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Abstract. Dynamics of atmospheric CO2 has received considerable attention in the literature, yet significant uncertainties 15 

remain within the estimates of contribution from terrestrial flux and the influence of atmospheric mixing. In this study we 

apply the Weather Research and Forecasting model coupled with Vegetation Photosynthesis and Respiration Model (WRF-

VPRM) in China to characterize CO2the dynamics with tower data collected at a background site Lin’an (30.30˚N, 119.75˚E).of 

CO2 in the atmosphere. The online coupled weather-biosphere WRF-VPRM simulations areis able to simulate biosphere 

processes (photosynthetic uptake and ecosystem respiration) and meteorology in one coordinate system. Simulations are 20 

conducted for three years (2016-2018) with fine grid resolution (20 km) to detail the spatiotemporal variations of CO2 fluxes 

and concentrations. This is the first attempt to apply the weather-biosphere model for a multi-year simulationWe apply WRF-

VPRM for a multi-year simulation (2016-2018) with integrated data from a satellite product, flask samplings, and tower 

measurements to diagnose the dynamicsspatiotemporal variations of CO2 in fluxes and concentrations in China. We find that 

the spatial distribution of CO2 is determinedwas dominated by anthropogenic emissions, while its seasonality (with maximum 25 

concentrationsmaxima in April 15 ppmv higher than minimumsminima in August) iswas dominated by terrestrial flux and 

background CO2. Observations and simulations revealrevealed a consistent increasing trend in column-averaged CO2 (XCO2) 

of 2.46 ppmv (0.6%/yr) resulting from anthropogenic emission growth and biosphere uptake. WRF-VPRM successfully 

reproducesreproduced ground-based measurements of surface CO2 concentration with mean bias of -0.79 ppmv (-0.20%) and 

satellite derived XCO2 with mean bias of 0.76 ppmv (0.19%).. The model-simulated seasonality iswas also consistent with 30 

observations, with correlation coefficients of 0.90 and 0.89 for ground-based measurements and Orbiting Carbon Observatory-

2 (OCO-2) satellite data, respectively. However, evaluation against Lin’an tower data reveals uncertainty within the model for 

simulating the intensity and diurnal variation of terrestrial flux, which contributes to overestimation by ~5.35 ppmv (1.26%). 
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Lin’an towerTower observations also revealfrom a background site Lin’an (30.30˚N, 119.75˚E) revealed a strong correlation 

(-0.8598) between vertical CO2 and temperature gradients, suggesting a significant influence of boundary layer thermal 35 

structure on the accumulation and depletion of atmospheric CO2.  

 

1 Introduction 

Climate research requires accurate characterization of atmospheric CO2, which is closely affected by the both atmospheric 

transport and terrestrial sources and sinks (Bauska et al., 2015; Keenan et al., 2016). Our current knowledge largely comes 40 

from interpreting ground- or space-based measurements and model simulations. While observation is limited by spatial and 

temporal coverages, modelling approaches also suffer from various uncertainties (Shi et al., 2018). Modelling assessment of 

CO2 is usually conducted through two methods: first, process- or data-driven biosphere models in which terrestrial fluxes are 

diagnostically calculated with theoretical functions (Tian et al., 2015) or determined through semi-empirical relationships 

derived from ground measurements and/or satellite products with machine learning techniques (Papale and Valentini, 2003); 45 

second, inverse modelling in which prior flux estimates applied in atmospheric transport models are calibrated by observational 

data and/or satellite products to determine posterior terrestrial flux (Peylin et al., 2002).adjusted by observational data and/or 

satellite products to determine posterior flux (Peylin et al., 2002;Kountouris et al., 2018). Process-driven biosphere models 

have difficulties capturing spatial and temporal variabilities at fine resolution because parameters calibrated from a limited 

number of site observations are applied across a variety of land covers (Todd-Brown et al., 2013). Atmospheric inverse 50 

modelling is predominantly affected by the presumed prior flux, and different assimilation techniques can give different and 

even conflicting results (Peylin et al., 2013). These fundamental features highlight the limits of these approaches for accurately 

modelling carbon dynamics. 

Researchers have attempted to reconcile differences between “bottom-up” biosphere models and “top-down” atmospheric 

inverse models, and recent studies have demonstrated increasing levels of agreement owing to improved understanding  of 55 

both approaches, such as better parameterization of biosphere processes (Dayalu et al., 2018), more accurately constrained 

estimates of prior flux (Crowell et al., 2018;Feng et al., 2019), and advanced measurement/satellite instruments that provide 

high quality data for assimilation (Gaubert et al., 2019); however, critical model disagreements still persist (Kondo et al., 2020). 

To bridge the gap between terrestrial flux and atmospheric mixing, a type of weather-biosphere coupled model (Ahmadov et 

al., 2007;Mahadevan et al., 2008) washas been developed to simulate biosphere processes and meteorology conditions in one 60 

coordinate system, allowing their interactions to be properly addressed. A few case studies (Ahmadov et al., 2009;Kretschmer 

et al., 2012;Park et al., 2018) have demonstrated the potential advantages of coupled weather-biosphere models over pure 

biosphere/inverse models for short term (a few weeks) simulations, but whether the coupled model is able to reproduce the 

spatial distributions and temporal variations and subsequently estimate carbon fluxes at regional scales with high confidence 

remains a crucial issue to be addressed.  65 



 

3 
 

Understanding the spatiotemporal characteristics of atmospheric CO2 is a key priority in China because of the central role it 

plays in regulating the climate and environment. In recent years, tremendous efforts have been made in China to control 

anthropogenic emissions from fossil fuel combustion for both air quality and climate mitigation purposes (Zheng et al., 2018). 

