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Abstract. Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon (ROC) 

emissions. Among these sources are everyday items, such as personal care products, general cleaners, architectural coatings, 

pesticides, adhesives, and printing inks. Here, we develop VCPy, a new framework to model organic emissions from VCPs 15 

throughout the United States, including spatial allocation to regional and local scales. Evaporation of a species from a VCP mixture 

in the VCPy framework is a function of the compound specific physiochemical properties that govern volatilization and the 

timescale relevant for product evaporation. We introduce two terms to describe these processes: evaporation timescale and use 

timescale, respectively. Using this framework, predicted national, per-capita organic emissions from VCPs are 9.5 kg person-1 

year-1 (6.4 kgC person-1 year-1) for 2016, which translates to 3.05 Tg (2.06 TgC), making VCPs a dominant source of anthropogenic 20 

organic emissions in the United States. Uncertainty associated with this framework and sensitivity to select parameters were 

characterized through Monte Carlo analysis, resulting in a 95% confidence interval of national VCP emissions for 2016 of 2.61 – 

3.53 Tg (1.76 – 2.38 TgC). This nationwide total is broadly consistent with the US EPA’s 2017 National Emission Inventory 

(NEI); however, county-level and categorical estimates can differ substantially from NEI values. VCPy predicts higher VCP 

emissions than the NEI for approximately half of all counties, with 5% of all counties having greater than 55% higher emissions. 25 

Categorically, application of the VCPy framework yields higher emissions for personal care products (150%) and paints/coatings 

(25%) when compared to the NEI, whereas pesticides (-54%) and printing inks (-13%) feature lower emissions. An observational 

evaluation indicates emissions of key species from VCPs are reproduced with high fidelity using the VCPy framework (normalized 

mean bias of -13% with r = 0.95). Sector-wide, the effective secondary organic aerosol yield and maximum incremental reactivity 

of VCPs are 5.3% by mass and 1.58 g O3 g-1, respectively, indicating VCPs are an important, and likely underrepresented to-date, 30 

source of secondary pollution in urban environments. 

 

1 Introduction 

 

Reactive organic carbon (ROC), which includes both non-methane organic gases and organic aerosol (OA), is central to 35 

atmospheric oxidant levels and modulates the concentration of all reactive species (Heald and Kroll, 2020; Safieddine et al., 2017). 

Gas-phase ROC features both biogenic and anthropogenic sources and, following oxidation, can lead to the formation of 

tropospheric ozone (O3) and secondary organic aerosol (SOA). Organic aerosol is often the dominant component of total fine 

particulate matter (PM2.5) throughout the world (Jimenez et al., 2009; Zhang et al., 2007), and SOA is often the dominant 
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component of OA in both urban and rural settings (Jimenez et al., 2009; Volkamer et al., 2006; Williams et al., 2010; Xu et al., 40 

2015). Since ozone and PM2.5 are both associated with impacts on human health and welfare (U.S. Environmental Protection 

Agency, 2019a; U.S. Environmental Protection Agency, 2020) that are global in nature (Burnett et al., 2018; Mills et al., 2018) 

and persist at low concentrations (Di et al., 2017; Kazemiparkouhi et al., 2020), accurately understanding the sources, magnitude, 

and speciation of organic emissions is critical. 

 45 

Historically, the leading source of anthropogenic organic emissions in the United States has been motor vehicles (Khare and 

Gentner, 2018; McDonald et al., 2013; Pollack et al., 2013). However, successful emission reduction strategies implemented over 

several decades have dramatically reduced mobile emissions (Bishop and Stedman, 2008; Khare and Gentner, 2018; McDonald et 

al., 2013), resulting in substantial declines in both ambient gas-phase non-methane volatile organic compounds (NMVOCs) and 

OA concentrations (Gentner et al., 2017; McDonald et al., 2015; Pollack et al., 2013; Warneke et al., 2012). Due to these changes, 50 

volatile chemical products (VCPs) are now viewed as the foremost source of anthropogenic organic emissions (Khare and Gentner, 

2018; McDonald et al., 2018). The U.S. EPA has long accounted for VCPs in the National Emissions Inventory (NEI) as the 

“solvent sector.” In 1990, the mobile and VCP sectors were the two highest emitters of volatile organic compounds (VOCs; a 

regulatory defined collection of organic species that excludes certain compounds, such as acetone) at the national level. Mobile 

and VCP sources emitted 7.2 Tg and 5.0 Tg of VOCs, respectively (U.S. Environmental Protection Agency, 1995). By 2017, EPA 55 

estimates of VOC emissions from both the mobile and VCP sectors each dropped to 2.7 Tg (U.S. Environmental Protection Agency, 

2020). For VCPs, factors driving the emissions decrease over this period include, but are not limited to, reformulation of consumer 

products (Ozone Transport Commission, 2016) and implementation of National Emissions Standards for Hazardous Air Pollutants 

regulations for industrial processes (Strum and Scheffe, 2016). Potentially complicating the trend and assessment of relative roles 

of different sectors, new inventory methods have suggested that VCP emissions in the NEI could be biased low by a factor of 2-3 60 

(McDonald et al., 2018). 

 

The decades-long increasing relative contribution of VCPs to total anthropogenic organic emissions could have several important 

implications for modelling and improving air quality. First, modelling studies of SOA from anthropogenic VOCs have generally 

focused on combustion sources (Hodzic et al., 2010; Jathar et al., 2017; Murphy et al., 2017), which are typically rich in aromatics 65 

and alkanes (Gentner et al., 2012; Lu et al., 2018). In contrast, emissions from VCPs occur through evaporation and contain large 

fractions of oxygenated species (e.g. glycol ethers, siloxanes), many of which feature uncertain SOA yields (McDonald et al., 

2018). Second, adequate chemical mechanism surrogates for species common in VCPs (e.g. siloxanes) are lacking (Qin et al., 

2020). As VCPs and their components could have significant SOA potential (Li et al., 2018; Shah et al., 2020), revisiting VCP 

emissions mapping to chemical mechanisms could help reduce modelled bias, which has historically been difficult to resolve 70 

(Baker et al., 2015; Ensberg et al., 2014; Lu et al., 2020; Woody et al., 2016). Third, VCPs feature substantial quantities of 

intermediate-volatility organic carbon (IVOC) compounds (CARB, 2019) and better representing their source strength could help 

resolve the high IVOC concentrations observed in urban atmospheres (Lu et al., 2020; Zhao et al., 2014). Fourth, if the VCP sector 

is systematically biased low in the NEI or select urban areas, there could be implications for ozone pollution (Zhu et al., 2019). 

Finally, reducing organic emissions from VCPs has traditionally been viewed through the lens of minimizing near-field chemical 75 

exposure (Isaacs et al., 2014) or mitigating ozone pollution (Ozone Transport Commission, 2018), both of which can be 

accomplished through product reformulation. For example, reducing the magnitude of regulatory VOC emissions from VCPs can 

be accomplished by reformulating a product with lower-volatility ingredients that are less likely to evaporate (Ozone Transport 

Commission, 2016). However, if these lower-volatility replacement ingredients eventually evaporate on atmospherically relevant 
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timescales, they could be efficient SOA precursors (Li et al., 2018).  80 

 

Given these implications, the need to understand and resolve differences among inventories becomes increasingly important. Here, 

we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States, including spatial 

allocation to the county-level. In this framework, fate and transport assumptions regarding evaporation of a species in a product 

into ambient air are a function of the compound specific physiochemical properties that govern volatilization and the timescale 85 

available for a product to evaporate. We introduce two terms to describe these processes: evaporation timescale and use timescale, 

respectively. Since product ingredients are considered individually, determination of emission composition is explicit. This 

approach also enables quantification of emission volatility distributions and the abundance of different compound classes. In 

addition, we test the sensitivity of predicted emission factors to uncertain parameters, such as evaporation timescale and use 

timescale, through Monte Carlo analysis, evaluate the VCPy inventory using published emission ratios, and estimate the effective 90 

SOA and ozone formation potential of both the complete sector and individual product use categories.  

2 Methods 

2.1 VCPy: A Framework for Estimating Reactive Organic Carbon Emissions from Volatile Chemical Products 

The VCPy framework is based on the principle that the magnitude and speciation of organic emissions from VCPs are directly 

related to (1) the mass of chemical products used, (2) the composition of these products, (3) the physiochemical properties of their 95 

constituents that govern volatilization, and (4) the timescale available for these constituents to evaporate (Fig. 1). Since the VCP 

sector includes residential, commercial, institutional, and industrial sources, a consistent stream of data sources for all product 

categories is difficult. As such, this work implements a hybridized methodology that utilizes the best features of prior emission 

inventory methods, while introducing new methods to make improvements where necessary. The result produces national-level, 

per capita emission factors for all product categories in the VCP sector that can be further tailored for regional or localized analysis. 100 

The per capita basis is useful for comparison across frameworks and over time, but emissions can be recast in other units as needed. 

