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Abstract. Increase of the spectral width of initially monodisperse population of cloud droplets in 

homogeneous isotropic turbulence is investigated by applying a finite-difference fluid flow 

model combined with either Eulerian bin microphysics or Lagrangian particle-based scheme. 

The turbulence is forced applying a variant of the so-called linear forcing method that maintains 15 

the mean turbulent kinetic energy (TKE) and the TKE partitioning between velocity components. 

The latter is important for maintaining the quasi-steady forcing of the supersaturation 

fluctuations that drive the increase of the spectral width. We apply a large computational domain, 

643 m3, one of the domains considered in Thomas et al. (2020). The simulations apply 1 m grid 

length and are in the spirit of the implicit large eddy simulation (ILES), that is, with small-scale 20 

dissipation provided by the model numerics. This is in contrast to the scaled-up direct numerical 

simulation (DNS) applied in Thomas et al. (2020). Two TKE intensities and three different 

droplet concentrations are considered. Analytic solutions derived in Sardina et al. (2015), valid 

for the case when the turbulence integral time scale is much larger than the droplet phase 

relaxation time scale, are used to guide the comparison between the two microphysics simulation 25 

techniques. The Lagrangian approach reproduces the scalings relatively well. Representing the 

spectral width increase in time is more challenging for the bin microphysics because 

appropriately high resolution in the bin space is needed. The bin width of 0.5 μm is only 

sufficient for the lowest droplet concentration, 26 cm-3. For the highest droplet concentration, 

650 cm-3, an order of magnitude smaller bin size is barely sufficient. The scalings are not 30 

expected to be valid for the lowest droplet concentration and the high TKE case, and the two 
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microphysics schemes represent similar departures. Finally, because the fluid flow is the same 

for all simulations featuring either low or high TKE, one can compare point-by-point simulation 

results. Such a comparison shows very close temperature and water vapor point-by-point values 

across the computational domain, and larger differences between simulated mean droplet radii 35 

and spectral width. The latter are explained by fundamental differences in the two simulation 

methodologies, numerical diffusion in the Eulerian bin approach and relatively small number of 

Lagrangian particles that are used in the particle-based microphysics. 

 

 40 

1 Introduction 

 

Cloud droplet spectra in natural ice-free clouds significantly affect such key processes as 

drizzle/rain formation and transfer of solar radiation through the cloudy atmosphere. At the same 

time, modeling of droplet spectra is cumbersome and thus simplified approaches are often used, 45 

such as the bulk microphysics where the shape of the droplet spectrum is prescribed or not 

considered at all. When simulation of the droplet spectral shape is required, there are two basic 

modeling methodologies that can be used. The first one is a traditional bin approach where the 

Eulerian continuous in space and time spectral density function is used. In its numerical 

implementation, the spectral density function is represented by a finite number of radius (or 50 

mass) bins. Each bin is advected in the physical space and all bins are combined at model grid 

locations to calculate the change of the spectral density function due to droplet growth. The bin 

microphysics is a well-established approach to modeling droplet spectral evolution, see Khain et 

al. (2015) and references therein. The second approach represents the multiphase nature of real 

clouds by applying Lagrangian point particles. Each particle represents an ensemble of natural 55 

droplets with the same properties, it is advected by the simulated air flow, and it grows in 

response to local conditions. The Lagrangian approach, often referred to as the super-droplet 

method (Shima et al., 2009), is a relatively novel modeling technique that gains popularity in 

cloud modeling because of its fidelity, especially for the simulation of aerosol-cloud interactions 

(e.g., Andrejczuk et al., 2008; Shima et al., 2009; Riechelmann et al., 2012; Arabas and Shima, 60 

2013; Unterstrasser et al., 2017; Hoffmann et al., 2019; Dziekan et al., 2019; see also Grabowski 
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et al., 2019). The Lagrangian approach is referred to as the “swarm model” in the astrophysical 

context (see Li et al., 2017 and references therein). 

 

The two methodologies have their inherent limitations. The bin microphysics is affected by the 65 

numerical diffusion as any Eulerian approach. Advection of bins in the physical space typically 

leads to unavoidable numerical spreading of regions with rapid droplet spectral changes, for 

instance, near cloud edges. The diffusional growth of cloud droplets is represented by the 

advection of the spectral density function in the radius (or mass) space and it is impacted by 

numerical aspects similar to the advection in the physical space (e.g., section 3.1 in Li et al., 70 

2017). The combined effect of the advection in the physical space and advection in the radius 

space is argued by Morrison et al. (2018) to result in artificial broadening of the droplet spectra 

in cloud simulations applying bin microphysics. For the Lagrangian microphysics, an obvious 

limitation is the limited and usually small number of Lagrangian particles that can be afforded in 

realistic cloud simulations, especially considering an enormous number of cloud and 75 

precipitation particles in natural clouds. However, the Lagrangian methodology has clear 

benefits when compared to the bin scheme. These include the lack of numerical diffusion, 

realistic representation of the stochastic nature of the cloud droplet growth, possibility of 

including physically-based representation of the unresolved scales impact on droplet growth (i.e., 

allowing the multiscale simulation of a turbulent cloud), and providing a better framework for 80 

aerosol-cloud interactions and representation of ice processes. Grabowski et al. (2019) provide a 

review of these benefits. 

 

Grabowski (2020a, 2020b; G20a and G20b, respectively) compared cloud droplet activation and 

growth by the diffusion of water vapor in simulations of a laboratory cloud chamber and a single 85 

cumulus congestus cloud, respectively. The laboratory cloud chamber at the Michigan 

Technological University (see http://phy.sites.mtu.edu/cloudchamber/) forms a cloud because of 

the temperature and humidity differences between lower and upper horizontal boundaries that 

drive turbulent Rayleigh–Bénard convection. G20a shows a good agreement between droplet 

spectra predicted by the two methodologies when averaged over the chamber volume away from 90 

boundaries. G20a argued that the good agreement was because of the constant chamber pressure 

assumed in the simulations. This agrees with Morrison et al. (2018) conjecture that the artificial 
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spectral broadening comes from the coupling between vertical advection in a stratified 

environment (that provides the supersaturation source) and advection in the bin space that 

represents response of the droplet population to the supersaturation forcing. Cumulus congestus 95 

case from G20b is based on a modeling study by Lasher-Trapp et al. (2005) that considered a 

cloud observed by a radar and an instrumented aircraft during the Small Cumulus Microphysics 

Study (SCMS) near Cape Canaveral, Florida, during July–August of 1995. A unique aspect of 

the G20b study is application of the piggybacking methodology. Piggybacking refers to using 

two microphysics schemes in a single cloud simulation, one scheme driving the dynamics and 100 

the other one piggybacking the simulated flow, see Grabowski (2019) for a review. Operating the 

two schemes in the same cloud-scale flow allows point-by-point comparison of droplet spectra 

predicted by the two schemes. A significantly larger mean spectral width simulated by the bin 

scheme across the entire cloud depth is the largest difference between the two schemes in G20b 

simulations. 105 

 

