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Abstract. The variation of NO, concentrations in mainland China is analyzed on different time scales, from
decadal to weekly, using both satellite data and data from ground-based monitoring networks. TROPOMI
(TROPOspheric Monitoring Instrument) data were used to study the spatial variations of tropospheric NO;
vertical column densities (TVCDs) over the study area during 16-20 weeks after the Chinese Spring Festival (25
January 2020). These data were used to select 11 regions for more detailed analysis of the variation of NO,
TVCDs on a decadal time scale. In this analysis, monthly and annual averaged NO, TVCDs derived from OMI
(Ozone Monitoring Instrument) observations were used for the years 2011 to 2019. The results show the NO»
TVCD trends for different regions, all decreasing in response to emission reduction policies, but with a different
onset and a possible halt of the decrease in recent years; trends and period in the south of the study area are
different from those in the north. Variations of NO> TVCDs on shorter time scales, monthly and weekly, were
analyzed using TROPOMI data. In addition, the variations of weekly averaged ground-based NO, concentrations
in 11 major cities were analyzed together with those for O3 and PM,s. In particular these data were used to
determine their effect on the air quality as expressed by the air quality index (AQI). For quantitative estimates,
the use of weekly concentrations is more accurate than the use of monthly values, and the effects of long term
trends and their reversal needs to be taken into account for the separation of effects of the lockdown and the
Spring Festival. Neglecting the possible reversal of the trends leads to overestimation of the lockdown effect in
the south and underestimation in the north. The ground-based data confirm earlier reports, based on satellite
observations, that the expected improvement of air quality due to the reduction of NO, concentrations was offset
by the increase of the concentrations of O3 and the different effects of the lockdown measures on PM, 5, as well
as effects of meteorological influences and heterogeneous chemistry. The AQI seems to be mostly influenced by
PM; s rather than NO,. A qualitative comparison between time series of satellite and ground-based NO,
observations shows both similarities and differences. The study further shows the different behavior in city
clusters in the north and south of China, and inland in the Sichuan and Guanzhong basins. Effects of other

holidays and events are small, except in Beijing where the air quality in 2020 was notably better than in previous
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years. This study was undertaken for China, but the methodology and results have consequences for air quality

studies in other areas and part of the conclusions are generally applicable.

1. Introduction

Concentrations of aerosols and trace gases in the atmosphere over China have been increasing in response to
industrial development and urbanization and are among the highest worldwide. However, during the last decade,
air pollution control strategies were implemented as part of a series of government plans to reduce the
concentrations of pollutants (Jin et al., 2016; van der A et al., 2017; Zheng, 2018) and thus improve air quality.
Indeed, the concentrations of SO,, NO; and aerosols decreased and the trends, from the on-set of the reduction
until recent years, have been quantified using satellite observations (Krotkov et al., 2016; Koukouli et al., 2016;
van der A et al., 2017; de Leeuw et al., 2018; Sogacheva et al., 2018; Zhao et al. 2017; Zhang et al., 2018). In
addition, an unprecedented reduction of the concentrations of NO, was observed at the end of January, 2020, by
the TROPOspheric Monitoring Instrument (TROPOMI), on board the Copernicus Sentinel-5 Precursor satellite,
following the nationwide lockdown in response to the COVID-19 outbreak (e.g., Fan et al., 2020a; Liu et al.,
2020; Bauwens et al., 2020). The decrease of anthropogenic NO, emissions in early 2020 was quantified by, e.g.,
Ding et al. (2020) and Zhang et al. (2020a). In response to the reduction of the NO, emissions, observations at
ground-based monitoring stations showed the increase of O3 concentrations (e.g., Fan et al., 2020a; Shi and
Brasseur, 2020; Le et al., 2020), indicating the increase of the oxidizing capacity of the atmosphere (e.g., Huang
et al., 2020; Diamond and Wood, 2020; Le et al., 2020; Zhao et al., 2020). The increased oxidizing capacity of
the atmosphere resulted in the increase of secondary aerosol formation which in part explains the increase of the
aerosol optical depth (AOD) over the North China Plain (NCP), observed from satellites (e.g., Fan et al., 2020a;
Huang et al., 2020; Le et al., 2020; Diamond and Wood, 2020), and the concentrations of PM, 5 observed in situ
by ground-based monitoring networks (e.g., Fan et al., 2020a; Shi and Brasseur, 2020; Le et al., 2020). Over the
NCP, aerosol formation was further promoted by meteorological conditions like low wind speed and high
relative humidity, conducive of the formation of haze (e.g., Zhao et al., 2020). Furthermore, aerosol emissions
were much less affected by the lockdown than NO, (Diamond and Wood, 2020). Hence, different species
contributing to air pollution were affected by the lockdown in different ways. Several authors concluded that, in
spite of the strong reduction of anthropogenic emissions, pollution still occurred over China due to the
combination of meteorological influences, economic impacts and complex chemistry (e.g., Shi and Brasseur,
2020; Huang et al., 2020; Diamond and Wood, 2020; Le et al., 2020; Zhao et al., 2020; Li et al., 2020).

In the current study we examine the evolution of the concentrations of tropospheric NO, in China over the last
10 years, until mid-2020. To this end, we extend satellite-derived time series of tropospheric NO, vertical
column densities (NO, TVCDs) derived from satellite observations using the Ozone Monitoring Instrument
(OMI) from 2011 to 2019, which provides insights in the effects of pollution control strategies in different parts
of China during recent years. The sudden reduction of the concentrations of NO, and other atmospheric
constituents due to the unfortunate lockdown following the COVID-19 outbreak in China provided another way
to look at emission reductions and the recovery of the concentrations when the lockdown was gradually relaxed.
The latter extends earlier work presented in Fan et al. (2020a) on the concentrations of trace gases and aerosols
during the Chinese Spring Festival (25 January 2020) and the initial phase of the lockdown during the following

month. It is noted that the lockdown started during the Spring Festival holidays, during which concentrations of
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trace gases and aerosols usually change in response to changing socio-economic conditions during 1-2 weeks.
This Spring Festival holiday effect was enhanced and extended over a longer period of time due to the lockdown.
In the current study we focus on the variations of NO; concentrations both in the years before the 2020 Spring
Festival, and during an extended period of 16-20 weeks thereafter, for reasons explained below.

In Fan et al. (2020a) we considered all species contributing to the air quality index (AQI, see Appendix A for
definition), a measure used in air quality management. However, air quality, or the AQI, was not directly
considered in Fan et al. (2020a), we only looked at the change of the concentrations of PM, 5, PMjo, NO, SO,,
CO and O3 due to the lockdown. For all species we used satellite data (TROPOMI), except for tropospheric O3
which is not available over China from TROPOMI, and ground based monitoring observations. TROPOMI data
were used for 2019 and 2020, as monthly averages for the period before and after the Spring Festival in these
years. The changes resulting from reduced anthropogenic activities during the Spring Festival holidays in 2019
were used as reference to separate the lockdown effect from the overall reduction during the period including
both the Spring Festival and the lockdown in the winter of 2020. We concluded that the use of 30-days averages
leads to underestimation of the Spring Festival effect and overestimation of the COVID-19 lockdown effect and
that for more reliable estimates shorter periods should be used. Therefore, in the current study, weekly maps of
tropospheric NO, vertical column densities (NO, TVCDs) were produced as a compromise between increased
time resolution, showing the progressive decrease of the concentrations, and data quality. In Fan et al. (2020a)
we concluded that the TROPOMI SO, data showed the reduction of SO, but the signal was too noisy to deduce a
clear quantitative effect, while we also showed that the lockdown did not have a clear effect on the CO TVCDs
(except in the south of China). Therefore, and because of the interactions between NO,, O3 and aerosols, the
current study focuses on these three species, using both satellite data and ground-based data from air quality
monitoring stations. Instead of the 26 provincial capitals, 11 areas in different parts of China were selected where
satellite data showed large changes in the NO, TVCDs.

When the lockdown measures were gradually relaxed, the emissions and thus air pollution increased. Several
studies reported that air quality was “back to normal” after 40 days (Bauwens et al., 2020; Filonchyk et al., 2020;
Wang and Su, 2020). In the current study we address the question what is “normal”, using satellite observations
over the last decade over selected regions, extending to 16-20 weeks after the 2020 Spring Festival. In addition
to satellite data, we use ground-based observations from the Chinese air quality monitoring network providing
detailed information in different regions, and compare those for 2020 with similar observations in the last 5 years
(2015-2019). The reason for this study is the gradual decrease of NO, TVCDs and AOD during extended periods
in the last decade, as mentioned above, in response to policy measures by the Chinese Government to reduce
emissions and improve air quality. In the estimates of the lockdown effects on air pollution such trends were
accounted for by comparison of 2020 with the previous year or years. However, the NO, TVCDs in early 2020,
before the Spring Festival, were much lower than those in 2019 and the question arose whether the trends
derived in earlier studies were continued in more recent years. In other words, how well can the expected
baseline concentrations, serving as reference to determine the reduction of the concentrations during the
lockdown period with respect to the “normal” situation, be determined?

