) dust surface concentration, and (e) dust deposition flux. Seasonally 
resolved predictions for each of these variables are shown in Figs. S2-S6. The symbols in (d) and (e) show the locations and 
values of the independent surface concentration and deposition flux measurements used for evaluation of the inverse model in 
Sect. 4.3 (also see Figs. 2c, d). 

Our results indicate that the global emission rate and loading of dust with geometric diameter D ≤ 20 µm (PM20) are 555 
larger than most models account for. AeroCom models reported an ensemble median global dust emission rate of 1.6 
× 103 Tg/year (one standard error range: 1.0-3.2 × 103 Tg/year) and CMIP5 models reported a value of 2.7 (1.7-3.7) 
× 103 Tg/year; both these ensembles included a mix of models simulating dust up to diameters of 10 µm or more 
(see Fig. S7). Our results indicate that the global emission rate of PM20 dust is 4.6 (3.4-9.1) × 103 Tg/year. This 
larger global dust emission rate is primarily due to two reasons. First, our methodology accounts for dust up to a 560 
geometric diameter of 20 µm, which is a larger size range than accounted for in many AeroCom and CMIP5 models 
(Huneeus et al., 2011; Wu et al., 2020; Fig. S7) and thus results in a larger bulk dust emission flux. Accounting for 
this larger size range is desirable because observations indicate that ~30% of PM20 dust loading consists of coarse 
dust with 10 ≤ D ≤ 20 µm (Ryder et al., 2019; Adebiyi and Kok, 2020; Fig. 5b). Because this coarse dust has a 
shorter lifetime [1.0 (0.4-1.8) days; Fig. 5e] than finer dust, we find that dust with 10 ≤ D ≤ 20 µm accounts for 565 
~65% of the total PM20 dust emission flux, which corresponds to 2.9 (1.8-6.5) × 103 Tg/year (Fig. 5a). This ~65% 
relative contribution of the 10 ≤ D ≤ 20 µm size range is substantially larger than that inferred from size-resolved 
measurements of the emitted dust flux (Huang and Kok, 2018). In order to match in situ atmospheric dust size 
distributions, current models thus need to emit more coarse dust than determined from emitted dust flux 
measurements, which further supports the inference from multiple previous investigations that coarse dust deposits 570 
too quickly in atmospheric models (Maring et al., 2003; Ansmann et al., 2017; Weinzierl et al., 2017; van der Does 
et al., 2018). Although the small MEE of coarse dust [0.13 (0.12-0.15) m2/g; Fig. 5f] causes it to account for only a 

https://doi.org/10.5194/acp-2020-1131
Preprint. Discussion started: 23 November 2020
c© Author(s) 2020. CC BY 4.0 License.



18 
 

small fraction [7.2 (5.7-9.3) %; Fig. 5d] of mid-visible (550 nm) DAOD, dust with 10 ≤ D ≤ 20 µm is nonetheless 
radiatively important because it accounts for much larger fractions of dust absorption of shortwave radiation and 
extinction of longwave radiation (Tegen and Lacis, 1996; Samset et al., 2018; Ryder et al., 2019). 575 

The second reason that PM20 emission fluxes are larger than accounted for in most models is that observations have 
shown that many models have a bias towards fine dust (Kok, 2011b; Ansmann et al., 2017; Adebiyi and Kok, 2020). 
Indeed, models that do include dust up to 20 µm geometric diameter tend to underestimate the global PM20 dust 
emission rate relative to our results (Fig. S7). Because coarse dust has a shorter lifetime and a lower MEE (Figs. 5e, 
f), correcting this fine-dust bias requires a substantially larger total emission flux to match DAOD constraints. Many 580 
of the models in our ensemble partially addressed the fine bias by using the brittle fragmentation theory 
parameterization for the emitted dust flux, which is substantially coarser than other emitted dust size distributions 
(Kok, 2011b). This causes our model ensemble to show a larger emission flux (3.5 (2.7-5.2) × 103 Tg/year) than 
AeroCom models (1.6 (1.0-3.2) × 103 Tg/year), although this increase is also due to these more recent models 
simulating dust out to larger particle diameters (Fig. S7). More recent work has used dozens of in situ measurements 585 
to show that the fine-dust bias in models is even more substantial than previously reported, and specifically that the 
atmospheric loading of coarse dust with D > 5 µm is several times greater than accounted for in most models 
(Adebiyi and Kok, 2020). Generating this even greater loading of coarse dust thus requires a correspondingly larger 
emission flux (Table 3; Fig. 5a). Emission fluxes would be even larger if the maximum size range was extended 
further to include dust with D > 20 µm, which measurements indicate is abundant close to source regions and might 590 
be important for interactions with longwave radiation (Ryder et al., 2013; Ryder et al., 2019). As previously reported 
by Adebiyi and Kok (2020), accounting for the substantial atmospheric loading of coarse dust with 5 ≤ D ≤ 20 µm 
also drives a larger total dust loading, increasing from 20 (12 - 24) Tg obtained by AeroCom models and 17 (14-36) 
Tg obtained by CMIP5 models to 26 (22-30) Tg obtained here (Table 3). Since models indicate that the atmospheric 
loading of non-dust aerosols is around 10 Tg (Textor et al., 2006), dust is likely by far the most dominant aerosol 595 
species by mass, accounting for approximately three quarters of the atmosphere’s total particulate matter loading.  

The constraints on the global dust cycle obtained here are strongest on the DAOD, because our inverse model 
minimizes error with respect to observed regional DAOD (Sect. 4.1). The inverse model then relies on observational 
constraints on the globally averaged dust size distribution and extinction efficiency to link the DAOD to loading per 
source region (Sections 2.2 and 2.3), which adds further uncertainty to our inverse model results. Constraints on dust 600 
emission and deposition fluxes are still more uncertain, because these further depend on results from the ensemble 
of models, such as the spatial pattern of emission within individual source regions, transport, and the size-resolved 
dust lifetime. The lifetime of coarse dust shows especially large variability between models, which adds 
substantially to the uncertainty in PM20 emission and deposition fluxes because coarse dust dominates these fluxes 
(Figs. 5a, b). Consequently, the relative uncertainties in global emission and deposition fluxes are several times 605 
larger than the relative uncertainty in DAOD (Table 3). 

Table 3. Globally integrated annual dust emission rate, loading, DAOD, and mass extinction efficiency. Listed are median 
values, with one standard error ranges listed in parentheses. The AeroCom results are taken from Table 3 in Huneeus et al. 
(2011), and the one standard error range was obtained by eliminating the two highest and lowest values. This leaves the 10 
central values of the 14 model results, which corresponds to the central 71% of model results. The CMIP5 results for the global 610 
dust emission rate and loading were obtained from the analysis of CMIP5 models with prognostic dust cycles by Wu et al. (2020; 
see their Table 3), who did not analyze dust AOD and mass extinction efficiency. For the CMIP5 ensemble we similarly 
eliminated the four extreme values, leaving the 11 central values of the 15 model results, which corresponds to the central 73% of 
model results. For our own model ensemble, we eliminated the two extreme values, leaving the four central values of the six 
model results, which corresponds to the central 67% of model results. Inverse model results are listed for both PM10 and PM20 615 
dust, whereas the size range accounted for by AeroCom and CMIP5 models differs for each model (see Huneeus et al. (2011), 
Wu et al. (2020), and Fig. S7). 

