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Abstract. The variation of NO2 concentrations in mainland China is analyzed on different time scales, from 

decadal to weekly, using both satellite data and data from ground-based monitoring networks. TROPOMI 

(TROPOspheric Monitoring Instrument) data were used to study the spatial variations of tropospheric NO2 20 

vertical column densities (TVCDs) over the study area during 16-20 weeks after the Chinese Spring Festival (25 

January 2020). These data were used to select 11 regions for more detailed analysis of the variation of NO2 

TVCDs on a decadal time scale. In this analysis, monthly and annual averaged NO2 TVCDs derived from OMI 

(Ozone Monitoring Instrument) observations were used for the years 2011 to 2019. The results show the NO2 

TVCD trends for different regions, all decreasing in response to emission reduction policies, but with a different 25 

onset and a possible halt of the decrease in recent years; trends and period in the south of the study area are 

different from those in the north. Variations of NO2 TVCDs on shorter time scales, monthly and weekly, were 

analyzed using TROPOMI data. In addition, the variations of weekly averaged ground-based NO2 concentrations 

in 11 major cities were analyzed together with those for O3 and PM2.5. In particular these data were used to 

determine their effect on the air quality as expressed by the air quality index (AQI). For quantitative estimates, 30 

the use of weekly concentrations is more accurate than the use of monthly values, and the effects of long term 

trends and their reversal needs to be taken into account for the separation of effects of the lockdown and the 

Spring Festival. Neglecting the possible reversal of the trends leads to overestimation of the lockdown effect in 

the south and underestimation in the north. The ground-based data confirm earlier reports, based on satellite 

observations, that the expected improvement of air quality due to the reduction of NO2 concentrations was offset 35 

by the increase of the concentrations of O3 and the different effects of the lockdown measures on PM2.5, as well 

as effects of meteorological influences and heterogeneous chemistry. The AQI seems to be mostly influenced by 

PM2.5 rather than NO2. A qualitative comparison between time series of satellite and ground-based NO2 

observations shows both similarities and differences. The study further shows the different behavior in city 

clusters in the north and south of China, and inland in the Sichuan and Guanzhong basins. Effects of other 40 

holidays and events are small, except in Beijing where the air quality in 2020 was notably better than in previous 
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years. This study was undertaken for China, but the methodology and results have consequences for air quality 

studies in other areas and part of the conclusions are generally applicable.  

1. Introduction 

Concentrations of aerosols and trace gases in the atmosphere over China have been increasing in response to 45 

industrial development and urbanization and are among the highest worldwide. However, during the last decade, 

air pollution control strategies were implemented as part of a series of government plans to reduce the 

concentrations of pollutants (Jin et al., 2016; van der A et al., 2017; Zheng, 2018) and thus improve air quality. 

Indeed, the concentrations of SO2, NO2 and aerosols decreased and the trends, from the on-set of the reduction 

until recent years, have been quantified using satellite observations (Krotkov et al., 2016; Koukouli et al., 2016; 50 

van der A et al., 2017; de Leeuw et al., 2018; Sogacheva et al., 2018; Zhao et al. 2017; Zhang et al., 2018). In 

addition, an unprecedented reduction of the concentrations of NO2 was observed at the end of January, 2020, by 

the TROPOspheric Monitoring Instrument (TROPOMI), on board the Copernicus Sentinel-5 Precursor satellite, 

following the nationwide lockdown in response to the COVID-19 outbreak (e.g., Fan et al., 2020a; Liu et al., 

2020; Bauwens et al., 2020). The decrease of anthropogenic NO2 emissions in early 2020 was quantified by, e.g., 55 

Ding et al. (2020) and Zhang et al. (2020a). In response to the reduction of the NO2 emissions, observations at 

ground-based monitoring stations showed the increase of O3 concentrations (e.g., Fan et al., 2020a; Shi and 

Brasseur, 2020; Le et al., 2020), indicating the increase of the oxidizing capacity of the atmosphere (e.g., Huang 

et al., 2020; Diamond and Wood, 2020; Le et al., 2020; Zhao et al., 2020). The increased oxidizing capacity of 

the atmosphere resulted in the increase of secondary aerosol formation which in part explains the increase of the 60 

aerosol optical depth (AOD) over the North China Plain (NCP), observed from satellites (e.g., Fan et al., 2020a; 

Huang et al., 2020; Le et al., 2020; Diamond and Wood, 2020), and the concentrations of PM2.5 observed in situ 

by ground-based monitoring networks (e.g., Fan et al., 2020a; Shi and Brasseur, 2020; Le et al., 2020).  Over the 

NCP, aerosol formation was further promoted by meteorological conditions like low wind speed and high 

relative humidity, conducive of the formation of haze (e.g., Zhao et al., 2020). Furthermore, aerosol emissions 65 

were much less affected by the lockdown than NO2 (Diamond and Wood, 2020). Hence, different species 

contributing to air pollution were affected by the lockdown in different ways. Several authors concluded that, in 

spite of the strong reduction of anthropogenic emissions, pollution still occurred over China due to the 

combination of meteorological influences, economic impacts and complex chemistry (e.g., Shi and Brasseur, 

2020; Huang et al., 2020; Diamond and Wood, 2020; Le et al., 2020; Zhao et al., 2020; Li et al., 2020).  70 

In the current study we examine the evolution of the concentrations of tropospheric NO2 in China over the last 

10 years, until mid-2020. To this end, we extend satellite-derived time series of tropospheric NO2 vertical 

column densities (NO2 TVCDs) derived from satellite observations using the Ozone Monitoring Instrument 

(OMI) from 2011 to 2019, which provides insights in the effects of pollution control strategies in different parts 

of China during recent years. The sudden reduction of the concentrations of NO2 and other atmospheric 75 

constituents due to the unfortunate lockdown following the COVID-19 outbreak in China provided another way 

to look at emission reductions and the recovery of the concentrations when the lockdown was gradually relaxed. 

The latter extends earlier work presented in Fan et al. (2020a) on the concentrations of trace gases and aerosols 

during the Chinese Spring Festival (25 January 2020) and the initial phase of the lockdown during the following 

month. It is noted that the lockdown started during the Spring Festival holidays, during which concentrations of 80 
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trace gases and aerosols usually change in response to changing socio-economic conditions during 1-2 weeks. 

This Spring Festival holiday effect was enhanced and extended over a longer period of time due to the lockdown. 

In the current study we focus on the variations of NO2 concentrations both in the years before the 2020 Spring 

Festival, and during an extended period of 16-20 weeks thereafter, for reasons explained below.  

In Fan et al. (2020a) we considered all species contributing to the air quality index (AQI, see Appendix A for 85 

definition), a measure used in air quality management. However, air quality, or the AQI, was not directly 

considered in Fan et al. (2020a), we only looked at the change of the concentrations of PM2.5, PM10, NO2, SO2, 

CO and O3 due to the lockdown. For all species we used satellite data (TROPOMI), except for tropospheric O3 

which is not available over China from TROPOMI, and ground based monitoring observations. TROPOMI data 

were used for 2019 and 2020, as monthly averages for the period before and after the Spring Festival in these 90 

years. The changes resulting from reduced anthropogenic activities during the Spring Festival holidays in 2019 

were used as reference to separate the lockdown effect from the overall reduction during the period including 

both the Spring Festival and the lockdown in the winter of 2020. We concluded that the use of 30-days averages 

leads to underestimation of the Spring Festival effect and overestimation of the COVID-19 lockdown effect and 

that for more reliable estimates shorter periods should be used. Therefore, in the current study, weekly maps of 95 

tropospheric NO2 vertical column densities (NO2 TVCDs) were produced as a compromise between increased 

time resolution, showing the progressive decrease of the concentrations, and data quality. In Fan et al. (2020a) 

we concluded that the TROPOMI SO2 data showed the reduction of SO2 but the signal was too noisy to deduce a 

clear quantitative effect, while we also showed that the lockdown did not have a clear effect on the CO TVCDs 

(except in the south of China). Therefore, and because of the interactions between NO2, O3 and aerosols, the 100 

current study focuses on these three species, using both satellite data and ground-based data from air quality 

monitoring stations. Instead of the 26 provincial capitals, 11 areas in different parts of China were selected where 

satellite data showed large changes in the NO2 TVCDs.  

