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Abstract. Dynamics of atmospheric CO2 has received considerable attention in the literature, yet significant uncertainties 15 

remain within the estimates of contribution from terrestrial flux and the influence of atmospheric mixing. In this study we 

apply the Weather Research and Forecasting model coupled with Vegetation Photosynthesis and Respiration Model (WRF-

VPRM) in China to characterize the dynamics of CO2 in the atmosphere. The online coupled WRF-VPRM is able to simulate 

biosphere processes (photosynthetic uptake and ecosystem respiration) and meteorology in one coordinate system. We apply 

WRF-VPRM for a multi-year simulation (2016-2018) with integrated data from a satellite product, flask samplings, and tower 20 

measurements to diagnose the spatiotemporal variations of CO2 fluxes and concentrations in China. We find that the spatial 

distribution of CO2 was dominated by anthropogenic emissions, while its seasonality (with maxima in April 15 ppmv higher 

than minima in August) was dominated by terrestrial flux and background CO2. Observations and simulations revealed a 

consistent increasing trend in column-averaged CO2 (XCO2) of 2.46 ppmv (0.6%/yr) resulting from anthropogenic emission 

growth and biosphere uptake. WRF-VPRM successfully reproduced ground-based measurements of surface CO2 concentration 25 

with mean bias of -0.79 ppmv and satellite derived XCO2 with mean bias of 0.76 ppmv. The model-simulated seasonality was 

also consistent with observations, with correlation coefficients of 0.90 and 0.89 for ground-based measurements and satellite 

data, respectively. Tower observations from a background site Lin’an (30.30˚N, 119.75˚E) revealed a strong correlation (-0.98) 

between vertical CO2 and temperature gradients, suggesting a significant influence of boundary layer thermal structure on the 

accumulation and depletion of atmospheric CO2.  30 
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1 Introduction 

Climate research requires accurate characterization of atmospheric CO2, which is closely affected by the both atmospheric 

transport and terrestrial sources and sinks (Bauska et al., 2015; Keenan et al., 2016). Our current knowledge largely comes 

from interpreting ground- or space-based measurements and model simulations. While observation is limited by spatial and 35 

temporal coverages, modelling approaches also suffer from various uncertainties (Shi et al., 2018). Modelling assessment of 

CO2 is usually conducted through two methods: first, process- or data-driven biosphere models in which terrestrial fluxes are 

diagnostically calculated with theoretical functions (Tian et al., 2015) or determined through semi-empirical relationships 

derived from ground measurements and/or satellite products with machine learning techniques (Papale and Valentini, 2003); 

second, inverse modelling in which prior flux estimates applied in atmospheric transport models are adjusted by observational 40 

data and/or satellite products to determine posterior flux (Peylin et al., 2002;Kountouris et al., 2018). Process-driven biosphere 

models have difficulties capturing spatial and temporal variabilities at fine resolution because parameters calibrated from a 

limited number of site observations are applied across a variety of land covers (Todd-Brown et al., 2013). Atmospheric inverse 

modelling is predominantly affected by the presumed prior flux, and different assimilation techniques can give different and 

even conflicting results (Peylin et al., 2013). These fundamental features highlight the limits of these approaches for accurately 45 

modelling carbon dynamics. 

Researchers have attempted to reconcile differences between “bottom-up” biosphere models and “top-down” atmospheric 

inverse models, and recent studies have demonstrated increasing levels of agreement owing to improved understanding  of 

both approaches, such as better parameterization of biosphere processes (Dayalu et al., 2018), more accurately constrained 

estimates of prior flux (Crowell et al., 2018;Feng et al., 2019), and advanced measurement/satellite instruments that provide 50 

high quality data for assimilation (Gaubert et al., 2019); however, critical model disagreements still persist (Kondo et al., 2020). 

To bridge the gap between terrestrial flux and atmospheric mixing, a type of weather-biosphere coupled model (Ahmadov et 

al., 2007;Mahadevan et al., 2008) has been developed to simulate biosphere processes and meteorology conditions in one 

coordinate system, allowing their interactions to be properly addressed. A few case studies (Ahmadov et al., 2009;Kretschmer 

et al., 2012;Park et al., 2018) have demonstrated the potential advantages of coupled weather-biosphere models over pure 55 

biosphere/inverse models for short term (a few weeks) simulations, but whether the coupled model is able to reproduce the 

spatial distributions and temporal variations and subsequently estimate carbon fluxes at regional scales with high confidence 

remains a crucial issue to be addressed.  

Understanding the spatiotemporal characteristics of atmospheric CO2 is a key priority in China because of the central role it 

plays in regulating the climate and environment. In recent years, tremendous efforts have been made in China to control 60 

anthropogenic emissions from fossil fuel combustion for both air quality and climate mitigation purposes (Zheng et al., 2018). 

While the sources and sinks of air pollutants have been thoroughly examined and well documented (Huang et al., 2020), the 

dynamics of CO2 at regional to national scales remain poorly understood due to lack of long-term observations and limited 

modelling studies (Han et al., 2020). Li et al. (2020) applied a weather-biosphere model with tower observations to analyse 
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CO2 fluxes and concentrations over mixed forest and rice paddy in northeast China, but the one-year simulation limits the 65 

attempt to investigate interannual CO2 variation which is subject to substantial change (Fu et al., 2019b). Wang et al. (2019) 

applied satellite products and in-situ observations with inverse modelling to derive posterior carbon fluxes and reported 100% 

uncertainty for constraining global terrestrial flux. Fu et al. (2020) applied GEOS-Chem simulation with offline Carbon 

Tracker (Peters et al., 2007) as input to estimate impacts of terrestrial flux and anthropogenic emissions on the annual variation 

of CO2 concentrations, but regional-scale assessment was limited by coarse grid resolution (2°×2.5°). Machine-learning 70 

technique has also been employed to upscale site observations to regional-scale (Yao et al., 2018; Zhu et al., 2014), but the 

estimations of carbon budget and dynamics retain large uncertainty due to the diversity of biomass among sites and coarse grid 

resolution. These pilot studies have shed light on improving the understanding of spatiotemporal characteristics of CO2 in 

China with modelling or observational methods, but an integrated investigation with both modelling and observations at fine-

scale is urgently needed to expand diagnostic understanding of localized and regional transport, flux, and concentration of CO2 75 

to inform emission management and climate adaption policies (Fu et al., 2019a;Niu et al., 2017;Wang et al., 2019).  