Source Annual dust emission 
and deposition rate 

(× 𝟏𝟏𝟎𝟎𝟑𝟑 Tg/year) 

Dust loading (Tg) DAOD Mass extinction 
efficiency (m2/g) 

AeroCom 
ensemble 

 

1.6 (1.0-3.2) 
 

20 (9-26) 
 

0.029 (0.021-0.035) 
 

0.65 (0.56-0.96) 

CMIP5 
ensemble 

 

2.7 (1.7-3.7) 
 

17 (14-36) 
 

N/A 

 

N/A 
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Model 
ensemble 

 

3.5 (2.7-5.2) 
 

31 (28-35) 
 

0.028 (0.025-0.031) 
 

0.44 (0.40–0.51) 

Inverse  
model PM2.5 

 

0.22 (0.19 – 0.27) 

 

4.4 (3.8-5.0) 

 

0.014 (0.012-0.016) 

 

1.63 (1.50-1.80) 

Inverse  
model PM10 

 

1.8 (1.2-2.9)  

 

18 (16-21) 

for 

0.025 (0.022-0.028) 

 

0.70 (0.63-0.79) 

Inverse  
model PM20

 

 

4.7 (3.3-9.0) 
 

26 (22-31) 
 

0.028 (0.024-0.030) 
 

0.54 (0.46-0.62) 
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Figure 5. Size-resolved properties of the global dust cycle. Shown are the size-resolved (a) global dust emission rate (which 
equals the global dust deposition rate), (b) global dust mass load, (c) global dust number load, (d) global DAOD at 550 nm, (e) 
global dust lifetime, and (f) dust mass extinction efficiency at 550 nm. The right axis of panels (a)-(d) shows the fraction of each 
dust cycle property that is accounted for by each size bin, which was obtained by dividing the simulated quantity in each bin by 625 
the median total for all bins. Error bars denote one standard error. 

4.3. Performance of inverse model results against independent measurements 

After obtaining inverse model results for key aspects of the global dust cycle, we next evaluate the accuracy of this 
representation of the global dust cycle using independent measurements of dust surface concentration and dust 
deposition fluxes (see Sect. 3.1). We divide these results into comparisons for the NH (Sect. 4.3.1) and the SH (Sect. 630 
4.3.2). We do this because we have observationally informed constraints on DAOD for eleven NH regions, and 
therefore expect the inverse model results to show relatively good agreement against independent measurements in 
the NH. In contrast, we do not have observationally constrained DAOD for the SH; instead, the inverse model used 
an ensemble of reanalysis products, whose ensemble members might have similar biases as they assimilate similar 
remote sensing data sets. As such, we expect the inverse model results to show less agreement against independent 635 
measurements in the SH.  

4.3.1. Performance of the inverse model results against independent measurements in the Northern 
Hemisphere 

The inverse model results accurately reproduce the seasonal variation in surface dust at individual sites in the NH, 
capturing all the measurements within the uncertainties (Fig. 6). The inverse model results show an average 640 
correlation coefficient of r = 0.90 with the seasonally averaged measurements at the different sites, which exceeds 
the average correlation coefficient of models in our ensemble (r = 0.85), in the AeroCom ensemble (r = 0.61), and 
the MERRA-2 dust product (r = 0.86). The inverse model results also accurately reproduce the spatial variation in 
dust surface concentration among different locations, as shown by scatter plots comparing predicted and observed 
surface concentrations on seasonal (Fig. 7a) and annual (Fig. 7b) timescales. This strong agreement between the 645 
inverse model results and dust surface concentration is a notable improvement over any of the six models in our 
model ensemble, any of the 13 AeroCom Phase 1 models, and the MERRA-2 dust product. The strong performance 
of the inverse model is due to its improved ability to capture spatial variability in seasonal and annual dust 
concentration, as quantified by Taylor diagrams in Figures 7d and 7e, and because the inverse model results show 
almost no bias against seasonally and annually averaged concentration measurements (Figs. 8a, b). This lack of bias 650 
in capturing the mean dust aerosol state also represents a substantial improvement over models, which show biases 
of up to approximately ±0.3 in logarithmic space, corresponding to a bias of up to a factor of ~2 in linear space. The 
inverse model’s reduction in bias and improved representation of spatiotemporal variability of dust surface 
concentration combine to produce RMSEs (in log space) of only ~0.22 (~65% relative error) against seasonally 
averaged and ~0.12 (~30% relative error) against annually averaged dust surface concentration measurements (Figs. 655 
8c, d). Compared to individual models and MERRA-2, this represents a reduction by a factor of ~1.5-5 in error in 
log space and a reduction by a factor of ~2-10 in relative error.  
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 660 

 
Figure 6. Comparison of measured and modeled seasonally averaged dust surface concentrations at 15 Northern 
Hemisphere stations. The inverse model results (blue line and squares) capture the measured seasonal variability (orange line 
and circles) at all stations, with lower error (see Fig. 8c) and on average higher correlation coefficients than MERRA-2 (red line 665 
and diamonds), models in the AeroCom ensemble (black dotted lines and letters), and (unmodified) models in our ensemble 
(brown dashed lines and numbers). Also shown are the mean correlation coefficients between measurements and the different 
AeroCom models (rAeroCom) and the different models in our ensemble (rmodels), and the correlation coefficients for MERRA-2 (rR) 
and the inverse model results (rIM). Uncertainty ranges on measurements and the inverse model results represent one standard 
error on the climatological seasonally averaged surface concentration. The legend for individual models is given in Fig. 3, and x-670 
values are offset slightly for clarity. 
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We find that the inverse model results also show good agreement against the compilation of NH deposition flux 
measurements (Fig. 7c). The scatter between measurements and model predictions of deposition fluxes is about an 
order of magnitude larger than for the comparison against surface concentration measurements. This is likely 
partially driven by substantial model errors in deposition (Ginoux, 2003; Huneeus et al., 2011; Yu et al., 2019; 675 
Huang et al., 2020), although the large spread between measurements in similar locations (Figs. 4d, 7c) suggests that 
experimental (e.g., Edwards and Sedwick, 2001) and representation errors (Schutgens et al., 2017) are also 
substantial contributors to the larger disagreement between models and measurements. Nonetheless, the inverse 
model results are in relatively good agreement with deposition measurements (Fig. 7c) and reproduces the spatial 
pattern of deposition flux better than most models (Fig. 7f). Additionally, whereas models in our ensemble and the 680 
AeroCom models show biases against deposition flux measurements of up to approximately ±0.5 in logarithmic 
space, which corresponds to a bias of up to a factor of ~3 in linear space, the inverse model results show a bias close 
to zero (Fig. 8a, b). Overall, the inverse model results show an RMSE of ~0.58, which matches that of the best 
performing models, and is less by ~5-25% relative to other models.  