Another question was whether air quality (AQ) was really improved, in spite of the enormous reduction of NO,
as observed by satellites and confirmed by ground-based monitoring networks. As discussed above, in response

to the reduced NO; concentrations shifting the oxidizing capacity, surface O3 concentrations increased, and also
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aerosol concentrations were affected, or even increased over the NCP. Taking into account the different behavior
of NO», O3 and PM; 5, the question arose what the effect of the lockdown was on the air quality, as expressed by
the air quality index and how AQ or AQI reacted to the gradual release of the socio-economic restrictions.

The objectives of the current study are thus (1) to extend the time series from previous studies to evaluate
whether earlier trends continued and can be used to determine baseline concentrations; (2) to determine whether
the air quality was indeed improved as much as anticipated from the reduction of NO, TVCDs deduced from
satellite observations; (3) to evaluate whether the pollutant concentrations had returned to normal levels during
the study period of 16-20 weeks after the COVID-19 outbreak, i.e. during the gradual relaxation of the lockdown
measures when socio-economic life returned to normal. (4) during these 19 weeks, two significant events
occurred in China: the Tomb Sweeping Festival (4-6 April) and the May holidays (1-5 May). In addition the
Party Congress took place in Beijing (21-28 May). How did these events influence the air quality?

These objectives are addressed by studying satellite measurements of NO, TVCDs and ground-based monitoring
data of PM2s, NO», and O3, and the air quality index (AQI). Differences between satellite observations and
ground-based monitoring NO, data are discussed based on weekly time series during early 2020. Time series of
monthly averaged NO, TVCDs for the period 2011-2020 are used, and weekly averages in 2020. The study
focuses on 11 regions in China, mainly around provincial capitals, selected based on the NO, TVCD levels at
about 3 months after the 2020 Spring Festival. It is noted that the methodology and part of the ensuing results
have generally applicability and do not only apply over China.

2. Methods
2.1 Study area

In the current study we focus on the part of mainland China east of the HU line (Figure 1), further referred to in
this paper as east China, where 94% of the Chinese population lives (Chen et al., 2016). This part of China is one
of the most polluted regions in the world, for which the air quality was much improved during the COVID-19
lockdown. To monitor the rebound of the concentrations when the lockdown measures were gradually released,
maps were used of weekly-averages of NO, TVCDs derived from TROPOMI (see Sect. 3.1.2, Figure 5) and
their differences with respect to week 0, i.e. the Spring Festival week from 25 to 31 January, 2020 (week
numbers are listed in Table A1, difference maps are presented in Figure A3). The difference map for week 12 is
shown in Figure 1 (week 12 was somewhat arbitrarily selected at the end of a period of 5 weeks when
concentrations seemed to be stabilized and undisturbed by other festivals, as discussed in Sect. 3.1.2). The
yellow background in this map indicates no changes with respect to week 0, red an increase and green a decrease
of the NO, TVCD. Based on the occurrence of a strong increase or decrease, 11 regions were selected for the
study on regional differences in which satellite data are complemented with ground-based data. The names of the
regions shown in Figure 1 are listed in Table 1, together with their geographical locations. These regions include
well-known centers such as the Beijing-Tianjin area, Shijiazhuang in west Hebei and Jinan in Shandong, all in
the North China Plain (NCP), Shanghai in the Yangtze River Delta (YRD), Guangdong in the Pearl River Delta
(PRD), Chongqing and Chengdu, and Wuhan. Each region includes a large city for which monitoring data are
available for comparison with the satellite data (Fan et al., 2020a). The selected regions provide a reasonable
geographical spread across the study area with the NCP, the YRD and the PRD, as well as mountain areas with
large basins such as the Chongqing/Sichuan and the Guanzhong Basins, all with high pollution levels, high



160 population density and high level of industrialization, but different climatological and meteorological influences

on air quality.

105°E 115°E 125°E 135°E

r OB ] Y VO o O I I PR O O T Y B O OO (A (xR ardTO O O  W T [  (

N

50° N

Latitude
40° N

pa b gl goga il g gg gl gogog o gy .y 5 Fop 5 g g2 gy oy

30°N

T & 3t 3 0L 128 I gy e | LI B B 8 T & ] adF bl
I | | T I I I

20° N

| S by Vo S (e At (Rt e e N | [T R i i [T et K Bt i e e e B B i |

Longitude

NO, trop. VCD [10"° molec./cm?|
N .

-8 -6 4 -2 -1 1 2 4 6 8

165 Figure 1. Study area showing the NO2 TVCD difference map for week 12 (i.e. NO2 TVCD for week 12 minus NO2 TVCD
for week 0). The 11 focus regions are indicated with numbers, corresponding to their names and coordinates which are listed
in Table 1. The black diagonal line is the Hu line (Chen et al., 2016).

Table 1. Focus regions of the current study. The locations corresponding to the numbers in the first column are shown on the
map in Figure 1. Coordinates in columns 3 and 4 are the left upper corner of each region, the size around the corner of each

170 region is indicated in columns 5 and 6. Regions are indicated with the name of the central city.
Nr Name Longitude(®) Latitude(®) A Lon(°) ALat(°)
1 Beijing-Tianjin 108.0 35.0 1.5 1.5
2 Shijiazhuang 114.0 39.0 1.5 2.5
3 Jinan 117.0 37.5 2.0 1.5
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4  Zhengzhou 112.0 355 2.0 1.5
5 Shanghai 119.5 32.0 2.0 2.0
6 Guangzhou 112.5 24.0 2.0 2.0
7 Nanchang 115.0 29.0 1.5 1.5
8 Wuhan 113.0 31.5 2.0 1.5
9 Xi’an 108.0 35.0 1.5 1.5
10 Chongqing 106.0 30.0 1.5 1.5
11 Chengdu 103.0 31.5 2.0 1.5

2.2. Satellite data

Two satellite products were used in this study, i.e. the tropospheric NO; vertical column densities (NO, TVCDs)
from OMI and TROPOMI. These products are briefly discussed in the following sub-sections. The OMI NO,
TVCDs were used for time series analysis over the period 2011-2019, during most of which TROPOMI data
were not yet available. The TROPOMI NO, TVCDs, with better spatial resolution, were used to visualize
weekly averaged spatial variations and calculate time series over selected regions, which together show the
evolution of NO, TVCDs over the study area. OMI and TROPOMI products thus provide complementary

information for different periods of time and were used for different purposes.

2.2.1 OMI

The Ozone Monitoring Instrument (OMI) on board NASA’s Aura satellite was launched in July 2004 (Schoeberl
et al., 2006; Levelt et al., 2018). Aura is in a sun-synchronous polar orbit with an equator-crossing time at 13:30
local time (LT). The OMI instrument employs hyperspectral imaging in a push-broom mode to observe solar
radiation backscattered by the Earth’s atmosphere and surface at 740 wavelengths over the entire range from 270

to 500 nm with a spectral resolution of about 0.5 nm (https://projects.knmi.nl/omi/research/instrument/index.php,

last access: 30 January 2021). With a 2600 km wide swath, OMI provides daily global coverage in 14 orbits. In
this study the OMI Quality Assurance for Essential Climate Variance (QA4ECV) version 1.1 product
(doi:10.21944/qadecv-no2-omi-v1.1) with a 13 x 24 km? spatial resolution is used (Boersma et al., 2018). This
product was validated by, e.g., Lorente et al. (2017) and Zara et al. (2018). The measurement of NO» is one of
the explicit objectives of the Aura OMI mission. The monthly mean tropospheric NO; column density data are
derived from satellite observations based on slant column NO; retrievals with the DOAS technique and the
KNMI combined modelling/retrieval/assimilation approach (Boersma et al., 2011). NO, TVCDs for the years

2011 - 2019 were downloaded from the following website: http://www.temis.nl/airpollution/no2.html (last

access: 30 January 2021).

2.2.2 TROPOMI

TROPOMI is a passive hyperspectral nadir-viewing imager on board the Sentinel-5 Precursor satellite (also
known as Sentinel-5P) launched on 13 October 2017 (Veefkind et al., 2012). Sentinel-5P is a near-polar orbiting
sun-synchronous satellite flying at an altitude of 817 km in an ascending node with an equator crossing time at

13:30 LT and a repeat cycle of 17 days. The swath width is approximately 2600 km, resulting in daily global
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coverage, with an along-track resolution of 7 km (Veefkind et al., 2012). TROPOMI products used in this study
are L3 off-line (OFFL) version products (see http://www.TROPOMI.eu/data-products/ for more detail), in

particular tropospheric NO, vertical column density data for the period around the 2020 Spring Festival. The

spatial resolution at nadir for most products used in this study is 1 km (https://developers.google.com/earth-

engine/guides/scale; last access: 30 January 2021).