When the lockdown measures were gradually relaxed, the emissions and thus air pollution increased. Several 

studies reported that air quality was “back to normal” after 40 days (Bauwens et al., 2020; Filonchyk et al., 2020; 105 

Wang and Su, 2020). In the current study we address the question what is “normal”, using satellite observations 

over the last decade over selected regions, extending to 16-20 weeks after the 2020 Spring Festival. In addition 

to satellite data, we use ground-based observations from the Chinese air quality monitoring network providing 

detailed information in different regions, and compare those for 2020 with similar observations in the last 5 years 

(2015-2019). The reason for this study is the gradual decrease of NO2 TVCDs and AOD during extended periods 110 

in the last decade, as mentioned above, in response to policy measures by the Chinese Government to reduce 

emissions and improve air quality. In the estimates of the lockdown effects on air pollution such trends were 

accounted for by comparison of 2020 with the previous year or years. However, the NO2 TVCDs in early 2020, 

before the Spring Festival, were much lower than those in 2019 and the question arose whether the trends 

derived in earlier studies were continued in more recent years. In other words, how well can the expected 115 

baseline concentrations, serving as reference to determine the reduction of the concentrations during the 

lockdown period with respect to the “normal” situation, be determined? 

Another question was whether air quality (AQ) was really improved, in spite of the enormous reduction of NO2 

as observed by satellites and confirmed by ground-based monitoring networks. As discussed above, in response 

to the reduced NO2 concentrations shifting the oxidizing capacity, surface O3 concentrations increased, and also 120 
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aerosol concentrations were affected, or even increased over the NCP. Taking into account the different behavior 

of NO2, O3 and PM2.5, the question arose what the effect of the lockdown was on the air quality, as expressed by 

the air quality index and how AQ or AQI reacted to the gradual release of the socio-economic restrictions.  

The objectives of the current study are thus (1) to extend the time series from previous studies to evaluate 

whether earlier trends continued and can be used to determine baseline concentrations; (2) to determine whether 125 

the air quality was indeed improved as much as anticipated from the reduction of NO2 TVCDs deduced from 

satellite observations; (3) to evaluate whether the pollutant concentrations had returned to normal levels during 

the study period of 16-20 weeks after the COVID-19 outbreak, i.e. during the gradual relaxation of the lockdown 

measures when socio-economic life returned to normal. (4) during these 19 weeks, two significant events 

occurred in China: the Tomb Sweeping Festival (4-6 April) and the May holidays (1-5 May). In addition the 130 

Party Congress took place in Beijing (21-28 May). How did these events influence the air quality?  

These objectives are addressed by studying satellite measurements of NO2 TVCDs and ground-based monitoring 

data of PM2.5, NO2, and O3, and the air quality index (AQI). Differences between satellite observations and 

ground-based monitoring NO2 data are discussed based on weekly time series during early 2020. Time series of 

monthly averaged NO2 TVCDs for the period 2011-2020 are used, and weekly averages in 2020. The study 135 

focuses on 11 regions in China, mainly around provincial capitals, selected based on the NO2 TVCD levels at 

about 3 months after the 2020 Spring Festival. It is noted that the methodology and part of the ensuing results 

have generally applicability and do not only apply over China.  

2. Methods 

2.1 Study area 140 

In the current study we focus on the part of mainland China east of the HU line (Figure 1), further referred to in 

this paper as east China, where 94% of the Chinese population lives (Chen et al., 2016). This part of China is one 

of the most polluted regions in the world, for which the air quality was much improved during the COVID-19 

lockdown. To monitor the rebound of the concentrations when the lockdown measures were gradually released, 

maps were used of weekly-averages of NO2 TVCDs derived from TROPOMI (see Sect. 3.1.2, Figure 5) and 145 

their differences with respect to week 0, i.e. the Spring Festival week from 25 to 31 January, 2020 (week 

numbers are listed in Table A1, difference maps are presented in Figure A3). The difference map for week 12 is 

shown in Figure 1 (week 12 was somewhat arbitrarily selected at the end of a period of 5 weeks when 

concentrations seemed to be stabilized and undisturbed by other festivals, as discussed in Sect. 3.1.2). The 

yellow background in this map indicates no changes with respect to week 0, red an increase and green a decrease 150 

of the NO2 TVCD. Based on the occurrence of a strong increase or decrease, 11 regions were selected for the 

study on regional differences in which satellite data are complemented with ground-based data. The names of the 

regions shown in Figure 1 are listed in Table 1, together with their geographical locations. These regions include 

well-known centers such as the Beijing-Tianjin area, Shijiazhuang in west Hebei and Jinan in Shandong, all in 

the North China Plain (NCP), Shanghai in the Yangtze River Delta (YRD), Guangdong in the Pearl River Delta 155 

(PRD), Chongqing and Chengdu, and Wuhan. Each region includes a large city for which monitoring data are 

available for comparison with the satellite data (Fan et al., 2020a). The selected regions provide a reasonable 

geographical spread across the study area with the NCP, the YRD and the PRD, as well as mountain areas with 

large basins such as the Chongqing/Sichuan and the Guanzhong Basins, all with high pollution levels, high 
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population density and high level of industrialization, but different climatological and meteorological influences 160 

on air quality. 

 

 

 

Figure 1. Study area showing the NO2 TVCD difference map for week 12 (i.e. NO2 TVCD for week 12 minus NO2 TVCD 165 
for week 0). The 11 focus regions are indicated with numbers, corresponding to their names and coordinates which are listed 
in Table 1. The black diagonal line is the Hu line (Chen et al., 2016). 

Table 1. Focus regions of the current study. The locations corresponding to the numbers in the first column are shown on the 
map in Figure 1. Coordinates in columns 3 and 4 are the left upper corner of each region, the size around the corner of each 
region is indicated in columns 5 and 6. Regions are indicated with the name of the central city. 170 

Nr  Name Longitude(°) Latitude(°) ΔLon(°) ΔLat(°) 

1 Beijing-Tianjin 108.0 35.0 1.5 1.5 

2 Shijiazhuang 114.0 39.0 1.5 2.5 

3 Jinan 117.0 37.5 2.0 1.5 
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4 Zhengzhou 112.0 35.5 2.0 1.5 

5 Shanghai 119.5 32.0 2.0 2.0 

6 Guangzhou 112.5 24.0 2.0 2.0 

7 Nanchang 115.0 29.0 1.5 1.5 

8 Wuhan 113.0 31.5 2.0 1.5 

9 Xi’an 108.0 35.0 1.5 1.5 

10 Chongqing 106.0 30.0 1.5 1.5 

11 Chengdu 103.0 31.5 2.0 1.5 

 

2.2. Satellite data 

Two satellite products were used in this study, i.e. the tropospheric NO2 vertical column densities (NO2 TVCDs) 

from OMI and TROPOMI. These products are briefly discussed in the following sub-sections. The OMI NO2 

TVCDs were used for time series analysis over the period 2011-2019, during most of which TROPOMI data 175 

were not yet available. The TROPOMI NO2 TVCDs, with better spatial resolution, were used to visualize 

weekly averaged spatial variations and calculate time series over selected regions, which together show the 

evolution of NO2 TVCDs over the study area. OMI and TROPOMI products thus provide complementary 

information for different periods of time and were used for different purposes.  