In this paper, we discuss differences between the two methodologies for representing droplet 

spectral evolution in numerical homogeneous isotropic turbulence. Li et al. (2017) present 

similar comparisons applying dynamic and kinematic simulations, and including collision-

coalescence. Here, we consider diffusional growth of cloud droplets only. The direct numerical 110 

simulation (DNS) methodology (e.g., Vaillancourt et al., 2001, 2002; Lanotte et al., 2009; Li et 

al., 2019) and scaled-up DNS technique (Thomas et al., 2020) allow representation of turbulence 

impact on the droplet spectral width with an unprecedented fidelity. Sardina et al. (2015) and 

Grabowski and Abade (2017) provide stochastic model reference for such studies (cf. Fig. 10 in 

Thomas et al., 2020). In contrast to Thomas et al. (2020) who used a traditional spectral DNS 115 

code, we apply a finite-difference fluid flow model that does not require small-scale dissipation 

to maintain computational stability. It follows that the simulations are in the spirit of the implicit 

large eddy simulation (ILES) where the model numerics provide the required small-scale 

dissipation of the turbulent kinetic energy (TKE) and scalar variance. Details of the fluid flow 

model are presented in the next section with the emphasis on the forcing to maintain the quasi-120 

steady turbulence, the key element of the homogeneous isotropic turbulence DNS. Two 

turbulence cases are considered, the low TKE case (following Lanotte et al., 2009 and Thomas et 

al., 2020) and the high TKE case, the latter featuring hundred times larger TKE than the former. 
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Section 3 introduces the temperature and water vapor equations for moist simulations and 

presents results from simulations without droplets. Section 4 introduces numerical representation 125 

of cloud droplets applying either Eulerian bin microphysics or Lagrangian superdroplets. Results 

of simulations with droplets are presented in section 5 focusing on the ability of either scheme to 

represent theoretical scalings derived by Sardina et al. (2015) and on the comparison of the 

droplet spectra simulated by the two schemes. Section 6 shows grid-volume by grid-volume 

comparison of model results facilitated by the simulation methodology, exposing additional 130 

limitations of the two microphysics simulation approaches. A brief summary in section 7 

concludes the paper. 

 

 

2 Homogeneous isotropic turbulence simulations 135 

 

2.1 The model and model forcing 

 

The EULerian--semi-LAGrangian (EULAG) anelastic finite-difference fluid flow model 

(http://www.mmm.ucar.edu/eulag/) is used in this study in the ILES mode (Margolin and Rider, 140 

2002; Andrejczuk et al., 2004; Margolin et al., 2006; Grinstein et al., 2007). ILES implies that 

the model uses no explicit dissipation and removes small-scale velocity and scalar fluctuations 

through numerical diffusion provided by the monotone advection scheme. The fluid flow 

equations for homogeneous isotropic turbulence simulations are (e.g., Lanotte et al., 2009, Li et 

al., 2017): 145 

 
!𝒖
!#

 + div (u.u) = -1/𝜌 grad p + f             (1) 

 

div u = 0,                                              (2) 

 150 

where u is the fluid flow velocity, p is pressure, 𝜌 = 1 kg m-3 is the air density, and f is the 

turbulence forcing term. The forcing term ensures that the turbulence is maintained throughout 

the simulation with TKE flowing from large-scales towards the small-scale dissipation. The 

traditional technique to force the quasi-equilibrium homogeneous isotropic turbulence, 
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convenient for spectral models, is to consider the forcing only for a few low-wavenumber modes. 155 

However, such an approach is not practical for the finite-difference model used here. Instead, we 

apply a method in the spirit of the so-called linear forcing of Rosales and Meneveau (2005) and 

Onishi et al. (2011). In the homogeneous isotropic turbulence, TKE increases with the eddy size 

L as L2/3, that is, TKE is dominated by contributions from the largest eddies. Hence, one can 

force the turbulence by simply ensuring that the TKE does not change from one model time step 160 

to the next one because such forcing affects mostly large eddies. This implies that u(n+1) = 𝛼 u(n) 

with 𝛼 = (Et/E(n))1/2, where n and n+1 represent time levels, E(n) is TKE at the n time level, and 

Et is the target TKE (see Eq. 3 in Onishi et al., 2011). The finite difference representation of such 

a forcing is given by 

 165 

 f = (u(n+1) - u(n))/Δ𝑡 = u(n)(𝛼-1)	/	Δ𝑡  ,      (3) 

 

that is, as in the case of the linear forcing of Rosales and Meneveau (2005). The TKE dissipation 

rate 𝜀 can be derived assuming that the TKE does not change in time [see (5) in Onishi et al., 

(2011)] as 170 

 

𝜀 = 2 Et (𝛼-1)	/	Δ𝑡 .        (4). 

 

Eq. 4 is particularly useful in ILES because it allows diagnosing the TKE dissipation rate that is 

otherwise not known. 175 

 

The forcing described above was initially applied in dry ILES simulations, that is, the EULAG 

model solving (1) and (2). For those tests (and for other simulations described in this paper), the 

initial flow field (scaled-up to approximately match the required TKE) was taken as the initial 

flow pattern in decaying turbulence simulations in Andrejczuk et al. (2004), see Fig. 1 therein. 180 

Other parameters of the test simulations correspond to low TKE setup as described in the next 

section. Those initial tests forced as in (3) revealed the need for additional forcing modifications 

as discussed below. 
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As in other studies of forced homogeneous isotropic turbulence (e.g., Lanotte et al., 2009), the 185 

model applies computational domain with triply-periodic lateral boundary conditions. Such 

boundary conditions together with (2) imply that the mean flow across the domain has to be 

uniform. For instance, d<uz>xy/dz (where uz is the vertical velocity and <.>xy is the horizontal 

average) has to vanish, and the same is true for the other two spatial directions. However, the 

vertically-uniform <uz>xy can evolve in time. In the initial tests, a gradual development of the 190 

mean flow across the domain was noticed. In other words, in addition to driving the turbulence 

inside the computational domain, the forcing (3) resulted in a gradual development of the mean 

flow across the domain. To eliminate this undesirable behavior, an additional forcing term is 

included in the model equations that controls the mean flow across the domain. The additional 

forcing term is a simple relaxation towards the vanishing mean flow, that is, 195 

 

f = (-<ux>/𝜏,  -<uy>/𝜏,  -<uz>/𝜏 ),       (5) 

 

where u = (ux, uy, uz), <.> is the 3D average, and 𝜏 is the relaxation time scale taken as 10 model 

time steps. Note that (5) does not dump the flow perturbations, but only prevents the mean flow 200 

development. In simulations presented here, the mean flow across the domain after applying (5) 

was limited to about 10-16 m s-1.  

 

Second, although (3) maintains the mean TKE, the TKE partitioning between the three velocity 

components is allowed to evolve. As a result, the magnitude of the root mean square (rms) 205 

vertical velocity can vary in time and affect supersaturation fluctuations and droplet growth. 