The operational validation results are reported every 3 months at the SSP-MOC-VDAF website (http:/mpc-
vdaf. TROPOMI.eu/, last access: 30 January 2021). The TROPOMI/S5P tropospheric NO, column is
operationally validated by the SSP-MPC-VDAF (S5P-Mission Performance Centre — Validation Data Analysis

Facility) using the Pandora NO; total columns from the Pandonia Global Network (PGN). The comparison

shows a negative bias of roughly 30%.

2.3 Ground-based data

The ground-based data used in this study were downloaded from http:/www.pm25.in/ (last access: 30 January

2021), which is the National Real-time Air Quality Publishing Platform public website for air quality monitoring
data maintained by the China National Environmental Monitoring Center (CNEMC) of the Ministry of Ecology

and Environment of China (MEE, see http://www.mee.gov.cn/, last access: 30 January 2021, for more detail).

This website provides PMa.s, PMjo, SOz, NO,, O3, and CO hourly and 24-hour moving averages for each site or
city. Measurement techniques used at the stations, reliability of the data and quality control were briefly
described by Silver et al., (2018) and Zhai et al., (2019); see also Ministry of Environmental Protection of
People’s Republic of China (MEE, 2012). The data from these websites are provided by local governments and
have been used in several studies related to air pollution, air quality, and other aspects in China (Xue et al., 2020;

Fan et al., 2020a; Fan et al., 2020b) (http://www.pm25.in/sharer, last access: 30 January 2021). For the current

study, we collected hourly PM> s, NO, and O3 data for the large cities in the 11 study regions indicated in Sect.
2.1 (Figure 1, Table 1), for up to 20 weeks after the Spring Festival during the years 2015-2020. In the current
study, the data collected at different locations in each city were averaged to get a spatially representative number

for the whole city, as daily (24 h) averages which subsequently were averaged to weekly values.

3. Results

3.1 Satellite Observations

3.1.1 NO: TVCD time series and trends for different regions between 2011 and 2019
3.1.1.1 Monthly mean NO: TVCD time series

Time series of monthly mean TVCDs for tropospheric NO; derived from OMI data over the 11 regions defined
in Table 1 are presented in Figure 2, for the period from January 1%, 2011 until December 31%, 2019. The NO;
TVCDs varied strongly by region, with the highest TVCDs in Shijiazhuang, Zhengzhou and Jinan (in 2012),
although the relative differences changed from year to year. For each region, the time series show the strong
seasonal variations with sharp peaks in the winter and shallow minima in the summer. The winter TVCD
maxima were about a factor of 5 larger than the summer minima, with the ratio varying somewhat by region,

with higher values in Shijiazhuang (7.2) and Zhengzhou (6.0), and lowest values of about 2.5 in Guangzhou and
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Chengdu. These numbers are in reasonable agreement with the factor of 3 reported by Shah et al. (2020) for the
NO; TVCD averaged over central-east China.

On a monthly scale, the TVCD maximum varies a little between regions and years, but in general the peaks
occur in the winter. For the study of lockdown effects (Sect. 3.1.2), the fast decrease of the NO, TVCDs from
December/January toward the summer implies that, if there would be no restrictions, the NO, TVCDs would
have decreased by a factor of 2.5-7, depending on the region, from the pre-lockdown period to the time when all
measures were released. This needs to be taken into account in any study on the effect on air quality during

different stages of the COVID-19 lockdown.

Monthly mean NO, TVCD (103molec/cm?)
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Figure 2. Time series of monthly mean NO2 TVCDs derived from OMI data, for 11 regions from January 2011 to December
2019. The NO2 TVCDs are plotted on a logarithmic scale to better visualize the differences between different regions as well
as the gradual variation of the TVCDs during the summer months.

3.1.1.2 Trends of annually averaged tropospheric NO2 TVCDs

Figure 2 shows an overall decrease of the winter-peak TVCDs between 2012 and 2017, whereas in the years
2017-2019 they are of similar magnitude, i.e. the decrease seems to have come to a halt. Similar behavior is
observed in the summer months. However, the time series suggest that the period of decreasing NO, TVCDs and
the occurrence of the maximum and minimum values was not the same for all regions. To further investigate
trends in different regions and the differences between them, the time series were de-seasonalized using a
centered moving average with a period of 12 months and, to reduce effects of variations due to other influences
than the seasonal effects (e.g., due to meteorological conditions), the de-seasonalized data were averaged to
annual mean NO, TVCDs. Time series of annual mean NO, TVCDs are presented in Figure Al. The data in
Figure Al show a grouping with high NO, TVCDs in the north of the study area and Shanghai, and a clear
separation from the other regions where the TVCDs are lower, as also expected from the maps in, e.g., Figure 4a.
Another noticeable difference between the regions is the clear distinction between the temporal behavior in the
north and in the south. In each of the regions in the north, i.e. in the NCP (Shijiazhuang, Beijing, Jinan and
Zhengzhou), the TVCDs were similar in 2011, 2012 and 2013; from 2013 they decreased exponentially until
2018. In the other regions, i.e. Shanghai and those in the south and west, the TVCDs decreased exponentially
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from 2011 until they reached a minimum value in 2015 or 2016 after which they remained low (e.g., Shanghai,
Nanchang, Xi’an) or even increased somewhat (Chongqing). Overall, after 2016 the TVCDs in these regions
fluctuated from year to year but remained within 10% of the values in 2015 (except in Chongqing). In view of
these differences, trend lines to the annual mean NO, TVCD data in regions in the north were fitted for the years
2013-2018, whereas for the other regions trend lines were fitted for the years 2011-2015 or 2016. . The trend
lines were added to Figure Al and the result is presented in Figure 3. The trend lines were plotted for the whole
period 2011-2019, rather than only for their period of validity, to illustrate that beyond the fit interval the
TVCDs do not follow the trend for the region under consideration and level off as discussed above. The trends
are presented in Table 2, where the trend (year™!) describes an exponential decrease of the TVCDs following the
relationship y=a-e™, where y= TVCD, a is the intercept (TVCD in first year of the fitting period, i.e. yearl =
2011 or 2013), b is the trend (year) and t is the number of years after yearl. Coefficients of determination (R?)
are all high and the trend lines in Figure 3 show the good fit.
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Figure 3. Time series of annual mean NO2 TVCDs, derived from de-seasonalized monthly OMI data, for each of the 11
regions, plotted on a semi-logarithmic scale and fitted exponential trend lines (solid lines, y = a-€®). The periods and trends
(b) are listed in Table 2. The data points for each region are connected with dotted lines for easy identification. Note that the
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trend lines strictly apply only to the different periods as described in the text and listed in Table 2, but were plotted over the
whole period 2011-2019 to demonstrate the deviations from the trends beyond the period of validity.

Table 2. NO2 TVCD trends determined for the period indicated in the 3rd column. Trends are determined using exponential

fits (y = a-e) to time series of the annual mean NO2 TVCDs as shown in Figure 3 and described in the text.

Number Region Period Trend (year™) R?
1 Beijing-Tianjin 2013-2018 -0.08 0.99
2 Shijiazhuang 2013-2018 -0.11 0.93
3 Jinan 2013-2018 -0.11 0.93
4 Zhengzhou 2013-2018 -0.12 0.84
5 Shanghai 2011-2016 -0.09 0.94
6 Guangzhou 2011-2015 -0.06 0.98
7 Nanchang 2011-2015 -0.06 0.80
8 Wuhan 2011-2016 -0.08 0.96
9 Xi’an 2012-2016 -0.11 0.99
10 Chongqing 2011-2016 -0.08 0.90
11 Chengdu 2011-2016 -0.05 0.88

3.1.1.3 Tropospheric NO: TVCD time series during the winter months

Having established that the annually averaged TVCDs decrease exponentially during a certain period of time and
change little during more recent years (after 2015/2016, in the southern regions) or the last year (2019, in the
northern regions), we need to determine whether these conclusions also apply to shorter periods of time during
which effects of the lockdown on the concentrations of atmospheric trace gases are studied. As a compromise
between high time resolution and reducing meteorological effects on concentration differences, monthly
averaged NO, TVCDs were selected and plotted as time series for the 11 study areas. Because in China the
lockdown started in the winter and ended on April 8, 2020, and because the signals in the summer months are
relatively weak, this was only done for the winter months. Furthermore, to exclude the effect of the Spring
Festival on the NO, TVCDs, January and February were not used. This left November, December, March and
April for 2011-2019 and the results are presented in Figure A2. The data in Figure A2 show the overall decline
of the NO, TVCDS, following the yearly trends and variations of the annual mean TVCDs in Figures Al and 3
and the differences between the 11 regions for different periods. Overall, the periods when the NO, TVCDs
decreased are similar to those indicated in Table 2. For Beijing and Shijiazhuang a strong minimum is observed
in 2014 which may be associated with emission reduction because of the Asia-Pacific Economic Cooperation
(APEC) meeting in Beijing in November 2014 and the China Victory Day Parade in September 2015.
Interannual variability is stronger in the monthly mean data than in the annual means, as expected. Because of
these variations, trend lines for monthly mean NO, TVCDs were not computed. The main message is that the