While the sources and sinks of air pollutants have been thoroughly examined and well documented (Huang et al., 2020), the 

dynamics of CO2 at regional to national scales remain poorly understood due to lack of long-term observations and limited 70 

modelling studies (Han et al., 2020). Li et al. (2020) applied a weather-biosphere model with tower observations to analyse 

CO2 fluxes and concentrations over mixed forest and rice paddy in northeast China, but the one-year simulation limits the 

attempt to investigate interannual CO2 variation which is subject to substantial change (Fu et al., 2019b). Wang et al. (2019) 

applied satellite products and in-situ observations with inverse modelling to derive posterior carbon fluxes and reported 100% 

uncertainty for constraining global terrestrial flux. Fu et al. (2020) applied GEOS-Chem simulation with offline Carbon 75 

Tracker (Peters et al., 2007) as input to estimate impacts of terrestrial flux and anthropogenic emissions on the annual variation 

of CO2 concentrations, but regional-scale assessment was limited by coarse grid resolution (2°×2.5°). Machine-learning 

technique has also been employed to upscale site observations to regional-scale (Yao et al., 2018; Zhu et al., 2014), but the 

estimations of carbon budget and dynamics retain large uncertainty due to the diversity of biomass among sites and suffer from 

coarse grid resolution. These pilot studies have shed light on improving the understanding of spatiotemporal characteristics of 80 

CO2 in China with modelling or observational methods, but an integrated investigation with both modelling and observations 

at fine-scale is urgently needed to expand diagnostic understanding of localized and regional transport, flux, and concentration 

of CO2 to inform emission management and climate adaption policies (Fu et al., 2019a;Niu et al., 2017;Wang et al., 2019).  

In this study we applyuse the Weather Research and Forecasting model coupled with the Vegetation Photosynthesis and 

Respiration Model (WRF-VPRM) (Hu et al., 2020;Mahadevan et al., 2008) to simulate and characterize the spatiotemporal 85 

variation of atmospheric CO2 in China from 2016-2018, and also to validate this weather-biosphere model with recent 

advanced satellite and tower observations. WRF-VPRM has been applied in a few case studies over the United States (Hu et 

al., 2020), Europe (Kretschmer et al., 2012), northeast China (Li et al., 2020), and South Korea (Park et al., 2020); this study 

is the first attempt to apply and evaluate it for a multi-year simulation at fine scale (20 km) over China. We first describe the 

modelling methods and data employed followed by model validation against observations from multiple datasets, and then 90 

present the spatiotemporal variations and estimates of contributions from anthropogenic emissions, terrestrial flux, and 

background concentrations. Finally, we probe intoinvestigate tower data and reveal the boundary layer thermal structure 

impacts on atmospheric CO2 accumulation and depletion. 

2 Method 

The WRF-VPRM simulation in this study is configured with 48 vertical layers and 20 km grid resolution. Initial and boundary 95 

conditions areWe conduct nested WRF(Version 3.9.1.1)-VPRM simulations over China (domain shown in Fig.1(a)) and 

Yangtze River Delta (YRD) region (domain shown in Fig.1(d)) at 20 km and 4 km grid resolution, respectively. Both 
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simulations were configured with 47 vertical layers with model tops at 10hPa. Model configuration in this study followed the 

work by Hu et al. (2020) and Li et al. (2020). We applied the YSU planetary boundary layer (PBL) scheme (Hong et al., 2006), 

Morrison microphysics (Morrison et al., 2009), Duhia short-wave radiation (Dudhia, 1989), RRTM long-wave radiation 100 

(Mlawer et al., 1997), Grell-3 cumulus scheme (Grell and Devenyi, 2002), and Noah land-surface scheme (Chen and Dudhia, 

2001), with more details summarized in Table S1. In general, the 4km-grid simulation showed no significant difference as 

compared to the 20km-grid simulation (demonstrated in Figure S1 and Figure S2), thus the 20km-grid simulation was used to 

characterize the spatiotemporal distributions of CO2 over China, and the 4km-grid simulation was only used to compare with 

tower data collected at a background site in YRD. Discussions in the next section will mostly refer to the 20km-grid simulation 105 

unless otherwise specified. Initial and lateral boundary conditions for the 20km-grid simulations were derived from the mole 

fraction product of CarbonTracker (Peters et al., 2007) with 3°×2° resolution. The latest update of column average CO2 (XCO2) 

concentration assimilation product from CarbonTracker (CT2019) with 1°×1° resolution is(Jacobson, 2020) was also 

employed to compare with the WRF-VPRM simulation. The anthropogenic emission inventory is from the Open‐source Data 

Inventory for Anthropogenic CO2 (ODIAC) with 0.1°×0.1° resolution (Oda et al., 2018) shown in Fig.1(a); ocean flux is from 110 

climatology estimation (Takahashi et al., 2009); and vegetation fractions and enhanced vegetation index (EVI, shown in 

Fig.1(b)) are from MODIS (Huete et al., 2002). CO2 from initial and boundary conditions, anthropogenic emission, and 

terrestrial biogenic flux arewere tagged as BCG, ANT, and BIO, respectively, to allow the contributions from each process to 

be identified and quantified through one simulation.  

WRF-VPRM calculates ecosystem respiration (ER) and gross ecosystem exchange (GEE) with the following functions as: 115 

𝐸𝑅 = 𝛼 × 𝑇 + 𝛽                                                                                                                                                                      (1) 

𝐺𝐸𝐸 = −𝜆 × 𝑇𝑠𝑐𝑎𝑙𝑒 ×𝑊𝑠𝑐𝑎𝑙𝑒 × 𝑃𝑠𝑐𝑎𝑙𝑒 × (1+ 𝑃𝐴𝑅/𝑃𝐴𝑅0)
−1 × 𝐸𝑉𝐼 × 𝑃𝐴𝑅                                                                       (2) 

where T is the air temperature at 2m above the surface (T2); 𝛼,𝛽, 𝜆 are vegetation type-dependent parameters; 𝑃𝐴𝑅0 is the 

vegetation type-dependent half-saturation value of photosynthetically active radiation (PAR); and 𝑇𝑠𝑐𝑎𝑙𝑒 , 𝑊𝑠𝑐𝑎𝑙𝑒 , 𝑃𝑠𝑐𝑎𝑙𝑒  are 

scaling factors for temperature, water stress, and phenology, respectively. In this study we take the atmosphere as a reference, 120 

thus GEE has a negative sign and ER has a positive sign. The current version of WRF-VPRM is parameterized (𝛼, 𝛽, 𝜆) for 7 

vegetation types (Fig.1(c)): crops, mixed forest, evergreen forest, deciduous forest, shrub, savanna, and grass. For each 

modelling grid, ER and GEE are calculated as the weighted averages of each vegetation type based on their fractional 

abundance. Recent studies  (Hu et al., 2020;Li et al., 2020) have investigated the uncertainty associated with this 

parameterization through sensitivity simulations and suggested the crops can be further divided into subcategories based on 125 

eddy-covariance (EC) tower measurement to improve the model. In this study we applyused the default parameterization, 

(values presented in Table S2), which has been demonstrated to successfully reproduce the terrestrial flux over northeast China 

(Li et al., 2020). In contrast, CT2019 applies a pureprocess based biosphere model, the Carnegie-Ames Stanford Approach 

(CASA(Zhou et al., 2020)), driven by year-specific weather and satellite data to simulate terrestrial fluxes (Peters et al., 2007). 