2.2.1 OMI 180 

The Ozone Monitoring Instrument (OMI) on board NASA’s Aura satellite was launched in July 2004 (Schoeberl 

et al., 2006; Levelt et al., 2018). Aura is in a sun-synchronous polar orbit with an equator-crossing time at 13:30 

local time (LT). The OMI instrument employs hyperspectral imaging in a push-broom mode to observe solar 

radiation backscattered by the Earth’s atmosphere and surface at 740 wavelengths over the entire range from 270 

to 500 nm with a spectral resolution of about 0.5 nm (https://projects.knmi.nl/omi/research/instrument/index.php, 185 

last access: 30 January 2021). With a 2600 km wide swath, OMI provides daily global coverage in 14 orbits. In 

this study the OMI Quality Assurance for Essential Climate Variance (QA4ECV) version 1.1 product 

(doi:10.21944/qa4ecv-no2-omi-v1.1) with a 13 x 24 km2 spatial resolution is used (Boersma et al., 2018). This 

product was validated by, e.g., Lorente et al. (2017) and Zara et al. (2018). The measurement of NO2 is one of 

the explicit objectives of the Aura OMI mission. The monthly mean tropospheric NO2 column density data are 190 

derived from satellite observations based on slant column NO2 retrievals with the DOAS technique and the 

KNMI combined modelling/retrieval/assimilation approach (Boersma et al., 2011). NO2 TVCDs for the years 

2011 - 2019 were downloaded from the following website: http://www.temis.nl/airpollution/no2.html  (last 

access: 30 January 2021). 

2.2.2 TROPOMI 195 

TROPOMI is a passive hyperspectral nadir-viewing imager on board the Sentinel-5 Precursor satellite (also 

known as Sentinel-5P) launched on 13 October 2017 (Veefkind et al., 2012). Sentinel-5P is a near-polar orbiting 

sun-synchronous satellite flying at an altitude of 817 km in an ascending node with an equator crossing time at 

13:30 LT and a repeat cycle of 17 days. The swath width is approximately 2600 km, resulting in daily global 
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coverage, with an along-track resolution of 7 km (Veefkind et al., 2012). TROPOMI products used in this study 200 

are L3 off-line (OFFL) version products (see http://www.TROPOMI.eu/data-products/ for more detail), in 

particular tropospheric NO2 vertical column density data for the period around the 2020 Spring Festival. The 

spatial resolution at nadir for most products used in this study is 1 km (https://developers.google.com/earth-

engine/guides/scale; last access: 30 January 2021). 

The operational validation results are reported every 3 months at the S5P-MOC-VDAF website (http://mpc-205 

vdaf.TROPOMI.eu/, last access: 30 January 2021). The TROPOMI/S5P tropospheric NO2 column is 

operationally validated by the S5P-MPC-VDAF (S5P–Mission Performance Centre – Validation Data Analysis 

Facility) using the Pandora NO2 total columns from the Pandonia Global Network (PGN). The comparison 

shows a negative bias of roughly 30%.  

2.3 Ground-based data 210 

The ground-based data used in this study were downloaded from http://www.pm25.in/ (last access: 30 January 

2021), which is the National Real-time Air Quality Publishing Platform public website for air quality monitoring 

data maintained by the China National Environmental Monitoring Center (CNEMC) of the Ministry of Ecology 

and Environment of China (MEE, see http://www.mee.gov.cn/, last access: 30 January 2021, for more detail). 

This website provides PM2.5, PM10, SO2, NO2, O3, and CO hourly and 24-hour moving averages for each site or 215 

city. Measurement techniques used at the stations, reliability of the data and quality control were briefly 

described by Silver et al., (2018) and Zhai et al., (2019); see also Ministry of Environmental Protection of 

People’s Republic of China (MEE, 2012). The data from these websites are provided by local governments and 

have been used in several studies related to air pollution, air quality, and other aspects in China (Xue et al., 2020; 

Fan et al., 2020a; Fan et al., 2020b) (http://www.pm25.in/sharer, last access: 30 January 2021). For the current 220 

study, we collected hourly PM2.5, NO2 and O3 data for the large cities in the 11 study regions indicated in Sect. 

2.1 (Figure 1, Table 1), for up to 20 weeks after the Spring Festival during the years 2015-2020. In the current 

study, the data collected at different locations in each city were averaged to get a spatially representative number 

for the whole city, as daily (24 h) averages which subsequently were averaged to weekly values. 

3. Results 225 

3.1 Satellite Observations 

3.1.1 NO2 TVCD time series and trends for different regions between 2011 and 2019 

3.1.1.1 Monthly mean NO2 TVCD time series 

Time series of monthly mean TVCDs for tropospheric NO2 derived from OMI data over the 11 regions defined 

in Table 1 are presented in Figure 2, for the period from January 1st, 2011 until December 31st, 2019. The NO2 230 

TVCDs varied strongly by region, with the highest TVCDs in Shijiazhuang, Zhengzhou and Jinan (in 2012), 

although the relative differences changed from year to year. For each region, the time series show the strong 

seasonal variations with sharp peaks in the winter and shallow minima in the summer. The winter TVCD 

maxima were about a factor of 5 larger than the summer minima, with the ratio varying somewhat by region, 

with higher values in Shijiazhuang (7.2) and Zhengzhou (6.0), and lowest values of about 2.5 in Guangzhou and 235 
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Chengdu. These numbers are in reasonable agreement with the factor of 3 reported by Shah et al. (2020) for the 

NO2 TVCD averaged over central-east China.  

On a monthly scale, the TVCD maximum varies a little between regions and years, but in general the peaks 

occur in the winter. For the study of lockdown effects (Sect. 3.1.2), the fast decrease of the NO2 TVCDs from 

December/January toward the summer implies that, if there would be no restrictions, the NO2 TVCDs would 240 

have decreased by a factor of 2.5-7, depending on the region, from the pre-lockdown period to the time when all 

measures were released. This needs to be taken into account in any study on the effect on air quality during 

different stages of the COVID-19 lockdown.  

 

Figure 2. Time series of monthly mean NO2 TVCDs derived from OMI data, for 11 regions from January 2011 to December 245 
2019. The NO2 TVCDs are plotted on a logarithmic scale to better visualize the differences between different regions as well 
as the gradual variation of the TVCDs during the summer months.  

3.1.1.2 Trends of annually averaged tropospheric NO2 TVCDs 

Figure 2 shows an overall decrease of the winter-peak TVCDs between 2012 and 2017, whereas in the years 

2017-2019 they are of similar magnitude, i.e. the decrease seems to have come to a halt. Similar behavior is 250 

observed in the summer months. However, the time series suggest that the period of decreasing NO2 TVCDs and 

the occurrence of the maximum and minimum values was not the same for all regions. To further investigate 

trends in different regions and the differences between them, the time series were de-seasonalized using a 

centered moving average with a period of 12 months and, to reduce effects of variations due to other influences 

than the seasonal effects (e.g., due to meteorological conditions), the de-seasonalized data were averaged to 255 

annual mean NO2 TVCDs. Time series of annual mean NO2 TVCDs are presented in Figure A1. The data in 

Figure A1 show a grouping with high NO2 TVCDs in the north of the study area and Shanghai, and a clear 

separation from the other regions where the TVCDs are lower, as also expected from the maps in, e.g., Figure 4a. 

Another noticeable difference between the regions is the clear distinction between the temporal behavior in the 

north and in the south. In each of the regions in the north, i.e. in the NCP (Shijiazhuang, Beijing, Jinan and 260 

Zhengzhou), the TVCDs were similar in 2011, 2012 and 2013; from 2013 they decreased exponentially until 

2018. In the other regions, i.e. Shanghai and those in the south and west, the TVCDs decreased exponentially 
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from 2011 until they reached a minimum value in 2015 or 2016 after which they remained low (e.g., Shanghai, 

Nanchang, Xi’an) or even increased somewhat (Chongqing). Overall, after 2016 the TVCDs in these regions 

fluctuated from year to year but remained within 10% of the values in 2015 (except in Chongqing). In view of 265 

these differences, trend lines to the annual mean NO2 TVCD data in regions in the north were fitted for the years 

2013-2018, whereas for the other regions trend lines were fitted for the years 2011-2015 or 2016. . The trend 

lines were added to Figure A1 and the result is presented in Figure 3. The trend lines were plotted for the whole 

period 2011-2019, rather than only for their period of validity, to illustrate that beyond the fit interval the 

TVCDs do not follow the trend for the region under consideration and level off as discussed above. The trends 270 

are presented in Table 2, where the trend (year-1) describes an exponential decrease of the TVCDs following the 

relationship y=a·ebt, where y= TVCD, a is the intercept (TVCD in first year of the fitting period, i.e. year1 = 

2011 or 2013), b is the trend (year-1) and t is the number of years after year1. Coefficients of determination (R2) 

are all high and the trend lines in Figure 3 show the good fit.  