  685 
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Figure 7. Evaluation of the inverse model results against independent measurements of surface concentration and 
deposition flux in the Northern Hemisphere. Shown are comparisons of inverse model results against (a) seasonal (Winter, 
Spring, Summer, and Fall are respectively denoted by magenta, green, orange, and blue) and (b) annual dust surface 690 
concentration measurements at 15 NH stations, and against (c) a compilation of 77 measurements of the dust deposition flux. 
Results are grouped by regions as shown in Fig. 2. Statistics of the comparisons are noted in the figures and are calculated in log-
space because the measurements span several orders of magnitude. Uncertainties on inverse model results are not shown to avoid 
cluttering the figure, but the uncertainty on the seasonal surface concentration is shown in Fig. 6, and the typical relative 
uncertainty on the deposition fluxes is 50%. Also shown are Taylor diagrams summarizing the statistics of the ability of the 695 
different models to reproduce the spatial variability in the measured fields of (d) seasonal and (e) annual surface concentration, 
and (f) dust deposition flux (Taylor diagrams do not capture biases between model predictions and observations). The different 
symbols represent the measurements (purple triangle), the 13 AeroCom models (black letters), MERRA-2 (red “R”), the six 
models in the model ensemble (brown numbers), the six improved models (green numbers with prime), and the inverse model 
results (large blue star). An exact legend for the different models is provided in Fig. 3.  700 

We further explore the merit of our inverse modeling approach by analyzing the “improved model” results (Sect. 
2.5), which represent output from each of the individual model ensemble members that was corrected using 
observational constraints on dust properties and abundance (Sect. 2). For each of the six ensemble members we find 
that the inverse modeling procedure reduces errors against both NH dust surface concentration and deposition flux 
measurements, with reductions ranging from a few percent to well over a factor of two (Figs. 8c, d). As with the 705 
inverse model results, for most models this is due to both an improvement in the representation of the spatiotemporal 
variability of dust surface concentration and deposition flux (Figs. 7d-f) and a reduction in the bias against both sets 
of measurements (Figs. 8a, b).  

The comparison against independent measurements thus indicates that the inverse model results represent the NH 
dust cycle more accurately than both MERRA-2 and a large number of climate and chemical transport models. This 710 
is quantified in Fig. 8e, which shows the normalized model error for the various models and model ensembles. We 
find that the inverse model results show a normalized error of 0.49, which is well below that of the mean of models 
in our ensemble (1.08) and the AeroCom ensemble (1.22), and also below the MERRA-2 normalized error (0.62). 
Moreover, we find that the average normalized error of improved models is substantially less (0.72) than for the 
unmodified models in our ensemble. These results indicate that our approach of integrating observational constraints 715 
on dust properties and abundance is effective in improving model accuracy. 
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Figure 8. Evaluation of whether integrating observational constraints on dust properties and abundance produces an 720 
improved representation of the Northern Hemisphere dust cycle. Shown are the biases (top panels) and root-mean-squared 
errors (RMSEs; middle panels) in logarithmic space with respect to measurements of (a and c) seasonal dust surface 
concentration and dust deposition flux and of (b and d) annual dust surface concentration and deposition flux. Symbols in panels 
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(a)-(d) denote results for the individual models in the AeroCom ensemble (black letters), MERRA-2 (red “R”), models in our 
ensemble (brown numbers), and the improved models (green italicized numbers). The exact legend for the different models is 725 
given in Figure 3, and stars denote the mean bias and RMSE for models in our ensemble (brown star), the improved models 
(green star), and the inverse model results (blue star). Panel (e) shows normalized model errors relative to the DAOD (purple 
bars), surface concentration (green bars), and deposition flux (orange bars) data sets. Shown are results for the inverse model; the 
average of models in the AeroCom ensemble, our model ensemble, and our ensemble of improved models; MERRA-2; and for 
the individual models in our ensemble before and after applying observational constraints (see Sect. 2.5). Hatched bars denote 730 
results of the inverse model and improved models obtained through our methodology. The reductions in bias, RMSE, and 
normalized error for the inverse model and improved models relative to the individual models and MERRA-2 imply that the 
inverse modeling procedure improves the representation of the NH dust cycle.  

4.3.2. Performance of inverse model results against independent measurements in the Southern 
Hemisphere 735 

After analyzing the performance of the inverse model results in the Northern Hemisphere, we next analyze the 
performance of the inverse model results in the Southern Hemisphere. We expect less agreement against 
independent measurements than in the NH because the SH DAOD constraints are of substantially lower quality 
since the Ridley et al. (2016) approach does not yield accurate constraints there (see Sect. 2.3). 

The agreement of the inverse model results against independent data in the SH varies substantially between stations 740 
and regions. The inverse model has difficulty reproducing the seasonality in surface concentration at many SH 
stations (Fig. 9), which could indicate that long-range transport is not well captured as most stations are remote from 
the main dust source regions (Fig. 2c). The inverse model results do produce good quantitative agreement against 
dust surface concentration measurements close to the Australian and Southern African source regions yet somewhat 
underestimate deposition fluxes in those regions (Figs. 9, 10a-c). Furthermore, the inverse model results 745 
underestimate both the dust surface concentration and the deposition flux in the South Pacific, suggesting an 
underestimate of dust transport to this region. For Antarctica, the results are contradictory in that the inverse model 
results underestimate measurements of dust surface concentrations yet overestimate measurements of dust 
deposition fluxes.  

 750 
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Figure 9. Comparison of measured and modeled seasonally averaged dust surface concentrations at 12 Southern 755 
Hemisphere stations. Shown are measurements (orange line and circles) and results from models in the AeroCom ensemble 
(black dotted lines and symbols) and our ensemble (brown dashed lines and symbols), and results from MERRA-2 (red line and 
diamonds) and the inverse model (blue line and squares). Also shown are the mean correlation coefficients between 
measurements and the different AeroCom models (rAeroCom) and the different models in our ensemble (rmodels), and the correlation 
coefficients for MERRA-2 (rR) and the inverse model results (rIM). Uncertainty ranges on the inverse model results and 760 
measurements represent one standard error on the climatological seasonally averaged surface concentration. The legend for 
individual models is given in Fig. 3, and x-values are offset slightly for clarity. 