Briefly, survey data are used to generate a 1st-order product composition profile for a composite of product types, which quantifies 

the fraction of organic, inorganic, and water components. The organic component is further divided into individual species (e.g. 

ethanol, isobutane, isopropyl alcohol). A variety of data sources are used to estimate the national-level product usage and each 

composite is assigned a use timescale, reflecting the elapsed time between use and any explicit removal process. Finally, the 105 

characteristic evaporation timescale of each organic component is calculated using quantitative structure-activity relationship 

(QSAR) modelled physiochemical properties and compared to the assigned use timescale. If the characteristic evaporation 

timescale of the organic component is less than the assigned use timescale of the composite, it is assumed that the compound is 

emitted. Else, the compound is retained in the product or other condensed phase (e.g. water) and permanently sequestered.  

2.1.1 Product Use Categories (PUCs) and sub-Product Use Categories (sub-PUCs) 110 

VCPy disaggregates the VCP sector into several components called Product Use Categories (PUCs). An individual PUC is not 

exclusively used in a singular setting (e.g. residential vs. commercial) and examples include Personal Care Products, Cleaning 

Products, and Paints & Coatings. PUCs are further divided into sub-PUCs, which are composites of individual product types 

featuring similar use patterns. In addition to permitting tailored fate-and-transport assumptions, similar hierarchical product schema 

are also useful for models estimating near-field exposure to chemicals, through routes such as dermal contact and indoor inhalation 115 

(Isaacs et al., 2020). As an example, there are two sub-PUCs allocated to the Personal Care Product PUC: Short Use Products and 
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Daily Use Products. These two sub-PUCs are differentiated by the length of use prior to removal (i.e. the use timescale). The mass 

of chemical products used and subsequent organic emission factors, which are the main output from VCPy, are calculated at the 

sub-PUC level (Fig. 1). Currently, there are ten PUCs and sixteen sub-PUCs implemented in VCPy (Table 1). 

2.1.2 National-Level Product Usage 120 

To estimate VCP product use, some prior work has used national economic statistics, such as market sales or shipment values (e.g. 

U.S. Environmental Protection Agency, 2020; McDonald et al., 2018). Others have incorporated product usage statistics based on 

consumer habits and practices (e.g. Isaacs et al., 2014; Qin et al., 2020), but these statistics are generally unavailable for commercial 

and industrial chemical usage, which limits their application. To better ensure the capture of all chemical product usage, including 

usage in residential, commercial, institutional, and industrial settings, national economic statistics are utilized, where possible 125 

(Table S1). 

 

Product usage from twelve sub-PUCs is estimated using national-level shipment statistics, commodity prices, and producer price 

indices. National-level economic statistics are retrieved from the U.S. Census Bureau’s Annual Survey of Manufactures (ASM; 

U.S. Census Bureau, 2016a), which provides annual statistical estimates for all manufacturing establishments. Values are available 130 

for all 6-digit North American Industry Classification System (NAICS) codes, provided as product shipment values ($ year-1), and 

are reported with associated relative standard errors (generally < 5%). To translate shipment values ($ year-1) to usage (kg year-1), 

we use commodity prices ($ kg-1) from the U.S. Department of Transportation’s 2012 Commodity Flow Survey (U.S. Department 

of Transportation, 2015). An exception is for all Paint & Coating sub-PUCs. Commodity prices for these sub-PUCs are taken from 

the U.S. Census Bureau’s Paint and Allied Products Survey (U.S. Census Bureau, 2011a) and representative of 2010. To translate 135 

these commodity prices, which are from 2010 and 2012, to values reflective of 2016, we use producer price indices reported by 

the Federal Reserve Bank of St. Louis (U.S. Bureau of Labor Statistics, 2020). Commodity price indices from the Federal Reserve 

Bank are updated for all NAICS manufacturing codes monthly, which we average to create annual price indices (Table S2). An 

implicit assumption in this methodology is that manufacturing and product usage are, on average, annually balanced. 

 140 

We preferentially utilize product usage numbers derived from the above methodology, when possible, as all data sources have the 

following characteristics: (1) they are nationally derived and therefore less influenced by regional differences in manufacturing 

and formulation, and (2) all datasets are freely available to the public. However, due to data limitations, product usage for four 

sub-PUCs are estimated using other sources. The Dry Cleaning and Oil & Gas product usage estimates are derived from the 

national-level solvent mass usage reported by an industry study (The Freedonia Group, 2016). The Miscellaneous Products and 145 

Fuels & Lighter product usage estimates are derived from reported sales data, specific to California, from the California Air 

Resources Board’s 2015 Consumer and Commercial Products Survey Data (CARB, 2019). These sales numbers are scaled upwards 

to a national-level by assuming equivalent per-capita product usage.  

2.1.3 1st-Order and Organic Product Composition 

Each sub-PUC features two composite profiles. The initial composite is the 1st-order product composition profile, which 150 

disaggregates the total mass of each sub-PUC into its water, inorganic, and organic fractions (Table 2). The organic component is 

further decomposed into non-evaporative and evaporative organics. The quantification and accounting of evaporative organics in 

this framework are necessary as CARB’s organic profiles are processed to exclude organics that are not anticipated to evaporate 

on atmospherically relevant timescales. For ten sub-PUCS, the 1st-order product composition profile uses data from the California 
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Air Resources Board’s 2015 Consumer and Commercial Products Survey (CARB, 2019). Various product types are sorted into 155 

each sub-PUC and the 1st-order product composition profiles are calculated on a weighted basis using the reported sales from 

manufacturers and formulators in California. Due to omissions stemming from confidentiality concerns, not all sales and 

composition data from the survey are available. We utilize the publicly available portions of the data, which constitutes most of 

the survey and includes over 330 product types. For example, 126 product types and 20 product types were sorted into the General 

Cleaners and Adhesives & Sealants (Table S3) sub-PUCs, respectively.  160 

 

For Architectural Coatings, Industrial Coatings, and Printing Inks, the 1st-order product composition profile is derived from data 

in the California Air Resources Board’s 2005 Architectural Coatings Survey (CARB, 2007). The Architectural Coatings sub-PUC 

uses data from all profiles in the survey, which is dominated by flat paint, non-flat paints, and primers. Industrial Coatings and 

Printing Inks use the 1st-order product composition profiles of Industrial Maintenance coatings and Graphic Arts coatings, 165 

respectively. The 1st-order product composition profile for aerosol coatings uses data from the California Air Resources Board’s 

2010 Aerosol Coatings Survey (CARB, 2012), which includes more than 20 aerosolized product types. Only the evaporative 

organic composition of aerosol coating products was reported, so the remaining mass was evenly split between water and 

inorganics. For Dry Cleaning and Oil & Gas, as the product usage for these sub-PUCs were derived from the organic functional 

solvent mass usage, it is assumed that this mass is entirely evaporative organics. 170 

 

The second composite is the organic composition profile. Again, the California Air Resources Board’s 2015 Consumer and 

Commercial Products Survey (CARB, 2019) was used to derive a composite of product types for ten sub-PUCs (Table S4). These 

product types are then mapped to an associated organic profile (CARB, 2018; see Table S3) and weighted based on their 

evaporative organic contributions to the total sub-PUC. For Architectural Coatings, a 94% water-based and 6% solvent-based paint 175 

(CARB, 2014) composite is generated. Aerosol Coatings are calculated on a weighted basis using the potentially evaporative 

organic contributions reported by CARB’s 2010 Aerosol Coatings Survey (CARB, 2012). The organic composition profiles for 

Industrial Coatings, Printing Inks, and Dry Cleaning all utilize profiles (3149, 2570, 2422, respectively) from EPA’s 

SPECIATEv5.0 database (EPA, 2019b). Approximately 65% of the solvents used in the Oil & Gas sector are alcohols and the 

remainder are a broad range of hydrocarbons (The Freedonia Group, 2016). Since detailed composition data for Oil & Gas solvents 180 

are sparse, all Oil & Gas alcohols are assumed to be methanol, as it is widely used in and emitted from Oil & Gas operations 

(Lyman et al., 2018; Stringfellow et al., 2017; Mansfield et al., 2018). The remaining 35% is allocated to naphtha, a blend of 

hydrocarbon solvents. 