In this study we use the Weather Research and Forecasting model coupled with the Vegetation Photosynthesis and Respiration 

Model (WRF-VPRM) (Hu et al., 2020;Mahadevan et al., 2008) to simulate and characterize the spatiotemporal variation of 

atmospheric CO2 in China from 2016-2018, and also to validate this weather-biosphere model with recent advanced satellite 

and tower observations. WRF-VPRM has been applied in a few case studies over the United States (Hu et al., 2020), Europe 80 

(Kretschmer et al., 2012), northeast China (Li et al., 2020), and South Korea (Park et al., 2020); this study attempt to apply 

and evaluate it for a multi-year simulation over China. We first describe the modelling methods and data followed by model 

validation against observations from multiple datasets, and then present the spatiotemporal variations and estimates of 

contributions from anthropogenic emissions, terrestrial flux, and background concentrations. Finally, we investigate tower data 

and reveal the boundary layer thermal structure impacts on atmospheric CO2 accumulation and depletion. 85 

2 Method 

We conduct nested WRF(Version 3.9.1.1)-VPRM simulations over China (domain shown in Fig.1(a)) and Yangtze River Delta 

(YRD) region (domain shown in Fig.1(d)) at 20 km and 4 km grid resolution, respectively. Both simulations were configured 

with 47 vertical layers with model tops at 10hPa. Model configuration in this study followed the work by Hu et al. (2020) and 

Li et al. (2020). We applied the YSU planetary boundary layer (PBL) scheme (Hong et al., 2006), Morrison microphysics 90 

(Morrison et al., 2009), Duhia short-wave radiation (Dudhia, 1989), RRTM long-wave radiation (Mlawer et al., 1997), Grell-

3 cumulus scheme (Grell and Devenyi, 2002), and Noah land-surface scheme (Chen and Dudhia, 2001), with more details 

summarized in Table S1. In general, the 4km-grid simulation showed no significant difference as compared to the 20km-grid 

simulation (demonstrated in Figure S1 and Figure S2), thus the 20km-grid simulation was used to characterize the 

spatiotemporal distributions of CO2 over China, and the 4km-grid simulation was only used to compare with tower data 95 

collected at a background site in YRD. Discussions in the next section will mostly refer to the 20km-grid simulation unless 
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otherwise specified. Initial and lateral boundary conditions for the 20km-grid simulations were derived from the mole fraction 

product of CarbonTracker (Peters et al., 2007) with 3°×2° resolution. The latest update of column average CO2 (XCO2) 

concentration assimilation product from CarbonTracker (CT2019) with 1°×1° resolution (Jacobson, 2020) was also 

employed to compare with the WRF-VPRM simulation. The anthropogenic emission inventory is from the Open‐source Data 100 

Inventory for Anthropogenic CO2 (ODIAC) with 0.1°×0.1° resolution (Oda et al., 2018) shown in Fig.1(a); ocean flux is from 

climatology estimation (Takahashi et al., 2009); and vegetation fractions and enhanced vegetation index (EVI, shown in 

Fig.1(b)) are from MODIS (Huete et al., 2002). CO2 from initial and boundary conditions, anthropogenic emission, and 

terrestrial biogenic flux were tagged as BCG, ANT, and BIO, respectively, to allow the contributions from each process to be 

identified and quantified through one simulation.  105 

WRF-VPRM calculates ecosystem respiration (ER) and gross ecosystem exchange (GEE) with the following functions as: 

𝐸𝑅 = 𝛼 × 𝑇 + 𝛽                                                                                                                                                                      (1) 

𝐺𝐸𝐸 = −𝜆 × 𝑇𝑠𝑐𝑎𝑙𝑒 ×𝑊𝑠𝑐𝑎𝑙𝑒 × 𝑃𝑠𝑐𝑎𝑙𝑒 × (1 + 𝑃𝐴𝑅/𝑃𝐴𝑅0)
−1 × 𝐸𝑉𝐼 × 𝑃𝐴𝑅                                                                       (2) 

where T is the air temperature at 2m above the surface (T2); 𝛼, 𝛽, 𝜆 are vegetation type-dependent parameters; 𝑃𝐴𝑅0 is the 

vegetation type-dependent half-saturation value of photosynthetically active radiation (PAR); and 𝑇𝑠𝑐𝑎𝑙𝑒 , 𝑊𝑠𝑐𝑎𝑙𝑒 , 𝑃𝑠𝑐𝑎𝑙𝑒  are 110 

scaling factors for temperature, water stress, and phenology, respectively. In this study we take the atmosphere as a reference, 

thus GEE has a negative sign and ER has a positive sign. The current version of WRF-VPRM is parameterized (𝛼, 𝛽, 𝜆) for 7 

vegetation types (Fig.1(c)): crops, mixed forest, evergreen forest, deciduous forest, shrub, savanna, and grass. For each 