TVCDs follow the tendencies in the annual means with leveling toward the end of the study period.
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3.1.2 Evolution of NO: spatial distributions after the 2020 Spring Festival

For the evaluation of the spatial distributions and the short term time series of NO, TVCDs over small regions,
TROPOMI data were used because of their improved spatial resolution as compared to OMI data (Sect.. 2.2).
NO; TVCDs derived from TROPOMI observations, averaged over 30 days before and after the 2020 Spring
Festival, are presented in Figure 4. Figure 4 shows the large difference in the NO> TVCDs before and after the
2020 Spring Festival, similar to those used in Fan et al. (2020a) for all China to illustrate and analyze the effect
of the COVID-19 containment policy measures. Fan et al. (2020a) concluded that the use of 30-days averages
leads to underestimation of the Spring Festival effect and overestimation of the COVID-19 lockdown effect and
that for more reliable estimates shorter periods should be used. Therefore, in the current study, weekly NO,
TVCD maps were produced as shown in Figure 5. Here week numbers relate to the Spring Festival which was
on Saturday January 25, 2020, i.e. week 0 is January 25-31, week 1 is February 1-7, etc. (see Table Al for an
overview of week numbers and dates). Weeks -1 to -3 are included as references for the NO, TVCDs during the
period before the Spring Festival. The comparison of the monthly TVCDs in Figure 4 with the weekly TVCDs in
Figure 5 (top row, weeks -3 to -1) clearly illustrates the advantage of using better time resolution to show the
advancing decline of the NO, TVCDs in east China before the Spring Festival. The first lockdown in Wuhan was
on 23 January, toward the end of week -1 and therefore the decline was mainly due to the decreasing economic
activity associated with the Spring Festival. The combined effects of the Spring Festival and progressive
lockdown in east China (Bao and Zhang, 2020) is visible in weeks 1-3, when the NO, TVCDs were lowest. The
slight recovery in week 2 in the south of the study area may reflect the progressive nature of the lockdowns in
different areas in China, i.e. toward the end of the Spring Festival holidays when people travelled back to their
work places when it was still possible.

The maps in Figure 5, and the difference plots with respect to week 0 in Figure A3, show that overall the NO»
TVCDs remained low over the whole study area during the first two weeks. Also in week 3 the NO, TVCDs
were low, although some increase occurred over industrialized and populated areas north of the Yangtze River
and in the Guangzhou area, which intensified every week from week 4 until week 8. In week 8 the NO, TVCDs
reached high values and the spatial distributions and concentrations changed little during the next 5 weeks,
except in week 10 when the NO, TVCDs were lower (although not in the YRD and Guangzhou). These reduced
concentrations may be a sign of reduced emissions during the Tomb Sweeping Festival on 4-6 April. In week 13
the NO, concentrations were substantially lower than in the weeks before, and this continued in week 14. These
weeks encompass the May Festival holiday (1-5 May), another very large national festival in China when many
people travel home to their families: the associated change in socio-economic activities may explain the lower
NO; concentrations during that time. After week 14 the NO, TVCDs increased in the southern provinces like
Hunan and Guizhou as well as in the east around Shanghai, Jiangsu and Shandong, whereas in the northeast the
NO; TVCD:s first decreased, then decreased in week 18. Overall, the spatial patterns during these weeks were
similar but the TVCDs changed, likely due to changes in economic activity and meteorological influences, but
they did not reach values similar to those before the Spring Festival. However, this would not be expected as

discussed in Sect. 3.1.1.
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Figure 4. NO2 tropospheric vertical column densities derived from TROPOMI data over east China, averaged over 30 days
before (a) and after (b) the 2020 Spring Festival. The 2020 Spring Festival was on 25 January 2020 and thus the 30-days
345 period before started on 26 December and the 30-days period after ended on 24 February 2020.
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Figure 5. Maps of weekly averages of NO2 TVCDs derived from TROPOMI data, for weeks -3 to -1 and week 0 (top row)
and weeks 1-19 in the following rows. Note that week number refers to the 2020 Spring Festival, i.e. week O starts on
Saturday 25 January 2020 (see also Table Al).

3.2 Effects on air quality: ground-based observations
3.2.1 Time series of air quality index for 11 regions

The air quality index (AQI) is based on the mass concentrations of PM»s, PMio, NO,, SO,, CO and Os as
described in Appendix A. AQI is determined by only one pollutant, i.e. the pollutant with the highest AQI. Time
series for the AQI in the 11 cities identified in Table 1 were plotted for the first 16 weeks (weeks 0-15) after the
Spring Festival in 2020. Tianjin was added as a second megacity in the metropolitan agglomeration because of
its potentially different air quality due to large industrial activities as opposed to the capitol city (Beijing). AQI
time series for the same weeks in the five previous years (2015-2019) were plotted to form a plume which serves
as reference for the 2020 time series. The results are presented in Figure A4 which shows that there are large
variations between the years and there is no specific ordering indicating a systematic temporal variation
(tendency). Hence the plume is representative for the range of variations that can be expected in 2020 from other
factors influencing the AQI than the lockdown, such as meteorological factors (provided that 2020 is not an
exceptional year in regard of these other factors). It is noted, that the AQIs are weekly averages over all

measurements in each city, created from 24-hour averages at each site.
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Figure A4 shows the similarity between the AQI time series in the five cities in the NCP (Beijing, Tianjin,
Shijiazhuang, Jinan and Zhengzhou), for the cities Shanghai, Guangzhou and Wuhan, and for Nanchang, Xi’an,
Chongqing and Chengdu. In view of these similarities, one city was selected to represent each group for further
analysis, i.e. Shijiazhuang represents the first group (Group 1), Wuhan represents Group 2 and Chonggqing
represents Group 3. It is noted that in the selection of these cities not only the AQI was considered but also time
series of 6 individual pollutants (see below). The AQI time series for these three cities are included in Figures 6-
8.

In 2020, the AQI in the cities in Group 1 fluctuated in the first 3 weeks and then stayed low until week 9;
increased toward the plume in week 10 and then stayed at the bottom of the plume. Except in the first 3 weeks,
the AQI is smaller than 100, indicating good air quality. For Group 2, the AQI fluctuated and the values indicate
excellent to good AQ until week 10 when the AQI moved into the plume or occasionally above (Guangzhou) but
still indicating good AQ. For Group 3 the AQI indicated good AQ, except in Xi’an (moderate) and decreased
somewhat (Xi’an became “good”) but remained in the plume throughout the whole study period. In other words,

the AQI did not indicate better AQ for these cities in response to COVID-19 containment measures.

3.2.2 Time series of aerosols and trace gases affecting air quality

With the AQI determined by the pollutant with the highest AQI, which may not necessarily be the species
observed from satellites such as NO,, the behavior of individual pollutants contributing to the AQI will be
considered using time series similar to those for the AQI. As discussed in the Introduction, we focus here on NO»,
O3 and PM; s as the species which were most affected by the lockdown. Time series of the weekly averaged
concentrations of these species in Shijiazhuang, Wuhan and Chongqing are presented in Figures 6, 7 and 8,
respectively. Note that for some species the vertical scales may be different between the three cities. The
concentrations during the five reference years (2015-2019) (further referred to as the plume) are used as
reference to determine how the concentrations in 2020 were influenced by the lockdown. Overall, the
concentrations of most pollutants in the plume were higher in Shijiazhuang than in Wuhan and Chongqing. This
applies to PM» s (as well as for PM;o, SO, and CO which are not shown here), but not for NO, and O3 for which
the concentrations in the plumes in these three cities were similar. This is remarkable because the satellite NO;
TVCDs in 2016 were about a factor of 3 higher in Shijiazhuang than in Wuhan which in turn were about 30%
higher than in Chongqing (Figures 2 and 3) whereas in 2019 the NO, TVCDs were a factor of 2.3 higher in
Shijiazhuang than in the other two regions where the TVCDs were similar. However, for an adequate
comparison between satellite data and surface concentrations, and thus effects on AQ, factors influencing the
relation between near surface concentrations and TVCDs need to be accounted for, such as meteorological
factors driving vertical mixing. Also long-term trends, inter-annual variations, seasonal variations, local
emissions and meteorological effects influencing (photo) chemical reactions determining the overall
concentrations need to be considered. Such detailed quantitative comparison is however out of the scope of the
current study; a qualitative comparison between TROPOMI-derived NO, TVCDs and surface concentrations of
NO, will be presented in Sect. 3.3.

In all three cities the surface NO» concentrations are overall decreasing during the study period, following the
seasonal variation which is also observed in the satellite data (Figure 2). However, in the satellite data the

decrease is largest when concentrations are highest but, as discussed above, for the ground-based data the
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concentration differences between the three cities are not large. Yet, the seasonal effect seems more pronounced
in Shijiazhuang than in Wuhan than in Chonggqing. This is also different from the satellite data (see Figure 2) and
may be a life time effect related to lower temperatures in Shijiazhuang than in Wuhan and Chongqing.