 275 

 

Figure 3. Time series of annual mean NO2 TVCDs, derived from de-seasonalized monthly OMI data, for each of the 11 
regions, plotted on a semi-logarithmic scale and fitted exponential trend lines (solid lines, y = a·ebt). The periods and trends 
(b) are listed in Table 2. The data points for each region are connected with dotted lines for easy identification. Note that the 
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trend lines strictly apply only to the different periods as described in the text and listed in Table 2, but were plotted over the 280 
whole period 2011-2019 to demonstrate the deviations from the trends beyond the period of validity. 

Table 2. NO2 TVCD trends determined for the period indicated in the 3rd column. Trends are determined using exponential 

fits (y = a·ebt) to time series of the annual mean NO2 TVCDs as shown in Figure 3 and described in the text. 

Number Region Period Trend (year-1) R2 

1 Beijing-Tianjin 2013-2018 -0.08 0.99 

2 Shijiazhuang 2013-2018 -0.11 0.93 

3 Jinan 2013-2018 -0.11 0.93 

4 Zhengzhou 2013-2018 -0.12 0.84 

5 Shanghai 2011-2016 -0.09 0.94 

6 Guangzhou 2011-2015 -0.06 0.98 

7 Nanchang 2011-2015 -0.06 0.80 

8 Wuhan 2011-2016 -0.08 0.96 

9 Xi’an 2012-2016 -0.11 0.99 

10 Chongqing 2011-2016 -0.08 0.90 

11 Chengdu 2011-2016 -0.05 0.88 

 

3.1.1.3 Tropospheric NO2 TVCD time series during the winter months 285 

Having established that the annually averaged TVCDs decrease exponentially during a certain period of time and 

change little during more recent years (after 2015/2016, in the southern regions) or the last year (2019, in the 

northern regions), we need to determine whether these conclusions also apply to shorter periods of time during 

which effects of the lockdown on the concentrations of atmospheric trace gases are studied. As a compromise 

between high time resolution and reducing meteorological effects on concentration differences, monthly 290 

averaged NO2 TVCDs were selected and plotted as time series for the 11 study areas. Because in China the 

lockdown started in the winter and ended on April 8, 2020, and because the signals in the summer months are 

relatively weak, this was only done for the winter months. Furthermore, to exclude the effect of the Spring 

Festival on the NO2 TVCDs, January and February were not used. This left November, December, March and 

April for 2011-2019 and the results are presented in Figure A2. The data in Figure A2 show the overall decline 295 

of the NO2 TVCDS, following the yearly trends and variations of the annual mean TVCDs in Figures A1 and 3 

and the differences between the 11 regions for different periods. Overall, the periods when the NO2 TVCDs 

decreased are similar to those indicated in Table 2. For Beijing and Shijiazhuang a strong minimum is observed 

in 2014 which may be associated with emission reduction because of the Asia-Pacific Economic Cooperation 

(APEC) meeting in Beijing in November 2014 and the China Victory Day Parade in September 2015. 300 

Interannual variability is stronger in the monthly mean data than in the annual means, as expected. Because of 

these variations, trend lines for monthly mean NO2 TVCDs were not computed. The main message is that the 

TVCDs follow the tendencies in the annual means with leveling toward the end of the study period.  
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3.1.2 Evolution of NO2 spatial distributions after the 2020 Spring Festival 

For the evaluation of the spatial distributions and the short term time series of NO2 TVCDs over small regions, 305 

TROPOMI data were used because of their improved spatial resolution as compared to OMI data (Sect.. 2.2). 

NO2 TVCDs derived from TROPOMI observations, averaged over 30 days before and after the 2020 Spring 

Festival, are presented in Figure 4. Figure 4 shows the large difference in the NO2 TVCDs before and after the 

2020 Spring Festival, similar to those used in Fan et al. (2020a) for all China to illustrate and analyze the effect 

of the COVID-19 containment policy measures. Fan et al. (2020a) concluded that the use of 30-days averages 310 

leads to underestimation of the Spring Festival effect and overestimation of the COVID-19 lockdown effect and 

that for more reliable estimates shorter periods should be used. Therefore, in the current study, weekly NO2 

TVCD maps were produced as shown in Figure 5. Here week numbers relate to the Spring Festival which was 

on Saturday January 25, 2020, i.e. week 0 is January 25-31, week 1 is February 1-7, etc. (see Table A1 for an 

overview of week numbers and dates). Weeks -1 to -3 are included as references for the NO2 TVCDs during the 315 

period before the Spring Festival. The comparison of the monthly TVCDs in Figure 4 with the weekly TVCDs in 

Figure 5 (top row, weeks -3 to -1) clearly illustrates the advantage of using better time resolution to show the 

advancing decline of the NO2 TVCDs in east China before the Spring Festival. The first lockdown in Wuhan was 

on 23 January, toward the end of week -1 and therefore the decline was mainly due to the decreasing economic 

activity associated with the Spring Festival. The combined effects of the Spring Festival and progressive 320 

lockdown in east China (Bao and Zhang, 2020) is visible in weeks 1-3, when the NO2 TVCDs were lowest. The 

slight recovery in week 2 in the south of the study area may reflect the progressive nature of the lockdowns in 

different areas in China, i.e. toward the end of the Spring Festival holidays when people travelled back to their 

work places when it was still possible. 

The maps in Figure 5, and the difference plots with respect to week 0 in Figure A3, show that overall the NO2 325 

TVCDs remained low over the whole study area during the first two weeks. Also in week 3 the NO2 TVCDs 

were low, although some increase occurred over industrialized and populated areas north of the Yangtze River 

and in the Guangzhou area, which intensified every week from week 4 until week 8. In week 8 the NO2 TVCDs 

reached high values and the spatial distributions and concentrations changed little during the next 5 weeks, 

except in week 10 when the NO2 TVCDs were lower (although not in the YRD and Guangzhou). These reduced 330 

concentrations may be a sign of reduced emissions during the Tomb Sweeping Festival on 4-6 April. In week 13 

the NO2 concentrations were substantially lower than in the weeks before, and this continued in week 14. These 

weeks encompass the May Festival holiday (1-5 May), another very large national festival in China when many 

people travel home to their families: the associated change in socio-economic activities may explain the lower 

NO2 concentrations during that time. After week 14 the NO2 TVCDs increased in the southern provinces like 335 

Hunan and Guizhou as well as in the east around Shanghai, Jiangsu and Shandong, whereas in the northeast the 

NO2 TVCDs first decreased, then decreased in week 18. Overall, the spatial patterns during these weeks were 

similar but the TVCDs changed, likely due to changes in economic activity and meteorological influences, but 

they did not reach values similar to those before the Spring Festival. However, this would not be expected as 

discussed in Sect. 3.1.1.  340 
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   (a)      (b) 
Figure 4. NO2 tropospheric vertical column densities derived from TROPOMI data over east China, averaged over 30 days 
before (a) and after (b) the 2020 Spring Festival. The 2020 Spring Festival was on 25 January 2020 and thus the 30-days 
period before started on 26 December and the 30-days period after ended on 24 February 2020.   345 
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Figure 5. Maps of weekly averages of NO2 TVCDs derived from TROPOMI data, for weeks -3 to -1 and week 0 (top row) 
and weeks 1-19 in the following rows. Note that week number refers to the 2020 Spring Festival, i.e. week 0 starts on 
Saturday 25 January 2020 (see also Table A1). 