Thus, (3) needs to be modified to maintain the uniform TKE partitioning between the three 

components. The idea is to apply the forcing for each component separately and assuming 

equipartition of the TKE between all three components. For instance, for the x velocity 

component, ux, the modified forcing should be ux(n+1) = 𝛼x ux(n) with 𝛼x = [2 Et / 3 <ux(n) 2>)1/2, 210 

where, as before, Et is the target TKE. The forcing term for ux is then given by: 

 

f x = ux(n)(𝛼x - 1)	/	Δ𝑡  ,      (6) 

 

and similar for the two other velocity components.  215 
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To document the necessity of using the more elaborate approach (6), two simulations applying 

either (3) combined with (5) or (6) combined with (5) were run (details of the simulations are 

provided in the next section). Figure 1 compares TKE and rms vertical velocity in the two 

simulations. The figure shows that the modified forcing, that is, applying (6) in place of (3), 220 

maintains not only the TKE, but also a uniform in time rms vertical velocity. The latter implies 

even partitioning of the TKE between the velocity components in agreement with the forcing 

formulation. The fluctuating in time rms vertical velocity in simulations applying forcing (3) 

leads to evolving supersaturation standard deviation in moist simulations and thus more complex 

mean droplet size evolution (not shown). In summary, the forcing term driving the isotropic 225 

homogeneous turbulence applied in this study is the sum of (5) and (6). 

 

 

 

 230 
 

Figure 1. Evolutions of the TKE and rms vertical velocity in low TKE simulations applying either (3) – dashed lines, or (6) 

– solid lines, as part of the forcing. The nondimensional time is the time divided by the turbulence integral time, 187 sec 

for the low TKE simulations. 

 235 

 

2.1 The setup of dynamic simulations 



 

 9 

 

The triply-periodic computational domain is 643 m3 with the model grid length of 1 m. This is 

one of the domains considered in Thomas et al. (2020) and close to the turbulent rising parcel 240 

extent of 50 m considered in Grabowski and Abade (2017). Such a domain size is also similar to 

the grid volume of LES simulations of natural clouds (e.g., Siebesma et al., 2003, Stevens et al., 

2005, VanZanten et al., 2011). For the fluid flow, we consider two turbulence intensities as 

expressed by the prescribed TKE. The “low TKE” simulations assume the TKE of 5.2 x 10-2 m2 

s-2. Such a TKE corresponds to the TKE dissipation rate of 10-3 m2 s-3 in 643 m3 scaled-up DNS 245 

simulations in Thomas et al. (2020) that followed DNS simulations in Lanotte et al. (2009). The 

low TKE setup corresponds to the rms vertical velocity around 0.2 m s-1 (see Fig. 1), evolving 

maximum vertical velocity between 0.5 and 0.8 m s-1, and integral time scale (see Eq. 7 in 

Grabowski and Abade, 2017) of 187 sec, or about 3 minutes. The model time step for the low 

TKE simulations dictated by the CFL stability criterium is Δ𝑡 = 0.25 sec. The low TKE dry 250 

dynamics simulations (i.e., solving only Eqs. 1 and 2 only) and simulations without droplets 

(section 3) were run for 40 minutes (around 12 integral time scales as shown in Fig. 1). 

Simulations with droplets discussed in section 5 were run for 20 min or about 6 integral time 

scales starting from minute 28 of 40-min simulations presented in the next section. The “high 

TKE” simulations consider hundred times larger TKE, i.e., 5.2 m2 s-2. High TKE simulations 255 

feature ten times larger rms and maximum velocities (i.e., around 2 m s-1 and 5 to 8 m s-1, 

respectively) together with ten times smaller integral time scale of about 19 sec. Model time step 

in high TKE simulations was proportionally reduced to 0.025 sec. The high TKE simulations 

were run for the same number of time steps as the low TKE simulations, that is, for the total time 

of either 4 or 2 minutes, that is, either 12 or 6 integral time scales. Model data were saved every 260 

15/1.5 sec for low/high TKE simulations and they are used in the analysis presented here. 

  

Eq. 4 allows estimation of the TKE dissipation rate. The parameter 𝛼 in the forcing term is 

monitored from time step to time step during the simulations. The typical value in both low and 

high TKE is 𝛼-1 ≈ 2 x 10-4. With the target TKE Et = 5.2 x 10-2 m2 s-2 and  Δ𝑡 = 0.25 sec in low 265 

TKE simulations, the TKE dissipation diagnosed from (4) is 𝜀 ≈	4 x 10-4 m2 s-3. This value 

approximately agrees with the assumed low TKE turbulence simulation setup. For the high TKE, 

the target TKE and the model time step imply 𝜀 ≈	4 x 10-1 m2 s-3. This is a rather extreme TKE 
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dissipation rate for small cumulus dynamics (e.g., Siebert et al., 2006), but perhaps not unusual 

for deep convection as simulated, for example, by Benmoshe et al. (2012). 270 

 

Figure 1, already mentioned in section 2a, documents TKE evolution together with the rms 

vertical velocity in the low TKE simulation. The horizontal axis shows either the real time or the 

nondimensional time using the integral time scale. As the figure shows, the forcing maintains the 

TKE and rms vertical velocity as expected by the forcing design. Figure 2 shows the TKE 275 

spectra for low and high TKE at the minute 28/2.8 that are used as initial conditions for moist 

simulations with droplets. The spectra have a classical shape characteristic of a relatively low-

Reynolds-number homogeneous isotropic numerical turbulence (e.g., Fig. 2 in Rosales and 

Meneveau, 2005). Spectra at different times are similar to those in Fig. 2 (not shown). 

 280 

 
 
Figure 2. Energy spectra for the fluid flow simulations without droplets at minute 28/2.8 for low/high TKE simulation 

without droplets. The dashed line represents the -5/3 Kolmogorov slope. 

 285 

The turbulence dynamics in moist simulations described in the next section is exactly as 

described above, that is, the impact of cloud droplets and of the latent heating on the flow is 

neglected. This is because the air density is assumed constant and the flow equations exclude the 

buoyancy term as typical in the homogeneous isotropic DNS simulations (see, for instance, eq. 1 



 

 11 

in Lanotte et al., 2009). Because the flow is exactly the same in all simulations, one can compare 290 

model results grid volume by grid volume as in the piggybacking methodology (Grabowski, 

2019 and references therein). This allows a comprehensive comparison of simulation results as 

illustrated in section 6. 

 

3 Thermodynamics in ILES moist simulations 295 

 

In addition to the momentum, the moist ILES of homogeneous isotropic turbulence solves the 

temperature T and water vapor mixing ratio qv equations in the form: 

 

∂T/∂t + div (u T) = Lv/cp Cd – g/cp uz   ,     (7) 300 

 

∂qv/∂t + div (u qv) = - Cd    ,    (8) 

 

where Lv = 2.5 x 106 J kg-1 is the latent heat of condensation, cp = 1015 J kg-1 K-1 is the specific 

heat of air at constant pressure, g = 9.81 m s-2 is the gravitational acceleration, and Cd is the 305 

condensation rate, the rate of change of the cloud water mixing ratio resulting from the 

diffusional growth of cloud droplets. Calculation of the condensation rate depends on the 

microphysics scheme as explained below.  