This underestimation of dust surface concentration but overestimation of deposition fluxes in Antarctica is puzzling 
(Figs. 10a-c). Indeed, many individual models show similar results (Figs. S11-S13; also see Huneeus et al. (2011) 
and Wu et al. (2020)). One possible explanation is large model errors in the conversion of dust concentrations to 765 
deposition fluxes, which is known to be one of the most uncertain aspects of global dust cycle simulations (Huneeus 
et al., 2011). This is particularly the case for regions dominated by wet deposition, which is a challenge for models 
to simulate accurately, in part because it depends on modeled precipitation, which itself can have large uncertainties 
(Huneeus et al., 2011; Mahowald et al., 2011a). Additionally, the inverse model and most individual models do not 
include high latitude dust emissions, which could cause additional errors for comparisons against measurements in 770 
Antarctica (Bullard et al., 2016). Another possibility is that measurements do not accurately represent either the dust 
surface concentration or the deposition fluxes. In particular, all but one of the Antarctic dust fluxes are derived from 
measurements of total-dissolvable iron in snow and ice, for which the conversion to the deposited dust flux involves 
many uncertainties (Edwards and Sedwick, 2001; Mahowald et al., 2009), and it is possible that this methodology 
systematically underestimates dust deposition fluxes (Huneeus et al., 2011). Another factor that could cause 775 
disagreement between the inverse model results and measurements might be a mismatch in timescales. The inverse 
model results characterize the dust cycle for the years 2004-2008, whereas the concentration data were taken for 
different dates in the period 1981–2000 (Prospero et al., 1989; Arimoto et al., 1995) and the deposition flux 
measurements were taken one to several decades earlier (Edwards et al., 2006; McConnell et al., 2007). This 
mismatch in time periods could cause modeled deposition fluxes to exceed measured fluxes as several studies have 780 
reported increases in dust emissions from South America and in dust deposition at Antarctica over the past century 
or so (McConnell et al., 2007; Gasso and Torres, 2019; Laluraj et al., 2020). Furthermore, there is substantial 
interannual variability in dust concentration that could affect the mismatch in time between models and 
measurements, especially for less dusty regions such as in the SH (Smith et al., 2017). Comparisons against 
measurements in previous studies have suffered from similar mismatches in time periods (Huneeus et al., 2011; 785 
Albani et al., 2014; Colarco et al., 2014; Kok et al., 2014a). 
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The ability of the inverse model to reproduce the spatial distribution of surface concentration and deposition 
measurements is thus less good in the SH than in the NH. However, despite the decreased agreement against 
independent measurements, the inverse model performs better than most of the individual models in our ensemble 
and in the AeroCom ensemble (Figs. 9, 10d-f, 11). The inverse model, the individual models, and the MERRA-2 790 
results all show biases against SH surface concentration and deposition flux measurements that are substantially 
larger than the biases against NH measurements (Fig. 11a, b). Interestingly, the different models show a positive 
correlation between bias against surface concentration data and bias against deposition flux measurements, with both 
biases being negative for twelve of the models. This indicates that systematic under- or overestimation of SH dust 
are key contributors to errors against measurements, with additional errors due to difficulties in reproducing the 795 
spatial pattern of dust surface concentration and deposition fluxes (Fig. 10d-f). Consequently, almost all models 
show a substantially larger root mean-squared error relative to measurements for the SH than for the NH (Figs. 11c, 
d). These results indicate substantial model errors in the magnitude and spatial pattern of SH dust emissions, dust 
transport, and/or dust deposition, and underscore the difficulties models have in capturing the SH dust cycle. 

  800 
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Figure 10. Evaluation of the inverse model results against independent measurements of surface concentration and 
deposition flux in the Southern Hemisphere. Shown are comparisons of the inverse model results against (a) seasonal (austral 
Winter, Spring, Summer, and Fall are respectively denoted by magenta, green, orange, and blue) and (b) annual dust surface 805 
concentration measurements at 12 SH stations, and against (c) a compilation of 33 measurements of the dust deposition flux. 
Results are grouped by regions as shown in Figs. 2c and 2d. Statistics of the comparisons are noted in the figures and are 
calculated in log-space. Uncertainties on inverse model results are not shown to avoid cluttering the figure, but the uncertainty on 
the seasonal surface concentration is shown in Fig. 9, and the typical relative uncertainty on deposition fluxes is a factor of three. 
Also shown are Taylor diagrams for the (d) seasonal and (e) annual surface concentration, and (f) dust deposition flux. The 810 
different symbols represent the measurements (purple triangle), the 13 AeroCom models (black letters), MERRA-2 (red “R”), the 
six models in the model ensemble (brown numbers), the six improved models (green numbers with a prime), and the inverse 
model results (large blue star). An exact legend for the different models is provided in Fig. 3.  

Overall, the integration of observational constraints on dust properties and abundance seems to produce a modest 
improvement in the representation of the SH dust cycle. This is quantified in Fig. 11e, which shows that the 815 
normalized model error of the inverse model results is 0.78, which is below that of the mean of models in our model 
ensemble (0.92) and the AeroCom ensemble (1.06), and below the normalized error of the MERRA-2 dust product 
(0.81). However, whereas the “improved model” results show clear reductions in bias, RMSE, and normalized error 
in the NH, they show no clear improvements in the SH (Fig. 11).  
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820 

 
Figure 11. Evaluation of whether integrating observational constraints on dust properties and abundance produces an 
improved representation of the Southern Hemisphere dust cycle. Shown are the biases (top panels) and root-mean-squared 
errors (RMSEs; middle panels) in logarithmic space with respect to measurements of (a and c) seasonal dust surface 825 
concentration and dust deposition flux and of (b and d) annual dust surface concentration and deposition flux. Symbols in panels 
(a)-(d) denote results for the individual models in the AeroCom ensemble (black letters), MERRA-2 (red “R”), models in our 
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ensemble (brown numbers), and the improved models (green italicized numbers). The exact legend for the different models is 
given in Figure 3, and stars denote the mean bias and RMSE for models in our ensemble (brown star), the improved models 
(green star), and the inverse model results (blue star). Panel (e) shows normalized model errors relative to the surface 830 
concentration (green bars) and deposition flux (orange bars) data sets. Shown are results for the inverse model; the average of 
models in the AeroCom ensemble, our model ensemble, and our ensemble of improved models; MERRA-2; and for the 
individual models in our ensemble before and after applying observational constraints (see Sect. 2.5). Hatched bars denote results 
of the inverse model and improved models obtained through our methodology.  

5. Discussion 835 

Our results show that our framework for integrating observational constraints on dust properties and abundance 
yields an improved representation of the global dust cycle. Relative to the model ensemble, the inverse model results 
show a reduction of errors against NH dust cycle measurements of over a factor of two (Fig. 8e) and modest 
improvements for the SH (Fig. 11e). Moreover, we have obtained a data set of the global dust cycle that is more 
accurate than a large number of model simulations and the MERRA-2 dust product and that is resolved by particle 840 
size and season.  

Below, we first discuss the main limitations of our methodology and results (Sect. 5.1). We then discuss how our 
results can be used to guide improvements in the representation of the global dust cycle in climate and chemical 
transport models (Sect. 5.2), after which we discuss the utility of the data set presented here in constraining dust 
impacts on the Earth system (Sect. 5.3). 845 