3.2 Effects on air quality: ground-based observations 350 

3.2.1 Time series of air quality index for 11 regions 

The air quality index (AQI) is based on the mass concentrations of PM2.5, PM10, NO2, SO2, CO and O3 as 

described in Appendix A. AQI is determined by only one pollutant, i.e. the pollutant with the highest AQI. Time 

series for the AQI in the 11 cities identified in Table 1 were plotted for the first 16 weeks (weeks 0-15) after the 

Spring Festival in 2020. Tianjin was added as a second megacity in the metropolitan agglomeration because of 355 

its potentially different air quality due to large industrial activities as opposed to the capitol city (Beijing). AQI 

time series for the same weeks in the five previous years (2015-2019) were plotted to form a plume which serves 

as reference for the 2020 time series. The results are presented in Figure A4 which shows that there are large 

variations between the years and there is no specific ordering indicating a systematic temporal variation 

(tendency). Hence the plume is representative for the range of variations that can be expected in 2020 from other 360 

factors influencing the AQI than the lockdown, such as meteorological factors (provided that 2020 is not an 

exceptional year in regard of these other factors). It is noted, that the AQIs are weekly averages over all 

measurements in each city, created from 24-hour averages at each site. 
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Figure A4 shows the similarity between the AQI time series in the five cities in the NCP (Beijing, Tianjin, 

Shijiazhuang, Jinan and Zhengzhou), for the cities Shanghai, Guangzhou and Wuhan, and for Nanchang, Xi’an, 365 

Chongqing and Chengdu. In view of these similarities, one city was selected to represent each group for further 

analysis, i.e. Shijiazhuang represents the first group (Group 1), Wuhan represents Group 2 and Chongqing 

represents Group 3. It is noted that in the selection of these cities not only the AQI was considered but also time 

series of 6 individual pollutants (see below). The AQI time series for these three cities are included in Figures 6-

8.  370 

In 2020, the AQI in the cities in Group 1 fluctuated in the first 3 weeks and then stayed low until week 9; 

increased toward the plume in week 10 and then stayed at the bottom of the plume. Except in the first 3 weeks, 

the AQI is smaller than 100, indicating good air quality. For Group 2, the AQI fluctuated and the values indicate 

excellent to good AQ until week 10 when the AQI moved into the plume or occasionally above (Guangzhou) but 

still indicating good AQ. For Group 3 the AQI indicated good AQ, except in Xi’an (moderate) and decreased 375 

somewhat (Xi’an became “good”) but remained in the plume throughout the whole study period. In other words, 

the AQI did not indicate better AQ for these cities in response to COVID-19 containment measures.  

3.2.2 Time series of aerosols and trace gases affecting air quality 

With the AQI determined by the pollutant with the highest AQI,  which may not necessarily be the species 

observed from satellites such as NO2, the behavior of individual pollutants contributing to the AQI will be 380 

considered using time series similar to those for the AQI. As discussed in the Introduction, we focus here on NO2, 

O3 and PM2.5 as the species which were most affected by the lockdown. Time series of the weekly averaged 

concentrations of these species in Shijiazhuang, Wuhan and Chongqing are presented in Figures 6, 7 and 8, 

respectively. Note that for some species the vertical scales may be different between the three cities. The 

concentrations during the five reference years (2015-2019) (further referred to as the plume) are used as 385 

reference to determine how the concentrations in 2020 were influenced by the lockdown. Overall, the 

concentrations of most pollutants in the plume were higher in Shijiazhuang than in Wuhan and Chongqing. This 

applies to PM2.5 (as well as for PM10, SO2 and CO which are not shown here), but not for NO2 and O3 for which 

the concentrations in the plumes in these three cities were similar. This is remarkable because the satellite NO2 

TVCDs in 2016 were about a factor of 3 higher in Shijiazhuang than in Wuhan which in turn were about 30% 390 

higher than in Chongqing (Figures 2 and 3) whereas in 2019 the NO2 TVCDs were a factor of 2.3 higher in 

Shijiazhuang than in the other two regions where the TVCDs were similar. However, for an adequate 

comparison between satellite data and surface concentrations, and thus effects on AQ, factors influencing the 

relation between near surface concentrations and TVCDs need to be accounted for, such as meteorological 

factors driving vertical mixing. Also long-term trends, inter-annual variations, seasonal variations, local 395 

emissions and meteorological effects influencing (photo) chemical reactions determining the overall 

concentrations need to be considered. Such detailed quantitative comparison is however out of the scope of the 

current study; a qualitative comparison between TROPOMI-derived NO2 TVCDs and surface concentrations of 

NO2 will be presented in Sect. 3.3. 

In all three cities the surface NO2 concentrations are overall decreasing during the study period, following the 400 

seasonal variation which is also observed in the satellite data (Figure 2). However, in the satellite data the 

decrease is largest when concentrations are highest but, as discussed above, for the ground-based data the 
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concentration differences between the three cities are not large. Yet, the seasonal effect seems more pronounced 

in Shijiazhuang than in Wuhan than in Chongqing. This is also different from the satellite data (see Figure 2) and 

may be a life time effect related to lower temperatures in Shijiazhuang than in Wuhan and Chongqing.  405 

Another difference between the three cities is the effect of the lockdown on the evolution of the surface NO2 

concentrations. In Shijiazhuang the plume decreased after week 3 whereas the 2020 concentrations increased 

steadily from week 0 and the curve joined the plume in week 6 although remaining near the bottom of the plume. 

In Wuhan the 2020 concentrations were far below the plume (20 µg·m-3 vs 40-60 µg·m-3) until week 9 after 

which they suddenly increased in week 10 to remain just below the plume (  ̴40 µg·m-3). In Chongqing the NO2 410 

concentrations were low (20 µg·m-3) during the first 3 weeks, then increased and remained close to the plume in 

weeks 6 to 9 and merged into the plume from week 10.  

When NO2 concentrations decreased, O3 concentrations increased as observed for all three cities. However, there 

was no substantial difference between the temporal variation of the O3 concentrations in 2020 and the other years. 

The 2020 concentrations were inside the plume during the whole study period and no anomalous behavior was 415 

observed in spite of the reduced NO2 concentrations during the first 6-10 weeks. Rather, in Shijiazhuang and 

Chongqing both the NO2 and O3 concentrations were low in the plume. The O3 concentrations in Shijiazhuang 

and Wuhan were similar and a bit higher than in Chongqing. 

For aerosols the situation was different than for the trace gases. The data in Fig 6 show that in Shijiazhuang 

PM2.5 was relatively high during the first 3-4 weeks during all 5 years, and those in 2020 were well inside the 420 

plume. Thereafter the PM2.5 concentrations dropped and, apart from some fluctuations, remained low (on 

average about half of those in the first weeks) and those in 2020 were almost every week near the bottom of the 

plume. It is noted that the PM2.5 concentrations in 2017 and 2019 were substantially higher than in other years. In 

contrast, the 2020 concentrations of PM2.5 in Wuhan were lower in weeks 2 and 3 than in any other week during 

the study period and also lower than in all 5 years before (about 1/3 of the plume average). In Chongqing the 425 

PM2.5 concentrations were well inside the plume (around the average) and the plume decreased gradually as 

expected from the common seasonal behavior of PM2.5. Hence in Chongqing the COVID-19 lockdown measures 

did not have an evident effect on the aerosol concentrations, in spite of the strong reduction of NO2 

concentrations. The PM2.5 concentrations in week 0 were 150 µg m-3 in Shijiazhuang, 50 µg m-3 in Wuhan and 

40 µg m-3 in Chongqing. 430 
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 435 

Figure 6. Time series of the concentrations of NO2, O3 and PM2.5 in Shijiazhuang for weeks 0 to 15 starting from the Spring 
Festival in 2020 (red line), together with time series for these pollutants for the same weeks in 2015-2019. See legend for 
identification. Rectangles in the NO2 time series were added for easy identification of the Tomb Sweeping festival (4 & 5 
April, in week 10; red) and the May Festival (1-5 May, in weeks 13-14; black) which are discussed in the text. The Spring 
Festival date and thus week 0 is determined by the Lunar Calendar, therefore these dates apply only to 2020 and in the other 440 
years they may fall in different weeks.  
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 445 

Figure 7. As Figure 6, but for Wuhan. 

