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Abstract. Dynamics ofatmosphericCO; hasreceived considerable attention in the literatyet significant uncertainties
remainwithin the estimates ofontribution fromterrestrial flux andhe influence ofatmospheric mixingln this study ve
apply the Weather-Research-atbrecastin RF-Chemmodel esupledonfiguredwith the Vegetation Photosynthesis and
Respiration ModelM¢RF-VPRM)_optionfor biomasdluxesin China to characteriziae dynamics o€0; in the atmosphere

The online coupledVRFVYPRMChem s able to simulatebiosphere processes (photosynthetic uptake and ecosystem
respiration) and meteorologyy one coordinate system/e apply WRFVPRMChemfor amulti-year simulatior(20162018)
with integrated data frona satellite product, flask samplings, and tower measearssrio diagnose thespatiotemporal
variations of CQ fluxes and concentrationis China. We find thatthe spatial distribution of C®was dominatedby
anthropogenic emissignwhile its seasonality (wittmaximain April 15 ppmv higher thaminimain Augug) wasdominated
by terrestrial flux and background @QDbservations and simulations revathh consistent increasing trea column
averaged CQ(XCOy) of 2.46 ppmv 0.6%/yn resulting fromanthropogenic emission grow#ind biosphere uptak@VRF
VPRMChemsuccessfully reprodedgroundbased measurements of surf@a concentration with mean bia$-0.79ppmv
and satellite derivecKCO, with mean biasof 0.76 ppmv. The modelsimulated seasonalitywas also consistentvith
observationswith correlationcoefficientsof 0.90 and 0.89 fogroundbased measuremerdnd satellitedatg respectively
Tower observations from a background &ite n a@n 3 D18 N, reveaéda strong correlation@.98) between vertical
CO, and temperaturgradientssuggesing a significant influencef boundary layethermal structuren the accumulation and

depletion of atmospheric GO
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1 Introduction

Climate research requires accurate characterization of atmosgi@tievhich is cbsely affected byhe both atmospheric
transport and terrestrial sources and sinks (Bauska et al., 2015; Keenan et al., 2016). Our current knowledge largely come
from interpreting groundor spacebased measurements and model simulations. While observation is limited by apdtial
temporalcoverags, modellingapproaches also suffer from various uncertair{&s et al., 2018 Modelling assessment of
COzis usually conducted through two methods: first, proceisdatadriven biosphere modeis which terrestrial fluxes are
diagnostically calculatbwith theoretical functiongTian et al., 201por determined througlsemiempirical relationships
derived from ground measurements and/or satellite products with machinm¢etechnique(Papale and Valentini, 20Q3)
second, inversmodellingin which prior flux estimatesppliedin atmospheric transport modelreadjustediy observational
data and/or satellite produdtsdetermingposterior flux(Peylin et al., 2002;Kountouris et al., 2Q1Brocesslriven biosphere
models have difficulties captimg spatial and temporal variabilities at fine resolution because parameters calibrated from
limited number of site observations are applied across a variety of land baedsBrown et al., 2018 Atmospheric inverse
modellingis predominantly affected by the presumed prior flard different assimilation techniqueangive different and
even conflicing results(Peylin et al., 20183 These fundamental features highlight the limits oféregsoroaches for accurately

modeling carbon dynamics.

Researchrs haveattemped to reconciledifferencesb e t we e n -uiplwo thtimom pher e-dowdél at modpf
inverse models, angkcent studiebavedemonstratedncreasing level of agreement wing to improved understandingf

both approachesuch as better parameterization of biosphere procéBsgalu et al., 2018 more accurately constrained
estimates of prior fluxCrowell et al., 2018;Feng et al., 2018nd advanced measurement/satellite instruments that provide
high quality data for assimilatiqGaubert et al., 2039however critical modeldisagreements still persigtondo et al., 2020

To bridge the gap between terrestrial flux and atmospheric mixing, a type of wiemtsigere coupled modéhhmadov et

al., 2007;Mahadevan et al., 2008s beerdeveloped to simulate biosphere processes and meteorology canititiome
coordinate systepallowing their interactiongo be properly addressef-few-cas®revious modellingtudies(Ahmadov et

al., 2009;Kretschmer et al., 2012;Park et al., 2B&8k et al., 2013;Park et al., 2020;Pillai et al., JdiR/edemonstratethe
potential-advantages-of couplagatherbiospher i i weeks)
simulatiors—but-whethertheoupled models-able-t@ansuccessfully capture the mesoscale, @@nsport at regional and

local scaleswith significant improvementsBut whetherit can reproducethe spatial-distributionsard-temporalong-term
variations and subsequently estimate carbon fluxes at regionas sgtiehigh confidencaemainsa crucialissue to be

addressed.

Understanding the spatiotemporal characteristics of atmospD®sics a key priority in China because of the central role it
plays in regulatinghe climate and environmentn recent yearstremendous efforts have bearadein China to control
anthropogenic emissions from fossil fuel combust@rboth air quality and climate mitigation purpo$gheng et h, 2018)