 

Several components within CARB profiles are lumped categories or complex mixtures. This includes naphtha, mineral spirits, 185 

distillates, Stoddard Solvent, fragrances, volatile methyl siloxanes, and a series of architectural coating and consumer product 

“bins.” All naphtha, mineral spirits, distillates, and Stoddard Solvent occurrences in individual profiles are treated as a single 

mineral spirits profile (Carter, 2015). Volatile methyl siloxanes include several compounds (e.g. D4, D5, D6), all of which are 

emitted in varying proportions (Janechek et al., 2017). Here, the lumped volatile methyl siloxane identity is preserved but the 

physiochemical properties of decamethylcyclopentasiloxane is applied to the surrogate. Fragrances are a diverse mixture of organic 190 

compounds that include many terpenes and alkenes (Nazaroff and Weschler, 2004; Sarwar et al., 2004; Singer et al., 2006b). 

However, since the proportion of these constituents are unknown, all fragrances are physically treated as d-limonene since it is the 

most prevalent terpene emitted from fragranced products (Sarwar et al., 2004; Singer et al., 2006b). Finally, for the architectural 

coating and consumer product “bins,” we use the representative chemical compositions derived by Carter, 2015. 
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2.1.4 Controls 195 

There are two methods for controlling organic emissions from VCPs. The first method is through product reformulation, which 

would occur prior to product usage. Strategies that fit this definition include switching from a hydrocarbon solvent-based ingredient 

to one that is water-based, replacing an organic component with a non-organic component, and reformulating a product with lower-

volatility ingredients that are less likely to evaporate (Ozone Transport Commission, 2016). VCP emissions that stem from 

residential, commercial, and institutional settings rely on these pre-use controls to reduce emissions. Regulators often set VOC 200 

content limits for chemical products (e.g. national standards: Section 183(e) of the Clean Air Act; 40 CFR 59), with California 

(e.g. CARB – Title 17 CCR) typically setting some of the most stringent limits in the country (Ozone Transport Commission, 

2016). As the 1st-order and organic composition profiles utilized here are almost exclusively derived from product composition 

data, pre-use controls are implicitly represented. In fact, since the product composition data is from manufacturers and formulators 

in California, where product VOC content limits are typically more stringent than national regulations, applying these profiles 205 

nationally likely results in conservative assumptions. 

 

The second pathway of controlling organic emissions from VCPs is through post-use controls. Strategies that fit this definition 

include add-on controls, manufacturing process modifications, and disposal techniques. Add-on control strategies and 

manufacturing process modifications are limited to industrial and commercial emission sources, such as Industrial Coating (U.S. 210 

EPA, 2007; U.S. EPA, 2008) and Printing Ink (U.S. EPA, 2006a; U.S. EPA, 2006b) facilities. Since adoption of these technologies 

vary widely in space and time, assigning post-use controls via these strategies is not considered here. As several of these industrial 

sources (e.g. coatings, printing inks, dry cleaning) feature controls, as required by Section 112 of the Clean Air Act (40 CFR 63), 

this assumption could lead to localized high bias and will be refined in future work. Here, we only consider post-use controls 

through disposal techniques for the Oil & Gas and Fuels & Lighter sub-PUCs. For Oil & Gas, we assume that the solvents used in 215 

these processes become entrained in the produced water at these sites. Since produced water is largely (~89-98%) reinjected for 

enhanced oil and gas recovery or disposal (Lyman et al., 2018; Liden et al., 2018), we apply a post-use control efficiency of 94% 

(i.e. average of reported reinjection rates) to this sub-PUC. However, it should be noted that reinjection frequency and solvent 

usage can vary regionally. For Fuels & Lighters, we assume 90% of the organics are destroyed through combustion upon use 

(CARB, 2019). 220 

2.1.5 Evaporation Timescale and Use Timescale 

Fate-and-transport in the VCPy framework is a function of the predicted compound specific evaporation timescale and the assigned 

use timescale of each sub-PUC. It should be noted that this methodology explicitly results in the organic speciation of emissions 

differing from the organic composition of products from which they volatilize. For example, the composition of organics within a 

product may differ from the speciation of emitted organics if the product contains low-volatility compounds that do not evaporate 225 

on relevant timescales. 

 

The evaporation timescale is the compound specific (i.e. independent of the sub-PUC of interest), characteristic timescale of 

emission from a surface layer and is calculated using previously published methods (Khare and Gentner, 2018; Weschler and 

Nazaroff, 2008). This timescale is defined as a relationship between the mass of a compound applied and the rate of its emission, 230 

which can be expressed by: 
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𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒 [ℎ𝑟] =  
𝑀𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑅𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
⁄ =

𝐾𝑂𝐴 × 𝑑
𝑣𝑒

⁄    (1) 

 

where KOA is the octanol-air partitioning coefficient of the compound, d [m] is the assumed depth of the applied product layer, and 235 

ve [m/hr] is the mass transfer coefficient of the compound from the surface layer into the bulk air, which is a function of 

aerodynamic and boundary layer resistances. Median values for d [0.1 mm] and ve [30 m/hr] from Khare and Gentner (2018) are 

selected here. It should be noted that ve can vary substantially based on outdoor vs. indoor atmospheric conditions and future work 

will incorporate a two-box model to better account for such differences. A compound’s KOA it is the ratio of an organic chemical’s 

concentration in octanol to the organic chemical’s concentration in air at equilibrium. It is often used to quantify the partitioning 240 

behaviour of an organic compound between air and a matrix. As experimental values of KOA are sparse, modelled estimates from 

the quantitative structure-activity relationship (QSAR) model OPERA (Mansouri et al., 2018) are used here. All physiochemical 

properties, including OPERA results, are retrieved from the U.S. EPA’s CompTox Chemistry Dashboard 

(https://comptox.epa.gov/dashboard; last access: August 31, 2020). 

 245 

Use timescale is the timescale available for a sub-PUC to evaporate and is based on the length of its direct use phase (i.e. the 

elapsed time between application and any explicit removal process). As this value is subjective, broad values are applied to each 

sub-PUC (Table S5). For example, it is assumed that all products used in the bath and shower are quickly sequestered and washed 

down the drain, thus largely unavailable for emission (Shin et al., 2015). As such, Short Use Personal Care Products are assigned 

a “Minutes” use timescale. In contrast, it is also assumed that each person bathes once a day and associated Daily Use Personal 250 

Care Products are therefore assigned a “Days” use timescale.  

 

Emissions are determined by comparing the calculated evaporation timescale for each component with the assigned use timescale 

for the sub-PUC. If the use timescale for the sub-PUC is greater than the evaporation timescale for a compound, the compound is 

emitted. Else, the compound is retained in the product or other condensed phase and permanently sequestered. Overall, organic 255 

emissions (E) for the complete sector are calculated as a summation over all organic compounds, i, and sub-PUCs, j, as follows: 

 

𝐸 = ∑ {
0                                                        𝑖𝑓 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑗 < 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑖

𝑈𝑗 × 𝑓𝐸𝑗
 × 𝑓𝑆𝑖,𝑗

× (1 − 𝑓𝐶𝑗
)       𝑖𝑓 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑗 ≥ 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑖

𝑖,𝑗                                          (2) 

 

where U is the product usage (Table 1), ƒE is the evaporative organic fraction (Table 2), ƒS is the fraction of an organic compound 260 

in the evaporative organics portion of a sub-PUC (Table S4), and ƒC is the fraction of emissions that feature post-use controls on a 

mass basis. Application of Eqn. 2 determines the difference between organic product composition and organic emissions 

speciation. 

2.2 Uncertainty Analysis 

The sensitivity of emission estimates to a variety of input variables are tested through a systematic Monte Carlo analysis. We 265 

perform 10,000 simulations where product usage, evaporative organic proportions, variables associated with the characteristic 

evaporation timescale, the assigned use timescale, and post-use control assumptions are tested, both individually and collectively. 