 450 

Figure 8. As Figure 6, but for Chongqing. 

3.3 Comparison of satellite and ground-based weekly observations in 2020 (NO2) 

For the comparison of the temporal evolution of the TROPOMI NO2 TVCDs (Figure 5) to ground-based 

observations (Figures 6-8), the satellite data over each of the 11 selected regions were spatially integrated and 
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also in time, to weekly values. The results for the three representative regions discussed above, i.e. Shijiazhuang, 455 

Wuhan and Chongqing, are plotted in Figure 9a as time series for week -3 to week 20 (where week 0 is the 

Spring Festival in 2020, as above and in Table A1). Beijing data, which are discussed below and presented in 

Figure 10, are included as well. For easy comparison, the weekly averaged concentrations of NO2 in 2020 are re-

plotted from Figures 6-8 and 10, in Figure 9b, and the time series was extended to cover the same period as the 

satellite data. The data in Figures 9a and 9b represent different quantities, i.e. column integrated vs near-surface 460 

local concentrations of NO2 which experience different influences of, e.g., meteorological conditions (cf. Sect. 

4.2) and thus cannot be quantitatively compared. Hence the comparison here is merely meant to qualitatively 

discuss the use of satellite data to evaluate the reduction of concentrations near the surface, where they are most 

important for air quality.  

The data in Figures 9a and 9b show that overall the temporal behavior of the satellite NO2 TVCDs and the 465 

surface NO2 concentrations in 2020 was similar, with a strong drop before the Spring Festival (for the ground-

based data continuing another week in Shijiazhuang and Beijing), followed by an overall increase. However, 

where the satellite data show different concentrations before the Spring Festival, the ground-based 

concentrations were similar, except in Shijiazhuang where they were a factor of 2 higher, and the factors by 

which the concentrations were reduced are also different. The satellite data for Shijiazhuang show a reduction to 470 

a value of 33% from the maximum before the Spring Festival, whereas the ground-based data show a reduction 

to 24%, For Beijing these values are 55% and 35 %, for Wuhan they are 77% and 40% and for Chongqing they 

are 53% and 43%. Hence, overall, the reductions derived from satellite data are stronger than those from local 

monitoring measurements. However, effects of varying meteorological conditions are not included in these 

estimates and these effects may be different for satellite observations than for local ground-based measurements. 475 

It is further noted that these numbers reflect the combined effect of the Spring Festival and the COVID-19 

lockdown.  

After the Spring Festival, both the satellite and ground-based data show that the concentrations increased, with 

similar rates in Shijiazhuang (factor 2 between week 0 and week 9) but with much stronger fluctuations in the 

surface concentrations. However, in other regions the different types of observations show quite different 480 

behavior. For instance, in Chongqing the ground-based observations behaved similar to those in Shijiazhuang, 

whereas the satellite observations show a very small increase. The reverse is true for Beijing, with a rather small 

increase in the surface concentrations as opposed to a larger increase in the satellite observations. In Wuhan, 

both types of observations show the strong effect of the strict lockdown with NO2 concentrations remaining near 

the lowest values until week 10. However, after the end of the lockdown, the satellite data in Wuhan show a very 485 

modest increase whereas the ground-based data show a sudden increase by about a factor 2. Also in other regions, 

post lockdown large differences are observed in the satellite-derived and ground-based time series.   

It is noted that the earlier observed separation in behavior of long-term time NO2 TVCD series between the north 

and the south of the study area (Section 3.1.1) is also reflected in the weekly time series in early 2020, i.e. there 

is a separation between the NO2 TVCD values over Beijing and Shijiazhuang (north) and those over Wuhan and 490 

Chongqing (south). This separation is also reflected in the temporal behavior, but to a lesser extent. However, 

although in the ground-based time series also a separation can be observed, it is rather due to stronger 

industrialization (Shijiazhuang and Chongqing) than in the capitol city of Beijing. The time series in Wuhan may 
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have been influenced by the strict lockdown during 10 weeks, whereas after its release many activities suddenly 

increased which is reflected in the doubling of the ground-based NO2 concentrations.   495 

 

 

(a) 

 

(b) 500 

Figure 9. Time series of weekly averages of (a) TROPOMI derived NO2 TVCDs (1013 molec./cm3) over 

Shijiazhuang, Wuhan, Chongqing and Beijing, for weeks -3 to 19 (b) surface concentrations of NO2 (µg/m3) 

over these cities, plotted together in one plot  from Figures 6-8 and 10.  

4. Discussion  

The satellite data on tropospheric NO2 VCDs and ground-based monitoring data for the concentrations of NO2, 505 

O3, PM2.5 and AQI all indicate the different behavior of atmospheric composition in the north and south of China 

and the selected regions have been grouped to discuss the characteristic behavior within each group. This relates 

both to long-term variations (trends in the satellite data) and the influence of the COVID-19 lockdown. Hence 

the answers to the questions we set out with for this study at the end of Sect. 1 will be different for each of the 

regional clusters which emerged in the course of the study.  510 

4.1 Estimation of lockdown effects: effects of temporal resolution 

Many studies on the COVID-19 lockdown effect on atmospheric concentrations are based on comparison of a 

period before and after the start of the lockdown or on comparison with the same period in previous years. The 
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lockdown occurred during the Spring Festival holidays during which the concentrations of NO2, often used in 

studies on the effect of the COVID-19 lockdown, were substantially reduced. Hence, in many studies the Spring 515 

Festival effect was separated from the total effect to determine the effect of the lockdown only. One way to do 

this was presented in Fan et al. (2020a) for tropospheric NO2 VCDs. In contrast, AOD was observed to increase. 

The AOD increase was anticipated to be due to meteorological factors conducive to the formation of haze. Also 

the ratio of the PM2.5 concentrations before the Spring Festival to those thereafter was higher than in previous 

years (in Beijing PM2.5 even increased by a factor of 2.2) and these ratios were higher in north China than in the 520 

south. In their estimates of the lockdown effects from satellite data, Fan et al. (2020a) (and others) used averages 

over the months before and after the Spring Festival. The current study clearly shows that during the weeks 

before the lockdown the NO2 TVCDs gradually decreased and varied also after the lockdown. The post Spring 

Festival variations are also observed in the surface concentrations of NO2 which varied by more than a factor of 

2. This also applies to aerosols, and to a lesser extend to O3. Hence the actual effect of the lockdown on the 525 

concentrations of aerosols and trace gases will be influenced by the separation from the Spring Festival effect, 

the temporal resolution chosen for the data analysis, as well as the correction for meteorological and other 

factors such as reduction of emissions and related concentration trends, as well as chemistry. The influence of 

emissions and the impact of the lockdown on different economic sectors on NO2 and aerosol concentrations was 

discussed by Diamond et al. (2020). 530 

4.2 Long term trends, trend reversal and meteorological influences on the estimation of lockdown effects 

Decadal time series of monthly and annual mean NO2 TVCDs for the 11 regions and the annual trends derived 

from these were presented in Sect. 3.1.1 (Figures 2, 3 and A1, Table 2). For the calculation of the baseline 

concentrations in 2020, i.e. the concentrations expected if there would not have been a lockdown, the seasonal 

variation needs to be taken into account. However, monthly trendlines are difficult to determine with some 535 

accuracy due to interannual variations and due to the Spring Festival effect which occurs at different dates in the 

solar calendar. Therefore trends for January and February were nor considered. Furthermore, as Figures 2 and 3 

show, the decline in the NO2 TVCDs seems to level off in recent years, i.e. from 2015/2016 in the south of China 

and possibly after 2018 in the north. The years when the trends were changing are similar for the monthly and 

annual mean data. Hence the baseline could be determined using an average over the years after the trend change. 540 