5.1. Limitations of the methodology 

Our results are subject to a few important limitations. First, although our methodology integrates observational 
constraints, it still relies on global model simulations to compute a number of key variables, including the spatial 
pattern and timing of dust emissions within each source region, the vertical distribution of dust, and the deposition 
flux of dust. All three of these processes are known to be subject to important model errors (e.g., Ginoux, 2003; 850 
Huneeus et al., 2011; Kim et al., 2014; Kok et al., 2014a; Evan, 2018). As discussed in Sect. 1, accurately simulating 
the magnitude and spatiotemporal variability of dust emissions represents a fundamental challenge for models. To 
mitigate this problem, many models prescribe dust sources using a variety of approaches that aim to identify prolific 
sources where geomorphologic processes concentrate soil particles as a result of fluvial erosion (Ginoux et al., 2001; 
Prospero et al., 2002; Tegen et al., 2002; Zender et al., 2003; Koven and Fung, 2008). However, these 855 
representations are highly uncertain, as indicated by different approaches producing large differences in the spatial 
patterns of emissions (Cakmur et al., 2006; Kok et al., 2014a; Wu et al., 2020). In addition to these challenges with 
simulating dust emissions, many models also underestimate the height at which dust is transported (Yu et al., 2010; 
Johnson et al., 2012; Kim et al., 2014). Furthermore, excessive diffusion of coarse dust due to numerical 
sedimentation schemes causes additional problems in many models (Ginoux, 2003; Eastham and Jacob, 2017; 860 
Zhuang et al., 2018), and might be partially responsible for a general underestimation of long-range transport of 
coarse dust relative to measurements and satellite observations (Maring et al., 2003; Ridley et al., 2014; Ansmann et 
al., 2017; Gasteiger et al., 2017; van der Does et al., 2018; Yu et al., 2019). Because of these various uncertainties in 
model representations of dust processes, our constraints on dust AOD and loading are strongest, and constraints on 
dust emission, deposition, and 3D concentration have greater uncertainty (Table 3). Furthermore, although 865 
uncertainties in the products obtained here include the error due to the spread in the results of the models in our 
ensemble, they do not account for systematic biases between the model ensemble and the real world, which might be 
substantial in light of the problems in model simulations highlighted above. In addition, some of the other inputs to 
our methodology, such as the globally averaged dust size distribution (Adebiyi and Kok, 2020), would also be 
affected by possible biases in model results, such as in deposition.  870 

A second limitation of our methodology is that the quality of the inverse model depends on the accuracy of the 
observational constraints on the globally averaged dust size distribution (Adebiyi and Kok, 2020), extinction 
efficiency (Kok et al., 2017), and the regional DAOD constraints obtained in Ridley et al. (2016) and Adebiyi et al. 
(2020). As such, the results presented here are subject to the limitations of those studies. These limitations are 
described in detail in the corresponding papers and include possible biases due to errors in the dust extinction 875 
efficiency due to the assumed tri-axial ellipsoid shape being an imperfect approximation to the highly heterogeneous 
shape and roughness of real dust particles (Lindqvist et al., 2014; Kok et al., 2017), errors in the remotely sensed 
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optical depth retrieval algorithms for aspherical dust particles (Hsu et al., 2004; Kalashnikova et al., 2005; Dubovik 
et al., 2006), errors in the cloud-screening algorithms used in satellite and ground-based remote sensing products, 
errors due to a scarcity of AERONET “ground-truth” data in dust-dominated regions, and systematic differences 880 
between clear-sky and all-sky AOD, although studies indicate such a systematic difference is small for dusty regions 
(Kim et al., 2014; Ridley et al., 2016; Adebiyi and Kok, 2020). The uncertainty due to many (not all) of these errors 
have been quantified in the relevant papers, and these errors have thus been propagated into the results in the present 
study. An additional key limitation is that the Ridley et al. (2016) DAOD constraint uses model simulations of the 
AOD due to other aerosol species to separate dust AOD from non-dust AOD in dusty regions. As such, consistent 885 
biases in model simulations of non-dust AOD would have affected the inferred dust AOD. For instance, a systematic 
underestimation of biomass burning AOD across models (Reddington et al., 2016; van der Werf et al., 2017) would 
cause the underestimated biomass burning AOD to instead be assigned to dust, thereby causing an overestimate of 
dust AOD. This source of error might be particularly important in regions with substantial non-dust aerosol 
loadings, such as in much of Asia and in the Sahel during the biomass burning season (Yu et al., 2019). 890 
Furthermore, the regional DAOD constraints from Adebiyi et al. (2020) for the lesser source regions of Australia, 
North America, South America, and South Africa are based on an ensemble of aerosol reanalysis products. These 
products use remotely sensed AOD and partly rely on prognostic aerosol models to partition this AOD to the 
different aerosol species (e.g., Randles et al., 2017). Considering the large uncertainties in dust models (Huneeus et 
al., 2011; Wu et al., 2020), these products could thus be substantially biased in regions for which dust does not 895 
dominate AOD.  

Another limitation of our results is that the representation of the modern-day global dust cycle is based mostly on 
model data and regional DAOD constraints for the period 2004-2008. As such, changes in the dust cycle before or 
after that period are not reflected in our results. For instance, satellite measurements have shown an increase in dust 
loading in the Middle East (Hsu et al., 2012; Kumar et al., 2019). Further, we assume that dust contributes to loading 900 
and deposition in the same season that it is emitted, which is not always true and could generate small 
inconsistencies. We also use observational constraints on DAOD only at the mid-visible (550 nm), which is most 
sensitive to dust with a diameter between ~1-5 µm (Fig. 5d). Dust particles outside of this size range are thus 
partially constrained from correcting model simulations to match the globally averaged dust size distribution 
inferred in Adebiyi and Kok (2020) and might thus have larger errors that dust with diameters around 1-5 µm. 905 
Another important limitation is that many of the models in our ensemble do not explicitly account for anthropogenic 
(e.g., land use) sources of dust emission, which might account for ~10-25% of present-climate dust emissions 
(Tegen et al., 2004; Ginoux et al., 2012). However, the observationally constrained DAOD used here to scale dust 
emissions and loading does not distinguish between natural and anthropogenic dust and thus inherently includes 
both. Nonetheless, the omission of land use dust emissions from many of the models in our ensemble could produce 910 
important errors close to anthropogenic dust sources, which might account for a substantial fraction of total 
emissions in Asia, Australia, Southern Africa, and the Americas (Ginoux et al., 2012). 

Finally, the conclusion that our methodology yields an improved representation of the global dust cycle depends on 
the quality of the independent data used to evaluate the inverse model results. However, these data have a few 
limitations. First, some of the measurements might have large, unquantified errors. This appears to be the case 915 
especially for deposition flux measurements, which show a much larger spread than surface concentration 
measurements, even for proximal locations. Second, the concentration and deposition data used to evaluate the 
inverse model results do not coincide in time with the simulations, which could affect the comparisons (see Sect. 3 
and further discussions in, e.g., Huneeus et al., 2011). Finally, some aspects of our representation of the global dust 
cycle were not explicitly tested against measurements. Future work could further investigate the accuracy of the 920 
inverse model results through comparisons against additional data, such as visibility data (Mahowald et al., 2007; 
Shao et al., 2013), dust vertical profile data (Yu et al., 2010; Kim et al., 2014), and remote sensing retrievals of the 
Angstrom exponent (Huneeus et al., 2011).  