CASA also estimates photosynthetic uptake based on solar radiation and plant phenology, and estimates respiration as a 130 
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function of T2. CASA directly simulates monthly means of Net Primary Production (NPP) and heterotrophic respiration (RH). 

NPP is the difference between photosynthetic uptake (equivalent to GEE) and autotrophic respiration (RA). The summary of 

RH and RA is equivalent to ER. Thus, WRF-VPRM and CASA are essentially very similar in terms of considering methodology 

impact; however, it should be noted that to resolve CASA simulated NPP into GEE and RA, CT2019 applies the assumption 

that GEE is twice that of NPP, which implies that for the same plants the photosynthetic carbon uptake is double the magnitude 135 

of autotrophic respiration (but of opposite sign). This assumption is applicable at monthly scale but may contribute to have 

difficulty reproducingto reproduce the rapid changes at hourly and daily scales due to impact from weather systems, which 

will be demonstrated with more details in Section 3.2.  

MeasurementsHourly measurements of CO2 concentrations arewere collected at the Lin’an Regional Atmospheric Background 

Station (30.30˚N, 119.75˚E, surroundings shown in Fig.1(d2(a)) with Picarro G1301 and G1302 trace gas analysers mounted 140 

on an observation tower at 21 and 55 meters, respectively, above ground level (AGL) and analysed online (data analysis lab 

shown in Fig.1(e2(b)). The station is located in the remote area of Hangzhou 138.6 meters above sea level in the middle of a 

hilly area covered by mixed forest. The hourly Lin’an station tower measurements collected between 2016-2018 provide a 

representative sampling of theThe observation tower is 60km to the west of downtown center of Hangzhou and 195km to the 

southwest of Shanghai. Fig.2(c) and (d) presents the wind rose map at Lin’an derived from hourly observations of 10m and 145 

55m wind respectively, which clearly shows the northeast and southwest as prevailing wind directions. The station can properly 

represent the background atmospheric environment in YRD as demonstrated in previous studies (Deng et al., 2018;Pu et al., 

2020). The tower data provides a representative sampling of CO2 gradients resulting from exchange between atmosphere 

mixing and terrestrial flux.  

Flask samplings of CO2Atmospheric samples near the surface concentrations withwere collected at monthly intervals are 150 

collectedand analysed for CO2 through the National Oceanic and Atmospheric Administration’s (NOAA’s) Earth System 

Research Laboratory (ESRL) at four sites (locations shown in Fig.1(fa)) within our modellingstudy domain, including Dongsha 

Island (DSI, 20.69˚N, 116.73˚E), Lulin (LLN, 23.47˚N, 120.87˚E), Ulaan Uul (UUM, 44.45˚N, 111.09˚E), and Mt. Waliguan 

(WLG, 36.29˚N, 100.89˚E). The Orbiting Carbon Observatory-2 (OCO-2) satellite product (Kiel et al., 2019) with daily 

intervals iswas employed to validate simulation of column averaged CO2 (XCO2) concentrations. A total of 204,940 OCO-2 155 

version9 swath data covering the simulation period iswas used in this study. Daily ground-based Fourier transform 

spectrometer (FTS) Measured XCO2 at Hefei site (31.90˚N, 117.17˚E) iswas also collected through the Total Carbon Column 

Observing Network (TCCON) for year 2016 (Wang et al., 2017). The TCCON-Hefei site was located in the northwestern rural 

area of Hefei city and measurements were conducted from September 2015 to December 2016 (Liu, 2018). WRF has been 

evaluated extensively and consistently performs well for reproducing the meteorology fields and the transport of atmospheric 160 

tracers, in China (Gao et al., 2015;Tang et al., 2016;Wang et al., 2017;Yang et al., 2019), so this study will only present the 

simulation performance for CO2 only which hasn’t been thoroughly discussed in the literature.  
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3 Result and Discussion 

3.1 Model evaluation 

We first evaluate the capability of WRF-VPRM to reproduce concentrations of surface CO2 and XCO2, and we find fairly 165 

good model performance through the comparison with satellite and ground-based observations. The WRF-VPRM simulated 

surface layer (mid-level height AGL is 12m) CO2 and XCO2 averages between 2016-2018 are demonstrated in Fig.23(a) and 

(b) respectively. High concentrations arewere found over industrial areas such as the North China Plain (NCP), Pearl River 

Delta (PRD), and Yangtze River Delta (YRD), where the surface CO2 and XCO2 arewere above 440 ppmv and 408 ppmv, 

respectively; the domain averages arewere 411 ppmv and 406 ppmv, respectively. While most climate models assume evenly 170 

distributed CO2 (Fung et al., 1983;Kiehl and Ramanathan, 1983), our data demonstrates a prominent gradient between 

industrial and remote areas (e.g., Tibet Plateau, Mongolia), especially for surface CO2, which could be an important source of 

uncertainty for estimating the long-wave radiation effect (Xie et al., 2018). Spatial patterns of CO2 and XCO2 arewere in close 

agreement with ODIAC, indicating the dominant impact of anthropogenic emission in determining the CO2 distribution. WRF-

VPRM simulated CO2 iswas generally consistent with CT2019 (Fig.2(d3(c)), but CT2019 estimates lowerestimated near 175 

surface CO2 (mid-level height AGL is 25m) over the coastal industrial areas YRD and PRD because the ocean module used 

in CT2019 estimatesestimated stronger air-sea exchange than the ocean flux by Takahashi et al. (2009) used in WRF-VPRM. 

The two models showshowed better agreement for XCO2 (Fig.23 (b) and (e)), but also differdiffered by ~1 ppmv over 

Taklamakan Desert and along the eastern side of the Tibet Plateau. The OCO-2 swath data arewere integrated into the 

corresponding horizontal grids of WRF-VPRM and CT2019, respectively, to validate XCO2. Biases of WRF-VPRM and 180 

CT2019 both fall into the range of ±3 ppmv as shown in Fig.2(d3(c) and (f), respectively, but WRF-VPRM apparently 

providesprovided more details of spatial gradient. WRF-VPRM showsshowed well-mixed underestimations and 

overestimations along neighbouring satellite tracks, while CT2019 tendstended to overestimate (underestimate) over Tibet 

Plateau (Taklamakan Desert) where WRF-VPRM givesgave slightly smaller biases. Fig.4(a) and (b) present the raw data pairs 

between models and OCO-2 with daily interval for WRF-VPRM and CT2019, respectively. In general, the WRF-VPRM model 185 

reproducesreproduced OCO-2 well, with mean bias (MB) of 0.76 ppmv, and normalized mean bias (NMB) of 0.19% (Fig.3(a)); 

CT2019 showsshowed MB of 0.54 ppmv and NMB of 0.17% (Fig.3(b)),, suggesting an overall acceptable performance of the 

weather-biosphere model to reproducesimulate the spatial distribution pattern of XCO2 in China.   