modelling grid, ER and GEE are calculated as the weighted averages of each vegetation type based on their fractional 

abundance. Recent studies (Hu et al., 2020;Li et al., 2020) have investigated the uncertainty associated with this 115 

parameterization through sensitivity simulations and suggested the crops can be further divided into subcategories based on 

eddy-covariance (EC) tower measurement to improve the model. In this study we used the default parameterization (values 

presented in Table S2), which has been demonstrated to successfully reproduce the terrestrial flux over northeast China (Li et 

al., 2020). In contrast, CT2019 applies a process based biosphere model, the Carnegie-Ames Stanford Approach (CASA(Zhou 

et al., 2020)), driven by year-specific weather and satellite data to simulate terrestrial fluxes (Peters et al., 2007). CASA also 120 

estimates photosynthetic uptake based on solar radiation and plant phenology, and estimates respiration as a function of T2. 

CASA directly simulates monthly means of Net Primary Production (NPP) and heterotrophic respiration (RH). NPP is the 

difference between photosynthetic uptake (equivalent to GEE) and autotrophic respiration (RA). The summary of RH and RA 

is equivalent to ER. Thus, WRF-VPRM and CASA are essentially very similar in terms of considering methodology impact; 

however, it should be noted that to resolve CASA simulated NPP into GEE and RA, CT2019 applies the assumption that GEE 125 

is twice that of NPP, which implies that for the same plants the photosynthetic carbon uptake is double the magnitude of 

autotrophic respiration (but of opposite sign). This assumption is applicable at monthly scale but may have difficulty to 

reproduce the rapid changes at hourly and daily scales due to impact from weather systems, which will be demonstrated with 

more details in Section 3.2.  
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Hourly measurements of CO2 concentrations were collected at the Lin’an Regional Atmospheric Background Station (30.30˚N, 130 

119.75˚E, surroundings shown in Fig.2(a)) with Picarro G1301 and G1302 trace gas analysers mounted on an observation 

tower at 21 and 55 meters, respectively, above ground level (AGL) and analysed online (data analysis lab shown in Fig.2(b)). 

The station is located in the remote area of Hangzhou 138.6 meters above sea level in the middle of a hilly area covered by 

mixed forest. The observation tower is 60km to the west of downtown center of Hangzhou and 195km to the southwest of 

Shanghai. Fig.2(c) and (d) presents the wind rose map at Lin’an derived from hourly observations of 10m and 55m wind 135 

respectively, which clearly shows the northeast and southwest as prevailing wind directions. The station can properly represent 

the background atmospheric environment in YRD as demonstrated in previous studies (Deng et al., 2018;Pu et al., 2020). The 

tower data provides a representative sampling of CO2 gradients resulting from exchange between atmosphere mixing and 

terrestrial flux.  

Atmospheric samples near the surface were collected at monthly intervals and analysed for CO2 through the National Oceanic 140 

and Atmospheric Administration’s (NOAA’s) Earth System Research Laboratory (ESRL) at four sites (locations shown in 

Fig.1(a)) within our study domain, including Dongsha Island (DSI, 20.69˚N, 116.73˚E), Lulin (LLN, 23.47˚N, 120.87˚E), 

Ulaan Uul (UUM, 44.45˚N, 111.09˚E), and Mt. Waliguan (WLG, 36.29˚N, 100.89˚E). The Orbiting Carbon Observatory-2 

(OCO-2) satellite product (Kiel et al., 2019) with daily intervals was employed to validate simulation of column averaged CO2 

(XCO2) concentrations. A total of 204,940 OCO-2 version9 swath data covering the simulation period was used in this study. 145 

Daily ground-based Fourier transform spectrometer (FTS) Measured XCO2 at Hefei site (31.90˚N, 117.17˚E) was also 

collected through the Total Carbon Column Observing Network (TCCON) for year 2016 (Wang et al., 2017). The TCCON-

Hefei site was located in the northwestern rural area of Hefei city and measurements were conducted from September 2015 to 

December 2016 (Liu, 2018). WRF has been evaluated extensively and consistently performs well for reproducing the 

meteorology fields and the transport of atmospheric tracers in China (Gao et al., 2015;Tang et al., 2016;Wang et al., 2017;Yang 150 

et al., 2019), so this study will only present the simulation performance for CO2 which hasn’t been thoroughly discussed in the 

literature.  

3 Result and Discussion 

3.1 Model evaluation 

We first evaluate the capability of WRF-VPRM to reproduce concentrations of surface CO2 and XCO2, and we find fairly 155 

good model performance through the comparison with satellite and ground-based observations. The WRF-VPRM simulated 

surface layer (mid-level height AGL is 12m) CO2 and XCO2 averages between 2016-2018 are demonstrated in Fig.3(a) and 

(b) respectively. High concentrations were found over industrial areas such as the North China Plain (NCP), Pearl River Delta 

(PRD), and Yangtze River Delta (YRD), where the surface CO2 and XCO2 were above 440 ppmv and 408 ppmv, respectively; 

the domain averages were 411 ppmv and 406 ppmv, respectively. While most climate models assume evenly distributed CO2 160 
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(Fung et al., 1983;Kiehl and Ramanathan, 1983), our data demonstrates a prominent gradient between industrial and remote 

areas (e.g., Tibet Plateau, Mongolia), especially for surface CO2, which could be an important source of uncertainty for 

estimating the long-wave radiation effect (Xie et al., 2018). Spatial patterns of CO2 and XCO2 were in close agreement with 

ODIAC, indicating the dominant impact of anthropogenic emission in determining the CO2 distribution. WRF-VPRM 

simulated CO2 was generally consistent with CT2019 (Fig.3(c)), but CT2019 estimated near surface CO2 (mid-level height 165 