 

In the spirit of DNS studies of homogeneous isotropic turbulence, the initial temperature and 310 

water vapor mixing ratio in moist simulations are assumed spatially uniform. The actual values 

are taken as in Thomas et al. (2020), that is, T = 283 K and qv at saturation assuming 

environmental pressure of 1000 hPa. The spatially-uniform initial conditions justify the triply-

periodic computational domain. The last term in (6) represents the temperature change due to 

adiabatic air expansion resulting from the vertical motion in the stratified environment. This term 315 

drives small-scale supersaturation fluctuations in the otherwise uniform environment; see 

discussion in section 3 in Vaillancourt et al. (2001). Such a modeling framework is a 

simplification of a truly stratified environment where the environmental temperature and 

pressure are functions of height and typically the potential temperature (an invariant for dry 

adiabatic vertical displacements) rather than the temperature is applied as the model variable. In 320 
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some DNS studies, the temperature and moisture equations are combined into the supersaturation 

equation that includes the source due to the vertical motion (as the last term in Eq. 6) and the 

sink due to droplet growth, Eq. (2) in Lanotte et al. (2009) or Eq. (2) in Sardina et al. (2015); see 

Eq. (10) below. 

 325 

 
Figure 3. Evolution of the supersaturation spatial distribution statistics for a 40-minute low TKE (upper panel) and high 

TKE (lower panel) moist simulations without droplets. Stars and circles show the mean and standard deviation of the 

spatial distribution, respectively. The extent of the color bars shows the percentiles of the distribution: red is for 10-90th 

percentile, green is for 25-75th percentile, and blue is for 45-55th percentile. The nondimensional time, the same for low 330 
and high TKE, is shown below the lower panel. 

 

The initial test of the moist ILES framework considers a 40-min long low TKE and 4-min long 

high TKE simulations without droplets (i.e., both up to about 12 integral time scales) and 

initiated in the same way as the dry simulation illustrated in Figs. 1 and 2. The simulations apply 335 

the fluid flow as described above and solving (7) and (8) without the condensation term Cd. In 
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such simulations, the largest temperature change is possible when the air parcel rises across the 

entire computational domain depth, that is, 64 m, with the corresponding temperature change of 

about 0.64 K as given by (7). Such a maximum temperature change leads to the supersaturation 

change from the initial zero to about 4%. In the numerical simulation, the maximum temperature 340 

deviations from the uniform initial 283 K are typically smaller than 0.5 K. The evolutions of 

supersaturation statistics are shown in Fig. 3. Despite the dramatic difference in the TKE levels, 

the statistics are similar regardless of the TKE level, in agreement with the parcel argument. 

Only after including the source due to condensation, the evolutions become different depending 

on the droplet characteristics and the TKE level. Small differences in the evolutions in Fig. 3 345 

come from different flow realizations between low and high TKE cases. 

 

4 ILES moist simulations with droplets 

 

The general microphysical setup considers initially monodisperse population of cloud droplets 350 

with the radius of 13 µm present in three different concentrations: 26, 130, and 650 cm-3. The 

concentration 130 cm-3 was considered in Lanotte et al. (2009) and Thomas et al. (2020) and it 

corresponds to the mean cloud water content of about 1.2 g m-3. In addition, the five-times 

smaller and five-times larger droplet concentrations are considered to document how the two 

microphysics schemes represent the expected scalings. The mean cloud water content in 355 

simulations with the increased (decreased) droplet concentration is about 6.0 (0.24) g m-3. Moist 

simulations with droplets start at minute 28 of the moist simulation without droplets, that is, 

applying the flow field analyzed in Fig. 2, together with the temperature and moisture field at 

minute 28 in Fig. 3. The simulations are run for additional 20 minutes for the low TKE setup, 

saving data every 15 sec. The high TKE simulations are run for 2 minutes and the data are saved 360 

every 1.5 sec. The data are used in the analysis of both macrophysical (e.g., the supersaturation 

characteristics) and microphysical (e.g., droplet spectra) simulated by the two microphysics 

schemes. Sardina et al. (2015) derived scalings for the case when the droplet phase relaxation 

time is much shorter than the turbulence integral time scale. This is the case for the selected 

domain size and the low TKE for all droplet concentrations. For the high TKE and low droplet 365 

concentration (i.e., 26 cm-3), the phase relaxation time (about 10 seconds) is the closest to the 
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turbulence integral time scale (about 19 seconds), so some deviations from the theoretical scaling 

should be expected as shown below. 

 

4.1 Lagrangian and Eulerian microphysics schemes 370 

 

The particle-based Lagrangian scheme considers on average 40 Lagrangian particles 

(superdroplets) per grid volume, each featuring the initial radius of 13 µm. The number of 

superdroplets per grid volume together with the assumed droplet concentration dictates the 

multiplicity that is assumed the same for all superdroplets. Although the average number of 375 

superdroplets per grid volume is small when compared to millions real droplets within a 1 cubic 

meter grid volume, G20a and G20b document that the number as small as 10 per grid box 

provides physically-meaningful results; see also Li et al. (2017). At the simulation onset, each 

superdroplet is placed at a random position within a grid volume. To be consistent with the bin 

microphysics, superdroplets grow in response to the mean supersaturation predicted inside a grid 380 

volume it occupies. Superdroplets are advected applying a model flow field interpolated to the 

droplet position as in Arabas et al. (2015). The interpolation scheme maintains the 

incompressibility of the flow at subgrid scales; see discussion of this aspect in section 2.4 in 

Grabowski et al. (2018). Droplet inertia and droplet sedimentation are not considered. 

Condensation rate Cd at each time step is calculated by summing up the mass change of all 385 

superdroplets present within a given grid volume. 

 

The simulations with superdroplets are referred to as SDS.26, SDS.130, and SDS.650 for droplet 

concentrations of 26, 130, and 650 cm-3, respectively. The three simulations are completed for 

both low and high TKE. In addition, a single simulation with 150 superdroplets per grid volume 390 

and droplet concentration of 130 cm-3 was completed for the low TKE to test the impact of the 

superdroplet number fluctuations within a grid volume. This simulation is referred to as 

SDS.HR.130 (HR for high resolution in the radius space).  

 

The Eulerian bin microphysics considers spectral density function represented by 40 equally-395 

spaced bins with the bin size modified in different simulations as described below. The reason 

for modifications of the bin resolution is to match the results from the Lagrangian microphysics 
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as shown in the results section. In each bin setup, there is a bin centered at 13 µm that is filled 

with droplets at the simulation onset. The monodisperse initial droplet size distribution is 

impossible to be accurately represented using the spectral density function because the 400 

monodisperse distribution corresponds to the delta function. However, even with a finite width 

of the initial distribution, the broadening of the distribution as time progresses (Sardina et al., 

2015; Li et al., 2019; Thomas et al., 2020) can be appropriately represented provided that the bin 

width is appropriately small (see section 5.3). In the bin microphysics, each bin is independently 

advected in the physical space using the same advection scheme that is applied to the 405 

momentum, temperature, and water vapor mixing ratio. Neither droplet sedimentation nor 

droplet inertia are considered as in the Lagrangian scheme. All bins are combined at each grid 

volume to calculate evolution of the droplet spectrum due to the local sub- or supersaturation 

applying a custom-designed 1D advection scheme. The scheme combines the analytic 

Lagrangian solution of the condensational growth with remapping of the spectral distribution 410 

onto the original radius grid using piecewise linear functions (see section 3.2 in Grabowski et al., 

2011). As for the Lagrangian scheme, condensation rate Cd at each time step is calculated from 

the change of the spectral density function due to the droplet growth in each grid volume. 