5.2. Improving model representations of the global dust cycle 

The results in Figs. 6-8 show that our methodology of integrating observational constraints on dust properties and 925 
abundance reduces model errors in simulating the global dust cycle. This finding is particularly clear from the 
results of the six “improved models”. Each of these models shows a substantial reduction of model error against 
measurements and observations of the NH dust cycle (Figs. 7d-f, 8a-d), with the average reduction of the errors in 
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“improved models” equaling ~35% (Fig. 8e). These findings suggest several ways in which the representation of the 
global dust cycle can be improved in global and regional models. 930 

First, our results indicate that it is critical for models to account for the substantial asphericity of dust aerosols 
(Okada et al., 2001; Huang et al., 2020). Dust asphericity enhances the MEE by ~40% because aspherical dust 
particles extinguish more radiation than volume-equivalent spherical particles (Potenza et al., 2016; Kok et al., 
2017). As such, not accounting for dust asphericity causes an overestimation of the dust loading needed to match 
DAOD constraints by ~40%, and thus can produce a corresponding bias against concentration and deposition flux 935 
measurements. This is illustrated by the MERRA-2 results, which are in good agreement with DAOD constraints 
(Figs. 7d, 7e, 8e), but overestimate NH dust deposition flux measurements by ~25% and surface concentration 
measurements by ~50% (Figs. 8a, b and Figs. S9 and S10). MERRA-2 uses dust optics from Colarco et al. (2014) 
based on spheroids, which underestimate dust asphericity (Huang et al., 2020) and yielded a ~25% enhancement of 
dust extinction. Accounting for the full extinction enhancement of ~40% due to dust asphericity would thus reduce 940 
the biases of the MERRA-2 dust product against surface concentration and deposition flux measurements. Since 
most current models either do not account for dust asphericity or substantially underestimate its effect on extinction 
efficiency (Huang et al., 2020) we recommend that models account for the full enhancement of extinction by dust 
asphericity, for instance by implementing the constraints on the extinction efficiency of aspherical dust from Kok et 
al. (2017). 945 

Second, models can be improved by correcting the current substantial underestimation of coarse dust loading. In this 
study, we integrated a joint observational-modeling constraint on the globally averaged dust size distribution in 
order to account for the ~17 Tg of coarse dust (D > 5 µm) that observations indicate is present in the atmosphere 
(Ryder et al., 2019; Adebiyi and Kok, 2020). The finding that our methodology almost eliminates bias against NH 
measurements (Figs. 6-8) suggests that this constraint on the globally averaged dust size distribution is relatively 950 
accurate. This further confirms the conclusion from several studies that models substantially underestimate coarse 
dust loading (Ansmann et al., 2017; van der Does et al., 2018; Ryder et al., 2019; Adebiyi and Kok, 2020). Models 
can thus be improved by eliminating the current underestimation of coarse dust. This could be done either by 
similarly applying the constraints on the globally averaged size distribution (Adebiyi and Kok, 2020) or, preferably, 
by improving the relevant model physics. Specifically, recent studies indicate that the underestimation of coarse dust 955 
is due to both an underestimation of the emission of coarse dust (Huang and Kok, 2018) and an underestimation of 
the lifetime of the emitted coarse dust (Maring et al., 2003; Weinzierl et al., 2017). Measurements of the emitted 
dust size distribution show a much larger flux of dust with D ≥ 5 µm than current parameterizations, including brittle 
fragmentation theory (Kok, 2011b, a), account for (Huang and Kok, 2018). We find that, in order for models to 
generate the observationally constrained ~17 Tg of coarse dust loading, a fractional contribution of emitted dust with 960 
5 ≤ D ≤ 20 µm is needed that is even larger than found by measurements of emitted dust size distributions (Fig. 5a; 
Sow et al., 2009; Rosenberg et al., 2014; Huang and Kok, 2018; Huang et al., 2019). This finding further supports 
the inference from several lines of evidence that models underestimate the lifetime of coarse dust (Maring et al., 
2003; Weinzierl et al., 2017; van der Does et al., 2018). As such, models require improved parameterizations of both 
the emitted dust size distribution and dry deposition processes to properly account for the abundance of coarse dust 965 
in our atmosphere. Improved parameterizations of the emitted dust size distribution that better account for the large 
contribution of coarse dust are under development (Huang and Kok, 2018). To improve size-resolved dry 
deposition, we recommend that models account for the ~20% slowing of the gravitational settling speed due to dust 
asphericity (Huang et al., 2020). Further improvements in dust deposition parameterizations are likely needed, 
including accounting for possible effects of electrification and turbulence in dust layers on gravitational settling 970 
(Ulanowski et al., 2007; Gasteiger et al., 2017; van der Does et al., 2018). 

Finally, our results indicate that model accuracy can be substantially improved by correcting biases in the dust 
loading generated by each main source region (Figs. 3, 8e). These biases could be reduced in two ways. First, 
models could emulate the procedure developed here and scale emission of dust from each region to match the 
observed regional DAOD obtained in Ridley et al. (2016). A second approach would be to scale the simulated (size-975 
resolved) emissions or loading per source region and season to that obtained in our companion paper (to be 
submitted soon). These improvements would be most effective for simulations of the present-day dust cycle by 
regional and global models, as well as short range, medium range and seasonal forecasts of dustiness by numerical 
weather models. Ultimately, parameterizations of dust emission should be improved to eliminate the need for 
adjustment of model simulations in this manner. This is critical because without identifying and correcting the 980 
problematic model physics, we cannot know how these processes change with climate, for example under global 
warming or over glacial cycles. Together with uncertainties due to future land use changes, this problem limits the 
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ability of models to predict future changes in the global dust cycle and its effect on climate and the Earth system 
(Evan et al., 2016; Kok et al., 2018).  

Although we found that the integration of observational constraints on dust properties and abundance is effective in 985 
reducing model errors in the representation of the NH dust cycle, we found only slight improvements for the SH 
dust cycle (Fig. 11e). There are two likely reasons for this finding. First, whereas the inverse model is informed by 
accurate observational constraints on regional DAOD in the NH, such constraints are less accurate for the less dusty 
SH (Ridley et al., 2016). And second, the dust cycle simulations used in our ensemble are less accurate for the SH 
dust cycle than for the NH dust cycle, as indicated by substantially larger root mean-squared errors relative to 990 
measurements for the SH (Figs. 11c, d) than for the NH (Figs. 8c, d). These larger model errors for the SH likely 
occur because a large fraction of SH dust emission originates from regions containing sparse vegetation (Ito and 
Kok, 2017), the effects of which on dust emission is difficult for models to represent accurately (King et al., 2005; 
Okin, 2008). Additionally, there are less data available in the SH from ground-based measurements such as dust 
surface concentration measurements. And whereas many measurements close to dust source regions are available for 995 
the NH, most measurements for the SH are at sites remote from the main dust source regions (Figs. 2c, d), where 
they are less effective at constraining the main features of the SH dust cycle. There are also fewer satellite retrievals 
available to constrain simulations of the SH dust cycle. For instance, dust sources such as Patagonia are shrouded by 
clouds for a larger fraction of the year than for most NH sources (Ginoux et al., 2012), which limits constraints on 
dust emissions and DAOD from satellite retrievals (Gasso and Stein, 2007). Additionally, the errors in satellite 1000 
retrievals tend to be larger for the SH than for the NH because the relative error decreases with AOD (Kahn et al., 
2005; Remer et al., 2005).  Considering the important role that the SH dust cycle plays in biogeochemistry, the 
carbon cycle, and the climate system (Lambert et al., 2008; Hamilton et al., 2020), our results underscore a critical 
need for more observations to constrain the SH dust cycle. 