Another difference between the three cities is the effect of the lockdown on the evolution of the surface NO,
concentrations. In Shijiazhuang the plume decreased after week 3 whereas the 2020 concentrations increased
steadily from week 0 and the curve joined the plume in week 6 although remaining near the bottom of the plume.
In Wuhan the 2020 concentrations were far below the plume (20 pgm vs 40-60 pug-m) until week 9 after
which they suddenly increased in week 10 to remain just below the plume (~40 pg-m=). In Chongging the NO»
concentrations were low (20 pg-m) during the first 3 weeks, then increased and remained close to the plume in
weeks 6 to 9 and merged into the plume from week 10.

When NO; concentrations decreased, O3 concentrations increased as observed for all three cities. However, there
was no substantial difference between the temporal variation of the O3 concentrations in 2020 and the other years.
The 2020 concentrations were inside the plume during the whole study period and no anomalous behavior was
observed in spite of the reduced NO, concentrations during the first 6-10 weeks. Rather, in Shijiazhuang and
Chonggqing both the NO, and O3 concentrations were low in the plume. The O3 concentrations in Shijiazhuang
and Wuhan were similar and a bit higher than in Chongqing.

For aerosols the situation was different than for the trace gases. The data in Fig 6 show that in Shijiazhuang
PM, s was relatively high during the first 3-4 weeks during all 5 years, and those in 2020 were well inside the
plume. Thereafter the PM,s concentrations dropped and, apart from some fluctuations, remained low (on
average about half of those in the first weeks) and those in 2020 were almost every week near the bottom of the
plume. It is noted that the PM> 5 concentrations in 2017 and 2019 were substantially higher than in other years. In
contrast, the 2020 concentrations of PM> s in Wuhan were lower in weeks 2 and 3 than in any other week during
the study period and also lower than in all 5 years before (about 1/3 of the plume average). In Chongqing the
PM, s concentrations were well inside the plume (around the average) and the plume decreased gradually as
expected from the common seasonal behavior of PM; 5. Hence in Chongqing the COVID-19 lockdown measures
did not have an evident effect on the aerosol concentrations, in spite of the strong reduction of NO;
concentrations. The PM, s concentrations in week 0 were 150 pg m™ in Shijiazhuang, 50 ug m™in Wuhan and

40 pg m in Chongging.
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Figure 6. Time series of the concentrations of NO2, Oz and PM2.5 in Shijiazhuang for weeks 0 to 15 starting from the Spring
Festival in 2020 (red line), together with time series for these pollutants for the same weeks in 2015-2019. See legend for
identification. Rectangles in the NOz time series were added for easy identification of the Tomb Sweeping festival (4 & 5
April, in week 10; red) and the May Festival (1-5 May, in weeks 13-14; black) which are discussed in the text. The Spring
Festival date and thus week 0 is determined by the Lunar Calendar, therefore these dates apply only to 2020 and in the other
years they may fall in different weeks.
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Figure 8. As Figure 6, but for Chongqing.
3.3 Comparison of satellite and ground-based weekly observations in 2020 (NO2)

For the comparison of the temporal evolution of the TROPOMI NO, TVCDs (Figure 5) to ground-based

observations (Figures 6-8), the satellite data over each of the 11 selected regions were spatially integrated and
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also in time, to weekly values. The results for the three representative regions discussed above, i.e. Shijiazhuang,
Wuhan and Chongqing, are plotted in Figure 9a as time series for week -3 to week 20 (where week 0 is the
Spring Festival in 2020, as above and in Table Al). Beijing data, which are discussed below and presented in
Figure 10, are included as well. For easy comparison, the weekly averaged concentrations of NO, in 2020 are re-
plotted from Figures 6-8 and 10, in Figure 9b, and the time series was extended to cover the same period as the
satellite data. The data in Figures 9a and 9b represent different quantities, i.e. column integrated vs near-surface
local concentrations of NO, which experience different influences of, e.g., meteorological conditions (cf. Sect.
4.2) and thus cannot be quantitatively compared. Hence the comparison here is merely meant to qualitatively
discuss the use of satellite data to evaluate the reduction of concentrations near the surface, where they are most
important for air quality.

The data in Figures 9a and 9b show that overall the temporal behavior of the satellite NO, TVCDs and the
surface NO» concentrations in 2020 was similar, with a strong drop before the Spring Festival (for the ground-
based data continuing another week in Shijiazhuang and Beijing), followed by an overall increase. However,
where the satellite data show different concentrations before the Spring Festival, the ground-based
concentrations were similar, except in Shijiazhuang where they were a factor of 2 higher, and the factors by
which the concentrations were reduced are also different. The satellite data for Shijiazhuang show a reduction to
a value of 33% from the maximum before the Spring Festival, whereas the ground-based data show a reduction
to 24%, For Beijing these values are 55% and 35 %, for Wuhan they are 77% and 40% and for Chongqing they
are 53% and 43%. Hence, overall, the reductions derived from satellite data are stronger than those from local
monitoring measurements. However, effects of varying meteorological conditions are not included in these
estimates and these effects may be different for satellite observations than for local ground-based measurements.
It is further noted that these numbers reflect the combined effect of the Spring Festival and the COVID-19
lockdown.

After the Spring Festival, both the satellite and ground-based data show that the concentrations increased, with
similar rates in Shijiazhuang (factor 2 between week 0 and week 9) but with much stronger fluctuations in the
surface concentrations. However, in other regions the different types of observations show quite different
behavior. For instance, in Chongqing the ground-based observations behaved similar to those in Shijiazhuang,
whereas the satellite observations show a very small increase. The reverse is true for Beijing, with a rather small
increase in the surface concentrations as opposed to a larger increase in the satellite observations. In Wuhan,
both types of observations show the strong effect of the strict lockdown with NO, concentrations remaining near
the lowest values until week 10. However, after the end of the lockdown, the satellite data in Wuhan show a very
modest increase whereas the ground-based data show a sudden increase by about a factor 2. Also in other regions,
post lockdown large differences are observed in the satellite-derived and ground-based time series.

It is noted that the earlier observed separation in behavior of long-term time NO, TVCD series between the north
and the south of the study area (Section 3.1.1) is also reflected in the weekly time series in early 2020, i.e. there
is a separation between the NO, TVCD values over Beijing and Shijiazhuang (north) and those over Wuhan and
Chonggqing (south). This separation is also reflected in the temporal behavior, but to a lesser extent. However,
although in the ground-based time series also a separation can be observed, it is rather due to stronger

industrialization (Shijiazhuang and Chongqing) than in the capitol city of Beijing. The time series in Wuhan may
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have been influenced by the strict lockdown during 10 weeks, whereas after its release many activities suddenly

increased which is reflected in the doubling of the ground-based NO, concentrations.
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Figure 9. Time series of weekly averages of (a) TROPOMI derived NO; TVCDs (10'® molec./cm®) over
Shijiazhuang, Wuhan, Chongging and Beijing, for weeks -3 to 19 (b) surface concentrations of NO, (ug/m?)

over these cities, plotted together in one plot from Figures 6-8 and 10.

4. Discussion

The satellite data on tropospheric NO, VCDs and ground-based monitoring data for the concentrations of NO»,
03, PM» 5 and AQI all indicate the different behavior of atmospheric composition in the north and south of China
and the selected regions have been grouped to discuss the characteristic behavior within each group. This relates
both to long-term variations (trends in the satellite data) and the influence of the COVID-19 lockdown. Hence
the answers to the questions we set out with for this study at the end of Sect. 1 will be different for each of the

regional clusters which emerged in the course of the study.

4.1 Estimation of lockdown effects: effects of temporal resolution

Many studies on the COVID-19 lockdown effect on atmospheric concentrations are based on comparison of a

period before and after the start of the lockdown or on comparison with the same period in previous years. The
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lockdown occurred during the Spring Festival holidays during which the concentrations of NO,, often used in
studies on the effect of the COVID-19 lockdown, were substantially reduced. Hence, in many studies the Spring
Festival effect was separated from the total effect to determine the effect of the lockdown only. One way to do
this was presented in Fan et al. (2020a) for tropospheric NO, VCDs. In contrast, AOD was observed to increase.
The AOD increase was anticipated to be due to meteorological factors conducive to the formation of haze. Also
the ratio of the PM» s concentrations before the Spring Festival to those thereafter was higher than in previous
years (in Beijing PM, 5 even increased by a factor of 2.2) and these ratios were higher in north China than in the
south. In their estimates of the lockdown effects from satellite data, Fan et al. (2020a) (and others) used averages
over the months before and after the Spring Festival. The current study clearly shows that during the weeks
before the lockdown the NO, TVCDs gradually decreased and varied also after the lockdown. The post Spring
Festival variations are also observed in the surface concentrations of NO, which varied by more than a factor of
2. This also applies to aerosols, and to a lesser extend to Os. Hence the actual effect of the lockdown on the
concentrations of aerosols and trace gases will be influenced by the separation from the Spring Festival effect,
the temporal resolution chosen for the data analysis, as well as the correction for meteorological and other
factors such as reduction of emissions and related concentration trends, as well as chemistry. The influence of
emissions and the impact of the lockdown on different economic sectors on NO, and aerosol concentrations was

discussed by Diamond et al. (2020).