While the sources and sinks of air pollutants have been thoroughly examined and well doc(irmgarigcet al., 2020he
2
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dynamics ofCO; at regional tonational scalgeremain poorly understoodue to lack of longerm observations and limited
modellingstudies(Han et al., 2020)Li et al. (2@0) applieda weatherbiosphere modakith tower olservations to analyse
CO; fluxes and concentrations over mixed forest and rice paddy in northeast Blirtae one/ear simulatioriimits the
attempt to investigate interannu@0;, variationwhich is subject t@ubstantiathange(Fu et al., 2019h)Wang et al. (2019)
applied satellite products andsitu observations with inverseodeling to derive posterior carbon fluxes and reported 100%
uncertainty for constraining global terrestrial flux. Fu et al. (2020) applied GE@® simulation with offline Carbon
Tracker(Peters et al2007)as input to estimate impacts of terrestrial flux and anthropogenic ensissitine annual variation
of CO, concentrationsbut regionakscaleassessment wdsmited by coarse grid resolution ¥22.5°). Machinelearning
techniquehas also beeamployed to upscale site observations to regisnale (Yao et al., 2018; Zhu et al., 2014), but the
estimations of carbon budget and dynamics retain large uncertainty due to the diversity of biomass arandgséese grid
resolution Thesepilot studies have shed light on improving the understandirgpatiotemporatharacteristics of COin
Chinawith modelling or observational methqdmut an integratednvestigation withbothmodelling and observatismat fine-
scaleis urgentlyneededo expand thgnosic understanding dbcalized and regionatansport, flux, and concentration©®.

to inform emission management and climate adajgaicies(Fu et al., 2019&liu et al., 2017;Wang et al., 2019)

In this study weuse the Weather-Research—and-Forecadfititi-Chem model eoupledonfigured with the Vegetation
Photosynthesis and Respiration ModMRFVRPRM)Chenj option(Hu et al., 2020;Mahadevan et al., 20@8%imulate and

characterize the spatiotemporal variatadfnatmospheriadCO; in China from 201&018,and also to validate this weather
biosphere model with recent advanced satellite and tower observMi®isVPRMChemhas been applied in a few case
studies ovelithe United StategHu et al., 202Q)Europe(Kretschmer et al., 2012hortheast ChinéLi et al., 2020) and South
Korea(Park et al., 202QY}his studyattempt to applynd evaluaté for a multi-year simulation over Chin&Ve first describe
the modellingmethods and data followed by modellidation against observations from multiple datasets tlaewl present
the spatiotemporal variations and estimates of contributions from anthropegesgiors, terrestrial flux, and background
concentratioa Finally, weinvestigateower data and revettie boundary layeghermal structurémpacs onatmospheric C®

accumulation and depletion.

2 Method

We conduct nesteRFChem(Version 3.9.1.3VPRM) simulations oveChina(domain shown irFig.1(a)) and Yangtze
River Delta (YRD) regiorfdomain shown irfrig.1(d))at20km and 4km grid resolutionrespectivelyBoth simulationsvere
configured with 47 vertical layersith model tops at 10hP&odel configuration in this study folloadthe work by Hu et al.
(2020) and Li et al. (2020We applied the YSU planetary boundary layer (PBL) schéiemg et al., 2006)Morrison
microphysicg{Morrison et al., 2009)Duhia shorwave radiatio{Dudhia, 1989)RRTM longwave radiatior(Mlawer et al.,
1997) Grell-3 cumulus schemgGrell and Devenyi, 2(F), and Noah langurface schem@hen and Dudhia, 2001yith

more detailssummarizedn Table S1In geneal, the 4kmgrid simulation shoed no significant differences compared to

3



100

105

110

115

120

125

130

the 20kmgrid simulation (demonstrateth Figure SlandFigureS2), thus he 20kmgrid simulationwasused to characterize
the spatiotemporal distributions of @@ver China and he 4km-grid simulationwasonly used tocompare with tower data
collectedat a background sitén YRD. Discussions in the next section will mostly refer to the 2@kid simulation unless
otherwisespecified Initial andlateralboundary conditionfor the 20kmgrid simulationswerederivedfrom themole fraction
productof CarbonTracke(Peters et al., 2007&vith 3%° resolution The latest update of column avera@®, (XCOy)
concentrationassimilation product from CarbonTracker (CT2019jith 1% 1° resolution (Jacobson, 2020yas also

employed to compare with tWeRFVPRMChemsimulation.The aithropogenic emissioninventoiyf r om t he Open
Data Inventory for Anthropogeni€O, (ODIAC) with 0.1% 0.1° resolution(Oda et al., 202)8shown in Fig.1(g-ocean-flux
isfrom-climatology-estimation). ODIAC has been widely applied in recent modelling studied demonstrated good
agreement with other global inventor{@@kahasHiledeliuset al.,20092017;Hu et al., 2020 Ocean fluxis from climatology

estimationTakahashi et al., 20@%andvegetation fractions and enhanced vegetation index, &\dwn in Fig.1(h)arefrom

MODIS (Huete et al., 2002CO. from initial and boundary conditiongnthropogeic emission, anderrestrial biogenidlux
weretagged as BG, ANT, and BIQ respectivelyto allowthe contributions from eagirocesgo beidentified and quantified
through one simulation

WRFVRPRMChemcalculates ecosystem respiration (ER) and gross ecosystem exchange (GEE) with the following functions

as:
oY | Y i (1)
000 _ Y @ 0 p 0OMOY 0VOOd'Y 2)

where T is the air temperature at 2m abthesurface(T2);| i h_are vegetation typdependent parameterfs 6 "Yis the
vegetation typelependent hal§aturation value ophotosynthetically active radiatioiAR); and”Y o 3§) are

scaling factors for temperature, water stresd,@renologyrespectivelyln this study we take the atmosphere as a reference
thus GEE has a negative sign and ER has a positiveTigrcurrent version SWRF-VRPRMChemis parameterized @i h)