The uncertainty in these averages is about 10% (Figure 3). Ignoring the trend change, i.e. assuming that the trend 

would continue to 2020, would result in an underestimation of the baseline for 2020. Extrapolation of the trend 

for Wuhan to 2020 would result in an estimated baseline of 4.4×1015 molec·cm-2 and for Chongqing 3.6×1015 

molec·cm-2, whereas using the average over 2016-2019 for 2020, i.e. assuming that the decrease has halted as 

suggested by the data in Figure 3, would provide a baseline of 6.6×1015 molec·cm-2 for Wuhan and 5.6×1015 545 

molec·cm-2 for Chongqing. In other words, ignoring the trend change would result in a baseline lower by about 

35% and thus in an overestimation of the lockdown effect on the NO2 TVCD. Similar considerations may apply 

to Shijiazhuang, but considering that a change in the annual trend did not occur until 2018, the variation in 

following years is difficult to estimate.  

In view of this discussion, the use of a climatology over recent years for comparison with the 2020 550 

concentrations may be a good strategy for regions in the south of China, whereas for the north, where 

concentrations were decreasing until 2018, the climatological concentrations may be too high. The use of 
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ground-based data leads to larger uncertainties. As the ground-based data in Figures 7 and 8 for Wuhan and 

Chongqing show, the NO2 concentrations in the plumes vary strongly from week to week and the plume width is 

therefore rather large, with an uncertainty which is much larger than the 10% uncertainty in the trend since 555 

2015/2016.  

Meteorological influences may be twofold. Meteorological conditions may be conducive of the formation of 

haze in stagnant air as often observed in north China during the winter (e.g., Li et al., 2018; Wang et al., 2019; 

Wang et al., 2018a; Wang et al., 2020a). On the other hand, large scale weather systems influence the transport 

of air masses from different origins transporting either clean air or pollution contributing to local air quality (e.g., 560 

Wang et al., 2019; Li et al., 2018; Hou et al., 2020). Another aspect to be considered are the influences of air 

temperature, humidity and radiation on chemistry, which affects NO2, O3 and aerosols, in particular for the 

situation during the COVID-19 lockdown with the strong reduction of NO2 concentrations. A reduction of NO2 

(or NOx = NO + NO2, where NO is only a small fraction of NOx) leads to an increase in O3, as observed in the 

ground-based data. The enhanced O3 concentrations result in the increase of the oxidizing capacity of the 565 

atmosphere which in turn leads to the production of secondary organic aerosol (SOA) as explained in, e.g., 

Diamond et al. (2020) and Le et al. (2020). The increased aerosol concentrations result in the attenuation of solar 

irradiation due to more scattering and absorption which in turn may further influence the meteorology (Zhong et 

al., 2018) and photochemical reactions.   

In view of the decisive role of meteorology in haze formation in north China (Le et al., 2020) it is surprising that 570 

both Le et al. (2020) and Diamond et al. (2020) used meteorological data averaged over 1 month (February 

2020). Haze occurs episodically and less than 25% of the episodes last longer than 4 days (Wang et al., 2018b; 

Wang et al., 2020b).  

4.3 Lockdown effect on air quality and rebound 

The similarity in the temporal behavior of the air quality index (Figure A4) was the basis for the subdivision of 575 

the regions in three groups. In Group 1 (NCP) the AQI fluctuated in the first 3 weeks and reached a peak value in 

week 2, then remained low. The peak was highest (170, moderately polluted) in Beijing where it exceeded the 

value of previous years. Obviously, this was due to a haze episode with strongly enhanced PM2.5 with respect to 

the period before the Spring Festival (Fan et al., 2020a) and a concentration of ca. 140 µg·m-3, almost double the 

24-h class 2 (for cities) air quality standard in China specified in GB 3095-2012 580 

(https://www.transportpolicy.net/standard/china-air-quality-standards/, last access 30 January 2021). In other 

cities in Group 1 (not shown) the peak values were lower, decreased with distance to Beijing, and were also 

lower than in 2017 and 2019. Only in Jinan and Zhengzhou the PM2.5 values were within the 24-h class 2 (for 

cities) air quality standard. After week 3 the PM2.5 concentrations were within air quality standard limits and the 

AQI was between 50 and 100 (good) and lower than in the previous years, for all cities in Group 1. However, 585 

closer inspection shows that the O3 concentrations exceeded the air quality standard of 100 µg·m-3 (1-hour mean 

value) between weeks 5 (in the south of the NCP) and 7 (in the north). Furthermore, in all cities in the NCP the 

O3 concentrations in 2020 were well inside the plume. Hence, in the NCP the strong emission reduction during 

the lockdown and the strong decrease of NO2 concentrations observed both from space and from the surface 

monitoring network, were offset by the increase of other pollutants. Early in the lockdown the aerosol 590 

concentrations were high due to meteorological conditions and complex chemical influences, and later the O3 
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concentrations exceeded the limiting values. However, the latter were not reflected in the AQI, which followed 

the variations in PM2.5 but remained low when O3 concentrations were high.  In fact, for all cities in the NCP the 

AQI was below or just inside the plume during the whole study period, whereas the NO2 concentrations moved 

into the plume toward the end, except in Beijing. The relatively low NO2 concentrations might be expected based 595 

on both the decreasing trends in the NO2 TVCDs until 2018 in the north of China and from the seasonal decrease. 

With these considerations, it is hard to determine whether the pollutant concentrations in the NCP returned to 

their normal levels, which in regard of seasonal variations are expected to be lower than before the lockdown and 

in regard of their decreasing trends are expected to be lower than in other years or, considering that the trends 

level off, similar to those in the last couple of years.  600 

For the Group 2 cities, Shanghai, Guangzhou and Wuhan, the AQI during the lockdown varied and AQ was 

good until week 10, with the largest effect in Wuhan. NO2 concentrations in Wuhan were very low with 20 

µg·m-3 during the first 9 weeks (3 times lower than the plume average). In Shanghai and Guangzhou the 

concentrations were initially similar but increased slowly. In all three cities the NO2 concentrations merged into 

the plumes after week 10, more or less coincident with the end of the lockdown after 76 days, on April 8, 2020. 605 

PM2.5 was not reduced as much as NO2 but was also below the plume and overall traced the NO2 concentrations, 

moving into the plume after week 10. Being further south than the NCP, O3 concentrations were close to the air 

quality standard of 100 µg·m-3 and exceeded that limit around week 5, as in the NCP. Hence, also in the Group 2 

cities the reduction of other pollutant concentrations was offset by the increase of O3 which is not reflected in the 

AQI. The rebound at the end of the lockdown period is clear with all indicators returning to levels similar to 610 

those in the earlier years, i.e. inside or close to the plume.  

Group 3 includes three cities in the Sichuan/Chongqing and Guanzhong Basins and Nanchang. In these cities the 

AQI was not substantially affected by the lockdown, except in the very beginning when it was low inside (or 

even below) the plume but overall remained inside the plume. Yet, the NO2 concentrations were around 20 µg·m-

3 during the first 3 weeks, initially some 40-60% lower than the plume for which the concentrations actually 615 

increased during these 3 weeks and then gradually decreased. Between week 3 and 7 the NO2 concentrations in 

2020 increased in all 4 cities to about 50 µg·m-3 in week 7, close to the plume, and later merged into the plume. 

PM2.5 was not much different from the plume throughout the whole period and in all three cities. Decreasing 

somewhat in the basins and fluctuating around 40 µg·m-3 in Nanchang. O3 concentrations were lower than 100 

µg·m-3 (50 µg·m-3 in Chongqing) and gradually increased to above 100 µg·m-3 around week 7. Overall, the 620 

lockdown had little effect on the air quality in Group 3 cities in spite of the significant reduction of the NO2 

concentrations. The latter returned to normal levels after about 9 weeks. 