5.3. Utility of DustCOMM data set in understanding the role of dust in the Earth system 1005 

In addition to identifying mechanisms to improve individual model simulations, this study obtained an improved 
representation of the global dust cycle that can be used to improve our understanding and quantification of the role 
of dust in the Earth system. This addition to the DustCOMM  data set (Adebiyi et al., 2020) contains dust loading, 
DAOD, (surface) concentration, and (wet and dry) deposition flux fields that are resolved by space, particle size, and 
season (data are available at https://dustcomm.atmos.ucla.edu/data/K21/). Our results in Sect. 4.3 indicate that this 1010 
data set is more accurate than both a large number of climate and chemical transport model simulations and the 
MERRA-2 dust product. Moreover, whereas MERRA-2 is internally inconsistent because dust loading is adjusted 
after emission by assimilating AOD measurements (Randles et al., 2017; Wu et al., 2020), our method for 
integrating observational constraints yields a self-consistent representation of the global dust cycle. Our companion 
article (to be submitted soon) will supplement this data set by partitioning all these fields by the originating source 1015 
region. This data set representing the seasonally resolved and size-resolved global dust cycle can be used to more 
accurately quantify dust impacts on the Earth system, such as on climate, weather, the hydrological cycle, 
biogeochemistry, and human health. 

Our data set of an improved representation of the global dust cycle has an additional strength that amplifies its use: 
our data set quantifies and propagates a range of observational and modeling uncertainties (see Sect. 2.5). This 1020 
allows for the propagation of uncertainty into dust impacts constrained using our data set, such as in the 
quantification of direct radiative effects and indirect cloud and biogeochemistry effects (Mahowald, 2011). With a 
few exceptions (Kok et al., 2017; Regayre et al., 2018; Di Biagio et al., 2020), the quantification of the uncertainty 
of (dust) aerosol direct and indirect radiative effects is uncommon, yet is critical to robustly constraining (dust) 
aerosol impacts on the Earth system (Carslaw et al., 2010; Mahowald et al., 2011b). Moreover, the quantification of 1025 
uncertainties on aerosol effects in both the present-day and pre-industrial climates is crucial to constraining climate 
sensitivity (Carslaw et al., 2013; Carslaw et al., 2018). 

A second strength of our data set representing the global dust cycle is that it uses an analytical framework. As such, 
it is relatively straightforward to add additional observational constraints of the dust cycle, or to update the results as 
more accurate constraints on any of the inputs (see Fig. 1) become available. For example, more accurate model 1030 
simulations can be easily integrated into the framework. Additionally, more detailed observational constraints could 
become available, for instance from an expansion of the DAOD analysis conducted in Ridley et al. (2016) or by 
adding additional types of observational constraints. This would reduce both uncertainties and biases, producing a 
more accurate and precise data set of the global dust cycle. 
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6. Conclusions 1035 

We have obtained an improved representation of the global dust cycle by developing an analytical framework that 
uses an inverse model to integrate observational constraints on the dust size distribution, extinction efficiency, and 
regional DAOD with an ensemble of global dust cycle simulations (Fig. 1). This new approach mitigates two critical 
challenges that models face in representing the global dust cycle, namely (i) that capturing the magnitude and spatial 
distribution of dust emissions is a fundamental challenge for large-scale models because of the large mismatch 1040 
between the resolved scales (~10-100 km) and the physically relevant scales (~1 m to several km) over which dust 
emissions vary, and (ii) that models have difficulty representing uncertainties in dust microphysical properties and 
often use values that are not consistent with up-to-date observational and experimental constraints.  

Comparisons against independent measurements indicate that this new framework of integrating observational 
constraints with model simulations produces an improved representation of the present-day (2004-2008) global dust 1045 
cycle. Our inverse model reproduces NH measurements of dust surface concentration with a factor of 1.5-5 less 
error than both individual model simulations and the MERRA-2 dust product (Figs. 8c, d). This large improvement 
is due to reduced errors in capturing the seasonal cycle (Fig. 6) and the spatial variability of dust surface 
concentration (Figs. 7d, e), and because of the near elimination of biases against measurements in the NH (Figs. 8a, 
b). Overall, the inverse model results show a reduction of errors against measurements and observations of the NH 1050 
dust cycle measurements of approximately a factor of two (Fig. 8e). These improvement are noteworthy as previous 
studies have had difficulty simultaneously reproducing dust AOD, surface concentration, and deposition flux 
(Cakmur et al., 2006; Mahowald et al., 2006; Albani et al., 2014). The near elimination of bias against these 
different data sets thus suggests that models can be improved by accounting for the enhancement of the MEE by 
dust asphericity (Kok et al., 2017), as otherwise a ~40% greater dust loading would be needed to match DAOD 1055 
constraints, resulting in a corresponding overestimation of NH dust surface concentration and deposition fluxes. Our 
results further indicate that models can be improved by correcting the current underestimation of coarse dust loading 
(Adebiyi and Kok, 2020) and by adjusting source-resolved emissions to match regional DAOD constraints (Ridley 
et al., 2016). 

Although the integration of observational constraints thus improves the representation of the NH dust cycle, we 1060 
found less improvement in the SH dust cycle. This is likely due to both the lower quality of constraints on regional 
DAOD in the SH and because of the difficulty models have in reproducing the dust cycle in the less dusty SH. 

We also find that the emission flux of dust with geometric diameter up to 20 µm (PM20) is approximately 5,000 
Tg/year (one standard error range of 3400 to 8900 Tg/year; Table 3), which is greater than most models account for. 
This greater global emission rate is partially driven by a larger emission flux of coarse dust with D ≥ 5 µm, which 1065 
we find accounts for ~80% of the global PM20 emission flux (Fig. 5a). This large flux of coarse dust is needed to 
generate the ~17 Tg of atmospheric coarse dust loading that in situ measurements indicate resides in the atmosphere 
(Adebiyi and Kok, 2020). Accounting for this substantial loading of coarse dust is important because these particles 
account for a substantial fraction of absorption of shortwave radiation and both absorption and scattering of 
longwave radiation (Tegen and Lacis, 1996; Ryder et al., 2018; Ryder et al., 2019), and also can account for a large 1070 
fraction of nutrients delivered to ecosystems by dust. 

The improved representation of the global dust cycle presented here is publicly available as part of the DustCOMM 
data set (Adebiyi and Kok, 2020; Adebiyi et al., 2020). These data include gridded dust emission, loading, (surface) 
concentration, wet and dry deposition, and DAOD fields that are resolved by season and particle size, including by 
particle bin and for PM2.5, PM10, and PM20 dust. Additional strengths of this data set are that it includes uncertainty 1075 
estimates and that the data can be readily updated as improved constraints on dust properties and abundance become 
available. As such, our improved representation of the global dust cycle can facilitate more accurate constraints on 
the various critical impacts of dust on the Earth system. 

Glossary 

𝛼𝛼𝑘𝑘 Dimensionless global scaling factor by which a unit dust loading in a global model 
simulation’s particle size bin k is multiplied in order to bring the annually averaged global 
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dust loading generated from all source regions in agreement with the constraint on the 
globally averaged dust size distribution (𝑑𝑑𝑉𝑉

�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

). 
𝜖𝜖�̅�𝑘 Mass extinction efficiency (m2/kg) of a global model simulation’s particle size bin k, 

obtained by integrating the constraint on the globally averaged extinction efficiency 𝑄𝑄�ext(𝐷𝐷) 
over the particle bin’s size range. 