 

For the low TKE, eight bin simulations with the spectral density function represented by 40 bins 415 

and different bin resolutions are considered. The selection of a specific bin resolution is 

motivated by the results discussed in the next section. The standard bin setup is similar to G20b 

with a uniform 0.5 μm bin width and 0 to 20 μm bin range. These simulations are BIN.26, 

BIN.130, and BIN.650 for the three droplet concentrations. The high resolution (HR) simulations 

have 0.3 μm bin width and the bin layout centered at 13 μm (i.e., from 7 to 19 μm). These 420 

simulations are run for 130 and 650 cm-3 concentrations and are referred to as BIN.HR.130 and 

BIN.HR.650, respectively. Very high resolution (VHR) simulations have 0.1 μm bin width, 

again centered at 13 μm (bin range between 11 and 15 μm) and with 130 and 650 cm-3 

concentration, BIN.VHR.130 and BIN.VHR.650. Finally, an even higher bin resolution, 0.05 μm 

bin width and grid centered at 13 μm (i.e., bin range between 12 and 14 μm), is added for the 650 425 

cm-3 concentration, BIN.SHR.650 (SHR for Super High Resolution). For the high TKE, only 

three simulations were completed, BIN.26, BIN.VHR.130, and BIN.VHR.650. Table 1 provides 

a list of all simulations in both Lagrangian and Eulerian simulations. 
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Table 1. Details of Lagrangian and Eulerian simulations. 
 430 
Lagrangian (superdroplet) simulations: 
 
Low TKE:    SDS.26            26 cm-3, 40 superdroplets per grid volume 
                     SDS.130          130 cm-3, 40 superdroplets per grid volume 
                     SDS.HR.130    130 cm-3, 150 superdroplets per grid volume 435 
                     SDS.650           650 cm-3, 40 superdroplets per grid volume 
            
High TKE:   SDS.26            26 cm-3, 40 superdroplets per grid volume 
                     SDS.130          130 cm-3, 40 superdroplets per grid volume 
                     SDS.650          650 cm-3, 40 superdroplets per grid volume 440 
 
 
Eulerian (bin) simulations: 
 
Low TKE:    BIN.26               26 cm-3, 40 bins centered at 13 µm, 0.5 µm bin width  445 
                     BIN.130             130 cm-3, 40 bins centered at 13 µm, 0.5 µm bin width 
                     BIN.HR.130       130 cm-3, 40 bins centered at 13 µm, 0.3 µm bin width 
                     BIN.VHR.130    130 cm-3, 40 bins centered at 13 µm, 0.1 µm bin width 
                     BIN.650              650 cm-3, 40 bins centered at 13 µm, 0.5 µm bin width 
                     BIN.HR.650       650 cm-3, 40 bins centered at 13 µm, 0.3 µm bin width 450 
                     BIN.VHR.650    650 cm-3, 40 bins centered at 13 µm, 0.1 µm bin width 
                     BIN.SHR.650     650 cm-3, 40 bins centered at 13 µm, 0.05 µm bin width 
 
            
High TKE:   BIN.26                  26 cm-3, 40 bins centered at 13 µm, 0.5 µm bin width 455 
                     BIN.VHR.130      130 cm-3, 40 bins centered at 13 µm, 0.1 µm bin width 
                     BIN.VHR.650       650 cm-3, 40 bins centered at 13 µm, 0.1 µm bin width 
 

 

Droplet growth in both schemes is calculated applying a simplified growth formula as in G20a 460 

and G20b: 

dr/dt = A S / (r+r0),     (9) 

with A=0.9152 × 10-10 m2 s-1 and r0 = 1.86 μm. The latter is applied to mimic the impact of 

kinetic effects (Mordy 1959, see Eq. 11 in Clark 1971 or Eq. 2.22 in Kogan 1991). Because of a 

large mean droplet size, 13 µm, the solution and curvature effects are neglected. The two 465 

schemes apply the droplet growth equation (9) in different ways: as a transport (advection) 

velocity in the Eulerian bin scheme and to calculate individual superdroplet growth in the 

Lagrangian scheme. 

5. Results 
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 470 

5.1 Lagrangian microphysics 

 

Figure 4 shows evolutions of the supersaturation standard deviation in low and high TKE 

Lagrangian simulations. The supersaturation standard deviation is approximately constant except 

for the adjustment from initial values in simulations without droplets (cf. Fig. 3). Standard 475 

deviations for the SD.130 and SD.HR.130 simulations are practically the same. Table 2 shows 

the standard deviation averaged over the second half of the simulations. When the phase 

relaxation time is much smaller than the turbulence integral time scale, the supersaturation 

standard deviation is proportional to the product of the rms vertical velocity and the phase 

relaxation time; σS ~ <w2>1/2  𝜏relax, see Sardina et al. (2015). The phase relaxation time is 480 

inversely proportional to the product of the mean droplet radius and droplet concentration. With 

the same mean droplet radius, changes in the concentration explain the factor of about five shifts 

between SDS.650, SDS.130, and SDS.26 for the low TKE case as shown in the left panel and in 

Table 2. However, for the high TKE, the scaling breaks down because the phase relaxation time 

is no longer much smaller than the turbulence integral time scale. For a given droplet 485 

concentration, shift from low to high TKE should result to ten-fold increase of σS because of the 

<w2>1/2 increase. This is approximately valid for 650 cm-3 droplet concentration, but reduces to a 

factor of only about 5 for 26 cm-3 concentration. 

 

The supersaturation standard deviation shown in Fig. 4 can be compared to the standard 490 

deviation resulting from the quasi-equilibrium supersaturation fluctuations. Evolution of the 

supersaturation S = qv/qvs -1 (where qvs is the saturated water vapor mixing ratio) can be derived 

by combining Eqs. 7, 8 and 9 as  

 

dS/dt = a1 w – S/𝜏relax     ,        (10) 495 

 

where 𝜏relax is the phase relaxation time that depends of the mean droplet radius and 

concentration: 

 

1/𝜏relax = 4 𝜋	𝜌w A [1/qvs + qv Lv2/(qvs Rv T2 cp)] <N r2/(r+r0)>  ,   (11) 500 
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where 𝜌w = 103 kg m-3 is the water density, Rv = 461 J kg-1 K-1 is the water vapor gas constant, 

and <.> in (11) depicts averaging over all droplets within a given grid volume. The quasi-

equilibrium supersaturation is obtained by setting the left-hand-side of (10) to zero that leads to 

Seq = a1 w 𝜏relax . For the mean temperature and humidity of the simulations and specific 505 

numerical values of the relevant constants, a1 = 6.54 x 10-4 m-4 and the phase relaxation time for 

the 13 µm droplets and their concentration of 130 cm-3 is 𝜏relax = 1.98 sec. The phase relaxation 

time is five times smaller/larger for the droplet concentration of 650/26 cm-3. Since the quasi-

equilibrium supersaturation is proportional to the vertical velocity, its standard deviation is 

proportional to the rms vertical velocity. For the low TKE, the quasi-equilibrium supersaturation 510 

standard deviation is 0.120, 2.39e-2, 4.79e-3% for 26, 130 and 650 cm-3 droplet concentrations. 

These are in a relatively good agreement with simulated standard deviation shown in Table 2. 