for 7 vegetation type@~ig.1(c)) crops, mixedorest, evergreen forest, deciduous forest, shrub, savanna, and-grasach
modelling grid, ER and GEE are calculated as the weighted averages of each vegetation type based on thair fraction
abundance Recent studiegHu et al., 2020;Li et al., 2020have investigated the uncertainty associated kil
parameterization through sensitivity simulations and suggested the crops can be further divided into subcategories based c
eddy-covariancg EC) tower measurement to improve the model. In this studyseelithe default parameterizatiqualues
presentd in Table S2)which has been demonstratedstmcessfully reproduce the terrestrial flux over northeast Ghired

al., 2020) In contrastCT2019 applies process basduiosphere moel, the Carnegidmes Stanford Approach (CAS2hou

et al., 202)), driven by yeaispecific weatheand satellite data to simulate terrestrial flui@sters et al., 200.7CASA also
estimates photosynthetic uptake basadsolar radiation and plant phenology, and estimates respiration as a function of T2.
CASA directly simulate monthly means of Net Primary Production (NPP) andrbétphic respiration (R. NPP is the

difference between photosynthetic uptake (equivalei@EE) and autotrophic respirationa]RThe summary of Rand R

4
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is equivalent to ER. Thu®WRFVPRMChemand CASA are essentially very similiar terms ofconsideringmethodology
impact however,it shouldbe notedthatto resolve CASA simulated NFARto GEE andRa, CT2019 applies the assumption
that GEE is twicehatof NPP, which implieshat for the same plantise photosynthetic carboumptake isddloublethe magnitude
of autotrophic respiration (but of opposite sign). This assumjgiapplicable amonthly scaldout may havedifficulty to
reprodue therapid changes at hourgnd dailyscales due to impact from weather systgsrwhichwill be demonstrate with

more details in Section 3.2.

Hourly measurements @O, concentrationsverecollectedat he L i n 6 a n ospherg Backgraund Statiod© . 3 0e N,
119 7 5 sufounding shownin Fig.2(a)) with Picarro G1301 and G1302 trace gamlyses mounted on an observation
tower at 2land55 meters respectivelyabove groundevel (AGL) and analysed online (data analysis lab shimwFig.2(b)).

The station idocatedin the remote area of Hangzhou 138étersabove sea level in the middle of a hilly ameveredby

mixed forest The observation towds 60km to the west of downtowsente of Hangzhou and 195km to the southwest of
ShanghaiFig.2(c) and (d)presents the wind roseapa t Li néan d dyobsergationshf 10mmand Bmwind
respectivelywhich clearlyshowsthe northeast and southwesprevailing wind directionsT he station can properly represent

the background atmospheric environment in YRD as demonstrated in previous (edig®t al., 2018;Pu et al., 202The

tower dataprovides a representative sampling 6. gradients resuiltg from exchange between atmospherixing and

terrestrial flux.

Atmospheric samples near the surface were collected at monthly intervals and anal@§edHayugh the National Oceanic

and At mospheric Admi niSgstem&eséarch lealsdory (ESRE)A fowr Sitesfoaatiandshown in

Fig.1@)) within our studyd o ma i n, including Dongsha | sland (DSI, 20. 6 ¢
Ul aan Uul (UUM, ,44d4 B¢ N, WAll g aeE) WIOHKeOrbitthg Cath@neONservaioff 0 . 8 9 ¢
(OCO-2) satellite produdiKiel et al., 2019 with daily intervalswasemployed to validate simulation of column averaged CO
(XCOy) concentrations. A total of 204,940 O&Xrersion9 swath data covering the simulation peniadused in this study.

Daily groundbased Fourier transform spectrometer (FTS) Measured X ®lefei site (31.9¢ N117.1% Ewas also

collected through the Total Carbon Column Observing Network (TCCON) for year(@drtg et al., 2017)The TCCON

Hefei site was located in the northwestern rural area of Hefeasdyneasurments were conducted from September 2015 to
December 2014Liu, 2018) WRF has been evaluated extensively and consistently performs well for reproducing the
meteorology fields and the transport of atmospheric trac€hkina(Gao et al., 2015;Tang et al., 2016;Wang et al., 2017;Yang

et al., 2019)so this studwvill only presenthesimulation performance f@O,wh i ¢ h h atloroughly diseissei the

literature



160

165

170

175

180

‘185

190

3 Result and Discussion
3.1 Model evaluation

We first evaluatethe capability oWRF-VPRMChemto reproduce concentrations of surfa&®, and XCO,, and wefind
fairly goodmodel performance throughe comparison wittsatellite andyroundbasedbservationsThe WRFVPRMChem
simulatedsurfacelayer (midlevel height AGL is 12m)CO, and XCO, averags between20162018 are demonstrated in
Fig.3(a) and ) respectivelyHigh concentrationeierefound overindustrial areasuch agheNorth China PlaifNCP), Pexrl
River Delta (PRD), and Yangtze River Delta (YRD), where the su@f@eandXCO, wereabove 44(@pmv and 408opnv,
respectivelythe danain averagesvere411 ppnmv and406 ppnv, respectively While most climate models assume evenly
distributed CO, (Fung et al., 1983;Khl and Ramanathan, 1983)ur data demonstied a prominentgradientbetween
industrial and remote areas.g.,Tibet Pldaeau, Mongolia)especially for surfac€O,, which could be an important source of
uncertainty for estimating the longave radiatioreffect (Xie et al., 2018 Spatialpatternsof CO, and XCQ werein close
agreement with ODIAC, indicating the dominant impact of anthropogenic emission in determir@@ ttistribution WRF
VPRMChemsimulatedCO, wasgenerallyconsistent with CT201@Fig.3(c)), but CT2019 estimatenearsurfaceCO, (mid-
level height AGL is 25mdver thecoastal industrial area€RD and PRDbecause the ocean module used in CT2019 estimate
stronger aisea exchange than the ocean fhyxTakahashi et al. (2009) usedfRF-VPRMChem The two models shosd
better agreeent for XCO. (Fig.3 (b) and(e)), but also diffeed by ~1 ppmv over Taklamakan Desert aalbng the eastern
side oftheTibet PlateauThe OCQ2 swath datavereintegrated into the correspondihgrizontalgridsof WRF/RPRMChem
and CT2019 respectivelto validateXCO,. Biases o WRFVPRMChemand CT2019 botfall into the range of 3 ppmvas
shown inFig.3(c) and (f) respectively but WRFVPRMChemapparently providé more details of spatial gradieMWRF
VPRMChemshowed well-mixed underestimations and overestimatia@eng neighbouringsatellite trackswhile CT2019
tenced to overestimatgunderestimatepver Tibet PlateafTaklamakan Desertjvhere WRFVRPRMChem gave slightly
smaller biasesFig.4(a) and (b)present theraw datapairs béween models and OC® with daily interval for WRF
VPRMChemand CT2019, respectivelyn general, theVRFVPRMChemmodé reprodiced OCO-2 well, with mean bias
(MB) of 0.76 ppnmv, andCT2019 showd MB of 0.54 ppmy, suggesting an overall acceptable performance oivéather