For product usage, the primary sources of uncertainty are shipment values provided by the ASM, commodity prices, the balance 

of imports (including tourism) and exports, and unused product disposal. The ASM provides standard error estimates for most 
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shipment values and are typically less than 5%. Uncertainty estimates are not provided for commodity prices and national-level 270 

exports generally outweigh traditional imports for most sub-PUCs (~2-15%; U.S. Census Bureau, 2016), but there are also imports 

of personal care products through tourism. Therefore, we assume there is a ±25% uncertainty (95% CI) for all product usage 

estimates. CARB does not provide uncertainty estimates associated with the composition of product types or sales proportions. To 

account for these uncertainties, as well as the uncertainties associated with generating composites, we assume there is a ±25% 

uncertainty (95% CI) for all “Evaporative Organic” (Table 2) proportions. For the characteristic evaporation timescale, there are 275 

several layers of uncertainty. Application patterns vary by product type, which impacts assumptions regarding the depth of the 

chemical layer. In addition, indoor vs. outdoor product use and application of products to variable surface types (e.g. absorbing vs. 

non-absorbing) can impact mass transfer rates. As such, we apply broad uncertainties for variables associated with the characteristic 

evaporation timescale. We assume d (i.e. the depth of the applied chemical layer) is lognormally distributed with a median value 

of 0.1 mm (95% CI ~ [0.01 mm – 1 mm]) and ve (i.e. the mass transfer coefficient) is normally distributed with a mean value of 30 280 

m/hr (95% CI = [10 m/hr – 50 m/hr]). Since use timescales are categorical (e.g. minutes, days, years), we apply uncertainty by 

assuming the 95% CI of the assigned use timescale features a ±1 categorical uncertainty (e.g. mean: minutes; 95% CI = [seconds 

– hours]). Finally, for non-zero, post-use controls, we assume a ±25% uncertainty (95% CI) in the post-use control efficiency. It 

should be noted that additional avenues of uncertainty likely persist but are difficult to quantify and therefore not included here. 

For example, due to the scarcity of large-scale product surveys, many of the 1st-order product composition profiles (e.g. 285 

Architectural Coatings) and organic profiles (e.g. Printing Inks) used in this analysis are more than a decade old. As a result, the 

proportion of organics in these product types and their organic components (i.e. the mean values applied here) may have changed 

in the interim period. Furthermore, the uncertainty associated with the evaporative organic composition of individual product types 

is not known or provided by the source data.  

2.3 Spatial Allocation of National-Level Emissions 290 

Emissions are calculated at the national-level and spatially allocated to the county-level using several proxies. Ten sub-PUCs, 

including all Cleaning Products and Personal Care Products, are allocated using population (Table S6; U.S. Census Bureau, 2020). 

Four sub-PUCs (Industrial Coatings, Allied Paint Products, Printing Inks, Dry Cleaning), all typically industrial in nature, are 

allocated using county-level employment statistics from the U.S. Census Bureau’s County Business Patterns (U.S. Census Bureau, 

2018). The employment mapping scheme for these four sub-PUCs utilize the methods from the 2017 NEI (U.S. EPA, 2020). On 295 

occasion, data in the County Business Patterns (CBP) is withheld due to confidentiality concerns. In those instances, we take the 

mid-point of the range associated with each data suppression flag. For Agricultural Pesticides, emissions are allocated based on 

county-level agricultural pesticide use and again taken from the 2017 NEI (U.S. EPA, 2020). Oil & Gas emissions are allocated 

using oil and gas well counts (U.S. EIA, 2019). 

2.4 Inventory Evaluation 300 

Previously published emission ratios from the Los Angeles basin during the summer of 2010 (de Gouw et al., 2018; de Gouw et 

al., 2017) are used to evaluate the VCPy emissions inventory (Table S7). Emissions ratios are generated by post-processing 

observed concentrations of organic gases, typically normalized to carbon monoxide (CO) or acetylene, to a period of “no 

chemistry” (Borbon et al., 2013; de Gouw et al., 2005; Warneke et al., 2007). As the air parcel is not photochemically aged (i.e. 

“no chemistry”), it is an ideal tool for evaluating an emissions inventory. An important caveat is that this method assumes the 305 

species being used for normalization (e.g. CO) is accurately inventoried and measured.  
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Since the emission ratios are not specific to a sector and represent total emissions, all other sectors must be quantified and speciated. 

For this purpose, all non-VCP anthropogenic emissions from the 2017 NEI (U.S. EPA, 2020) are collected and speciated using 

EPA’s SPECIATEv5.0 database (EPA, 2019b; Table S8). This includes all on road, nonroad, nonpoint, and point sources. All VCP 310 

emission from the 2017 NEI are also collected and speciated for supplementary evaluation. In addition, biogenic emissions of 

ethanol, methanol, and acetone for May and June of 2016, as simulated by the Biogenic Emission Inventory System (Bash et al., 

2016), were included to capture non-anthropogenic sources of these compounds. May and June were selected to coincide with the 

observational sampling months (de Gouw et al., 2018; de Gouw et al., 2017). As the observed emission ratios are specific to the 

Los Angeles basin, we derive all VCPy inventory emission ratios using data for Los Angeles County. Total CO emissions, 315 

including all on-road, non-road, non-point, and point sources, for Los Angeles County in 2017 are ~320 Gg. While the observed 

and VCPy inventory emission ratios are separated by 6-7 years, the ambient non-methane hydrocarbon to CO concentration ratio 

in Los Angeles has been consistent for several decades, indicating changes in emission controls feature similar improvements for 

both pollutants over time (McDonald et al., 2013). In addition, the magnitude of observed emission ratios for a given region do not 

appreciably change over marginal time horizons (Warneke et al., 2007).  320 

2.5 Air Quality Impact Potential 

Each organic compound is assigned a SOA yield and Maximum Incremental Reactivity (MIR) to facilitate an approximation of 

the potential air quality impacts of VCPs. For SOA, a wide collection of published yields, including both chamber results and 

prediction tools, were utilized (Fig. S1). These include: (1) all linear alkanes use a quadratic polynomial fit to the volatility basis 

set (VBS) data from Presto et al., 2010 at 10 µg/m3; (2) all cyclic alkanes use linear alkane yields that are three carbons larger in 325 

size (Tkacik et al., 2012); (3) all branched alkanes use yields obtained from the Statistical Oxidation Model (SOM; Cappa and 

Wilson, 2012), as reported in McDonald et al. (2018); (4) benzene and xylenes use the average yields from Ng et al., 2007 under 

high-NOx conditions; (5) toluene uses the average from Ng et al., 2007 under high-NOx conditions and the VBS data from 

Hildebrant et al., 2009 at 10 µg/m3; (6) all alkenes use yields obtained from SOM, as reported in McDonald et al. (2018); (7) 

volatile methyl siloxanes use the two-product model parameters from Janecheck et al., 2019, which includes additional SOA yields 330 

from Wu and Johnson 2017, at 10 µg/m3; (8) all glycol ethers use chamber results and molecular structure relationships from Li 

and Cocker 2018 for reported and unreported glycol ethers, respectively; (9) benzyl alcohol uses the average of the lower-bound 

yields reported by Charan et al., 2020; (10) all remaining non-cyclic oxygenates, where available, use the arithmetic average of 

SOM results and a 1-D VBS approach, as reported by McDonald et al., 2018; (11) all remaining cyclic oxygenates, where available, 

use yields obtained from SOM, as reported by McDonald et al., 2018; (12) all halocarbons and compounds with less than five 335 

carbons are assigned a yield of zero; and (13) all remaining species are conservatively assigned a yield of zero if the effective 

saturation concentration (i.e. 𝐶∗ =  (𝑃𝑣𝑎𝑝 × 𝑀𝑊) (𝑅 × 𝑇)⁄ ) is ≥ 3 × 106 µ𝑔 𝑚3⁄  and assigned the same yield as n-dodecane if 

the effective saturation concentration is < 3 × 106 µ𝑔 𝑚3⁄ . The MIR of each compound, which measures the formation potential 

of ozone under various atmospheric conditions where ozone is sensitive to changes in organic compounds (Carter, 2010b), is 

calculated using the SAPRC-07 chemical mechanism (Carter, 2010a) and expressed as a mass of additional ozone formed per mass 340 

of organic emitted (Carter, 2010b).  
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3 Results and Discussion 

3.1 National-Level PUC and sub-PUC Emissions 

National-level, per-capita organic emissions from VCPs are 9.5 kg person-1 year-1 (6.4 kgC person-1 year-1) for 2016 (Table 3), 

which translates to 3.05 Tg (2.06 TgC). When filtered to remove regulatory exempt organics, total emissions from VCPs are 2.6 345 

Tg of VOC. In comparison, the 2017 NEI reports a combined total of 2.6 Tg of VOC emissions for on-road mobile, non-road 

mobile, and other mobile (i.e. aircraft, commercial marine vessels, and locomotives) sources, respectively. Therefore, when 

measured as VOC, the VCP sector is equal in magnitude to the sum of all mobile sources nationally, which is broadly consistent 

with the national-level emissions estimate from the 2017 NEI. Categorically, emission factors are largest for Paints & Coatings, 

which total 3.1 kg person-1 year-1 (2.2 kgC person-1 year-1) and are approximately 33% of the total sector (Table 3). The next largest 350 

PUCs are Personal Care Products and Cleaning Products, which contribute 2.1 kg person-1 year-1 (22%) and 2.0 kg person-1 year-1 

(21%), respectively. Printing Inks, Adhesives & Sealants, and Pesticides each account for 6-9% each, and the remaining PUCs 

contribute less than 2% in total.  