We further analyse WRF-VPRM validation against OCO-2 for the seven vegetation types in each season and find no prominent 

difference (evaluation statistics summarized in Table 1). Regarding vegetation type, the model showsshowed the largest 190 

normalized mean bias (NMB) MB over deciduous forest of -0.25%1.01 and 0.31%1.27 ppmv in summer and winter, 

respectively, both over deciduous forest which only coverscovered a very small portion in northeast China (see dominant 

vegetation types in Fig.1(c)).. The  three most abundant coverage vegetation types in China are grass, crops, and mixed forest. 

XCO2 simulated by WRF-VPRM over grass areas iswas slightly overestimated by 0.0831~0.16%68 ppmv throughout the year, 

and the NMBMB over mixed forest iswas -0.11%~43~0.15%,59 ppmv, indicating a good performance of the model over the 195 
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vast majority of areas of China. Performance over crops generally showsshowed larger discrepancy than other vegetation types, 

with NMBMB ranging from 0.16%66 ppmv in summer to 0.29%1.19 ppmv in winter, suggesting the model tends to slightly 

overestimate column concentration of CO2 over cropland. Li et al. (2020) reported that WRF-VPRM underestimated biosphere 

carbon over rice paddy sites (by ~3%) in northeast China and suggested the parameterization of 𝛼, 𝛽, 𝜆 as the most important 

cause. Cropland differs significantly across China with various types of species such as rice, wheat, and corn, for which 200 

literature reportsliteratures reported substantially different rates of ecosystem respiration and photolysis uptake (Gao et al., 

2018;Yang et al., 2016;Zhu et al., 2020). Thus, applying one set of parameters to represent all crops may be responsible for 

the lingering uncertainty of simulated XCO2. In terms of seasonal difference, WRF-VRPM performs bestshowed slightly 

smaller bias in summer (NMB=0.12%) and worstlarger bias in winter (NMB=0.23%),, and the correlation coefficients arewere 

all ~0.8, consistent with application over the U.S. (Hu et al., 2020) which also reported slightly better performance in summer 205 

than other seasons, indicating good agreement with the OCO-2 satellite product.  

Fig.34 also presents the overall simulation bias against ground-based observations employed in this study at thetheir raw 

temporal intervals (dailymonthly for OCO-2, daily for TCCONdata at HefeiESRL sites, hourly for tower data at Lin’an, and 

monthlydaily for dataTCCON at Hefei). At the ESRL sites). Surface (Fig.4(c)), surface CO2 concentrations arewere simulated 

well with minor overestimation by 0.69 ppmv (0.17%) at the ESRL sites (Fig.3(f)). However, evaluation. Evaluation at the 210 

Lin’an station shows significant overestimations for CO2 by 5.34 ppmv (1.25%) and 5.41 ppmv (1.27%) at 21m (Fig.3(d)) and 

55m (Fig.3(e)) AGL, respectively; thewas performed with the 4km-grid simulation. The mid-level heights of WRF-VPRM’s 

first, second, and third layers arewere 12.3m, 36.9m, and 61.6m, respectively, and simulations arewere linearly interpolated to 

21m and 55m to compare with the tower data. The evaluation at 21m AGL (Fig.4(d)) shows slight overestimation by 0.02 

ppmv, but the evaluation at 55m height (Fig.4(e)) shows relatively large overestimations by 1.06 ppmv. The discrepancy is 215 

largely attributablelikely due to the combined effect of vertical allocation of anthropogenic emission within the model as 

recently recognized (Brunner et al., 2019). Biosphere and parameterization of VPRM. Tracer transport models (such as WRF-

VPRM and CASA) and inverse modelling methods allocate anthropogenic CO2 emission into the near surface layer due to 

lack of injection height information, which will likelymay subsequently lead to systematic overestimation of surface CO2 

concentration in industrial areas; though. Through a regional scale (750×650km) modelling study around the city of Berlin (, 220 

Brunner et al., . (2019) reported that distributing anthropogenic emission into the surface layer overestimated near-surface CO2 

concentration by 14% in summer and 43% in winter as compared with considering the vertical profiles of local anthropogenic 

sources. Lin’an observation tower is located at a densely vegetated area. Validation against OCO-2 suggested that WRF-

VPRM did not show significantly different performance over different vegetation types as shown in Table 1. As compared to 

the ESRL background sites which were located in more remote areas with little anthropogenic emission (Fig.1(a)), Lin’an was 225 

more frequently affected by regional anthropogenic emissions which were transported from Shanghai and Hangzhou due to 

the prevailing northeast wind (Pu et al., 2014), indicating that the emission allocation discrepancy may induce more prominent 

error at Lin’an. In fact, the 20km-grid WRF-VPRM simulation bias at Lin’an were 5.34 and 5.41 ppmv at 21m and at 55m 
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respectively (Figure S2), significantly larger than the bias at ESRL sites. In addition, both the 20km-grid and 4km-grid 

simulations showed relatively larger bias at 55m than 21m due to smaller topography roughness and higher wind speed which 230 

increases with height according to observations (Figure S3). CT2019 also substantially overestimatesoverestimated at Lin’an, 

but the first, second, and third layers’ mid-level heights are 25m, 103m, and 247m, respectively, so we diddo not compare it 

directlypresent the direct comparison with the tower data, but analysed the simulated diurnal variation as will be discussed in 

Section 3.3. Fig.3(c) and (d) reveal that observed average CO2 concentrations at Lin’an (428 ppmv) are substantially higher 

than those at ESRL sites (407-410 ppmv). The evaluation at Lin’an station also infers the prominent high CO2 level in YRD 235 

due to the intensive regional anthropogenic emission as compared with ESRL sites at remote locations. Pu et al. (Pu et al., 