The values for the high TKE should be 10 times smaller and they are approximately equal to the 

simulated values for 130 and 650 cm-3. The agreement between the simulated supersaturation 

fluctuations and the fluctuations predicted by the quasi-equilibrium supersaturation for the 643 515 

m3 domain and low TKE agrees with results presented in Thomas et al. (2020; see Fig. 10 therein 

and its discussion). 

 

 

 520 
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Figure 4. Evolution of the supersaturation standard deviation in (left panel) 4 low TKE simulations and (right panel) 3 

high TKE simulations with superdroplets. The two simulations with droplet concentration of 130 per cc in the left panel, 

SDS.130 and SDS.HR.130, show differences within the thickness of the line.  

 525 

Figure 5 shows the comparison between the local supersaturation simulated by the model and the 

quasi-equilibrium supersaturation calculated applying the local vertical velocity and the mean 

phase relaxation time for the low and high TKE simulations and 26 versus 650 cm-3 droplet 

concentrations. The mean phase relaxation time is about 10 sec for 26 cm-3 and about 0.4 sec 650 

cm-3 droplet concentrations. Whether the quasi-equilibrium supersaturation is a good 530 

approximation of the local supersaturation depends on the relative magnitude of the phase 

relaxation time scale and the eddy turnover time associated with the largest eddies. This is 

because the largest eddies feature the largest vertical velocities and provide the strongest forcing 

to drive the supersaturation away from its quasi-equilibrium value. For the low TKE, the eddy 

turnover time associated for the largest eddies is about 1 minute (i.e., velocities up to 0.8 m s-1 535 

and the domain size of 64 m), much larger than the phase relaxation time for both concentrations 

shown in Fig. 5. This is why all points scatter around 1:1 line in the left panels. However, the 

eddy turnover time is only around 8 sec for the high TKE case. This is still much larger than the 

phase relaxation time for the 650 cm-3 droplet concentration (lower right panel), but close to the 

phase relaxation time for the 26 cm-3 concentration. This is why data points are scattered away 540 

from the 1:1 line in the upper right panel, with the quasi-equilibrium values typically larger (in 

the absolute sense) than the model-predicted supersaturation.  
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 545 
Figure 5. Comparison between supersaturation simulated by the model (horizontal axes) and the quasi-equilibrium 

supersaturation calculated with the local vertical velocity and the mean phase relaxation time (vertical axes) for (left 

panels) low TKE and (right panels) high TKE simulations. Simulations SDS.650/SDS.26 are in the lower/upper panels. 

Data from the last time level of all simulations with only 5% of data points shown. Note different supersaturation ranges 

in all panels. 550 
 

Figure 6 shows evolutions of the radius squared standard deviation. Sardina et al. (2015) show 

that the standard deviation of the radius squared distribution should increase in time as square 

root of time as long as the phase relaxation time is much smaller than the turbulence integral 

time. The rate of increase is proportional to the supersaturation standard deviation (see Eq. 13 555 

therein). The former has been shown in other numerical simulations, such as in Li et al. (2019) 

and Thomas et al. (2020). Fig. 6 shows that the Lagrangian microphysics reproduces the t1/2 

scaling and that the differences between various simulations for the low TKE can be explained 

by the differences in the supersaturation standard deviation shown in Fig. 4 (note that on the log-

log plot the rate of increase change corresponds to a vertical shift as shown in Fig. 6). For the 560 

high TKE, small deviations for the expected scaling can be explained by the phase relaxation 

time being no longer much smaller than the turbulence integral time. This is especially evident 

for the high-TKE SDS.26 case in the right panel of Fig. 6. Left panels of Figs. 4 and 6 show that 

increasing the number of superdroplets from 40 to 150 per grid volume has virtually no impact 

on the results. Overall, the Lagrangian microphysics seems to represent expected scalings (or 565 

departures from them) without much difficulty. 
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 570 
Figure 6. Evolution of the radius squared standard deviation for superdroplet simulations (left panel) 4 low TKE 

simulations and (right panel) 3 high TKE simulations with superdroplets. SDS.130 and SDS.HR.130 in the left panel 

differ by the thickness of the line. Dashed lines show expected t1/2 scaling and are spaced by the expected factor of 5. Their 

position is the same in left and right panels. 

 575 
 
Table 2. Supersaturation standard deviation (%) averaged over the last 3 integral time scales for Lagrangian 

microphysics simulations. 

                              N=26              N=130             N=650 

Low TKE                  0.111              2.42x10-2        4.98x10-3 580 
High TKE                 0.500              0.188               4.68x10-2 

 

 

5.2 Eulerian bin microphysics 

 585 
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Figure 7. As Fig. 4 but for the supersaturation standard deviation in 8 simulations with bin microphysics. 

 

Figures 7 and 8 show the same results as Figs. 4 and 6 for the bin microphysics. For the 590 

supersaturation fluctuations (Fig. 7), bin simulations match Lagrangian microphysics results, and 

the impact of bin resolution is small, at least for the low TKE simulations which feature various 

bin resolutions. However, as shown in Fig. 8, the expected t1/2 scaling requires appropriately high 

bin resolution, and the resolution requirement changes depending of the droplet concentration. 

The standard bin resolution is sufficient for the BIN.26 simulation. However, 130 cm-3 595 

simulations require VHR setup (bin width of 0.1 μm) to match the expected scaling. Even the 

SHR setup (bin width of 0.05 μm) is insufficient for the 650 cm-3 droplet concentration. There 

are some similarities between Lagrangian and Eulerian results for the high-TKE simulations, that 

is, when the scalings derived by Sardina et al. (2015) may not apply. The left panel also shows 

the decrease of the initial radius squared standard deviation with the increase of the bin 600 

resolution. This comes from the ill-posedness of the initially monodisperse droplet size 

distribution for the bin microphysics. The comparison between the local supersaturation 

predicted by the model and the quasi-equilibrium supersaturation calculated using the local 

vertical velocity (i.e., Fig. 5) for the bin microphysics is similar to that shown for the Lagrangian 

scheme and is not shown. 605 
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Figure 8. Evolution of the radius squared standard deviation for bin simulations. Dashed lines show the expected t1/2 

scaling. Their positions are exactly as in Fig. 6 for the Lagrangian microphysics. 610 
 

In summary, Eulerian bin microphysics is capable in appropriately representing turbulent 

temperature and moisture fluctuations, but fails to simulate their impact on droplet spectra unless 

appropriately high bin resolution is used. This is further supported by the comparison of droplet 

spectra discussed in the next section. 615 

 

5.3 Comparison of radius squared distributions between Eulerian and Lagrangian 
simulations. 
 
This section compares radius squared (R2) distributions at the end of the simulations, that is, after 620 

6 turnover times, for both the low and high TKE simulations. As shown in Lanotte et al. (2009) 

and Sardina et al. (2015), an initial monodisperse distribution should evolve into a Gaussian R2 

spectrum because of the parabolic cloud droplet growth equation. Although the parabolic growth 

is only approximately valid because of the specific droplet growth equation (see Eq. 9), the 

Gaussian distribution is a good fit for simulation results discussed here as shown below. 625 

 

 Figure 9 shows the spectra for selected superdroplet simulations. The radius squared spectra are 

created by selecting R2 bin size and binning superdroplet radii for a given simulation into the 

assumed bin grid. The bin size for the SDS.650/SDS.26 simulations (lower/upper panels in 

Fig.9) is 1/10 µm2. There are two panels for each simulation, one with the linear vertical scale 630 
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and the spectrum shown as a histogram, and the second one with the logarithmic vertical scale 

and using star symbols to show the spectrum. In addition, the logarithmic plots show the 

Gaussian distributions obtained with the mean and standard deviation calculated from the 

spectra. 