4.2 Long term trends, trend reversal and meteorological influences on the estimation of lockdown effects

Decadal time series of monthly and annual mean NO, TVCDs for the 11 regions and the annual trends derived
from these were presented in Sect. 3.1.1 (Figures 2, 3 and Al, Table 2). For the calculation of the baseline
concentrations in 2020, i.e. the concentrations expected if there would not have been a lockdown, the seasonal
variation needs to be taken into account. However, monthly trendlines are difficult to determine with some
accuracy due to interannual variations and due to the Spring Festival effect which occurs at different dates in the
solar calendar. Therefore trends for January and February were nor considered. Furthermore, as Figures 2 and 3
show, the decline in the NO, TVCDs seems to level off in recent years, i.e. from 2015/2016 in the south of China
and possibly after 2018 in the north. The years when the trends were changing are similar for the monthly and
annual mean data. Hence the baseline could be determined using an average over the years after the trend change.
The uncertainty in these averages is about 10% (Figure 3). Ignoring the trend change, i.e. assuming that the trend
would continue to 2020, would result in an underestimation of the baseline for 2020. Extrapolation of the trend

for Wuhan to 2020 would result in an estimated baseline of 4.4x10'> molec-cm™ and for Chongqing 3.6x10'3
molec-cm, whereas using the average over 2016-2019 for 2020, i.e. assuming that the decrease has halted as
suggested by the data in Figure 3, would provide a baseline of 6.6x10'> molec-cm™ for Wuhan and 5.6x10'

molec-cm™ for Chongqing. In other words, ignoring the trend change would result in a baseline lower by about
35% and thus in an overestimation of the lockdown effect on the NO, TVCD. Similar considerations may apply
to Shijiazhuang, but considering that a change in the annual trend did not occur until 2018, the variation in
following years is difficult to estimate.

In view of this discussion, the use of a climatology over recent years for comparison with the 2020
concentrations may be a good strategy for regions in the south of China, whereas for the north, where

concentrations were decreasing until 2018, the climatological concentrations may be too high. The use of
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ground-based data leads to larger uncertainties. As the ground-based data in Figures 7 and 8 for Wuhan and
Chonggqing show, the NO, concentrations in the plumes vary strongly from week to week and the plume width is
therefore rather large, with an uncertainty which is much larger than the 10% uncertainty in the trend since
2015/2016.

Meteorological influences may be twofold. Meteorological conditions may be conducive of the formation of
haze in stagnant air as often observed in north China during the winter (e.g., Li et al., 2018; Wang et al., 2019;
Wang et al., 2018a; Wang et al., 2020a). On the other hand, large scale weather systems influence the transport
of air masses from different origins transporting either clean air or pollution contributing to local air quality (e.g.,
Wang et al., 2019; Li et al., 2018; Hou et al., 2020). Another aspect to be considered are the influences of air
temperature, humidity and radiation on chemistry, which affects NO,, O3 and aerosols, in particular for the
situation during the COVID-19 lockdown with the strong reduction of NO» concentrations. A reduction of NO;
(or NOx = NO + NO,, where NO is only a small fraction of NOy) leads to an increase in Os, as observed in the
ground-based data. The enhanced O3 concentrations result in the increase of the oxidizing capacity of the
atmosphere which in turn leads to the production of secondary organic aerosol (SOA) as explained in, e.g.,
Diamond et al. (2020) and Le et al. (2020). The increased aerosol concentrations result in the attenuation of solar
irradiation due to more scattering and absorption which in turn may further influence the meteorology (Zhong et
al., 2018) and photochemical reactions.

In view of the decisive role of meteorology in haze formation in north China (Le et al., 2020) it is surprising that
both Le et al. (2020) and Diamond et al. (2020) used meteorological data averaged over 1 month (February
2020). Haze occurs episodically and less than 25% of the episodes last longer than 4 days (Wang et al., 2018b;
Wang et al., 2020b).

4.3 Lockdown effect on air quality and rebound

The similarity in the temporal behavior of the air quality index (Figure A4) was the basis for the subdivision of
the regions in three groups. In Group 1 (NCP) the AQI fluctuated in the first 3 weeks and reached a peak value in
week 2, then remained low. The peak was highest (170, moderately polluted) in Beijing where it exceeded the
value of previous years. Obviously, this was due to a haze episode with strongly enhanced PM, s with respect to
the period before the Spring Festival (Fan et al., 2020a) and a concentration of ca. 140 pg-m=, almost double the
24-h  class 2 (for vcities) air quality standard in China specified in GB 3095-2012

(https://www.transportpolicy.net/standard/china-air-quality-standards/, last access 30 January 2021). In other

cities in Group 1 (not shown) the peak values were lower, decreased with distance to Beijing, and were also
lower than in 2017 and 2019. Only in Jinan and Zhengzhou the PM> 5 values were within the 24-h class 2 (for
cities) air quality standard. After week 3 the PM, 5 concentrations were within air quality standard limits and the
AQI was between 50 and 100 (good) and lower than in the previous years, for all cities in Group 1. However,
closer inspection shows that the Os concentrations exceeded the air quality standard of 100 ug-m= (1-hour mean
value) between weeks 5 (in the south of the NCP) and 7 (in the north). Furthermore, in all cities in the NCP the
O3 concentrations in 2020 were well inside the plume. Hence, in the NCP the strong emission reduction during
the lockdown and the strong decrease of NO, concentrations observed both from space and from the surface
monitoring network, were offset by the increase of other pollutants. Early in the lockdown the aerosol

concentrations were high due to meteorological conditions and complex chemical influences, and later the O3
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concentrations exceeded the limiting values. However, the latter were not reflected in the AQI, which followed
the variations in PM; s but remained low when O3z concentrations were high. In fact, for all cities in the NCP the
AQI was below or just inside the plume during the whole study period, whereas the NO, concentrations moved
into the plume toward the end, except in Beijing. The relatively low NO, concentrations might be expected based
on both the decreasing trends in the NO, TVCDs until 2018 in the north of China and from the seasonal decrease.
With these considerations, it is hard to determine whether the pollutant concentrations in the NCP returned to
their normal levels, which in regard of seasonal variations are expected to be lower than before the lockdown and
in regard of their decreasing trends are expected to be lower than in other years or, considering that the trends
level off, similar to those in the last couple of years.

For the Group 2 cities, Shanghai, Guangzhou and Wuhan, the AQI during the lockdown varied and AQ was
good until week 10, with the largest effect in Wuhan. NO, concentrations in Wuhan were very low with 20
pugm> during the first 9 weeks (3 times lower than the plume average). In Shanghai and Guangzhou the
concentrations were initially similar but increased slowly. In all three cities the NO; concentrations merged into
the plumes after week 10, more or less coincident with the end of the lockdown after 76 days, on April 8, 2020.
PM, s was not reduced as much as NO» but was also below the plume and overall traced the NO, concentrations,
moving into the plume after week 10. Being further south than the NCP, O3 concentrations were close to the air
quality standard of 100 ug-m= and exceeded that limit around week 5, as in the NCP. Hence, also in the Group 2
cities the reduction of other pollutant concentrations was offset by the increase of O3 which is not reflected in the
AQI. The rebound at the end of the lockdown period is clear with all indicators returning to levels similar to
those in the earlier years, i.e. inside or close to the plume.

Group 3 includes three cities in the Sichuan/Chongqing and Guanzhong Basins and Nanchang. In these cities the
AQI was not substantially affected by the lockdown, except in the very beginning when it was low inside (or
even below) the plume but overall remained inside the plume. Yet, the NO, concentrations were around 20 pg-m
3 during the first 3 weeks, initially some 40-60% lower than the plume for which the concentrations actually
increased during these 3 weeks and then gradually decreased. Between week 3 and 7 the NO, concentrations in
2020 increased in all 4 cities to about 50 ug-m= in week 7, close to the plume, and later merged into the plume.
PM> s was not much different from the plume throughout the whole period and in all three cities. Decreasing

somewhat in the basins and fluctuating around 40 pg-m™ in Nanchang. O; concentrations were lower than 100

3

pgm> (50 ug'm in Chongqing) and gradually increased to above 100 pg:m= around week 7. Overall, the

lockdown had little effect on the air quality in Group 3 cities in spite of the significant reduction of the NO,
concentrations. The latter returned to normal levels after about 9 weeks.