 

For the complete sector (Fig. 2), the most abundantly emitted compound classes were oxygenated species (53%), followed by 355 

alkanes (31%; including straight-chained, branched, and cyclic), aromatics (8%), alkenes (5%), and halocarbons (3%). 

Individually, organic emissions are dominated by ethanol (Daily Use Products, General Cleaners), acetone (Paints & Coatings, 

General Cleaners), isopropyl alcohol (Daily Use Products, General Cleaners), toluene (Paints & Coatings, Adhesives & Sealants), 

n-tetradecane (Printing Inks), fragrances (Daily Use Products, General Cleaners), propane (Aerosol Coatings, Industrial Coatings), 

and volatile methyl siloxanes (Daily Use Products, Adhesives & Sealants). Each of these species compose > 3% of total VCP 360 

organic emissions (see Table S9 for the top-200 emitted compounds).  

 

In terms of volatility classification (Donahue et al., 2012), as determined by the effective saturation concentration (i.e. C*), total 

emissions are predominately VOCs ( 𝐶∗ >  3 × 106 µ𝑔 𝑚−3 ), but there are also considerable contributions from IVOCs 

(3 × 102 µ𝑔 𝑚−3 < 𝐶∗ <  3 × 106 µ𝑔 𝑚−3; Fig. 2-3). IVOC emissions, which are efficient SOA precursors (Chan et al., 2009; 365 

Presto et al., 2010), are approximately 20% of total emissions. Of this 20% that are IVOCs, 52% are oxygenated compounds (e.g. 

Texanol™, propylene glycol, ethylene glycol, siloxanes, benzyl alcohol, and glycol ethers), 30% are n-alkanes, and the rest are 

largely branched and cyclic alkanes. The prominence of oxygenated IVOC emissions  from VCPs is noteworthy, as SOA yields 

from these compounds have not historically been evaluated nor included as SOA precursors in model chemical mechanisms (Qin 

et al., 2020). However, work has been undertaken in recent years to better understand these compounds (e.g. Wu and Johnson 370 

2017; Li and Cocker 2018; Janechek et al., 2019; Charan et al., 2020). Overall, Paints & Coatings is the largest source of IVOC 

emissions (~760 g person-1 year-1; Fig. 3), followed by Printing Inks (~350 g person-1 year-1), Cleaning Products (~180 g person-1 

year-1), and Pesticides (~170 g person-1 year-1). While Paints & Coatings emit more IVOCs by mass than all other PUCs, Printing 

Ink and Pesticide emissions both feature greater proportions of IVOCs to their total emissions (~44% and ~28%, respectively).  

 375 

These results also highlight how emissions from each PUC and sub-PUC are uniquely driven by mass of products used, organic 

composition, and use timescale. For example, the two largest sub-PUC sources are Daily Use Products and General Cleaners. Both 

are assigned a use timescale of 24-hr, but 40.6% of Daily Use Products are organic while General Cleaners are overwhelming 

composed of water (Table 2) and the annual mass usage of General Cleaners is ~3x higher than Daily Use Products (Table 1). As 

a result, net emissions of General Cleaners are within 10% of those from Daily Use Products (1.85 kg person-1 year-1 and 2.04 kg 380 
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person-1 year-1, respectively). The emissions of Short Use Products, which is assigned a “Minutes” use timescale, can further 

illustrate the importance of considering fate-and-transport. Under these use timescale assumptions, only high volatility compounds 

(i.e. 𝐶∗ >  3 × 107 µ𝑔 𝑚3⁄ ) are emitted and a majority (~97%) of its organics are retained (Table 3). Besides Daily Use Products 

and General Cleaners, all remaining sub-PUCs emit ≤ 1.14 kg person-1 year-1, with six emitting less than 0.1 kg person-1 year-1 

(Table 3). Generally, sub-PUCs with low emissions stem from minimal use (e.g. Misc. Products), short use timescales (e.g. Short 385 

Use Products), or high control assumptions (e.g. Oil & Gas, Fuels & Lighter). 

3.2 Uncertainty Analysis of National-Level Emission Factors 

Uncertainty associated with product usage, proportion of evaporative organics, assumptions related to evaporation and use 

timescale, and post-use controls, where applicable, result in a total sector-wide emission uncertainty of ±15% (Fig. 4; 9.5 kg person-

1 year-1 [95% CI: 8.1 – 10.9]). Interestingly, the interaction of evaporation and use timescales can result in a threshold effect, where 390 

small changes in either do not necessarily translate into changes in the magnitude of emissions for a given sub-PUC (Fig. S2). For 

many PUCs, such as Paints & Coatings, Adhesives & Sealants, and Printing Inks, the use timescale is sufficiently long (i.e. years) 

for all evaporative organics to evaporate, regardless of the uncertainty associated with the evaporation and use timescales. Under 

such conditions, only uncertainty in product usage and product composition affect uncertainty in the emission magnitude. As a 

result, these two variables are the largest drivers of uncertainty for the complete sector (Fig. S2). However, uncertainties associated 395 

with evaporation and use timescale assumptions can be important for certain sub-PUCs with moderate to low use timescales (see 

Cleaning Products in Fig. S2). For example, Detergents & Soaps is assigned a “Minutes” use timescale, which results in a 0.12 kg 

person-1 year-1 emission factor (Table 3). If the use timescale for this sub-PUC was changed ”Hours,” the emission factor would 

increase by a factor of 5.  

 400 

From a national emissions perspective, these Monte Carlo results contain several important results. First, as mentioned above, the 

largest drivers of uncertainty are associated with a sub-PUC’s usage and composition, not assumptions related to fate-and-transport 

(i.e. evaporation and use timescales). Second, the most uncertain PUCs are Cleaning Products, Personal Care Products, and Paints 

& Coatings, and their uncertainty generates a significant amount of emissions potential. The 95% confidence interval for all three 

span > 1.24 kg person-1 year-1, which is equivalent to > 400 Gg of organic emissions per year. Finally, the 95% confidence interval 405 

for the national-level emissions from the complete sector for 2016 is 2.6 – 3.5 Tg (1.8 – 2.4 TgC), which is broadly consistent with 

the US EPA’s 2017 NEI (2.8 Tg) and, largely due to differences in predicted evaporation, approximately half the emissions 

magnitude reported elsewhere (McDonald et al., 2018). 

3.3 State- and County-Level Emissions Allocation 

The magnitude of VCP emissions varies substantially throughout the country, with the most populated states and counties featuring 410 

the highest ROC emissions (Fig. 5). California (349 Gg), Texas (247 Gg), and Florida (173 Gg) are the largest state-level emitters 

and contribute ~25% of all VCP emissions. In contrast, the 30 smallest state-level emitters (plus Washington, DC) together emit 

~780 Gg. At the county-level, Los Angeles County, Cook County (Chicago), and Harris County (Houston) are the largest emitters. 

However, after normalizing by population, these three counties all feature per-capita emissions (8.21, 8.88, and 8.76 kg person-1 

year-1, respectively) less than the national average (9.45 kg person-1 year-1) due to less industrial activity.  415 

 

National spatial variability in per-capita emissions are largely driven by sub-PUCs tied to industrial and commercial activity (Fig. 

5c). These sub-PUCs include Allied Paint Products (1.14 kg person-1 year-1), Industrial Coatings (1.04 kg person-1 year-1), Printing 
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Inks (0.80 kg person-1 year-1), Agricultural Pesticides (0.53 kg person-1 year-1), and Oil & Gas (0.08 kg person-1 year-1). The 

employment proxies for Allied Paint Products, Industrial Coatings, and Printing Inks are usually consistent with the underlying 420 

population (Fig. S3), with peaks in California, Texas, Florida, New York, and the industrial Midwest. In contrast, emissions from 

Agricultural Pesticides and Oil & Gas drive the large per-capita emissions in the Midwest and Great Plains (Fig. 5c). Emissions 

from these two sub-PUCs are heavily concentrated in the central United States (Fig. S3), including North Dakota, South Dakota, 

Iowa, Nebraska, Kansas, and Oklahoma. Collectively, these States contain < 4.5 % of the United States population but 24.1% and 

17.5% of the Agricultural Pesticides and Oil & Gas VCP emissions, respectively. Both sub-PUCs also contribute to atypically high 425 

per-capita emissions in other States, such as Texas, Colorado, Idaho, and Wyoming. 