 635 
 

 
 

Figure 9. Results from simulations (upper panels) SDS.26 and (lower panels) SDS.650 superdroplet simulations. There 

are two panels for each simulation, the left one applying the linear vertical scale and the right one applying the 640 
logarithmic scale. The line in the logarithmic scale panels shows the Gaussian distribution with the mean and standard 

deviation calculated from the spectrum. Left/right pair in each row is for low/high TKE simulation. 

 
For the SDS.650 simulations (lower panels in Fig. 9), the spectra at the end of low and high TKE 

simulations are practically the same. This agrees with the theoretical scaling and simulation 645 

results shown in Fig. 4 and 6. In contrast, results for SDS.26 differ drastically between the low 

and high TKE. The spectrum for the low TKE is wide, with some small droplets already 

evaporated because the spectrum is truncated at the low-radius end. Nevertheless, the Gaussian 

shape is still a good fit for the simulated spectrum. The high TKE SDS.26 spectrum is 

significantly narrower with small deviations from the Gaussian fit. 650 
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 655 

Figure 10. As Fig. 9, but for the bin (upper panels) BIN.26 and (lower panels) BIN.VHR.650 simulations.  
 
 
Figure 10 shows the spectra for bin simulations similar to those in Fig. 9. Since bin simulations 

predict the spectra directly, the radius spectra are converted to R2 spectra and then plotted at their 660 

native resolution in the R2 space. This explains the change in the resolution along the horizontal 

axes evident in the upper panels. Overall, there are some similarities between Figs. 9 and 10. For 

instance, upper panels show spectra for the 26 cm-3 simulations with 0.5-µm bin width that are 

similar to those in superdroplet simulations. Spectra for 650 cm-3 simulations with 0.1-µm bin 

width (i.e., from the VHR set) are also similar between low and high TKE simulations, but their 665 

spectral widths are larger than in corresponding panels of Fig. 9. The impact of the bin resolution 

is further documented in Fig. 11 that shows results from the 650 cm-3 low TKE HR and SHR 

simulations, that is, with the bin width of 0.3 and 0.05 µm, respectively. Only the SHR 

simulation (i.e., the right panel in Fig. 11) resembles the spectra from the Lagrangian simulations 

shown in the lower panels of Fig. 9. 670 
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Fig. 11. As Figs. 9 and 10, but for the bin BIN.HR.650 and BIN.SHR.650 simulations. Note different horizontal range at 
the left and right pair of panels. 
 675 
In summary, only extreme resolutions of the bin scheme (e.g., as in SHR, 0.05 µm bin width) 

allow good agreements between Lagrangian and Eulerian results for the concentration range 

considered here. Moreover, the ill-posed initial condition for the Eulerian scheme (i.e., the 

monodisperse initial droplet size distribution) seems irrelevant because the spectrum becomes 

well-resolved after some time during the simulation. With sufficiently high bin resolution, (e.g., 680 

0.5 µm in the 26 cm-3 simulations or 0.05 µm for the 650 cm-3 simulations), the Eulerian and 

Lagrangian spectra compare well at the end of the simulations. This shows the benefit of the 

Lagrangian scheme as one does not have to worry about the bin size to obtain numerically 

converged solutions. 

 685 

6 Grid volume by grid volume analysis of macro- and microphysical properties 

 

The analysis presented in previous sections concerns domain-averaged characteristics. Because 

all simulations with either low or high TKE feature exactly the same evolving flow field, 

simulated thermodynamic variables (i.e., the temperature, water vapor, and cloud droplet 690 

characteristics) can be compared grid volume by grid volume and thus provide a comprehensive 

comparison of simulated local conditions. Such a comparison is in the spirit of the piggybacking 

methodology applied in G20b. 

 

Figure 12 compares the temperature, water vapor, and cloud water mixing ratios (the latter 695 

derived from the predicted droplet spectra within each grid volume) between SDS.130 and 

BIN.130 low TKE simulations at time of 20 minutes. For the temperature and moisture, plots at 
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earlier times are similar to upper panels in Fig. 12 except for smaller ranges between minima and 

maxima. Cloud water plots at earlier times are also similar to those shown in Fig. 12 except for 

the initial couple minutes. The temperature and water vapor values are extremely close between 700 

the two simulations: the root mean square difference between temperatures are 2.6 x 10-4 K. For 

the water vapor mixing ratios, the root mean square difference is 1.1 x 10-4 g kg-1. However, the 

cloud water mixing ratio can differ significantly between the bin and the superdroplet 

simulations. This is because of statistical fluctuations in the number of superdroplets per grid 

volume. With on average 40 superdroplets per grid volume, the standard deviation of the droplet 705 

number is around 6, or about 15% of the mean. Assuming that one can find grid volumes with 

three times the standard deviation, the range of the cloud water mixing ratio can be as high as 

close to 50%. This can explain the spread seen in the lower left panel of Fig. 12. With 150 

superdroplets per grid volume in SDS.HR.130, there is some improvement as the standard 

deviation is reduced to about 8% of the mean, but the statistical fluctuations remain significant. 710 

In fact, the lower left panel does not change significantly if SDS.130 is replaced by SDS.HR.130 

(not shown). The lower right panel shows the outcome of a simple rescaling of the cloud water 

mixing ratio qc predicted by the Lagrangian scheme based on the number of superdroplets N 

being present in a given grid volume compared to the expected mean value of 40, with the 

rescaled cloud water mixing ratio given by qc 40/N (i.e., increased when N < 40 and reduced 715 

when N > 40). We stress that the rescaling is done on the analyzed cloud water, and not during 

the model run. (That said, application of such a rescaling might be a valuable approach to reduce 

the spread during model run as well; this aspect is left for a future investigation). Apparently, the 

rescaling improves the comparison significantly and documents that the scatter present in the 

lower left panel comes predominantly from the statistical fluctuations in the Lagrangian scheme. 720 

An important point is that the cloud water fluctuations are short-lived. This is because the 

temperature and water vapor would feature larger scatter if the fluctuations in the grid volume 

superdroplet number were long-lived. These statistical fluctuations come only from superdroplet 

advection by the resolved flow as the inertial effects and droplet sedimentation are not 

considered. 725 
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 730 
Figure 12. Grid volume by grid volume comparison for the low TKE SDS.130 and BIN.130 simulations between (upper 

left) temperature (in K), (upper right) water vapor mixing ratio (in g kg-1), and (lower left) cloud water mixing ratio (in g 

kg-1) at minute 20. The lower right panel shows cloud water mixing ratio comparison after the SDS.130 results are 

adjusted as explained in the text. Note the change of horizontal and vertical scales between lower left and lower right 

panels. Only 5% of data points are used. 735 
 

Figure 13, in the format of Fig. 12, compares the grid volume mean radii and spectral width in 

two sets of low-TKE simulations, the standard resolution (SDS.130 and BIN.130) and the 

increased resolution (SDS.HR.130 and BIN.VHR.130). For the increased bin resolution, the 

selected bin microphysics is the one that shows the correct scaling in Fig. 8. The mean radius 740 

comparison features some scatter that is reduced when increased resolutions simulations are 

compared. However, the scatter is asymmetric with respect to 1:1 line and similar to the cloud 

water scatter in the lower right panel of Fig. 12. The asymmetry shows that the bin microphysics 

tends to simulate larger droplets than the Lagrangian microphysics for droplets smaller than the 

mean, and the reverse is true for droplets larger than the mean. The spectral width panels show 745 

that the bin simulations feature smaller spread of the spectral width across the computational 

domain than the Lagrangian scheme. This seems independent of the bin resolution. In other 

words, spectral width simulated by the bin scheme varies less across the computational domain. 

