Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1103-SC1, 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Interactive comment

Interactive comment on "Evidence of ketene emissions from petrochemical industries and implications for ozone production potential" by Chinmoy Sarkar et al.

Armin Wisthaler

armin.wisthaler@uibk.ac.at

Received and published: 11 November 2020

I am posting a quick comment for saving some time to the reviewers.

I think the assignment of the m/z 43.018 (CH3CO+) signal to ketene is incorrect. We flew our PTR-TOF-MS instrument on the NASA DC-8 during KORUS-AQ, and we also observed a high m/z 43.018 signal over the Daesan petrochemical complex. The signal was highly correlated with the m/z 87.044 (C4H7O2+) signal and a laboratory study confirmed that the signal ratio was the same as for vinyl acetate. Vinyl acetate produces a strong acetylium ion fragment upon protonation in the PTR-MS analyzers, especially under the PTR-MS operating conditions (high E/N) the authors were using.

Discussion paper

Vinyl acetate is expected to be emitted from the ethylene vinyl acetate (EVA) plants at Daesan.

Prof. Armin Wisthaler University of Oslo / University of Innsbruck

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1103, 2020.

ACPD

Interactive comment

Printer-friendly version

Discussion paper