 

While national VCP emissions from the 2017 NEI and the VCPy inventory are broadly consistent, county-level and categorical 

estimates can differ substantially between the two (Fig. S4). For example, VCPy reports > 35% lower emissions for 5% of all 

counties and > 55% higher emissions for another 5% of all counties. When compared to the 2017 NEI, the States with the greatest 430 

emissions increases were Delaware, California, and Colorado, and the States with the greatest emissions decreases were North 

Dakota and South Dakota. There are also many spatial similarities between the two inventories. Both feature peaks in per-capita 

emissions over the Midwest and Great Plains (Fig. S4) and approximately half of all county-level emissions in the VCPy inventory 

are within 15% of their value in the 2017 NEI. To compare the two inventories categorically, all product use categories are mapped 

to individual Source Classification Codes (SCCs; Table S11). Categorically, VCPy reports higher emissions for Personal Care 435 

Products (150%) and Paints & Coatings (25%), whereas Pesticides (-54%) and Printing Inks (-13%) feature emission decreases. 

The VCPy inventory also includes marginal increases in Cleaning Products and Adhesives & Sealants emissions, while also 

quantifying solvent-borne emissions in Oil & Gas operations (included as “Other” in Fig. S5).  

3.4 Evaluation of Inventory Using Emission Ratios 

Predicted per-capita VCP emissions in Los Angeles County are 8.21 kg person-1 year-1 and consist of 250+ organic compounds. 440 

Observed emission ratios were available for 30 species (Table S7), including some of the most abundantly emitted (e.g. ethanol, 

acetone, isopropyl alcohol, toluene). In fact, of the 30 available emission ratios, 24 were for compounds that contributed more than 

0.1% to total VCP emissions (Fig. 6), providing the opportunity to evaluate important markers. For most compounds, the VCPy 

estimate was well within a factor of 2 when compared to observations. Some important markers were marginally low biased (e.g. 

ethanol, isopropyl alcohol), while others were marginally high biased (e.g. acetone, methyl ethyl ketone, isobutane), illustrating 445 

the difficulty in precisely speciating organic emissions and uncertainties introduced by compositing. However, when considered 

as a whole, the complete VCPy inventory performs remarkably well with a correlation of 0.95. In total, the observed emission ratio 

for all 30 compounds was 0.259 g (g CO)-1 and the inventory estimate is 0.226 g (g CO)-1, indicating a 13% low bias. In addition, 

the VCPy inventory shows a marked improvement over the 2017 NEI, which reports 3.28 kg person-1 year-1 of VCP emissions in 

Los Angeles County. For the 30 compounds considered here, the 2017 NEI reports 0.143 g (g CO)-1, which is 45% lower than 450 

observations (Fig. S6). Most notably, the emissions ratio of ethanol, acetone, isopropyl alcohol, and propane, all of which are 

emitted by VCPs in substantial quantities, were low by a factor of 2-3.  

 

While the residual, 13% low bias could suggest that additional organic emissions might be missing from the VCPy inventory, 

several other factors could explain discrepancies. First, emission ratios are equally sensitive to both organic and CO emissions. 455 

While CO appears to be represented and modelled well in current inventories (Lu et al., 2020), a marginal, systematic bias in CO 

can affect the results presented here. For example, if the CO inventory were systematically high bias by 10%, the bias in the VCPy 
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inventory emission ratios would be nearly eliminated. Second, since emission ratios are not sector-specific but reflect total 

emissions, missing organic emissions might be from other sources. Mobile sources, especially gasoline exhaust, is rich in small (≤ 

C6) hydrocarbons, including ethene, n-butane, n-pentane, isopentane, methylpentanes, propene, and methylhexanes (Gentner et al., 460 

2013). Except for n-butane, none of the remaining compounds appreciably come from VCP sources and all are low biased in the 

complete inventory (Fig. S6). Finally, while the ambient NMVOC to CO concentration ratio in Los Angeles has been consistent 

for several decades (McDonald et al., 2013), it is possible that trends for these two pollutants could have diverged in recent years.  

3.5 Effective SOA Yields, O3 MIR, and Air Pollution Potential 

Nationally, the effective SOA yield of the complete sector is 5.3% by mass (Table 4) and the most abundantly emitted SOA 465 

precursors are IVOC alkanes, aromatics, volatile methyl siloxanes, and fragrances. On a sub-PUC basis, the effective yield spans 

more than two-orders of magnitude, with Short Use Products and Printing Inks featuring an effective yield of 0.05% and 14.8%, 

respectively. For O3, the effective MIR of the complete sector is 1.6 (g O3) g-1 and, when compared to SOA yields, there is 

considerably less sub-PUC variability. While VCPs do emit aromatics and alkenes, both of which are photochemically reactive 

compound classes with high ozone potential, emissions are usually dominated by oxygenated compounds and alkanes, such as 470 

acetone, isopropyl alcohol, propane, and isobutane, which are minimally reactive. In fact, of the top fifteen highest emitting VCP 

compounds, seven feature a MIR < 1.0 (g O3) g-1. 

 

While a sub-PUC may be a large source of organic emissions, this does not necessarily translate to a high potential impact on PM2.5 

and ozone. This is best highlighted by Industrial and Architectural Coatings. Together, these two sub-PUCs constitute ~20% of all 475 

VCP emissions (Table 3), but only ~10% of the total SOA potential due to their low effective yields (2.9% and 1.9%, respectively). 

Architectural Coatings emissions feature significant quantities of Texanol™ (a highly branched oxygenate) and small glycols, such 

as propylene and ethylene glycol. A < 1% and 0% SOA yield is assigned to Texanol™ and both glycols, respectively. Though, it 

should be noted that this may be a lower bound as Li et al., 2018 report moderate aerosol formation from propylene glycol. 

Similarly, Printing Inks contribute ~8% of all VCP emissions, which is nearly 2.5x less than Daily Use Products and General 480 

Cleaners nationally (Table 3). However, Printing Ink emissions are dominated by IVOC alkanes (C12-C16 hydrocarbons, 

represented by n-tetradecane here) and aromatics, resulting in a high effective SOA yield (14.8%). As a result, Printing Inks 

contribute significantly to the total SOA potential nationally (Fig. 7). Paints & Coatings are nonetheless the dominant contributor 

to SOA potential, but this is more so due to the high emissions of the component sub-PUCs rather than their modest effective SOA 

yields (1.9 – 6.6%). Both General Cleaners and Daily Use Products also have moderate quantities of SOA precursors and high 485 

emissions, which translates to 17.5% and 13.3% of the national VCP SOA potential, respectively. Since the effective MIR of each 

sub-PUC is not highly variable, O3 potential is highly correlated with emissions magnitude. Overall, the three highest emitting 

PUC, Paints & Coatings, Cleaning Products, and Personal Care Products, are also the highest contributors to O3 potential (Fig. 7). 

 

These results also demonstrate how fate-and-transport assumptions can impact estimates of SOA production. For example, a prior 490 

study reported that both laundry detergent and a general-purpose spray cleaner can form appreciable quantities of SOA (Li et al., 

2018). Here, the VCPy inventory reports an effective yield of 0.0% by mass of organic emitted for Detergents & Soaps and 4.7% 

for General Cleaners (Table 4). While the organic content of both sub-PUCs, by mass, is ≥ 18% (Table 2), Detergents & Soaps 

feature a dramatically smaller use timescale (Minutes vs. Days). As a result, not only is the total mass of organic emissions from 

Detergents & Soaps smaller than General Cleaners, but the collection of compounds that are emitted feature systematically smaller 495 

evaporation timescales. Such compounds are highly volatile (i.e. 𝐶∗ >  1 × 108 µ𝑔 𝑚−3) and not SOA precursors. In contrast, 
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General Cleaners are assigned a longer use timescale, which provides time for lower volatility organics (i.e. IVOCs) to evaporate 

and subsequently contribute to the formation of SOA.  

3.6 Non-Evaporative Organic Assumptions 

The composition and volatility distribution of the organics assumed to be non-evaporative, which is ~60% of all organics (Fig. 500 

S8), is unidentified and assumed to be entirely non-volatile for the main analysis. However, there is evidence that a non-negligible 

portion of this mass may be SVOCs (0.3 µ𝑔 𝑚−3 < 𝐶∗ <  300 µ𝑔 𝑚−3 ), which can evaporate on atmospherically relevant 

timescales (Khare and Gentner, 2018). SHEDS-HT, a near-field model used to prioritize human exposure to chemicals (Isaacs et 

al., 2014), reports that > 15%, > 5%, and > 2% of all organics found in residential personal care product, household product, and 

coatings, respectively, are composed of SVOCs (Qin et al., 2020). The treatment of non-evaporative organics and their potential 505 

emission can have a substantial impact on the modulation of SOA potential from VCPs. For example, if the assumption regarding 

evaporation of these organics is relaxed by assuming 1% of all non-evaporative organics eventually do evaporate, sector-wide 

emissions would increase by 0.18 kg person-1 year-1 (i.e. < 2% of the VCP emissions). Such a scenario is possible for products 

featuring long use timescales (e.g. paints, pesticides), if SVOCs are considered non-evaporative, or if products featuring shorter 

use timescales (e.g. Daily Use Products, Cleaning Products) are not fully sequestered. Since this increase in emissions is minor 510 

(i.e. < 2%), there would be negligible impacts on the total emission magnitude and O3. However, these compounds, by definition, 

feature low vapor pressures, which makes them prime SOA precursor candidates. If these compounds were permitted to form SOA 

with 100% efficiency, the effective yield from the complete sector would increase from 5.3% to 7.0% by mass (Fig. S8). 