In contrast, superdroplet simulations feature larger spread of the spectral width across the 
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domain, and the spread decreases with the increase of the mean superdroplet number per grid 750 

volume. For the SDS.130 versus BIN.130 cloud of spectral width points (i.e., the upper right 

panel), the center of mass is above the 1:1 line. This implies that the mean spectral width for 

BIN.130 simulation is overpredicted, in agreement with the results shown in Fig. 8. Results for 

similar comparisons of other simulations (for instance, SDS.26 versus BIN.26 or SDS.650 and 

BIN.SHR.650) are similar except for different ranges of the mean radius and spectral width (not 755 

shown). As shown in Fig. 14, the high TKE simulations also show similar patterns, with changes 

consistent with the differences in right panels in Figs. 6 and 8. 

 

 

 760 
 
Figure 13. Grid volume by grid volume comparison at the end of low TKE simulations (20 min) between (left panels) the 

grid-volume mean radius (in microns) and (right panels) spectral width (in microns). Lower (upper) panels are for 

comparison between SDS.HR.130 and BIN.VHR.130 (SDS.130 and BIN.130). Only 5% of data points are used. 

 765 

In summary, the grid volume by grid volume comparison between Eulerian and Lagrangian 

results shows that the simulated spatial variability is smaller in the bin microphysics when 

compared to the superdroplets. Arguably, this comes from a combination of the numerical 

diffusion in the bin microphysics (i.e., smoothing bin results similar to other Eulerian fields) and 
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small-scale fluctuations of the Lagrangian microphysics due to a relatively small mean number 770 

of superdroplets per grid volume. 

 

 
 
Figure 14. As Fig. 10, but for SDS.130 and BIN.VHR.130 simulations with high TKE. 775 
 

7 Summary and conclusions 

 

This paper presents a modeling study addressing the impact of homogeneous isotropic turbulence 

on the broadening of initially monodisperse distribution of cloud droplets in response to local 780 

fluctuations of the supersaturation field. This problem has been considered previously in 

modeling studies of Lanotte et al. (2009) applying DNS, Thomas et al. (2020) using the scaled-

up DNS, and Sardina et al. (2015) employing theoretical analysis combined with DNS and 

stochastic model simulations. Sardina et al. (2015) derived scaling relationships that we use in 

validating model results and comparing results for different droplet concentrations and 785 

contrasting turbulence intensities. 

 

Because we apply a finite-difference fluid flow model, we had to develop a turbulence forcing 

scheme that led to the quasi-steady homogeneous isotropic turbulence similar to that simulated 

by a spectral model. The forcing scheme applied here is in the spirit of the linear forcing of 790 

Rosales and Meneveau (2005) and Onishi et al. (2011). The idea is to ensure that the mean 

turbulence kinetic energy (TKE) remains constant in time and that the partitioning between the 

three TKE components does not change. The latter is important for the simulations of the 

turbulence impact on the droplet spectra because the driving mechanism in the homogeneous 
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environment comes from the vertical velocity fluctuations affecting the local supersaturation. 795 

The simulations are in the spirit of the implicit large eddy simulation (ILES), that is, without 

modeling the small-scale TKE and scalar variance dissipation (Margolin and Rider, 2002; 

Andrejczuk et al., 2004; Margolin et al., 2006; Grinstein et al., 2007). ILES applying a finite 

difference model relies on the model numerics to provide the required dissipation, in contrast to 

the scaled-up spectral model DNS in Thomas et al. (2020) where appropriately scaled-up 800 

molecular dissipation coefficients have to be used to ensure stable simulations. The TKE 

dissipation rate diagnosed from the forcing algorithm (see Eq. 6) is approximately correct for the 

considered turbulence intensities. 

 

There are two drastically different simulation techniques that can be applied to investigate the 805 

impact of cloud turbulence on the droplet spectra: the Eulerian bin microphysics and the 

Lagrangian particle-based approach, the latter often referred to as the superdroplet method (see 

review in the introduction). We apply the ILES homogeneous isotropic turbulence setup to 

compare the two techniques following Li et al. (2017), Grabowski (2020a), and Grabowski 

(2020b) for the diffusional growth of cloud droplets only. The computational domain is 643 m3, 810 

one of the domain sizes considered in Thomas et al. (2020) and similar to grid volumes of a 

typical LES simulation of natural clouds. Two TKE intensities are considered, low and high, 

different by a factor of one hundred. The latter implies that the velocity fluctuation differ by a 

factor of ten and the TKE dissipation rates differ by a factor of one thousand. The TKE 

dissipation spans the range observed in natural clouds. 815 

 

The Lagrangian approach reproduces the expected scalings derived in Sardina et al. (2015) for 

the case when the turbulence integral time scale is much longer that the phase relaxation time of 

cloud droplets. Representing the scalings is more challenging for the bin microphysics because 

appropriately high resolution in the bin space is needed. In fact, the standard bin resolution, with 820 

the bin width of 0.5 μm and covering the range up to 20 μm, similar to Grabowski (2020a, 

2020b), is only sufficient for the lowest droplet concentration (26 cm-3). For the highest droplet 

concentration, 650 cm-3, even an order of magnitude smaller bin size is not sufficient to 

reproduce well the expected scaling. Such a bin resolution is impossible to use when collisional 

growth is also considered as in Li et al. (2017). For the lowest droplet concentration (26 cm-3) 825 
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and the high TKE case, the phase relaxation time is about 10 sec and the turbulence integral time 

is around 19 sec, so some departures from the expected scaling are expected. This is indeed the 

case, and the two simulation methodologies represent similar supersaturation and spectral width 

departures. 

 830 

Because the fluid flow is the same for all simulations featuring either low or high TKE, one can 

compare model results point-by-point as in the piggybacking technique of Grabowski (2019). 

Such a comparison shows miniscule differences between temperature and water vapor fields 

across the computational domain, and larger differences between simulated mean droplet radii 

and spectral width. These are consistent with fundamental differences in the two simulation 835 

methodologies, numerical diffusion in the Eulerian approach and relatively small number of 

Lagrangian particles (superdroplets) that can be afforded in the particle-based microphysics. 

Either one can be limited by either increasing the model resolution or increasing the number of 

Lagrangian particles, both significantly increasing computational cost. But there are additional 

options for the particle-based microphysics, for instance, assuming that a particle within a given 840 

grid volume represents a cloud of particles spread over a prescribed halo. We are pursuing those 

ideas in ongoing research. 

 

Data availability. Data supporting this study is available at 
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