biospheramodelto simulatethe spatial distribution pattern of XG@ China

We further analyse WRFVPRMChemvalidationagainst OCE2 for the sevenvegetation types ieachseasorandfind no

prominentdifference(evaluation statistics summarized in TableRggardingvegetation typethe model shoed the largest
MB over deciduous foresff -1.01and1.27ppmvin summer and winterespectively, whiclonly coveleda very small portion
in northeast Chinarlhe three mostabundantcoveragevegetation types in China are grass, crops, and mixed fX€S,
simulated by RFVPRMChemover grass arsavasslightly overestimated b®.31~0.68 ppmvthroughout the yeagnd he
MB over mixed forestvas-0.43-0.32 ppmy indicating a good performance of the model ahervastmajority of areas of
China. Performancever cropsgenerallyshowedlarger discrepancthan othewvegetatiortypes with MB rangng from 066

ppmvin summer tal.19 ppmvin winter, suggestinghe model tends telightly overestimate column concentration@d.
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over cropand Li et al. (2020) reported thAWRFVPRMChemunderestimatethiospherecarbonover rice paddy site(by
~3%) in northeast Chinaand suggested the parameterization) Bfh_ as the most important cause. Cropland differs
significantly across China with various types of species such as rice, wheat, and corn, folitetsitires repored
substantially different rates etosystemespiration and photolysis uptaf@ao et al., 2018;Yang et al., 2016;Zhu et al., 2020)
Thus, applying one set of parameters to represent all cropsemagponsible fahe lingering unceinty of simulatedXCOsx.

In terms of seasah difference WRFVRPM showed slightly smaller bias in summer and larger bias in wiatet the
correlation coefficientsvereall ~0.8,consistent with application ovéne U.S. (Hu et al., 2020Wwhich alsoreported slightly

better performance in summer than other seasons

Fig.4 alsopreserd the overall simulation bias againgfroundbasedobservationst ther raw temporal intervalsifonthly for

data at ESRL sites, h o waily fgr TEGON at HefdivAt the ESRI sdes @ig.4(d))uslack €@ , a n |
concentrationsveresimulated well with minor overestimation by 0.6pmv.Ev al uat i on at whsperforrhedn 6 a n
with the 4kmgrid simulation The midlevel heights oWRF\-P-R-MIhand §irst, second, and third layergere 12.3m,

36.9m, and 61.6mrespectively, and simulationgerelinearly interpolated t@1m and 55nto compare with the tower data.

The evaluation at 21/AGL (Fig.4(d))showsslight overestimation by 0.02 ppmtwut theevaluation at 55m height (Fig.4(e))
shows relativelyargeoverestimationby 1.06ppmv. The discrepancig likely dueto thecombined effect ofertical allocation

of anthropogenic emissiofBrunner et al., 20193nd parameterization of VPRMTracer transporimodels (such agVRF
VPRMChemand CASA) and inverse modelling methadl®cateanthropogeni€0O, emission into thaearsurface layer due

to lack ofinjection height information, whichnaysubsequentliead to systematic overestimation of surf@ concentration

in industrial areasThrough a regional scale (78850km) modelling study around the city of Berlin, Brunner et al. (2019)
reported that ditributing anthropogenic emission into the surface layer overestimateduréereCO, concentration by 14%

in summer and 43% in winter as compared with considering the vertical profiles of local anthropogenic kouroeé.a n
observation tower is located a densely vegetated ar¥alidation against OCQ suggested th&¥RFVPRMChemdid not

show significantly different performance over different vegetation types as shown in Takgec@émpared to the ESRL
background sites whictverelocated in more rente areaswith little anthropogenic emission (Fig.1(a)) i n @&as more
frequently affected byegionalanthropogenic emissiongshich were transported from Shanghai and Hangzhou due to the
prevailing northeast win@Pu et al., 2014)indicating that the emission allocation discrepancy mduce more prominent
error ant fact, the@0kre-grid WRFVPRMChems i mul at i on were5s3dandhi4l ppmat @lanand at
55mrespectively(Figure S2), significantly larger thanhe biasat ESR_ sites. In additionboth the 20krgrid and 4kmgrid
simulatiors showedrelatively larger bias at 55m than 2Hue tosmallertopographyroughnessandhigherwind speedvhich
increases with height according to observations (Fig8jeC32019 also substantially overestinthtet Li ndé an, but
second, and third laydmid-level heights are 25m, 103m, and 24Tespectively, seve do nofpresent theirectcomparison