2014) analysed the back trajectories for hourly measurements collected at Lin’an station between 2009-2011 and demonstrated 

that it was frequently affected by prevailing northeast winds carrying polluted airmasses from upwind cities including 

Hangzhou, Shanghai, and northeast parts of Jiangsu where manufacturing factories were densely located.. Simulated XCO2 is 

also compared with from both WRF-VPRM and CT2019 were well consistent with the TCCON Hefei site observations, and 240 

a very good agreement is found as shown in Fig.4(f), with MB ofby -0.79 ppmv and NMB of -0.2%. In general, recent-0.78 

ppmv respectively, and NMB by -0.20% and -0.19% respectively. The 4km-grid simulation showed very similar result to the 

20-grid simulation for XCO2 (Figure S1 and Figure S2). Recent atmospheric inverse modelling studies (Fu et al., 2019a;Wang 

et al., 2019;Xie et al., 2018) reportreported the simulation bias of XCO2 as 0.5-2 ppmv with posterior flux inputs. The WRF-

VPRM model applied in this study has demonstrated good agreement with the observations as a process-based model though 245 

our evaluation.  

3.2 CO2 seasonal variation and trend in China 

We next analyse the seasonality of CO2 and XCO2 and find that the terrestrial flux playsplayed a more influential role than 

anthropogenic emission. WRF-VPRM successfully reproducesreproduced seasonal variations of CO2 at ESRL sites, with a 

correlation coefficient of 0.90 (Fig.45(a)), but the )). The WRF-VPRM 4km-grid simulation showed a correlation between 250 

simulated and observed CO2 at coefficient of 0.82 with the Lin’an tower is only 0.67 (Fig.4(c)); we will probe into bias at 

Lin’an in the next section.observation (averaged for daytime 21m and 55m data). Both the model and measurements 

showshowed prominent seasonal cycles for surface CO2 concentrations, with maximums. The WRF-VPRM simulation showed 

maxima in April (413-419 ppmv) and minimumsminima in August (399-404 ppmv) as shownpresented in Fig.45(b). The 

model suggestssuggested that the anthropogenic CO2 contribution iswas 2.6 ppmv in both months, while the biogenic 255 

contributions arewere 3.1 ppmv and -1.2 ppmv in April and August, respectively (Fig.45(d)). Anthropogenic emission 

(Fig.45(f)) showsshowed a flat curve with relatively higher values in December due to fuel combustion for heating (Zheng et 

al., 2018);.  EVI meanwhile shows maximumsshowed maxima in July and August (Fig.45(f)). During summer, photosynthetic 

uptake almost completely offsetscompensated anthropogenic emission, causing the minimum CO2 concentration observed in 

August, while the higher anthropogenic emission in December and respiration flux in April leadled to the two corresponding 260 

peaks. The anthropogenic XCO2 contributions from arewere 0.5 and 0.6 ppmv in April and August, respectively, and the 
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biogenic contributions arewere 0.8 ppmv and -1.5 ppmv, respectively, suggesting that the seasonality of XCO2 iswas also 

primarily dominated by terrestrial flux. Furthermore, the seasonality at high-latitude ESRL sites (UUM and WLG) iswas 

stronger than at Lin’an and low-latitude sites (DSI and LLN) because of the larger temperature and photosynthetically active 

radiation (PAR) gradients. Annual average anthropogenic and biogenic XCO2 contributions arewere 7.1 ppmv and -1.9 ppmv, 265 

respectively, indicating that biosphere uptake iswas an important carbon sink offsetting 27% of anthropogenic emission and 

slowing the growth of atmospheric CO2.  

XCO2 showsshowed similar seasonality, with minimumsminima in August and maximumsmaxima in April and December 

(Fig.45(b)). Both WRF-VPRM and CT2019 showshowed good agreement with TCCON Hefei observations with correlations 

of 0.89 and 0.88, respectively (Fig.45(e)). However, we note that WRF-VPRM simulatessimulated drastic changes (e.g., the 270 

grey shaded period in Fig.45(e)) that arewere not shownreproduced by CT2019;. Fig. 56 shows the daily concentrations of 

XCO2 overlaid with horizontal wind speed at 10m AGL from WRF-VPRM and CT2019 and highlights large discrepancies 

over Hefei. (Figure S4 shows the same comparison but using WRF-VPRM 4km-grid simulation data). Between April 1st and 

3rd 2016, an 850 hPa trough associated with a surface cold front moved southeastward from Mongolia to the North China Plain 

(NCP) (weather maps shown in Fig.56(g)-(i)). At the leading edge of the front, a convergence zone associated with a low 275 

pressure center formed, which led to significant cloud formation and subsequently reduced short-wave radiation. As a result, 

photosynthetic carbon uptake was reduced, leading to enhancement of atmospheric CO2. Meanwhile, the cold front transported 

anthropogenic CO2 from NCP to YRD, and the convergence zone along YRD ahead of the front facilitated the accumulation 

of air pollutants and CO2 from anthropogenic emissions. With its coarse spatiotemporal resolution, CT2019 hashad difficulty 

reproducing such regional weather systems that can lead to rapid and localized changes in CO2 concentration and terrestrial 280 

flux, indicating the importance of fine resolution modelling to better represent the small spatial scale and rapid temporal scale 

variations of CO2 (Agusti-Panareda et al., 2019).  

We also find a notable increasing trend for the 3-year study period. Observed CO2 annual enhancement is 0.56%/yr (was 2.2 

ppmv/yr (0.56%/yr) at the ESRL sites and 2.3 ppmv/yr (0.67%/yr (2.8 ppmv/54%/yr) at Lin’an. The observed average CO2 

concentrations at Lin’an (428 ppmv) were substantially higher than those at ESRL sites (407-410 ppmv). The prominent higher 285 

levels of CO2 and slightly higher absolute growth rate at Lin’an can be attributed to the influence of the transport regional 

anthropogenic emission, which is growing at rate of 0.82%/yr as suggested by ODIAC. Domain-wide XCO2 iswas also found 

to increase by 0.57%/yr (2.3 ppmv/yr (0.57%/yr) as suggested by OCO-2 and 0.61%/yr (2.5 ppmv/yr (0.61%/yr) as suggested 

by the simulation. WRF-VPRM reproducesreproduced the trends in good agreement with ground and satellite observations. 