The differences between the lockdown effects on the air quality in the three clusters have not been analyzed in
detail. In general, the reduction of concentrations of pollutants such as NO, was offset by the increase of O3
which is not reflected in the AQI which seems to be mostly influenced by PM2.5. The duration of the lockdown
was not exactly the same in each city. For instance, in Xi’an peoples’ lifes gradually returned to normal during a
period of 1 month ending on 27 March (Zhang et al., 2020b) whereas in Wuhan the lockdown ended on 8 April.
The effects of the gradual increase of activities depends on the kind of activity and resulting emissions. The

effect of the emissions on the concentrations depends on meteorological conditions and other factors influencing
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dispersion of the pollutants such as the local topography in the basin area which limits transport as well as effects

on atmospheric chemistry.

4.4 Effects of national holidays and other events

The 16 weeks study period covered the lockdown from the beginning (week 0) to the end of the lockdown in
Wuhan on 8 April (week 10) and the last weeks were included to monitor the rebound of the pollutant
concentrations. For Beijing, four more weeks were included because of the Party Congress which took place
during 21-28 May, 2020 (i.e. during weeks 16-17). During the study period, also two national holidays occurred,
the Tomb Sweeping Festival (4-6 April, i.e. in week 10) and the May holidays (1-5 May, i.e. during weeks 13-
14). These periods are marked in Figures 6-8 with rectangles for easy identification. The Tomb Sweeping
Festival was just before the end of the lockdown in Wuhan when NO; concentrations were observed to rise from
very low to close to the values observed in previous years (Figure 7) and also concentrations of other pollutants
as well as AQI peaked, as discussed in Sect. 3.2. As shown in Figures 6-8, in most other cities the AQI was a
little higher in week 10 but the effect was not strong. Also during the May holidays in weeks 13-14 the AQI and
the concentrations of other pollutants did not stand out. Although during these holidays families usually get
together there was no significant effect on AQ, possibly because the concentrations were already lower and had
not fully recovered, while also travel was still restricted.

The situation in Beijing was different. With the regular occurrence of large (inter)national meetings, emission
control measures are often enforced in Beijing and, except during the haze event in the first weeks of the
lockdown, the AQI was low (around 50), well below the plume, until week 13 (Figure 10). In weeks 13 and 14
the AQI merged into the plume as did the concentrations of some of the contributing pollutants (only shown for
PM>s; O3 was already inside the plume), except NO» which however also increased in that period. The
subsequent decrease of the concentrations resulted in minima in the concentrations in week 17. This is illustrated
in Figure 10 showing time series of the AQI and ground-based concentrations of NO», O3 and PM> 5 in Beijing

from week 0 to week 19.
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Figure 10. As Figure 6, but for Beijing and from week 0 to week 19.
5. Summary and conclusions

China is a fast developing country with a high degree of urbanization and industrialization, especially in the east
of China (here defined as east of the Hu line, Figure 1). China also offers a large variety of meteorological,
climatic and geographical conditions with fast plains, large mountainous terrain and desert areas. The country
can roughly be divided by the Yangtze River, with different influences on atmospheric processes in the north
than in the south. These effects came out in the analysis of both the satellite and ground-based monitoring data of
trace gases and aerosols affecting air quality. In addition, the Sichuan and Guanzhong basins have their own
characteristics due to the influence of the surrounding mountains. The focus of the current study was the
evolution of the concentrations of the pollutants during the last decade in response to emission reduction policies,
and in particular the effect of the sudden reduction in economic activities and peoples’ mobility during the
lockdown in response to the COVID-19 outbreak in China in January 2020. The study area was mainland China
east of the Hu line (Figure 1). On a decadal scale, column-integrated concentrations of tropospheric NO, were
analyzed, using OMI TVCD data, showing the difference in both the variation of the concentrations and the
response to emission reduction policies in regions north and south of the Yangtze River. This analysis was made
for 11 regions (Figure 1, Table 1) selected using weekly averaged TROPOMI NO, TVCD data, showing the
spatial variations over the whole study area during the first 16-20 weeks after the Chinese New Year (25 January
2020). Ground-based monitoring data were collected for a large city in each of the 11 study areas, i.e. NO», O3
and PM,s, which were most affected by the lockdown as shown in our earlier study (Fan et al., 2020a).
Differences between these two types of observations were qualitatively discussed based on weekly time series of
NO; TVCDs and surface concentrations encompassing a short period before the Spring Festival and 20 weeks
thereafter. Based on the similarities in the evolution of the AQI and pollutant concentrations, the 11 regions were
divided in three groups: Group 1 in the NCP, Group 2 in the south, and Group 3 including two major basin areas.
The large reduction of the concentrations of NO, was observed, in both the surface and satellite data, whereas the
concentrations of O3 were observed to increase and for the concentrations of PM> s the behavior varied by region.
Hence the question came up whether the air quality was really improved as much as suggested from the NO,

data, or that this reduction was offset by the increase of the concentrations of other pollutants? To answer these
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questions, satellite and ground-based data were analyzed for the selected 11 regions in east China, leading to the

following conclusions.
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1.

The effect of the lockdown is often determined by comparison of the concentrations before and after the
lockdown, averaged over a certain period of time, which often is taken as 1 month, to average out short-
term effects. However, as shown in Figure 5, the concentrations evolved over much shorter time scales
and, for NO,, decreased from week to week, both before and after the lockdown. A complicating factor
for the determination of the lockdown effect was that the lockdown happened during the Spring Festival
holidays during which the NO, concentrations already decreased substantially. The lockdown added
more severe reductions during a much extended period of time. Hence, for a proper determination of the
evolution of the concentrations a temporal resolution of 1 week is more suitable than 1 month. The
choice of shorter time scales is even more important when episodical events occur, such as the haze
event early in the lockdown in the north of China, and for the use of meteorological data.

Time series of annual mean tropospheric NO, VCDs for 2011-2019 for the 11 regions show the
decreasing trend in the north between 2013 and 2018, and in the south between 2011 and 2015/2016.
After these periods, the decrease was halted and concentrations fluctuated but remained within 10% of
the 2015 values. Trends vary between -0.05 and -0.14 per year (see Table 2).

To determine the effect of the lockdown on the concentrations, a baseline must be determined. This
baseline depends on both long term trends and short term variations. Ignoring the trend change in the
south would result in an underestimation of the baseline concentrations of the order of 35% as
compared to using the average of the concentrations in 2016-2019 as baseline. In the north the baseline
is difficult to determine because the NO, TVCDs continued to decrease until 2018. Using the average of
the concentrations in 2016-2019 as baseline would result in an overestimate of the baseline
concentrations.

The effect of the strong reduction of the NO, concentrations on the air quality is offset by the increase
of O3 concentrations and, in some part of China, aerosols (PMas). The increase of aerosols in the north
of China has two reasons: the meteorological conditions conducive of the formation of haze and the
complicated chemistry involving NO, and O;, leading to the formation of secondary aerosols (e.g.,
Huang et al., 2020; Diamond and Wood, 2020; Le et al., 2020; Zhao et al., 2020).

The effect of the lockdown is different in cities in Groups 1, 2 and 3, with an AQI increase in the first
weeks in the Group 1 (NCP) and improved AQ later. The concentrations did not return to the levels in
the previous four years (the plume). In Group 2 the AQ was substantially improved during about 10
weeks, although after week 5 the effect of the reduced concentrations was offset by the increase of Os
exceeding National Ambient Air Quality Standards. After the lockdown the concentrations returned to
levels similar to those in the plume. For Group 3 cities the concentrations were initially reduced but
after a few weeks increased to inside the plume. Hence, apart from the first weeks, the lockdown did not
have a significant effect on the AQ in the Group 3 cities, in spite of the substantial reduction of the NO,
concentrations which returned to normal levels after about 9 weeks. The AQI seems to be mostly
influenced by PM2.5.The use of AQI is questionable because its definition is not following a physical

quantity: even when AQI indicates good AQ, limits may be exceeded.
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6. Holidays like the Tomb Sweeping Festival and the May holidays are expected to have some effect on
the air quality, but in 2020 this was hardly noticeable. However, in Beijing the air quality during the
Party Congress, at the end of May, was better than during the weeks before. It is noted that throughout
the whole study period of 19 weeks, the NO, concentrations in Beijing were strongly reduced with

respect to those in the preceding 4 years.

This study was undertaken for China, but the methodology and results can in part also be applied to other areas.
In particular this applies to the temporal resolution, which in this study was taken as 1 week, as opposed to 1 day
or 1 month in earlier studies such as Fan et al. (2020a). As discussed above, meteorological variations
influencing air quality, such as formation and dissipation of haze, take place on rather short time scales. Whereas,
for the determination of effects of sudden changes in emissions on pollutant concentrations such short term
meteorological effects need to be considered, as well as interannual changes. The baseline correction using
multi-annual data also needs to account for (changes in) long term trends and seasonal variations as discussed in

detail for NO,.

Appendix A.