AGL is 25m) over the coastal industrial areas YRD and PRD because the ocean module used in CT2019 estimated stronger 

air-sea exchange than the ocean flux by Takahashi et al. (2009) used in WRF-VPRM. The two models showed better agreement 

for XCO2 (Fig.3 (b) and (e)), but also differed by ~1 ppmv over Taklamakan Desert and along the eastern side of the Tibet 

Plateau. The OCO-2 swath data were integrated into the corresponding horizontal grids of WRF-VPRM and CT2019 

respectively, to validate XCO2. Biases of WRF-VPRM and CT2019 both fall into the range of ±3 ppmv as shown in Fig.3(c) 170 

and (f), respectively, but WRF-VPRM apparently provided more details of spatial gradient. WRF-VPRM showed well-mixed 

underestimations and overestimations along neighbouring satellite tracks, while CT2019 tended to overestimate (underestimate) 

over Tibet Plateau (Taklamakan Desert) where WRF-VPRM gave slightly smaller biases. Fig.4(a) and (b) present the raw data 

pairs between models and OCO-2 with daily interval for WRF-VPRM and CT2019, respectively. In general, the WRF-VPRM 

model reproduced OCO-2 well, with mean bias (MB) of 0.76 ppmv, and CT2019 showed MB of 0.54 ppmv, suggesting an 175 

overall acceptable performance of the weather-biosphere model to simulate the spatial distribution pattern of XCO2 in China.   

We further analyse WRF-VPRM validation against OCO-2 for the seven vegetation types in each season and find no prominent 

difference (evaluation statistics summarized in Table 1). Regarding vegetation type, the model showed the largest MB over 

deciduous forest of -1.01 and 1.27 ppmv in summer and winter, respectively, which only covered a very small portion in 

northeast China. The three most abundant coverage vegetation types in China are grass, crops, and mixed forest. XCO2 180 

simulated by WRF-VPRM over grass areas was slightly overestimated by 0.31~0.68 ppmv throughout the year, and the MB 

over mixed forest was -0.43~0.59 ppmv, indicating a good performance of the model over the vast majority of areas of China. 

Performance over crops generally showed larger discrepancy than other vegetation types, with MB ranging from 0.66 ppmv 

in summer to 1.19 ppmv in winter, suggesting the model tends to slightly overestimate column concentration of CO2 over 

cropland. Li et al. (2020) reported that WRF-VPRM underestimated biosphere carbon over rice paddy sites (by ~3%) in 185 

northeast China and suggested the parameterization of 𝛼, 𝛽, 𝜆 as the most important cause. Cropland differs significantly across 

China with various types of species such as rice, wheat, and corn, for which literatures reported substantially different rates of 

ecosystem respiration and photolysis uptake (Gao et al., 2018;Yang et al., 2016;Zhu et al., 2020). Thus, applying one set of 

parameters to represent all crops may be responsible for the lingering uncertainty of simulated XCO2. In terms of seasonal 

difference, WRF-VRPM showed slightly smaller bias in summer and larger bias in winter, and the correlation coefficients 190 

were all ~0.8, consistent with application over the U.S. (Hu et al., 2020) which also reported slightly better performance in 

summer than other seasons.  
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Fig.4 also presents the overall simulation bias against ground-based observations at their raw temporal intervals (monthly for 

data at ESRL sites, hourly for tower data at Lin’an, and daily for TCCON at Hefei). At the ESRL sites (Fig.4(c)), surface CO2 

concentrations were simulated well with minor overestimation by 0.69 ppmv. Evaluation at the Lin’an station was performed 195 

with the 4km-grid simulation. The mid-level heights of WRF-VPRM’s first, second, and third layers were 12.3m, 36.9m, and 

61.6m, respectively, and simulations were linearly interpolated to 21m and 55m to compare with the tower data. The evaluation 

at 21m AGL (Fig.4(d)) shows slight overestimation by 0.02 ppmv, but the evaluation at 55m height (Fig.4(e)) shows relatively 

large overestimations by 1.06 ppmv. The discrepancy is likely due to the combined effect of vertical allocation of 

anthropogenic emission (Brunner et al., 2019) and parameterization of VPRM. Tracer transport models (such as WRF-VPRM 200 

and CASA) and inverse modelling methods allocate anthropogenic CO2 emission into the near surface layer due to lack of 

injection height information, which may subsequently lead to systematic overestimation of surface CO2 concentration in 

industrial areas. Through a regional scale (750×650km) modelling study around the city of Berlin, Brunner et al. (2019) 

reported that distributing anthropogenic emission into the surface layer overestimated near-surface CO2 concentration by 14% 

in summer and 43% in winter as compared with considering the vertical profiles of local anthropogenic sources. Lin’an 205 

observation tower is located at a densely vegetated area. Validation against OCO-2 suggested that WRF-VPRM did not show 

significantly different performance over different vegetation types as shown in Table 1. As compared to the ESRL background 

sites which were located in more remote areas with little anthropogenic emission (Fig.1(a)), Lin’an was more frequently 

affected by regional anthropogenic emissions which were transported from Shanghai and Hangzhou due to the prevailing 

northeast wind (Pu et al., 2014), indicating that the emission allocation discrepancy may induce more prominent error at Lin’an. 210 

In fact, the 20km-grid WRF-VPRM simulation bias at Lin’an were 5.34 and 5.41 ppmv at 21m and at 55m respectively (Figure 