Model simulated budgets suggestssuggested that the increasing trends for anthropogenic, biogenic, and background XCO2 290 

arewere 0.81%/yr, -9.17%/yr, and 0.59%/yr, respectively; the trends for anthropogenic, biogenic, and background CO2 arewere 

4.95%/yr, -0.73%/yr, and 0.59%/yr, respectively. Our findings are consistent with recent measurements and inverse modelling 

studies but provide process-based estimates for anthropogenic emission and terrestrial flux. Wu et al. (Wu et al., 2012) reported 

measured CO2 concentration at Changbai Mountain forest site in northeast China increased by 1.76 ppmv/yr between 2003-
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2010. With the atmospheric inversion modelling method, Fu et al. (2019b) estimated surface CO2 in East Asia increased by 2-295 

3 ppmv/yr between 2004-2012. These trends suggest that although anthropogenic emission increasedincreases at a steady rate 

in East Asia, photosynthetic uptake also servedserves as an increasing carbon sink due to enhanced EVI (0.29%/yr). However, 

as the interannual variability (IAV) of terrestrial flux is usually critically large and is affected by both vegetation itself and 

climate conditions (Fu et al., 2019b;Niu et al., 2017), simulation over longer time periods is necessary in future studies to 

conclusively comment on the changing trend of biosphere CO2 in China.  300 

3.3 Diurnal variation of near-surface CO2 and influence factors 

Finally, we examine the diurnal variation of meteorology and CO2 data at Lin’an station as shown in Fig.67 to reveal the 

temporal dynamics and atmospheric mixing of CO2 at local scale. While both 21m (Fig.7(a)) and 55m (Fig.7(b)) CO2 show 

prominent diurnal changes, the variations arewere larger in summer (JJA) than winter (DJF) and arewere larger at 21m than 

55m, indicating the dominant influence of terrestrial flux over anthropogenic emission in determining the near surface CO2 305 

concentration. Fig.67(c) presents the diurnal change of wind speed collected at 50m of the Lin’an tower. The higher wind 

speed between 10:00-22:00 local time suggests strong regional transport and mixing of CO2 mainly occurs during this period. 

Fig.6(d) and (g) present the WRF-VPRM and CT2019 simulation bias, at 21m and 55m respectively, against Lin’an tower 

data at 21m (note the Y-scales are different).and Fig.7(e) and (f) present the bias of CT2019 at 21m and 55m respectively. We 

find that both models prominently overestimate during night time.overestimated during nighttime, which shall be attributed to 310 

the bias in simulating NEE. Li et al. (2020) reported the model overestimated nighttime NEE at a mixed forest site Wuying 

(47.15˚N, 131.94˚E) by 34% during the growing season (May-Sep.) according to ECeddy-covariance tower measurement. 

Fig.6(f7(g) and (ih) present the simulated NEE by WRF-VPRM and CT2019, respectively, which show close correlations with 

the CO2 simulation biases. While Lin’an is also covered by mixed forest, our evaluation suggests that WRF-VPRM may have 

also estimatedoverestimate nighttime ecosystem respiration during the non-growing season,at Lin’an as it has a warmer climate 315 

condition than Wuying (Figure S5), and CT2019 has even greater bias for presenting the diurnal cycles of terrestrial flux.  

We also find that planetary boundary layer height (PBLH) significantly affects diurnal accumulation and depletion of 

atmospheric CO2 as shown in Fig.78(a). During daytime in the growing season, photosynthetic uptake results in lower CO2 

concentration; meanwhile, PBLH is also high and allows rapid vertical mixing between near surface and upper air. During 

nighttime when photosynthesis stops, CO2 from ecosystem respiration starts to accumulate in the shallow stable boundary layer, 320 

while the residual layer remains largely decoupled. Thus, atmospheric constituents with surface sources normally exhibit a 

vertical profile in which concentrations decrease with height in the stable boundary layer (Hu et al., 2020;Hu et al., 2012).  

Such boundary layer characteristics are confirmed by CO2 vertical gradients at Lin’an.  in this study. CO2 at 55m height iswas 

consistently lower than the near surface air at 21m during nighttime due to accumulation of respired CO2 in the stable boundary 

layer. As photosynthetic uptake depletesdepleted the near surface CO2 and daytime boundary layer convection 325 

developsdeveloped, the CO2 gradient iswas gradually weakened from 06:00 to 11:00 LT and remainsremained minimal through 
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the rest of the daytime; at midday when photosynthesis reaches maximum intensity, CO2 at 21m iswas even lower than at 55m. 

WRF-VPRM generally reproducesroughly reproduced the diurnal profile but noticeably underestimatesunderestimated the 

intensity of night time nighttime CO2 difference (ΔCO2,) likely due to the bias for simulating night time terrestrial flux as 

discussed above or underestimation of nighttime boundary layer stability by the PBL scheme (Hu et al., 2012).   330 

The relationship between the near-surface CO2 profile and boundary layer stability is further statistically examined. Fig.78(b) 

presents the correlation between air temperature gradient (ΔT/ΔH) and CO2 concentration gradient (ΔCO2/ΔH) calculated with 

annual averaged diurnal profiles of tower observations, which averaged for 2016-2018, where ΔT, ΔH, and ΔCO2 is the 

differences of temperature, height, and CO2 concentration between the two tower levels, respectively. Fig.8(b) clearly 

demonstrates the influence of boundary layer stability on the CO2 vertical profile, as the correlation between ΔT/ΔH and 335 

ΔCO2/ΔH reaches -0.98. On one hand, a more stable PBL with a strongly positive temperature gradient would promote surface 

CO2 accumulation and lead to a strongly negative CO2 gradient, especially under inversion conditions when upper air has 

higher temperature (orange area in Fig.78(b)). Conversely, a strongly negative temperature gradient indicates stronger radiation, 

and subsequently greater photosynthesis and CO2 depletion in the near surface layer, which would result in a positive CO2 

gradient (green area in Fig.78(b)) implying a lower CO2 concentration at the surface. While the diurnal variations of ΔCO2 340 

arewere primarily dictated by local biogenic CO2 fluxes and boundary layer dynamics, the two minor daytime peaks of ΔCO2 

at Lin’an, at 10:00 and 18:00 LT (Fig.78(a)) likely suggest influence of transport of CO2 from urban plumes in the region; for 

example, from Hangzhou which is 60 km away from the tower. Due to rush-hours anthropogenic emissions, CO2 enhancement 

at Hangzhou relative to a background site exhibitsexhibited a prominent bimodal curve with two peaks during early morning 

and early evening (Pu et al., 2018). Depending on meteorological conditions, particularly wind fields, urban CO2 plumes from 345 

cities such as Hangzhou may be transported to the Lin’an site. Due to higher altitude and stronger winds – wind profile 

increases with height at Lin’an according to observations (Figure S4) – 55m at the Lin’an tower has a larger footprint than 