Correspondingly, if 2% of all non-evaporative organics were assumed to evaporate with similar SOA formation assumptions, the 

effective yield from the complete sector would increase to 8.7% by mass.  515 

4 Additional Uncertainties 

The current VCPy framework assumes all evaporated organics reach the ambient atmosphere, regardless of origin. However, VCP 

emissions occur both indoors and outdoors (Farmer et al., 2019; Nazaroff and Weschler, 2004; Singer et al., 2006a). In fact, the 

indoor concentration of prevalent VCP markers and secondary pollutants often exceeds outdoor concentrations (Farmer et al., 

2019; Patel et al., 2020). For ambient air emissions, consideration of VCP emissions indoors is important if there is a gas-phase 520 

loss mechanism occurring at a scale that is comparable to typical indoor air exchange rates (~0.5 hr-1; Murray and Burmaster, 

1995). Indeed, sorption of gas-phase organics (e.g. terpenes) into typical residential furnishing and dust has been shown to occur 

on relevant timescales (Singer et al., 2007; Singer et al., 2004; Weschler and Nazaroff, 2008). Organics emitted indoors can also 

react with oxidants, leading to the formation of lower-volatility organics that can form particulates (Nazaroff and Weschler, 2004; 

Singer et al., 2006b). These particulates can deposit before outdoor exhaust occurs due to the high surface-to-volume ratio of indoor 525 

settings (Abbatt and Wang, 2020; Farmer et al., 2019). Planned future VCPy functionality includes the incorporation of a two-box 

model to capture these possible termination mechanisms and distinguish between near-field and far-field exposure pathways. 

 

In addition, the efficiency of post-use controls for several sub-PUCs can be highly uncertain and vary both in space and time. In 

particular, this includes Oil & Gas, which is assigned a post-use control based on average reported reinjection rates of produced 530 

water (Liden et al., 2018; Lyman et al., 2018), as well as Industrial Coatings and Printing Inks, which occur at facilities capable of 

add-on controls (U.S. Environmental Protection Agency, 2006a; 2006b; 2007; 2008). Here, post-use controls are not assigned for 

Industrial Coatings or Printing Inks. As such, emissions from these sub-PUCs could feature localized high bias, depending on 
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regional control requirements for facilities that use associated products. Similarly, the spatial allocation of nonpoint emissions 

features unique difficulties. For example, even if the allocation of nonpoint emissions was precisely matched to a quantifiable 535 

proxy, variation in the emission strength of individuals within that proxy (e.g. humans or employees) is often neglected (Li et al., 

2020). 

5 Conclusions 

VCPy is a new framework to model organic emissions from volatile chemical products throughout the United States, including 

spatial allocation to regional and local scales. In VCPy, product volatilization is a function of the characteristic evaporation 540 

timescale of individual components and the use timescale for product-use categories. National, per-capita organic emissions from 

VCPs are 9.5 kg person-1 year-1 (6.4 kgC person-1 year-1) for 2016, which translates to 3.05 Tg (2.06 TgC) for the U.S. Paints & 

Coatings, Personal Care Products, and Cleaning Products contribute most to these emissions. When filtered to remove regulatory 

exempt organics, total emissions from VCPs are 2.6 Tg of VOC and equal in magnitude to the sum of all mobile sources nationally, 

thus highlighting the growing importance of the VCP sector. Organic emissions featured substantial (~20%) contributions from 545 

IVOCs, which are likely SOA precursors. Of this 20%, 52% are oxygenated compounds, 30% are n-alkanes, and the rest are largely 

branched and cyclic alkanes. Nationally, the effective SOA yield and O3 MIR, two metrics that facilitate an approximation of the 

potential air quality impacts, of VCPs is 5.3% by mass and 1.58 (g O3) g-1, respectively. This effective SOA yield indicates VCPs 

are likely a significant source of SOA in urban environments (Qin et al., 2020).  

 550 

Uncertainty associated with this framework was tested through Monte Carlo analysis. Notably, the dominant drivers of uncertainty 

were associated with estimated product usage and the composition of products, and not assumptions related to fate-and-transport. 

SOA formation from VCP emissions is especially sensitive to assumptions regarding evaporation of low volatility species. If 1% 

of all non-evaporative organics eventually do evaporate, sector-wide emissions would increase by 0.18 kg person-1 year-1 and the 

effective SOA yield from the complete sector could increase by > 1.5%. The 95% confidence interval for the national-level 555 

emissions from the complete sector for 2016 is 2.61 – 3.53 Tg (1.76 – 2.38 TgC). This is broadly consistent with the 2017 National 

Emission Inventory (2.84 Tg) and half the emissions magnitude reported elsewhere (McDonald et al., 2018).  

 

While the national-level emissions from the VCPy framework and the 2017 NEI are comparable, regional and localized differences 

can be significant. This is most clear when evaluating the VCPy inventory to published emission ratios. For Los Angeles County, 560 

the VCPy inventory performs well (normalized mean bias of -13% with r = 0.95) and is significantly improved over the reported 

2017 NEI VCP emissions. Planned future work includes adoption of variable emission settings (indoor vs. outdoor) to account for 

loss mechanisms indoors (e.g. gas-phase sorption to surfaces), revisited mapping of VCP emissions to common chemical 

mechanisms for ease of research use in the chemical transport modelling community, estimation of SOA and ozone formation from 

VCPs using a chemical transport model and VCPy emissions inputs, and understanding the evolution of VCP emissions over time. 565 
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Table 1: Description of all PUCs and sub-PUCs currently implemented in VCPy, their estimated mass usage for 2016, and product 855 
examples of each. See Table S2 for a derivation of all product usage estimates. 

Product Use 

Categories 

(PUCs) 

Sub-Product Use 

Categories  

(sub-PUCs) 

2016 Annual Usage 

[kg person-1 year-1] 
Product Examples 

Cleaning 

Products 

Detergents & Soaps 40.58 Soaps, Detergents, Metal Cleaners, Scouring Cleaners 

General Cleaners 28.47 

Disinfectants, Air Fresheners, Glass & Bathroom Cleaners, 

Windshield Washer Fluid, Hand Sanitizer, Automotive & Floor 

Polishes, Bleaches, Surfactants 

Personal Care 

Products 

Daily Use Products 8.83 

Hair Products, Perfumes, Colognes, Cleansing & Moisturizing 

Creams, Sunscreens, Hand & Body Lotion and Oils, Cosmetics, 

Deodorants 

Short Use Products 3.16 
Shampoo, Conditioners, Shaving Cream, Aftershave, 

Mouthwashes, Toothpaste 

Adhesives & 

Sealants 
Adhesives & Sealants 15.23 

Glues and Adhesives, Epoxy Adhesives, Other Adhesives, 

Structural and Nonstructural Caulking Compounds and Sealants 

Paints & 

Coatings 

Architectural Coatings 13.27 Exterior/Interior Flat/Gloss Paints, Primers, Sealers, Lacquers 

Aerosol Coatings 0.39 Paint Concentrates Produced for Aerosol Containers 

Allied Paint Products 1.26 Thinners, Strippers, Cleaners, Paint/Varnish Removers 

Industrial Coatings 7.42 
Automotive, Appliance, Furniture, Paper, Electrical Insulating, 

Marine, Maintenance, and Traffic Marking Finishes and Paints 

Printing Inks Printing Inks 3.20 
Letterpress, Lithographic, Gravure, Flexographic, 

Nonimpact/Digital Inks 

Pesticides & 

FIFRA Products 

FIFRA Pesticides  1.46 
Lawn and Garden Pesticides and Chemicals, Household and 

Institutional Pesticides and Chemicals 

Agricultural Pesticides 10.32 
Agricultural and Commercial Pesticides & Other Organic 

Chemicals 

Dry Cleaning Dry Cleaning 0.03 Dry Cleaning Fluids 

Oil & Gas Oil & Gas 1.32 Cleaners, Deicers 

Misc. Products Misc. Products 0.18 Pens, Markers, Arts and Crafts, Dyes 

Fuels & Lighter  Fuels & Lighter 2.80 Lighter Fluid, Fire Starter, Other Fuels 

  



24 

 

Table 2: 1st-Order product composition profiles and evaporative organics proportion for all sub-PUCs. 