S2), significantly larger than the bias at ESRL sites. In addition, both the 20km-grid and 4km-grid simulations showed 

relatively larger bias at 55m than 21m due to smaller topography roughness and higher wind speed which increases with height 

according to observations (Figure S3). CT2019 also substantially overestimated at Lin’an, but the first, second, and third layers’ 

mid-level heights are 25m, 103m, and 247m, respectively, so we do not present the direct comparison with the tower data. 215 

Simulated XCO2 from both WRF-VPRM and CT2019 were well consistent with the TCCON Hefei site observations as shown 

in Fig.4(f), with MB by -0.79 ppmv and -0.78 ppmv respectively, and NMB by -0.20% and -0.19% respectively. The 4km-

grid simulation showed very similar result to the 20-grid simulation for XCO2 (Figure S1 and Figure S2). Recent atmospheric 

inverse modelling studies (Fu et al., 2019a;Wang et al., 2019;Xie et al., 2018) reported the simulation bias of XCO2 as 0.5-2 

ppmv with posterior flux inputs. The WRF-VPRM model applied in this study has demonstrated good agreement with the 220 

observations though our evaluation.  

3.2 CO2 seasonal variation and trend in China 

We next analyse the seasonality of CO2 and XCO2 and find that the terrestrial flux played a more influential role than 

anthropogenic emission. WRF-VPRM successfully reproduced seasonal variations of CO2 at ESRL sites, with a correlation 

coefficient of 0.90 (Fig.5(a)). The WRF-VPRM 4km-grid simulation showed a correlation coefficient of 0.82 with the Lin’an 225 
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tower observation (averaged for daytime 21m and 55m data). Both the model and measurements showed prominent seasonal 

cycles for surface CO2 concentrations. The WRF-VPRM simulation showed maxima in April (413-419 ppmv) and minima in 

August (399-404 ppmv) as presented in Fig.5(b). The model suggested that the anthropogenic CO2 contribution was 2.6 ppmv 

in both months, while the biogenic contributions were 3.1 and -1.2 ppmv in April and August, respectively (Fig.5(d)). 

Anthropogenic emission (Fig.5(f)) showed a flat curve with relatively higher values in December due to fuel combustion for 230 

heating (Zheng et al., 2018).  EVI showed maxima in July and August (Fig.5(f)). During summer, photosynthetic uptake almost 

completely compensated anthropogenic emission, causing the minimum CO2 concentration observed in August, while the 

higher anthropogenic emission in December and respiration flux in April led to the two corresponding peaks. The 

anthropogenic XCO2 contributions were 0.5 and 0.6 ppmv in April and August, respectively, and the biogenic contributions 

were 0.8 and -1.5 ppmv, respectively, suggesting that the seasonality of XCO2 was also primarily dominated by terrestrial flux. 235 

Furthermore, the seasonality at high-latitude ESRL sites (UUM and WLG) was stronger than at Lin’an and low-latitude sites 

(DSI and LLN) because of the larger temperature and photosynthetically active radiation (PAR) gradients. Annual average 

anthropogenic and biogenic XCO2 contributions were 7.1 and -1.9 ppmv, respectively, indicating that biosphere uptake was 

an important carbon sink offsetting 27% of anthropogenic emission and slowing the growth of atmospheric CO2.  

XCO2 showed similar seasonality, with minima in August and maxima in April and December (Fig.5(b)). Both WRF-VPRM 240 

and CT2019 showed good agreement with TCCON Hefei observations with correlations of 0.89 and 0.88, respectively 

(Fig.5(e)). However, we note that WRF-VPRM simulated drastic changes (e.g., the grey shaded period in Fig.5(e)) that were 

not reproduced by CT2019. Fig.6 shows the daily concentrations of XCO2 overlaid with horizontal wind speed at 10m AGL 

from WRF-VPRM and CT2019 and highlights large discrepancies over Hefei (Figure S4 shows the same comparison but using 

WRF-VPRM 4km-grid simulation data). Between April 1st and 3rd 2016, an 850 hPa trough associated with a surface cold 245 

front moved southeastward from Mongolia to the North China Plain (NCP) (weather maps shown in Fig.6(g)-(i)). At the 

leading edge of the front, a convergence zone associated with a low pressure center formed, which led to significant cloud 

formation and subsequently reduced short-wave radiation. As a result, photosynthetic carbon uptake was reduced, leading to 

enhancement of atmospheric CO2. Meanwhile, the cold front transported anthropogenic CO2 from NCP to YRD, and the 

convergence zone along YRD ahead of the front facilitated the accumulation of air pollutants and CO2 from anthropogenic 250 

emissions. With its coarse spatiotemporal resolution, CT2019 had difficulty reproducing such regional weather systems that 

can lead to rapid and localized changes in CO2 concentration and terrestrial flux, indicating the importance of fine resolution 

modelling to better represent the small spatial scale and rapid temporal scale variations of CO2 (Agusti-Panareda et al., 2019).  