𝜃𝜃 Longitude. 
�̅�𝜌𝑑𝑑  Density of dust aerosols, which is taken as (2.5±0.2)×103 kg m-3. 
𝜎𝜎�𝑠𝑠
𝑝𝑝 Total uncertainty on the area-averaged observed DAOD of region p for season s. 
𝜏𝜏�̅�𝑠
𝑝𝑝 Area-averaged observed DAOD for region p and season s. 

�̆�𝜏𝑟𝑟,𝑠𝑠(𝜃𝜃,𝜙𝜙) Inverse model seasonally averaged DAOD produced by dust emitted from source region r, 
averaged over season s. 

�̆�𝜏𝑟𝑟,𝑠𝑠
𝑝𝑝  Inverse model seasonally averaged DAOD produced by dust emitted from source region r, 

averaged over season s and observed region p. 
𝜙𝜙 Latitude. 
𝜒𝜒𝜏𝜏2 Summed squared deviation between the observed DAOD in the fifteen regions and that 

obtained from our analysis. 
𝐴𝐴𝑝𝑝 Area of the region p defined in Table 2 (m2). 

𝑐𝑐PM10 Global constant denoting the fractional contribution to the PM10 deposition flux of a model 
particle size bin that straddles 10 µm. 

�̃�𝐶𝑟𝑟,s,𝑘𝑘(𝜃𝜃,𝜙𝜙,𝑃𝑃) Model-simulated 3D dust concentration (m-3) produced by a unit of dust loading (1 Tg) in 
particle size bin k emitted from source region r, averaged over season s. 

�̆�𝐶𝑠𝑠(𝜃𝜃,𝜙𝜙,𝑃𝑃) Inverse model 3D bulk dust concentration (kg m-3), averaged over season s. 
�̆�𝐶𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙,𝑃𝑃) Inverse model 3D dust concentration (kg m-3) produced by dust in particle size bin k, 

averaged over season s. 
𝐷𝐷 Geometric (or volume-equivalent) diameter (m). 
𝐷𝐷𝑘𝑘− Lower geometric diameter limit of a global model simulation’s particle size bin k (m). 
𝐷𝐷𝑘𝑘+ Upper geometric diameter limit of a global model simulation’s particle size bin k (m). 
Dmax Maximum dust aerosol geometric diameter considered in this study, namely Dmax = 20 µm. 

𝐷𝐷�𝑟𝑟,s,𝑘𝑘(𝜃𝜃,𝜙𝜙) Model-simulated spatial distribution of dust deposition flux (m-2 yr-1) produced by a unit of 
dust loading (1 Tg) in particle size bin k emitted from source region r, averaged over season 
s. 

𝐷𝐷�𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) Inverse model spatial distribution of deposition flux (kg m-2 yr-1) of dust in particle bin k, 
averaged over season s. 

𝐷𝐷�𝑠𝑠(𝜃𝜃,𝜙𝜙) Inverse model spatial distribution of bulk dust deposition flux (kg m-2 yr-1), averaged over 
season s. 

𝑓𝑓𝑟𝑟,s,𝑘𝑘  Model-simulated seasonally averaged fraction of global dust loading emitted from source 
region r that is contained in particle size bin k. 

𝑓𝑓𝑟𝑟,𝑠𝑠,𝑘𝑘  Inverse model fraction of seasonally averaged global dust loading emitted from source 
region r that is contained in particle size bin k. 

𝐹𝐹�𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) Model-simulated spatial distribution of dust emission flux (m-2 yr-1) needed to generate a 
unit (1 Tg) of dust loading in particle size bin k emitted from source region r, and averaged 
over season s. 

𝐹𝐹�𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) Inverse model spatial distribution of dust emission flux (kg m-2 yr-1) of dust in particle bin k, 
averaged over season s. 

𝐹𝐹�𝑠𝑠(𝜃𝜃,𝜙𝜙) Inverse model spatial distribution of bulk dust deposition flux (kg m-2 yr-1), averaged over 
season s. 

𝐽𝐽𝑟𝑟,𝑠𝑠(𝜃𝜃,𝜙𝜙) Spatial distribution of the Jacobian matrix (Tg-1) of �̆�𝜏𝑟𝑟,𝑠𝑠 with respect to 𝐿𝐿�𝑟𝑟,𝑠𝑠, which equals the 
DAOD produced per unit of bulk dust loading from source region r, averaged over season s. 

𝐽𝐽𝑟𝑟,𝑠𝑠
𝑝𝑝  The Jacobian matrix of 𝜏𝜏�̅�𝑠

𝑝𝑝 with respect to 𝐿𝐿�𝑟𝑟,𝑠𝑠 (Tg-1), which equals the seasonally averaged 
DAOD produced per unit of dust loading originating from source region r in season s and 
averaged over the observed region p. 

k Index that sums over the different particle size bins of a given global model. 
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𝑙𝑙𝑟𝑟,𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) Model-simulated spatial distribution of dust column loading produced by a unit of dust 
loading (1 Tg) in particle size bin k, emitted from source region r, averaged over season s 
(m-2). 

𝑙𝑙𝑠𝑠(𝜃𝜃,𝜙𝜙) Inverse model spatial distribution of dust bulk column loading, averaged over season s (kg 
m-2). 

𝑙𝑙𝑠𝑠,𝑘𝑘(𝜃𝜃,𝜙𝜙) Inverse model spatial distribution of dust column loading produced by dust in particle size 
bin k, averaged over season s (kg m-2). 

𝐿𝐿�𝑟𝑟 Inverse model annually averaged global dust loading produced by source region r (Tg). 
𝐿𝐿�𝑟𝑟,𝑠𝑠 Inverse model global dust loading produced by source region r, averaged over season s (Tg). 
Nbins Number of dust particle size bins in a given global model simulation. 
Nτ,reg Number of regions with observationally constrained DAOD; Nτ,reg = 15. 
Nsreg Number of source regions; Nsreg = 9. 

p Index that sums over the fifteen regions with observationally constrained DAOD. 
P Vertical pressure level. 

𝑄𝑄�ext(𝐷𝐷) Globally averaged size-resolved extinction efficiency (dimensionless) from Kok et al. 
(2017), which is defined as the extinction cross-section divided by the projected area of a 
sphere with diameter D (𝜋𝜋𝐷𝐷2/4). 

r Index that sums over the Nsreg = 9 source regions. 
s Index that sums over the four seasons. 

𝑑𝑑𝑉𝑉�atm(𝐷𝐷)
𝑑𝑑𝐷𝐷

 The size-normalized (that is, ∫ 𝑑𝑑𝑉𝑉�atm
𝑑𝑑𝐷𝐷

𝑑𝑑𝐷𝐷 = 1𝐷𝐷max
0 ) globally averaged volume size 

distribution of atmospheric dust from Adebiyi and Kok (2020). 
 1080 
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