21m, thus 55m on the tower is more likely affected by the urban plumes in the region than 21m. The 10:00 and 18:00 LT ΔCO2 

peaks at Lin’an likely suggest stronger CO2 enhancement at 55m than at 21m from influence of regional anthropogenic 

emissions; the slight delay of these ΔCO2 peaks relative to rush hours (at about 08:00 and 17:00 LT) further corroborate the 350 

hypothesis of delayed influence of transport of urban CO2 from Hangzhou. Even though 55m has a larger footprint than at 21m 

and thus may be more likely affected by regional urban emissions, turbulent vertical mixing may reduce the different influence 

from regional urban emissions, which explains the fact that ΔCO2 peaks are only minor. The influence of boundary layer 

conditions on CO2 variability has been discussed in several studies through analysis of mountain site ground-based 

observations (Arrillaga et al., 2019;Esteki et al., 2017;Li et al., 2014), but our study appliesapplied tower data as direct evidence 355 

to demonstrate the significant impact of PBL thermal structure, which has rarely been documented. More importantly, although 

WRF-VPRM failsfailed to capture the bimodal ΔCO2 peaks at rush hours, because monthly ODIAC data lackslacked an hourly 

profile, our analysis reveals the critical importance of careful configuration of the PBL scheme and spatiotemporal distribution 

of anthropogenic emission for weather-biosphere modelling of atmospheric CO2. 
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4 Summary and Conclusions 360 

In this study, the spatiotemporal variations of CO2 in China are investigated with measurements from multiple datasets and a 

weather-biosphere coupled model simulation for 2016-2018. We find consistent higher concentrations over industrial areas 

with excessive anthropogenic emission and lower concentrations over densely vegetated areas. Observed CO2 concentrations 

at Lin’an (427 ppmv) are significantly higher than remote ESRL sites (408 ppmv) although they are all established as 

“background” stations, indicating the dominant influence of anthropogenic emission at regional scales. The Lin’an tower data 365 

shows a large negative correlation (-0.8598) between vertical CO2 concentration and air temperature gradients, suggesting the 

significant influence of boundary layer stability on CO2 accumulation and depletion. The online coupled weather-biosphere 

model WRF-VPRM enables process-based estimations of contributions from anthropogenic emission (0.59 ppmv (0.15%)), 

terrestrial flux (0.16 ppmv (-0.04%)), and background concentration (405.70 ppmv (99.89%))  to average total XCO2. 

Respective simulation biases of surface CO2 and XCO2 are 0.69 ppmv (0.17%) and 0.76 ppmv (0.19) against ESRL site 370 

observations and OCO-2 satellite product with correlations of 0.87 and 0.90, indicating overall good performance of the WRV-

VPRM model. Maximum CO2 concentrations are found in April and minimumsminima are found in August for all three years, 

and the seasonality is reproduced well by the model, which also reveals that terrestrial flux and background concentration 

dominated the seasonality rather than anthropogenic emission.  

A steadily increasing trend in XCO2 by ~2.46 ppmv (~0.6%/yr) during the study period is demonstrated consistently by both 375 

model simulation and satellite product. Budget analysis suggests that anthropogenic emission increased by 0.83%/yr 

contributing to the 0.81%/yr growth rate of anthropogenic XCO2 enhancement, 27% of which was offset by biosphere uptake. 

It is noted that terrestrial flux has significant inter-annual variability, thus a more robust estimation of the terrestrial flux trend 

should be obtained through a long-term study in the future. The background XCO2, representing contributions from global 

circulation, increased by 2.37 ppm (0.59%/yr,), suggesting that CO2 level in China was growing at the same rate as the rest of 380 

the world. 

The most significant modelling bias is identified from validation against the Lin’an tower data55m observations, which WRF-

VPRM 4km-grid simulation overestimated by about 5.381.06 ppmv (1.26%) with a correlation coefficient of 0.6782. The 

allocation of anthropogenic emission into the surface layer is partially responsible for this modelling bias because Lin’an is 

closely affected by upwind industrial mega cities in YRD, suggesting the need to include vertical profiles of fossil fuel 385 

combustion to properly redistribute the ODIAC for modelling purposes. HoweverIn addition, diurnal variations of the bias 

suggest that the modelling discrepancy is likely due toalso induced by large uncertainty associated with simulating nighttime 

ecosystem respiration during the nighttime. Representation and parameterization of photosynthetic carbon uptake in VPRM 

has been continuously improved during the past 10 years since its first release (Hu et al., 2020), but ecosystem respiration 

parameterization is still too simplified to fully represent the autotrophic and heterotrophic respiration of biomass. Li et al. 390 

(2020) and our study both reveal the urgent need to better calibrate VPRM parameterization over different vegetation types in 

China, and other methods such as inverse modelling is necessary to further validate the anthropogenic fluxes from ODIAC. 
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Nevertheless, WRF-VPRM is demonstrated to be a reliable tool to model the dynamics of CO2 and exchange between the 

atmosphere and terrestrial flux. Most importantly, as the online coupled modelling system is able to simulate meteorology and 

biosphere processes simultaneously, it promotes the opportunity to investigate the interactions between atmospheric mixing 395 

and terrestrial flux (Carvalhais et al., 2014;Schimel et al., 2015) while comprehensively considering various factors from both 

sides that affect CO2 in one coordinate frame, which could be a very helpful tool to support policy makers for balancing short-

term carbon cycles at regional scales. 
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Table 1. Evaluation statistics1 for WRF-VPRM 20km-grid simulation against OCO-2 satellite product at daily intervals 

Season 

Vegetation 

type 

Mean Obs. 

(ppmv) 

Mean Sim. 