We also find a notable increasing trend for the 3-year study period. Observed CO2 annual enhancement was 2.2 ppmv/yr 

(0.56%/yr) at the ESRL sites and 2.3 ppmv/yr (0.54%/yr) at Lin’an. The observed average CO2 concentrations at Lin’an (428 255 

ppmv) were substantially higher than those at ESRL sites (407-410 ppmv). The prominent higher levels of CO2 and slightly 

higher absolute growth rate at Lin’an can be attributed to the influence of the transport regional anthropogenic emission which 

is growing at rate of 0.82%/yr as suggested by ODIAC. Domain-wide XCO2 was also found to increase by 2.3 ppmv/yr 
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(0.57%/yr) as suggested by OCO-2 and 2.5 ppmv/yr (0.61%/yr) as suggested by the simulation. WRF-VPRM reproduced the 

trends in good agreement with ground and satellite observations. Model simulated budgets suggested that the increasing trends 260 

for anthropogenic, biogenic, and background XCO2 were 0.81%/yr, -9.17%/yr, and 0.59%/yr, respectively; the trends for 

anthropogenic, biogenic, and background CO2 were 4.95%/yr, -0.73%/yr, and 0.59%/yr, respectively. Our findings are 

consistent with recent measurements and inverse modelling studies but provide process-based estimates for anthropogenic 

emission and terrestrial flux. Wu et al. (Wu et al., 2012) reported measured CO2 concentration at Changbai Mountain forest 

site in northeast China increased by 1.76 ppmv/yr between 2003-2010. With the atmospheric inversion modelling method, Fu 265 

et al. (2019b) estimated surface CO2 in East Asia increased by 2-3 ppmv/yr between 2004-2012. These trends suggest that 

although anthropogenic emission increases at a steady rate in East Asia, photosynthetic uptake also serves as an increasing 

carbon sink due to enhanced EVI (0.29%/yr). However, as the interannual variability (IAV) of terrestrial flux is usually 

critically large and is affected by both vegetation itself and climate conditions (Fu et al., 2019b;Niu et al., 2017), simulation 

over longer time periods is necessary in future studies to conclusively comment on the changing trend of biosphere CO2 in 270 

China.  

3.3 Diurnal variation of near-surface CO2 and influence factors 

Finally, we examine the diurnal variation of CO2 data at Lin’an station as shown in Fig.7 to reveal the temporal dynamics and 

atmospheric mixing of CO2 at local scale. While both 21m (Fig.7(a)) and 55m (Fig.7(b)) CO2 show prominent diurnal changes, 

the variations were larger in summer (JJA) than winter (DJF) and were larger at 21m than 55m, indicating the dominant 275 

influence of terrestrial flux over anthropogenic emission in determining the near surface CO2 concentration. Fig.7(c) and (d) 

present the WRF-VPRM simulation bias at 21m and 55m respectively, and Fig.7(e) and (f) present the bias of CT2019 at 21m 

and 55m respectively. We find that both models prominently overestimated during nighttime, which shall be attributed to the 

bias in simulating NEE. Li et al. (2020) reported the model overestimated nighttime NEE at a mixed forest site Wuying 

(47.15˚N, 131.94˚E) by 34% during the growing season (May-Sep.) according to eddy-covariance tower measurement. Fig.7(g) 280 

and (h) present the simulated NEE by WRF-VPRM and CT2019, respectively, which show close correlations with the CO2 

simulation biases. While Lin’an is also covered by mixed forest, our evaluation suggests that WRF-VPRM may also 

overestimate nighttime ecosystem respiration at Lin’an as it has a warmer climate condition than Wuying (Figure S5), and 

CT2019 has even greater bias for presenting the diurnal cycles of terrestrial flux.  

We also find that planetary boundary layer height (PBLH) significantly affects diurnal accumulation and depletion of 285 

atmospheric CO2 as shown in Fig.8(a). During daytime in the growing season, photosynthetic uptake results in lower CO2 

concentration; meanwhile, PBLH is also high and allows rapid vertical mixing between near surface and upper air. During 

nighttime when photosynthesis stops, CO2 from ecosystem respiration starts to accumulate in the shallow stable boundary layer, 

while the residual layer remains largely decoupled. Thus, atmospheric constituents with surface sources normally exhibit a 

vertical profile in which concentrations decrease with height in the stable boundary layer (Hu et al., 2020;Hu et al., 2012).  290 
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Such boundary layer characteristics are confirmed by CO2 vertical gradients at Lin’an in this study. CO2 at 55m height was 

consistently lower than the near surface air at 21m during nighttime due to accumulation of respired CO2 in the stable boundary 

layer. As photosynthetic uptake depleted the near surface CO2 and daytime boundary layer convection developed, the CO2 

gradient was gradually weakened from 06:00 to 11:00 LT and remained minimal through the rest of the daytime; at midday 

when photosynthesis reaches maximum intensity, CO2 at 21m was even lower than at 55m. WRF-VPRM roughly reproduced 295 

the diurnal profile but noticeably underestimated the intensity of nighttime CO2 difference (ΔCO2) likely due to the bias for 

simulating night time terrestrial flux as discussed above or underestimation of nighttime boundary layer stability by the PBL 

scheme (Hu et al., 2012).   

The relationship between the near-surface CO2 profile and boundary layer stability is further statistically examined. Fig.8(b) 

presents the correlation between air temperature gradient (ΔT/ΔH) and CO2 concentration gradient (ΔCO2/ΔH) calculated with 300 

diurnal profiles of tower observations averaged for 2016-2018, where ΔT, ΔH, and ΔCO2 is the differences of temperature, 

height, and CO2 concentration between the two tower levels, respectively. Fig.8(b) clearly demonstrates the influence of 

boundary layer stability on the CO2 vertical profile, as the correlation between ΔT/ΔH and ΔCO2/ΔH reaches -0.98. On one 

hand, a more stable PBL with a strongly positive temperature gradient would promote surface CO2 accumulation and lead to a 

strongly negative CO2 gradient, especially under inversion conditions when upper air has higher temperature (orange area in 305 

Fig.8(b)). Conversely, a strongly negative temperature gradient indicates stronger radiation, and subsequently greater 

photosynthesis and CO2 depletion in the near surface layer, which would result in a positive CO2 gradient (green area in Fig.8(b)) 

implying a lower CO2 concentration at the surface. While the diurnal variations of ΔCO2 were primarily dictated by local 

biogenic CO2 fluxes and boundary layer dynamics, the two minor daytime peaks of ΔCO2 at Lin’an, at 10:00 and 18:00 LT 

(Fig.8(a)) likely suggest influence of transport of CO2 from urban plumes in the region; for example, from Hangzhou which is 310 

60 km away from the tower. Due to rush-hours anthropogenic emissions, CO2 enhancement at Hangzhou relative to a 

background site exhibited a prominent bimodal curve with two peaks during early morning and early evening (Pu et al., 2018). 