Product Use Categories 

(PUCs) 

Sub-Product Use 

Categories (sub-PUCs) 
Water Inorganic 

Non-Evaporative 

Organicsa 

Evaporative 

Organicsa 

Cleaning Products 
Detergents & Soapsb 67.8% 13.9% 15.4% 2.9% 

General Cleanersb 73.3% 8.6% 11.1% 6.9% 

Personal Care Products 
Daily Use Productsb 48.8% 10.7% 16.9% 23.7% 

Short Use Productsb 72.2% 5.8% 17.7% 4.3% 

Adhesives & Sealants Adhesives & Sealantsb 12.8% 53.2% 29.0% 5.0% 

Paints & Coatings 

Architectural Coatingsc 45.5% 49.6% 0.0% 5.0% 

Aerosol Coatingsd 12.7% 12.7% 0.0% 74.7% 

Allied Paint Productsb 5.1% 3.5% 0.6% 90.8% 
Industrial Coatingse 15.0% 70.0% 0.0% 14.0% 

Printing Inks Printing Inksf 8.0% 67.0% 0.0% 25.0% 

Pesticides & FIFRA 

Products 

FIFRA Pesticidesb 74.8% 4.9% 15.1% 5.1% 

Agricultural Pesticidesb 74.8% 4.9% 15.1% 5.1% 

Dry Cleaning Dry Cleaningg 0.0% 0.0% 0.0% 100% 

Oil & Gas Oil & Gasg 0.0% 0.0% 0.0% 100% 

Misc. Products Misc. Productsb 27.1% 14.6% 48.8% 9.5% 

Fuels & Lighter Fuels & Lighterb 0.0% 92.9% 0.0% 7.1% 
a: “Non-Evaporative Organics” and “Evaporative Organics” sum to total product organics. “Evaporative Organics” represent the 

potentially evaporative organic fraction of the total product and excludes assumed “non-evaporative” (i.e. assumed non-volatile) 860 
organics, which are not included in the California Air Resource Board’s organic profiles. 

b: Source: California Air Resources Board 2015 Consumer and Commercial Products Survey Data (CARB, 2019). 
c: Source: California Air Resources Board 2005 Architectural Coatings Survey (CARB, 2007). VOC + Exempts is used for both 

organic and evaporative organics. Non-evaporative organic proportions not provided. Sales proportions of water vs. solvent-based 

architectural coatings based on California Air Resource Board 2014 Architectural Coatings Survey (CARB 2014). 865 
d: Source: California Air Resources Board 2010 Aerosol Coatings Survey (CARB, 2012). Only evaporative organics is provided. 

Remainder (~25%) is split evenly between water and inorganics. 
e: Source: Industrial Maintenance composition data from California Air Resources Board 2005 Architectural Coatings Survey (CARB, 

2007). 
f: Source: Graphic Arts composition data from California Air Resources Board 2005 Architectural Coatings Survey (CARB, 2007). 870 
g: All product usage is composed of organic functional solvents (The Freedonia Group, 2016). Therefore, all mass is assumed to be 

potentially evaporative.  
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Table 3: National-level emissions, volatilization fraction, and proportion of all usage that is emitted for all sub-PUCs. 

Product Use 

Categories (PUCs) 

Sub-Product Use 

Categories 

(sub-PUCs) 

ROC Emissions Organic 

Volatilization 

Fraction 

[%]a 

Total 

Product 

Emitted 

[%] 
[kg person-1 year-1] [kgC person-1 year-1] 

Cleaning Products 
Detergents & Soaps 0.12 0.06 1.6% 0.3% 

General Cleaners 1.85 1.25 36.0% 6.5% 

Personal Care 

Products 

Daily Use Products 2.04 1.12 56.9% 23.1% 

Short Use Products 0.02 0.01 3.3% 0.7% 

Adhesives & Sealants Adhesives & Sealants 0.76 0.56 14.7% 5.0% 

Paints & Coatings 

Architectural Coatings 0.67 0.37 100%b 5.0% 

Aerosol Coatings 0.29 0.22 100%b 74.7% 

Allied Paint Products 1.14 0.80 99.2% 90.6% 

Industrial Coatings 1.04 0.79 100%b 14.0% 

Printing Inks Printing Inks 0.80 0.65 100%b 25.0% 

Pesticides & FIFRA 

Products 

FIFRA Pesticides 0.07 0.06 25.2% 5.1% 

Agricultural Pesticides 0.53 0.41 25.2% 5.1% 

Dry Cleaning Dry Cleaning 0.01 0.01 34.5% 34.5% 

Oil & Gas Oil & Gas 0.08 0.04 6.0% 6.0% 

Misc. Products Misc. Products 0.02 0.01 16.3% 9.5% 

Fuels & Lighter Fuels & Lighter 0.02 0.02 10.0% 0.7% 

Total 9.45 6.38 31.5% 6.9% 
a: Volatilization fraction represents the fraction of the total organic content of products that volatilize/emit to ambient air.  
b: The “Organic” portion of these sub-PUCs is entirely composed of “Evaporative Organics” (see Table 2). Only data from the California 875 
Air Resources Board’s 2015 Consumer and Commercial Products Survey featured the disaggregation of evaporative and non-

evaporative organics. Prior surveys typically combined the non-evaporative organic portion of each profile with solids/inorganics.  
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Table 4: The national effective SOA yield and MIR for all sub-PUCs. These results are plotted in Fig. S7. 

Product Use Categories 

(PUCs) 

Sub-Product Use 

Categories 

(sub-PUCs) 

Effective 

SOA Yield 

[%] 

Effective MIR 

[(g O3) g-1] 

Cleaning Products 
Detergents & Soaps 0.00 1.48 

General Cleaners 4.74 1.88 

Personal Care Products 
Daily Use Products 3.26 1.38 

Short Use Products 0.05 1.27 

Adhesives & Sealants Adhesives & Sealants 6.19 1.51 

Paints & Coatings 

Architectural Coatings 1.92 1.92 

Aerosol Coatings 3.26 1.66 

Allied Paint Products 6.56 1.27 

Industrial Coatings 2.94 1.71 

Printing Inks Printing Inks 14.81 1.93 

Pesticides & FIFRA 

Products 

FIFRA Pesticides 8.10 1.01 

Agricultural Pesticides 8.10 1.01 

Dry Cleaning Dry Cleaning 3.47 1.13 

Oil & Gas Oil & Gas 2.21 1.03 

Misc. Products Misc. Products 1.94 2.26 

Fuels & Lighter Fuels & Lighter 5.35 1.15 

Total 5.29 1.58 

  880 
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Figure 1: Conceptual overview of the VCPy framework. Note: PUC = Product Use Category.  
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Figure 2: Sector-wide volatility distribution of emissions by compound class.  885 
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Figure 3: PUC and sector-wide volatility distribution of organic emissions. Other is summation of Dry Cleaning, Oil & Gas, Misc. 

Products, and Fuels & Lighter. Pie charts are 1st-order product composition and organic emission proportions for PUCs and the complete 

sector. Note: The “Organic” portion of all Paints & Coatings and Printing Inks pie charts is entirely composed of “Evaporative Organics” 

(see Table 2).   890 
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Figure 4: Monte Carlo sensitivity results for organic emissions. (a) Mean, interquartile range, and 95% confidence intervals for six PUCs 

and a combination of the remaining four (Dry Cleaning, Oil & Gas, Misc. Products, and Fuels & Lighter). (b) Probability distribution 

of sector-wide emission estimates. See Table S10 for a tabulation of this figure.  
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 895 
Figure 5: (a) State-level, (b) County-level, and (c) County-level per-capita VCP emissions.  
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Figure 6: Evaluation of organic emission ratios in Los Angeles County using observed emission ratios from summer 2010. VCPy 

inventory ratios utilize VCPy predicted emissions for VCPs and the 2017 NEI for all other sources. The scatter point colors represent 

the relative abundance of each compound (represented as “X” in the figure legend) in the complete VCP sector. For example, all green 900 
points represent compounds that are > 1% of the total VCP emissions in Los Angeles County. Black line – 1:1; Dark grey shading – 2:1; 

Light grey shading – 5:1. Values available in Table S7.  
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Figure 7: National-level emissions, SOA potential, and O3 potential by PUC. Other is summation of Dry Cleaning, Oil & Gas, Misc. 

Products, and Fuels & Lighter. 905 