with the tower dataSimulated XCQ from both WRFMRRMChemand CT2019verewell consistent with the TOGON Hefei

site observations as shown in Fig)4gith MB by-0.79 ppmv and0.78 ppmv respectively, and NMB b§.20% and0.19%
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respectivelyThe 4kmgrid simulation showd very similar result to the 2@rid simulation for XCQ (Figure Sland Figure
S2). Recent atmospheric inversedellingstudiegFu et al., 2019a;Wang et al., 2019;Xie et al., 20&Bdredthe simulation
bias of XCQ as 0.52 ppmv with posterioflux inputs. The WRFVRPRMChemmodelapplied in this studjpasdemonstrated

good agreement with the observatidingugh our evaluatian

3.2 CO2 seasonalariation and trend in China

We next analysethe seasonalityof CO, and XCQ and find that theterrestrial fluxplayed a moreinfluential role than

anthropogenic emissionVRFVRPRMChem successfully reprodudeseasonal variations of GGat ESRL siteswith a

correlation coefficiendf 0.90 (Figs(a)). TheWRFVRPRMChem4km-grid simulation showda correlation coefficient of 82
with the Lindan t owe daytimé2ineand 35m idataiBoth( tlkevmedelaagdentbastirements stw
prominent seasonal cycles for surface.€@nhcentrationsThe WRF-VRPRMChemsimulationshowed maximain April (413
419ppmv) andminimain August (399404 ppmv)aspresentedn Fig.5(b). The nodel suggestdthat theanthropogeni€O;
contributionwas 2.6 ppmv in both months, while theiogeniccontributionswere 3.1 and-1.2 ppmv in April and August
respectively(Fig.5(d)). Anthropogenic emission (Fig(f)) showeda flat curve withrelatively higher values inDecembedue

to fuel combustion for heatin@Zheng et al., 2008 EVI showed maximain July and Augus{Fig.5(f)). During summer
photosynthetic uptake almost completelympensate@nthropogenic emissigrrausng the minimum CQ concentration
observedin August, while thehigher anthropogenic emission in December and respiration flux in April led to the two
correspondingeals. The anthropogenic XC@contributionswere0.5and 0.6ppmv in April and Augustrespectively, and

the biogeniccontributionswere0.8 and-1.5 ppmy, respectively, suggesting that the seasonality of X®@&salsoprimarily
dominatecdby terrestrial flux.Furthermorethe seasonality &igh-latitudeESRL sites UM and WLG)wasstronger thamt

Li n 6 an -lditndg sitesq6!l and LLN) because of the larger temperature and photosynthetically active radiation (PAR)
gradients Annual averaganthropogenic and biogenic XG@ontributionswere7.1 and-1.9 ppmy, respectively, indicating
that biosphere uptakeasan important carbon sinkffsetting 27% of anthropogenic emission atowing the growth of
atmospheric C®

XCO; showed similar seasonalitywith minima in August andmaximain April and December (Fi§(b)). Both WRF
VPRMChemand CT2019 shoed good agreement with TCCON Hefei observasiovith correlationsof 0.89 and 0.88
respectively (Figp(e)). However, wanotethat WRFVRPRMChemsimulatal drasticchanges (e.gthe grey shaded period in
Fig.5(e)) thatwerenot reproducedy CT2019 Fig.6 showsthe daily concentrations ofCO, overlaid with horizontal wind
speed at 10m AGL frotVRFVPRMChemand CT2019 andighlightslarge discrepanesover Hefei(Figure S4shows the
same comparisolput usingWWRF-VRPRMChem4km-grid simulation data Between April #and 3¢ 2016, arB50 hParough
associatedvith a surfacecold front moved southeastward from Mongoliatte North China Plain (NCP)weather maps
shown inFig.6(g)-(i)). At the leading edge of the fn a convergence zone associated with a low pressure center formed,

which led to significant cloud formatioaind subsequently reducsbortwave radiation. As a result, photosynthetic carbon



uptake waseduced leading to enhancement of atmosph&®@,.. Meanwhile, the cold front transported anthropog&

from NCP to YRD and the convergence zone along YRD ahead of the front facilitated the accumulation of air pollutants and
260 CO; from anthropogenic emission®Vith its coarse spatiotemporal resolutid®T2019 had difficulty reprodudng such

regional weather systentisatcan lead to rapid and localized change€ @ concentration and terrestrial fluxdicating the

importance of fine resolutiomodelling to betterepresent the small spatial scale ampia temporal scale variations of €O

(Agusti-Panareda et al., 2019)

We alsofind a notableincreasing trend for the-gear study periodObserved C@annual enhancememtas2.2 ppmv/yr

265 (0.56%ly) at the ESRL sites arl3 ppmv/yr(0.54%/y) at .Thé dséreed averageO,concentrations at
ppmv) weresubstantially higher than those at ESRL sites {400 gppmv). The prominent higher levels of G@ndslightly
higherabsoluteg r o wt h r adarebe atttibutbth theGnfluence of theransportegionalanthropogenic emssonwhich
is growing atrate of 0.82%l/yr as suggested by ODIAC. Domaide XCQ, wasalso found to increase .3 ppmv/yr
(0.57%ly) as suggested by OCDand2.5 ppmv/yr(0.61%/y) as suggested by the simulati®tR~\VPRMChemreproduce