Depending on meteorological conditions, particularly wind fields, urban CO2 plumes from cities such as Hangzhou may be 

transported to the Lin’an site. The influence of boundary layer conditions on CO2 variability has been discussed in several 

studies through analysis of mountain site ground-based observations (Arrillaga et al., 2019;Esteki et al., 2017;Li et al., 2014), 315 

but our study applied tower data as direct evidence to demonstrate the significant impact of PBL thermal structure, which has 

rarely been documented. More importantly, although WRF-VPRM failed to capture the bimodal ΔCO2 peaks at rush hours, 

because monthly ODIAC data lacked an hourly profile, our analysis reveals the critical importance of careful configuration of 

the PBL scheme and spatiotemporal distribution of anthropogenic emission for weather-biosphere modelling of atmospheric 

CO2. 320 
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4 Summary and Conclusions 

In this study, the spatiotemporal variations of CO2 in China are investigated with measurements from multiple datasets and a 

weather-biosphere coupled model simulation for 2016-2018. We find consistent higher concentrations over industrial areas 

with excessive anthropogenic emission and lower concentrations over densely vegetated areas. Observed CO2 concentrations 

at Lin’an (427 ppmv) are significantly higher than remote ESRL sites (408 ppmv) although they are all established as 325 

“background” stations, indicating the dominant influence of anthropogenic emission at regional scales. The Lin’an tower data 

shows a large negative correlation (-0.98) between vertical CO2 concentration and air temperature gradients, suggesting the 

significant influence of boundary layer stability on CO2 accumulation and depletion. The online coupled weather-biosphere 

model WRF-VPRM enables process-based estimations of contributions from anthropogenic emission (0.59 ppmv (0.15%)), 

terrestrial flux (0.16 ppmv (-0.04%)), and background concentration (405.70 ppmv (99.89%)) to average total XCO2. 330 

Respective simulation biases of surface CO2 and XCO2 are 0.69 and 0.76 ppmv against ESRL site observations and OCO-2 

satellite product with correlations of 0.87 and 0.90, indicating overall good performance of the WRV-VPRM model. Maximum 

CO2 concentrations are found in April and minima are found in August for all three years, and the seasonality is reproduced 

well by the model, which also reveals that terrestrial flux and background concentration dominated the seasonality rather than 

anthropogenic emission.  335 

A steadily increasing trend in XCO2 by 2.46 ppmv (~0.6%/yr) during the study period is demonstrated consistently by both 

model simulation and satellite product. Budget analysis suggests that anthropogenic emission increased by 0.83%/yr 

contributing to the 0.81%/yr growth rate of anthropogenic XCO2 enhancement, 27% of which was offset by biosphere uptake. 

It is noted that terrestrial flux has significant inter-annual variability, thus a more robust estimation of the terrestrial flux trend 

should be obtained through a long-term study in the future. The background XCO2, representing contributions from global 340 

circulation, increased by 2.37 ppm (0.59%/yr), suggesting that CO2 level in China was growing at the same rate as the rest of 

the world. 

The most significant modelling bias is identified from validation against the Lin’an tower 55m observations, which WRF-

VPRM 4km-grid simulation overestimated by about 1.06 ppmv with a correlation coefficient of 0.82. The allocation of 

anthropogenic emission into the surface layer is partially responsible for this modelling bias because Lin’an is closely affected 345 

by upwind industrial mega cities in YRD, suggesting the need to include vertical profiles of fossil fuel combustion to properly 

redistribute the ODIAC for modelling purposes. In addition, diurnal variations of the bias suggest that the modelling 

discrepancy is also induced by large uncertainty associated with simulating nighttime ecosystem respiration. Representation 

and parameterization of photosynthetic carbon uptake in VPRM has been continuously improved during the past 10 years since 

its first release (Hu et al., 2020), but ecosystem respiration parameterization is still too simplified to fully represent the 350 

autotrophic and heterotrophic respiration of biomass. Li et al. (2020) and our study both reveal the urgent need to better 

calibrate VPRM parameterization over different vegetation types in China, and other methods such as inverse modelling is 

necessary to further validate the anthropogenic fluxes from ODIAC. Nevertheless, WRF-VPRM is demonstrated to be a 
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reliable tool to model the dynamics of CO2 and exchange between the atmosphere and terrestrial flux. Most importantly, as the 

online coupled modelling system is able to simulate meteorology and biosphere processes simultaneously, it promotes the 355 

opportunity to investigate the interactions between atmospheric mixing and terrestrial flux (Carvalhais et al., 2014;Schimel et 

al., 2015) while comprehensively considering various factors from both sides that affect CO2 in one coordinate frame, which 

could be a very helpful tool to support policy makers for balancing short-term carbon cycles at regional scales. 
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Table 1. Evaluation statistics1 for WRF-VPRM 20km-grid simulation against OCO-2 satellite product at daily intervals 

Season 
Vegetation 

type 

Mean Obs. 

(ppmv) 

Mean Sim. 