(ppmv) 

MB2 

MB1 
(ppmv) 

NMB2 

(%)cc1 

cc2 # of 

samples 

Spring 

other 406.85 407.81 0.96962 0.231 0.82 16123 

evergreen 407.52 407.89 0.36 0.09 0.73 1920 
deciduous 408.15 408.430 0.27 0.071 0.82 412 

mixed 407.79 408.21 0.41 0.10 0.79 4438 

shrubland 406.97 407.54 0.56 0.13 0.74 6550 

savanna 407.59 408.55 0.96 0.22 0.81 534 
grass 406.81 407.49 0.68 0.16 0.81 11170 

crops 407.50 408.29 0.79 0.19 0.82 13548 

Summer 

other 403.90 404.84 0.93 0.23 0.88 13445 
evergreen 402.68 402.24 -0.44 -0.11 0.85 1082 

deciduous 400.39 399.39 -1.01 -0.25 0.82 527 

mixed 402.04 401.60 -0.43 -0.11 0.87 4312 

shrubland 403.92 404.41 0.48 0.12 0.85 5193 
savanna 404.62 404.60 -0.02 0.01 0.79 170 

grass 402.35 402.66 0.31 0.08 0.88 12588 

crops 402.86 403.52 0.66 0.16 0.87 7947 

Fall 

other 403.32 404.35 1.03 0.26 0.82 17054 

evergreen 403.93 403.19 -0.74 -0.18 0.71 1716 

deciduous 403.35 403.64 0.28 0.07 0.84 281 

mixed 403.64 403.95 0.31 0.08 0.83 3611 
shrubland 403.12 404.22 1.10 0.27 0.77 8532 

savanna 403.45 404.15 0.70 0.17 0.70 504 

grass 403.22 403.65 0.43 0.11 0.85 11176 
crops 403.76 404.80 1.04 0.26 0.80 13136 

Winter 

other 404.76 405.80 1.03 0.26 0.80 13838 

evergreen 404.79 404.75 -0.05 -0.01 0.78 2671 

deciduous 405.38 406.65 1.27 0.31 0.79 135 

mixed 405.20 405.79 0.59 0.15 0.79 2108 

shrubland 404.76 405.84 1.09 0.27 0.79 7683 

savanna 404.63 405.83 1.20 0.30 0.75 1064 

grass 405.06 405.64 0.58 0.14 0.77 5967 

crops 405.17 406.36 1.19 0.29 0.79 15508 
1For each season, evaluation statistic with the worst performance (largest absolute value of NMB) is highlighted in red, and 

the one with best performance (smallest absolute value of NMB) is highlighted with in bold font.  

2 𝑀𝐵 =
1

𝑁
∑ (𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖)
𝑁
𝑖=1 , 𝑁𝑀𝐵 =

∑ (𝑆𝑖𝑚𝑖−𝑂𝑏𝑠𝑖)
𝑁
𝑖=1

∑ 𝑂𝑏𝑠𝑖
𝑁
𝑖=1

, 1 Mean bias was calculated as: 𝑀𝐵 =
1

𝑁
∑ (𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖)
𝑁
𝑖=1 , and 615 

correlation coefficient was calculated as:𝑐𝑐 =
∑ (𝑆𝑖𝑚𝑖−𝑆̅𝑖𝑚)(𝑂𝑏𝑠𝑖−𝑂̅𝑏𝑠)
𝑁
𝑖=1

√∑ (𝑆𝑖𝑚𝑖−𝑆̅𝑖𝑚)2𝑁
𝑖=1 √∑ (𝑂𝑏𝑠𝑖−𝑂̅𝑏𝑠)

2𝑁
𝑖=1

, where 𝑆̅𝑖𝑚 is the average of simulations, 𝑂̅𝑏𝑠 

is the average of observations. 
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2 For each season, evaluation statistic with the worst performance (largest absolute value of MB) is highlighted in red, and the 620 

one with best performance (smallest absolute value of MB) is highlighted with in bold font.  
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Figure 1: Annual averages of (a) ODIAC emission, (b) MODIS EVI, and (c) dominant vegetation type; and (d) photo of Lin’an 

observation tower; (e) photo of data analysis and recording system in the 20km simulation domain, and (d) terrain height of the 

4km simulation domain. The locations of the ESRL sites, TCCON Hefei site, and Lin’an tower site are indicated with red circles, 625 
rectangles, and diamonds respectively in (a). The 4km domain is indicated with the red dash rectangle in (b), and the locations of 

Hangzhou and Shanghai are indicated with yellow triangles in (d). 
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Figure 2: Photos of the (a) Lin’an regional atmospheric background station and (b) the data analysis lab; and wind rose map at 630 
Lin’an derived from wind speed and wind direction observations for 2016-2018 at (c) 10m and (d) 50m. 
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Figure 23: 2016-2018 averages of WRF-VPRM simulations of (a) 1st layer (mid-layer height is 12km) CO2 concentration, and (b) 

XCO2 concentration; (c) WRF-VPRM simulated XCO2 bias against OCO-2; (d)-(f) is same as (a)-(c) but for CT2019 (1st layer mid-635 
level height is 25m). Markers in (c) represent the locations of ground-based sites. 
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Figure 34: Data pairs for OCO-2 against (a) WRF-VPRM and (b) CT2019,; (c) TCCON-HefeiESRL against WRF-VPRM and 

CT2019,; Lin’an tower against WRF-VPRM 4km-grid simulation at (d) 21m and (e) 55m,; and (f) ESRLTCCON-Hefei against 

WRF-VPRM and CT2019. 640 
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Figure 45: Monthly variations of (a) CO2 at ESRL sites, (b) total (black) and background (BCG, grey) CO2 (line) and XCO2 (area 

and bar), (c) CO2 at Lin’an station (averaged for daytime 21m and 55m data); (d) contributions from anthropogenic (ANT, orange) 

and biogenic (BIO, blue) for CO2 (lines) and XCO2 (bars); (f) ODIAC emission and MODIS EVI; and (e) Daily variation of XCO2 645 
at TCCON-Hefei site. 
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Figure 56: Daily XCO2 from CT2019 (a-c) and WRF-VPRM (d-f), weather map from Korea Meteorological Administration (g-i). 650 
The blue box represents location of Hefei.  
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Figure 67: Seasonal mean diurnal variations of observed CO2 at (a) 21m and (b) 55m, and (c) wind speed at 50m; 655 

WRF-VPRM simulation biases of CO2 at (c) 21m and (d) 21m and (e) 55m, and (f); CT2019 simulated biases at (e) 

21m and (f) 55m; Simulated NEE; from (g)-(i) are same as (d)-(f) but for) WRF-VPRM and (h) CT2019. 
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Figure 78: (a) Average (2016-2018) diurnal variations of simulated (black line) and observed (red line) ΔCO2 and simulated (blue 

line) PBLH at Lin’an station; and (b) correlation between CO2 gradient between 55m and 21m (ΔCO2/ΔH) and temperature gradient 660 
(ΔT/ΔH) at Lin’an station (diurnal data is averaged for each year respectively).. 
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