270 the trends in good agreement with groamdi satelliteobservationsModel simulated budgets suggas$that the increasing
trends for anthropogenic, biogenic, and backgroX@O, were0.81%/yr,-9.17%/yr, and 0.59%/yrespectivelythe trend
for anthropogenic, biogenic, and backgrou®@, were 4.95%/yr,-0.73%l/yr, and 0.59%/yrespectively. Our findingare
consistent with recent measurengamnd inversemodelling studies but provide procebssed estimates for anthropogenic
emission and terrestrial fluXVu et al.(Wu et al., 2012)yeportedmeasured C@Oconcentration aChangbai Mourgin forest

275 site in northeast China increasedlby6ppmv/yrbetweer?20032010. Withthe atmospheric inversiomodellingmethod, Fu
et al. (2019®) estimated surfac€QO; in East Asia increased by2ppmv/yr between20042012. These trends suggest that
although anthropogenic emission incremaea steady rate in East Asia, photosynthetic uptake alscsseran increasing
carbon sink due to enhanced EVI (0.29%l/yr). However, as the interannual variability (IAV) of terrestrial flux is usually
critically large and is affected by both vegetation itself and climate condiffeun®t al., 2019b;Niu et al., 201 &imulation

280 overlonger time periodis necessarin future studieto conclusivelycommenton the changing trend d@fiosphereCO; in
China

3.3 Diurnal variation of near-surface CQ and influence factors

Finally, we examinethe diurnal variation of Cod at a at Lasshdvwenin Fig.tosetealtbetemporal dynamics and
atmospheric mixingf CQO; at local scaleWhile both 21n{Fig.7(a))and 55nm(Fig.7({®)) CO., show prominent diurnal changes,
285 the variationswere larger in summer (JJA) than winter (DJF) amdre larger at 21m than 55nmdicatingthe dominant
influence of terrestrial flux over anthropogenic emissiodetermining the near surface £€éncentratio. Fig.7(c) and ¢)
present th&VRFVPRMChemsimulation biasat 21m and 55mespectivelyand Fig.7€) and €) present thdiasof CT2019
at 21m and5mrespectivelyWe find thatboth modelprominentlyoverestimatd during nighttimewhich shall be attributed
to the bias in simulatinblEE. Li et al. (2020)reported the model overestimdigighttimeNEE at a mixed forest site Wuying
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(47.1% N131.94 BHoy 34% duringhegrowing season (Magep.) according teddy-covariancéowermeasurementig.7(g)

and f) present the simulated NEE ByRFVPRMChemand CT2019respectively, whictshow close correlations with the

CO; simulation biaseswh i | e Li ndan i s al s ourevastiernr saggestd thdRifMBR&Aherfinay e s t
alsooverestimatenighttime ecosystem respirati@nt L asntdasanwarmer climate conditiothan Wuying(Figure %),

and CT2019 has even greater bias for presenting the diurnal cycles of terrestrial flux

We also find that planetary boundary layer height (PBLH) significantly affects diurnal accumulation and depletion of
atmospheric C®as shown in Fig(a). During daytime irthe growing season, photosyntieeuptake resu#tin lower CQ
concentrationmeanwhile PBLH is also high and alloswapid vertical mixing between near surface and upper air. During
nighttime when pbtosynthesis stops, G®om ecosystem respiration stetd accumulate in the shallow stable boundary layer
while the residual layeremainslargely decoupledThus, atmospheric constituents with surface s@moemally exhibit a
vertical profilein which concentrationglecreasevith height in the stable boundary lay@tu et al., 2020;Hu et al., 2012)
Such boundary layer characteristics are confirmed by\C&r t i c a l g r andhisestndy €0, & 55m hdightdas n
consistently lower than the near surface air at 21m during nighttime due to accumulation e @3giin the stable boundary
layer. As photosyntheic uptake depletdthe near surface G@nd daytime boundary layer convection devetbphe CO,
gradientwasgraduallyweakenedrom 06:00to 1100 LT and remaied minimal through the rest of the daytipa midday
when photosynthesis reachmaximum intensity,CO, at 21m was even lower tharat 55m. WRFVRPRMChem roughly
reproduedthe diurnal profile but noticeably underestieththe intensity of nighttime& O, difference(p C € likely due to

the bias for simulating night time terrestrial flux as discussed abowedarestimabn of nighttime boundary layer stability

by the PBL schem@Hu et al., 202).

The relationship betweehe nearsurfaceCO; profile and boundary layer stability farther statistically examined. FR&(b)

preserdst he correl ation between ainrcomrmeprrm@mdatuir@hqlg)adEadd [( P
diurnal profiles oftower observationaveraged fo20162018 wher e T, qisqhddifferanced of te@@@rature,
height, and C@concentration betweethe two towerlevels, respectivelyFig.8(b) clearly demonstras the influence of
boundary layer stability othe CO, vertical profile as the correlati o/ngpht ert eBB&GrecspT / pH
hand, a more stable PBL withstronglypositive temperature gradient would promote surfacedc@umulation and lead to
stronglynegative CQ@gradient especially under inversion condit®when upper air has higher temperatwefgearea in
Fig.8(b)). Conversely a strongly negative temperature gradient indesmstronger radiationand subsequently greater
photosynthesis and G@epletionin thenear surface layer, which would resultipositive CQgradient (green area in Fgb))

implying a lower CQ concentration athe surface. While the diurnal variatism f g\ primarily dictated by local
biogenicCOf | uxes and boundary | ayer dynambtsLi hbo@angd 1B@LTnL Aor
(Fig.8(a)) likely suggest influence of transport @0, from urban plumes in the regipior example from Hangzhou which is