The air quality index (AQI) is based on measured mass concentrations of aerosols and trace gases. The method
to determine the AQI is described in (Yuan and Yang, 2019) and is calculated according to the National
Standards on Air Quality Measurement published by the Chinese Ministry of Environmental Protection on 29
February 2012 -Ambient air quality standards (GB 3095-2012) (Ministry of Environmental Protection of the
People’s Republic of China, MEE, 2012) and the Technical Regulation on Ambient Air Quality Index (on trial)
(HJ 633-2012) (MEP(Ministry of Environmental Protection of the People’s Republic of China), 2012) that
became effective on January 1st, 2016). The aerosol mass concentrations considered are PM, s and PM ;o and the
trace gases are NO,, SO», Oz and CO. The AQI is calculated using the method described in (MEP(Ministry of
Environmental Protection of the People’s Republic of China), 2012). The individual AQI of each of these 6
pollutants (IAQIp) is calculated using (Yuan and Yang, 2019):

1AQl, = 288 (¢ Bp, ) + 1AQI,,, (AD)

BPy;—BPLo
Where Cp is the mass concentration of pollutant P, BPy; and BPy, are the higher and lower threshold of pollutant
concentration near Cp corresponding to specified IAQI (Individual Air Quality Index) regulated by government
policy. IAQIg; and TAQIy, are the corresponding IAQI to BPui and BPy,, respectively. The AQI is the highest of
the 6 individual IAQIp:

AQI = max {IAQI;, IAQL, ..., IAQIs} (A2)
Eq (A2) shows that the AQI reflects only one pollutant, with the highest IAQI, and is not a combination of all 6
(Yuan and Yang, 2019).
An AQI of 50 means that the air quality is excellent, and AQI between 50 and 100 means it is good. When 100<
AQI< 150 the AQ is lightly polluted, for 150<AQI<200 AQ is moderately polluted and for 200<AQI<300 AQ is
heavily polluted. AQI > 300 indicates severe pollution (MEP(Ministry of Environmental Protection of the
People’s Republic of China), 2012).
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Table Al. Definition of the weeks around the Chinese Spring Festival, as used in this study, from 2015 to 2020. The first day

of week 0 in each year is defined as the first day of the Lunar New Year, which in the solar calendar changes from year to

year.

2015 2016 2017 2018 2019 2020
Week-3 01.29-02.04 01.18-01.24 01.07-01.13 01.26-02.01 01.15-01.21 01.04-01.10
Week-2 02.05-02.11 01.25-01.31 01.14-01.20 02.02-02.08 01.22-01.28 01.11-01.17
Week-1 02.12-02.18 02.01-02.07 01.21-01.27 02.09-02.15 01.29-02.04 01.18-01.24
Week 0 02.19-02.25 02.08-02.14 01.28-02.03 02.16-02.22 02.05-02.11 01.25-01.31
Week 1 02.26-03.04 02.15-02.21 02.04-02.10 02.23-03.01 02.12-02.18 02.01-02.07
Week 2 03.05-03.11 02.22-02.28 02.11-02.17 03.02-03.08 02.19-02.25 02.08-02.14
Week 3 03.12-03.18 02.29-03.06 02.18-02.24 03.09-03.15 02.26-03.04 02.15-02.21
Week 4 03.19-03.25 03.07-03.13 02.25-03.03 03.16-03.22 03.05-03.11 02.22-02.28
Week 5 03.26-04.01 03.14-03.20 03.04-03.10 03.23-03.29 03.12-03.18 02.29-03.06
Week 6 04.02-04.08 03.21-03.27 03.11-03.17 03.30-04.05 03.19-03.25 03.07-03.13
Week 7 04.09-04.15 03.28-04.03 03.18-03.24 04.06-04.12 03.26-04.01 03.14-03.20
Week 8 04.16-04.22 04.04-04.10 03.25-03.31 04.13-04.19 04.02-04.08 03.21-03.27
Week 9 04.23-04.29 04.11-04.17 04.01-04.07 04.20-04.26 04.09-04.15 03.28-04.03
Week 10 04.30-05.06 04.18-04.24 04.08-04.14 04.27-05.03 04.16-04.22 04.04-04.10
Week 11 05.07-05.13 04.25-05.01 04.15-04.21 05.04-05.10 04.23-04.29 04.11-04.17
Week 12 05.14-05.20 05.02-05.08 04.22-04.28 05.11-05.17 04.30-05.06 04.18-04.24
Week 13 05.21-05.27 05.09-05.15 04.29-05.05 05.18-05.24 05.07-05.13 04.25-05.01
Week 14 05.28-06.03 05.16-05.22 05.06-05.12 05.25-05.31 05.14-05.20 05.02-05.08
Week 15 06.04-06.10 05.23-05.29 05.13-05.19 06.01-06.07 05.21-05.27 05.09-05.15
Week 16 06.11-06.17 05.30-06.05 05.20-05.26 06.08-06.14 05.28-06.03 05.16-05.22
Week 17 06.18-06.24 06.06-06.12 05.27-06.02 06.15-06.21 06.04-06.10 05.23-05.29
Week 18 06.25-07.01 06.13-06.19 06.03-06.09 06.22-06.28 06.11-06.17 05.30-06.05
Week 19 07.02-07.08 06.20-06.26 06.10-06.16 06.29-07.05 06.18-06.24 06.06-06.12

765

27



---@--- Beijing-Tianjin
[ 8
g l ---m--- Shijiazhuang
2400 . -4 Jinan
; -4
- Zhenzhou
* e 0

——— L - Shanghai
) 2
Qo E R R o ®--- Guangzhou

----------
E - T N o #---Nanchang
o E \AX A
O G 1200 _ - - Wuhan
z3 ey Y
= 3 g by x +---Xi'an
=
g £ = 3 ---3¢--- Chongging
L]

- © S ---4— Chengdu
R B
= R o= 4 ™ *
c N,
< 600

[ S,

@ R R ®--...... ..
""" R ]
300

2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (Year)

Figure Al. Time series of annual mean NO2 TVCDs, derived from de-seasonalized monthly OMI data, for each of the 11
regions, plotted on a semi-logarithmic scale.

28



770

BEIJING

-—--Nov. --8--Dec. ~-A--Mar. =-x=-Apr.

8 2400
o' 1200
=
600
201120122013 2014 2015 2016 2017 2018 2019
TIME(YEAR)
ZHENGZHOU
-~--Nov. --@--Dec. =-&-+Mar. =
o 4800 Foom=Eeo--m
o
£ 2400
S 1200
600
20112012 2013 2014 2015 2016 2017 2018 2019
TIME(YEAR)
NANCHANG
-~--Nov. --@--Dec. =-&=-Mar. ==x--Apr.
S 1200
o 600
=
300
20112012 2013 2014 2015 2016 2017 2018 2019
TIME(YEAR)
CHONGQING
-~--Nov. --8--Dec. ~-A=-Mar. ==x=- Apr.

20112012 201320142015 20162017 2018 2019
TIME(YEAR)

SHUJIAZHUANG

--#--Nov. --8--Dec. =-&=-Mar. =-x--Apr.

o 4800
o
B 2400
2 1200
600
20112012 2013 2014 2015 2016 2017 2018 2019
TIME(YEAR)
SHANGHAI
-#--Nov. --8--Dec. =-A=-Mar. -=x--Apr.
L‘~; -
S 2400 t----%
o' 1200
z
600
2011 2012 2013 2014 2015 2016 2017 2018 2019
TIME(YEAR)
WUHAN
-~4--Nov. --@--Dec. =-a=-Mar. -=¢--Apr.
o 2400
o
£ 1200
S e00
300
20112012 2013 2014 2015 2016 2017 2018 2019
TIME(YEAR)
CHENGDU

-~+--Nov. ~-#--Dec. ==&=-Mar. -=x--Apr.

201120122013 2014 20152016 2017 2018 2019
TIME(YEAR)

JINAN

----Nov. -48--Dec. =-&=-Mar. =-%=-Apr.

2011 201220132014 20152016 2017 2018 2019
TIME(YEAR)

GUANGDONG

-~¢--Nov. --#--Dec. -=&=-Mar. -

a
E 1200
o 600
2
300
20112012 2013 2014 2015 2016 2017 2018 2019
TIME(YAER)
XI'AN
--#--Nov. --@--Dec. ==g=--Mar. -=x<--Apr.
Q 2400
o
£ 1200
S 00
300
201120122013 2014 2015 2016 2017 2018 2019

TIME(YEAR)

Figure A2. Time series of monthly averaged NO2 TVCDs over each of the 11 regions, for each of the months November,
December, March and April from 2011 to 2019. The data points for each month are connected with dotted lines for easy

identification.
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Figure A3. Difference plots for weekly averages of NO2 TVCDs minus that for week 0 (Figure 5) for weeks 1-19. Note that
week number refers to the 2020 Spring Festival, i.e. week 0 starts on Saturday 25 January 2020. As explained in Sect. 2.1,
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the yellow background in the maps indicates no changes with respect to week 0, red an increase and green a

decrease of the NO, TVCD.
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Figure A4. Time series of the AQI in 12 cities for the first 16 weeks (week 0 to week 15) after the Spring Festival in 2020,
together with AQI time series for the same weeks in 2015-2019. See legend for identification. Note that the vertical scales
vary between different cities.
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