(ppmv) 

MB1 

(ppmv) 
cc1 

# of 

samples 

Spring 

other 406.85 407.81 0.962 0.82 16123 

evergreen 407.52 407.89 0.36 0.73 1920 

deciduous 408.15 408.430 0.27 0.82 412 
mixed 407.79 408.21 0.41 0.79 4438 

shrubland 406.97 407.54 0.56 0.74 6550 

savanna 407.59 408.55 0.96 0.81 534 

grass 406.81 407.49 0.68 0.81 11170 
crops 407.50 408.29 0.79 0.82 13548 

Summer 

other 403.90 404.84 0.93 0.88 13445 

evergreen 402.68 402.24 -0.44 0.85 1082 
deciduous 400.39 399.39 -1.01 0.82 527 

mixed 402.04 401.60 -0.43 0.87 4312 

shrubland 403.92 404.41 0.48 0.85 5193 

savanna 404.62 404.60 -0.02 0.79 170 
grass 402.35 402.66 0.31 0.88 12588 

crops 402.86 403.52 0.66 0.87 7947 

Fall 

other 403.32 404.35 1.03 0.82 17054 
evergreen 403.93 403.19 -0.74 0.71 1716 

deciduous 403.35 403.64 0.28 0.84 281 

mixed 403.64 403.95 0.31 0.83 3611 

shrubland 403.12 404.22 1.10 0.77 8532 
savanna 403.45 404.15 0.70 0.70 504 

grass 403.22 403.65 0.43 0.85 11176 

crops 403.76 404.80 1.04 0.80 13136 

Winter 

other 404.76 405.80 1.03 0.80 13838 

evergreen 404.79 404.75 -0.05 0.78 2671 

deciduous 405.38 406.65 1.27 0.79 135 

mixed 405.20 405.79 0.59 0.79 2108 

shrubland 404.76 405.84 1.09 0.79 7683 

savanna 404.63 405.83 1.20 0.75 1064 

grass 405.06 405.64 0.58 0.77 5967 

crops 405.17 406.36 1.19 0.79 15508 
1 Mean bias was calculated as: 𝑀𝐵 =

1

𝑁
∑ (𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖)
𝑁
𝑖=1 , and correlation coefficient was calculated as:𝑐𝑐 =

∑ (𝑆𝑖𝑚𝑖−�̅�𝑖𝑚)(𝑂𝑏𝑠𝑖−�̅�𝑏𝑠)
𝑁
𝑖=1

√∑ (𝑆𝑖𝑚𝑖−�̅�𝑖𝑚)2𝑁
𝑖=1 √∑ (𝑂𝑏𝑠𝑖−�̅�𝑏𝑠)

2𝑁
𝑖=1

, where �̅�𝑖𝑚 is the average of simulations, �̅�𝑏𝑠 is the average of observations. 

2 For each season, evaluation statistic with the worst performance (largest absolute value of MB) is highlighted in red, and the 575 

one with best performance (smallest absolute value of MB) is highlighted with in bold font.  
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Figure 1: Annual averages of (a) ODIAC emission, (b) MODIS EVI, and (c) dominant vegetation type in the 20km simulation 

domain, and (d) terrain height of the 4km simulation domain. The locations of the ESRL sites, TCCON Hefei site, and Lin’an tower 

site are indicated with red circles, rectangles, and diamonds respectively in (a). The 4km domain is indicated with the red dash 580 
rectangle in (b), and the locations of Hangzhou and Shanghai are indicated with yellow triangles in (d). 
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Figure 2: Photos of the (a) Lin’an regional atmospheric background station and (b) the data analysis lab; and wind rose map at 

Lin’an derived from wind speed and wind direction observations for 2016-2018 at (c) 10m and (d) 50m. 585 

  



20 
 

 

 

Figure 3: 2016-2018 averages of WRF-VPRM simulations of (a) 1st layer (mid-layer height is 12km) CO2 concentration, and (b) 

XCO2 concentration; (c) WRF-VPRM simulated XCO2 bias against OCO-2; (d)-(f) is same as (a)-(c) but for CT2019 (1st layer mid-

level height is 25m). 590 

  



21 
 

 
Figure 4: Data pairs for OCO-2 against (a) WRF-VPRM and (b) CT2019; (c) ESRL against WRF-VPRM; Lin’an tower against 

WRF-VPRM 4km-grid simulation at (d) 21m and (e) 55m; and (f) TCCON-Hefei against WRF-VPRM and CT2019. 
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Figure 5: Monthly variations of (a) CO2 at ESRL sites, (b) total (black) and background (BCG, grey) CO2 (line) and XCO2 (area 

and bar), (c) CO2 at Lin’an station (averaged for daytime 21m and 55m data); (d) contributions from anthropogenic (ANT, orange) 

and biogenic (BIO, blue) for CO2 (lines) and XCO2 (bars); (f) ODIAC emission and MODIS EVI; and (e) Daily variation of XCO2 

at TCCON-Hefei site. 
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Figure 6: Daily XCO2 from CT2019 (a-c) and WRF-VPRM (d-f), weather map from Korea Meteorological Administration (g-i). The 

blue box represents location of Hefei.  
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Figure 7: Seasonal mean diurnal variations of observed CO2 at (a) 21m and (b) 55m; WRF-VPRM simulation biases 

of CO2 at (c) 21m and (d) 55m; CT2019 simulated biases at (e) 21m and (f) 55m; Simulated NEE from (g) WRF-

VPRM and (h) CT2019. 610 
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Figure 8: (a) Average (2016-2018) diurnal variations of simulated (black line) and observed (red line) ΔCO2 and simulated (blue line) 

PBLH at Lin’an station; and (b) correlation between CO2 gradient between 55m and 21m (ΔCO2/ΔH) and temperature gradient 

(ΔT/ΔH) at Lin’an station. 
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