60 km away from the tower. Due to ru$tours anthropogenic emissions, £&hhancemenat Hangzhou relativéo a

background sitexhibiteda prominent bimodal curve with two peaks during early morning and early eV@uirgg al., 208).
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Depending on meteorological conditions, particularly wind fields, u@@nplumes from cities such as Hangzhou may be
transported tThe infllermce df bonndaalayer comditicmson CQ variability has been discusseddaveral
studiesthrough analysis of mountain sigeoundbasedbservationgArrillaga et al., 2019;Esteki et al., 2017;Li et al., 2014)

but ourstudy applid tower data as direct evidence to demonstrate the significant impact of PBL thermal stwiuthéas

rarely been documented. More importantly, althoyRFVPRMChemfailedt o capt ur e t;lpeaks htirusto d a |
hours becausemonthly ODIAC data laclked an hourly profile our analysis reveals the criticahportance ofcareful
configurationof the PBL schemeand spatiotemporal distribution of anthropogenic emission for webtbsphere modelling

of atmospheric C®

4 Summary andConclusions

In this studythe spatiotemporal variations 600,in Chinaareinvestigatedvith measurements from multiple datasahd a
weatherbiosphere couplechodel simulation for 201:2018.We find consistent higér concentrations over industrial asea
with excessive anthropogenic emission and lower concentrations over densely vegetated areas. Obsmmwedn@ations
at L i n pmv) are digificantly higher tharremote ESRL sites (408pmv) although thewre all established as
fi b a ¢ k g staiangindlidating the dominant influence of anthropogenic emisaioegionalscales. T h e L towerbdata
shows a large negative correlation-0.98) betweenvertical CO, concentration and air temperature gradiestiggesting the
significant influene of boundary layer stability on G@ccumulation and depletion. Tloaline coupled weathdsiosphere
model WRFVRRMChem enables processhased estimations of contributions from anthropogenic emig8ic&® ppmv
(0.15%)) terrestrial flux0.16 ppmv {0.0499), and background concentrati@05.70 ppmv (99.89%}p averagdotal X CO,.
Respective ismulation biases of surfade0, and XCO,are0.69and 0.76ppmv against ESRL site observations and GZO
satellite product with correlations of 0.87 and Q.®@icaing overall good performance of th&RV-VPRMWRF-Chem
model. MaximumCO; concentrationarefound in April andminimaarefound in August for all three yeand the seasonality
is reproduced well by the model, which alsevealsthat terrestrial lix and background concentrati@ominated the

seasonalityatherthan anthropogenic emission.

A steadily increasing trend XCO, by 2.46 ppmv(~0.6%/y) duringthe study periods demonstratedonsistently by both
model simulation and satellite product. Budget analysis sugglest anthropogenic emission increased by 0.83%l/yr
contribuing to the 0.81%/ygrowth rate of anthropogen¥CO, enhancement, 27% of which was offset by biosphere aptak
It is notedthat terrestrial flux hasignificantinter-annual variabilitythusa more robust estimation of ttexrestrial flux trend
should be obtained throughlong-term studyin the future The backgroun& CO,, representingontributions from globa
circulation increased by.37 ppm 0.59%/y)), suggesting that CQevel in China was growing at the same rate as the rest of

the world.
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The most significant modelling bias is identifitdmv al i dat i on a g a i 5bm bbsetvitiensvhichWBFR n t 0
VPRMChem4kmgrid simulationoverestimated bgbout1.06 ppmvwith a correlation coefficiendf 0.82. The allocation of

355 anthropogenic emission into the surféegeris partiallyresponsible for thismodellingb i a s b e c éulesey atfeictedd a n
by upwind industriaimega citiesn YRD, suggestinghe needto include vertical profilsof fossil fuel combustion to properly
redistribute the ODIAC for modelling purposds addition diurnal variations of the bias suggest that thedelling
discrepancys also induced byarge uncertaty associated witlsimulatingnighttime ecosystem respiratiofRepresentation
and parameterization photosynthetic carbon uptake in RRI has been continuously improved during the past 10 years since

360 its first release(Hu et al., 202Q) but ecosystem respiratioparameterizations still too simplified to fully represent the
autotrophic and heterotrophic respiration of biorfais et al., 2021)Li et al. (2020) and our study both reveal the urgent
need to better calibrate VPRM parameterization over different vegetation types in &tdnather methods such as inverse
modelling is necessary to further validate the anthropogenic fluxes from QDM&@erthelessWRFVPRMChem is
demonstrated to be a reliable tool to model the dynami€Ostind exchange betwedime atmosphere and terrestrial flux.

365 Most importantly, as the online coupledodelling system is able to simulate meteorologgd biosphere processes
simultaneouslyit promotes the opportugito investigate the interactions between atmospheric mixing anestaal flux
(Carvalhais et al., 2014;Schimel et al., 200fjle comprehensively considering various factfssn both sideghat affect
CQOzin one coordinate frame, which could aeery helpfultool to support policy makers fdyalancing shofterm carbon
cycles at regional scake

370
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Tabe 1. Evaluation statistié$or WRFVPRMChem20km-grid simulationagainst OC@2 satellite product at daily intervals

Vegetation Mean Obs Mean Sim. MB!? # of
Season cct
type (epmv)  (ppmv) _ (ppmv) sample
other 406.85 407.81 0.9¢ 0.8 1612:
evergreen  407.52 407.89 0.36 0.73 192(
deciduous 408.15  408.80 0.27 0.8 41z
Spring mixed 407.79 408.21 0.4 0.79 443¢
shrubland  406.97 407.54 0.56 0.74 655(
savanna 407.59 408.55 0.96 0.8 534
grass 406.8L 407.49 0.68 0.81 1117¢
crops 407.50 408.29 0.79 0.82 1354¢
other 403.90 404.84 0.93 0.88 1344¢
evergreen  402.68 402.24 -0.44 0.85 108z
deciduous  400.39 399.39 -1.01 0.82 527
Summermixed 402.04 401.60 -0.43 0.87 431z
shrubland  403.92 404.41 0.48 0.85 519:
savanna 404.62 404.60 -0.02 0.79 17C
grass 402.35 402.66 0.31 0.88 1258¢
crops 402.86 403.52 0.66 0.87 7941
other 403.32 404.35 1.03 0.82 1705¢
evergreen  403.93 403.19 -0.74 0.71 171¢
deciduous  403.35 403.64 0.28 0.84 281
Eall mixed 403.64 403.95 0.31 0.83 3611
shrubland  403.12 404.22 1.10 0.77 853z
savanna 403.45 404.15 0.70 0.70 504
grass 403.22 403.65 0.43 0.85 1117¢
crops 403.76 404.80 1.04 0.80 1313¢
other 404.76 405.80 1.03 0.80 1383¢
evergreen  404.79 404.75 -0.05 0.78 2671
deciduous  405.38 406.65 1.27 0.79 13t
Winter mixed 405.20 405.79 0.59 0.79 210¢
shrubland  404.76 405.84 1.09 0.79 768:
savanna 404.63 405.83 1.20 0.75 1064
grass 405.06 405.64 0.58 0.77 5967
crops 405.17 406.36 1.19 0.79 1550¢
1 Mean bias was calculated @B —-B  "Y'Qa 0 @i, and correlation coefficient was calculatediag
5 - ] , where™Qdis the average of simulations iis the average of observations.
B B

2For each season, evaluation statistic with the worst performance (largest absolute value of MB) is highlighted in red, and the

600 one with best performance (smallest absolute value ofiMBighlighted with in bold font.
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Figure 1: Annual averages of(a) ODIAC emission (b) MODIS EVI, and (c) dominant vegetation typein the 20km simulation
domain, and (d) terrain height of the 4km simulation domainThel ocati ons of the ESRL sites, TCCO
site are indicated with red circles, rectangles, and diamonds respectively in (dJhe 4km domain is indicated with the red dash

605 rectangle in (b), and the locations of Hangzhou and Shanghaiaindicated with yellow triangles in (d).
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XCO, - WRF-VPRM

(a) 1"layer(12m) CO, - WRF-VPRM
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Figure 3: 20162018 averages oWRF-VPRMChem simulations of @) 1% layer (mid-layer height is 12km)CO2 concentration, and
(b) XCO2 concentration; (c) WRF-VRRM-Chem simulated XCO: bias against OCQ2; (d)-(f) is same as (a)c) but for CT2019 (1

layer mid-level height is 25m).

615

22



430

OCO-2 (ppmv)
e L = = 4 = 4
5 2 3 =z @ B &

W
o
=3

580

+ n
o )
= =3

Lin'an Tower Measurement (ppmv)
= .
=

380

Figure 4: Data pairs for OCO-2 against (a)WRF-VPRM-Chemand (b) CT2019; (c)ESRL againstWRF-VPRM-Chem;

(a) OCO-2 XCO, (vs WRF-VPRM)

WRF-VPRM 20km Sim. (ppmv)

(d) Lin'an Tower CO,(21m)

| MB: 0.76
o i 1.9
Moo y .r"\ .
g
.
T
*® n
390 400 410 420 430

a
I e ° MB: 0.02

I:IE

o Oy

I D” o, ®

2 “'ﬂu%“hh
-] o® 0g

o o
a
Co
o o
a

380 430 480 530 580

WRF-VPRM 4km Sim. (ppmv)

(b)  0CO-2 XCO,(vs CT2019) (¢)  ESRL Surface CO,
430 420
425 IMB:  0.54 E MB: 0.69 .
415
420 =
—_ . 5
415 .. ot Sato |
[=5 P+ =
o " =
410 . oy § o
| - " o
o] . ol : =405 | ¢
w405 + - 2 o - Ao
c R E ° 0 G, DSl
400 | = o JLLN
% 3 400 o -
N = o oUUM
395 ’ 17 !
oY Qe 28] oWLG
agp Ko LIV . 395 o . . : w
390 400 410 420 430 395 400 405 410 415 420
CT2019 (ppmv) WRF-VPRM 20km Sim. (ppmv)
(e)  Lin'an Tower CO,(55m) 0 () TCCON-Hefei XCO,
E%0 o o MB: 106 T |MB: 079 MB:i-078
o
[=5
£ o %‘415
5 530 O g
=] o 5
o & 5410
2 a o g @
b4 § &+ i B
2480 oo g =
‘5405 |
Eaz0 | 3 o A o
g % §40° ] OWRE-VPRM 20km Sim.
= ) ’
e | D S 0CT2019
380 — - - : 395 : : ‘ ‘
380 430 430 530 580 395 400 405 410 415 420
WRF-VPRM 4km Sim. (ppmv) models (ppmv)
Li

ndéan

tower againstWRF-VPRM-Chem4km-grid simulation at (d) 21m and (e) 55m; and (f) TCCONHefei againstWRF-VPRM-Chem
and CT2019.

23



620

Figure 5: Monthly variations of (a) CO2 at ESRL sites, (b)total (black) and background BCG, grey) CO:z (line) and XCO:2 (area
and bar), (c)CO:at L i n 0 gaveragedfotdaytime 21m and 55m data);(d) contributions from anthropogenic (ANT, orange)
and biogenic BIO, blue) for COz2 (lines) and XCO: (bars); (f) ODIAC emission and MODIS EVI; and (e) Daily variation of XCO2
at TCCON-Hefei site
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