The differences between the lockdown effects on the air quality in the three clusters have not been analyzed in 

detail. In general, the reduction of concentrations of pollutants such as NO2 was offset by the increase of O3 

which is not reflected in the AQI which seems to be mostly influenced by PM2.5. The duration of the lockdown 625 

was not exactly the same in each city. For instance, in Xi’an peoples’ lifes gradually returned to normal during a 

period of 1 month ending on 27 March (Zhang et al., 2020b) whereas in Wuhan the lockdown ended on 8 April. 

The effects of the gradual increase of activities depends on the kind of activity and resulting emissions. The 

effect of the emissions on the concentrations depends on meteorological conditions and other factors influencing 
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dispersion of the pollutants such as the local topography in the basin area which limits transport as well as effects 630 

on atmospheric chemistry.  

4.4 Effects of national holidays and other events 

The 16 weeks study period covered the lockdown from the beginning (week 0) to the end of the lockdown in 

Wuhan on 8 April (week 10) and the last weeks were included to monitor the rebound of the pollutant 

concentrations. For Beijing, four more weeks were included because of the Party Congress which took place 635 

during 21-28 May, 2020 (i.e. during weeks 16-17). During the study period, also two national holidays occurred, 

the Tomb Sweeping Festival (4-6 April, i.e. in week 10) and the May holidays (1-5 May, i.e. during weeks 13-

14). These periods are marked in Figures 6-8 with rectangles for easy identification. The Tomb Sweeping 

Festival was just before the end of the lockdown in Wuhan when NO2 concentrations were observed to rise from 

very low to close to the values observed in previous years (Figure 7) and also concentrations of other pollutants 640 

as well as AQI peaked, as discussed in Sect. 3.2. As shown in Figures 6-8, in most other cities the AQI was a 

little higher in week 10 but the effect was not strong. Also during the May holidays in weeks 13-14 the AQI and 

the concentrations of other pollutants did not stand out. Although during these holidays families usually get 

together there was no significant effect on AQ, possibly because the concentrations were already lower and had 

not fully recovered, while also travel was still restricted.  645 

The situation in Beijing was different. With the regular occurrence of large (inter)national meetings, emission 

control measures are often enforced in Beijing and, except during the haze event in the first weeks of the 

lockdown, the AQI was low (around 50), well below the plume, until week 13 (Figure 10). In weeks 13 and 14 

the AQI merged into the plume as did the concentrations of some of the contributing pollutants (only shown for 

PM2.5; O3 was already inside the plume), except NO2 which however also increased in that period. The 650 

subsequent decrease of the concentrations resulted in minima in the concentrations in week 17. This is illustrated 

in Figure 10 showing time series of the AQI and ground-based concentrations of NO2, O3 and PM2.5 in Beijing 

from week 0 to week 19.  

 655 
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Figure 10. As Figure 6, but for Beijing and from week 0 to week 19.  

5. Summary and conclusions 

China is a fast developing country with a high degree of urbanization and industrialization, especially in the east 660 

of China (here defined as east of the Hu line, Figure 1). China also offers a large variety of meteorological, 

climatic and geographical conditions with fast plains, large mountainous terrain and desert areas. The country 

can roughly be divided by the Yangtze River, with different influences on atmospheric processes in the north 

than in the south. These effects came out in the analysis of both the satellite and ground-based monitoring data of 

trace gases and aerosols affecting air quality. In addition, the Sichuan and Guanzhong basins have their own 665 

characteristics due to the influence of the surrounding mountains. The focus of the current study was the 

evolution of the concentrations of the pollutants during the last decade in response to emission reduction policies, 

and in particular the effect of the sudden reduction in economic activities and peoples’ mobility during the 

lockdown in response to the COVID-19 outbreak in China in January 2020. The study area was mainland China 

east of the Hu line (Figure 1). On a decadal scale, column-integrated concentrations of tropospheric NO2 were 670 

analyzed, using OMI TVCD data, showing the difference in both the variation of the concentrations and the 

response to emission reduction policies in regions north and south of the Yangtze River. This analysis was made 

for 11 regions (Figure 1, Table 1) selected using weekly averaged TROPOMI NO2 TVCD data, showing the 

spatial variations over the whole study area during the first 16-20 weeks after the Chinese New Year (25 January 

2020). Ground-based  monitoring data were collected for a large city in each of the 11 study areas, i.e. NO2, O3 675 

and PM2.5, which were most affected by the lockdown as shown in our earlier study (Fan et al., 2020a). 

Differences between these two types of observations were qualitatively discussed based on weekly time series of 

NO2 TVCDs and surface concentrations encompassing a short period before the Spring Festival and 20 weeks 

thereafter. Based on the similarities in the evolution of the AQI and pollutant concentrations, the 11 regions were 

divided in three groups: Group 1 in the NCP, Group 2 in the south, and Group 3 including two major basin areas. 680 

The large reduction of the concentrations of NO2 was observed, in both the surface and satellite data, whereas the 

concentrations of O3 were observed to increase and for the concentrations of PM2.5 the behavior varied by region. 

Hence the question came up whether the air quality was really improved as much as suggested from the NO2 

data, or that this reduction was offset by the increase of the concentrations of other pollutants? To answer these 
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questions, satellite and ground-based data were analyzed for the selected 11 regions in east China, leading to the 685 

following conclusions.  

1. The effect of the lockdown is often determined by comparison of the concentrations before and after the 

lockdown, averaged over a certain period of time, which often is taken as 1 month, to average out short-

term effects. However, as shown in Figure 5, the concentrations evolved over much shorter time scales 

and, for NO2, decreased from week to week, both before and after the lockdown. A complicating factor 690 

for the determination of the lockdown effect was that the lockdown happened during the Spring Festival 

holidays during which the NO2 concentrations already decreased substantially. The lockdown added 

more severe reductions during a much extended period of time. Hence, for a proper determination of the 

evolution of the concentrations a temporal resolution of 1 week is more suitable than 1 month. The 

choice of shorter time scales is even more important when episodical events occur, such as the haze 695 

event early in the lockdown in the north of China, and for the use of meteorological data. 

2. Time series of annual mean tropospheric NO2 VCDs for 2011-2019 for the 11 regions show the 

decreasing trend in the north between 2013 and 2018, and in the south between 2011 and 2015/2016. 

After these periods, the decrease was halted and concentrations fluctuated but remained within 10% of 

the 2015 values. Trends vary between -0.05 and -0.14 per year (see Table 2).  700 

3. To determine the effect of the lockdown on the concentrations, a baseline must be determined. This 

baseline depends on both long term trends and short term variations. Ignoring the trend change in the 

south would result in an underestimation of the baseline concentrations of the order of 35% as 

compared to using the average of the concentrations in 2016-2019 as baseline. In the north the baseline 

is difficult to determine because the NO2 TVCDs continued to decrease until 2018. Using the average of 705 

the concentrations in 2016-2019 as baseline would result in an overestimate of the baseline 

concentrations. 

4. The effect of the strong reduction of the NO2 concentrations on the air quality is offset by the increase 

of O3 concentrations and, in some part of China, aerosols (PM2.5). The increase of aerosols in the north 

of China has two reasons: the meteorological conditions conducive of the formation of haze and the 710 

complicated chemistry involving NO2 and O3, leading to the formation of secondary aerosols (e.g., 

Huang et al., 2020; Diamond and Wood, 2020; Le et al., 2020; Zhao et al., 2020).  

5. The effect of the lockdown is different in cities in Groups 1, 2 and 3, with an AQI increase in the first 

weeks in the Group 1 (NCP) and improved AQ later. The concentrations did not return to the levels in 

the previous four years (the plume). In Group 2 the AQ was substantially improved during about 10 715 

weeks, although after week 5 the effect of the reduced concentrations was offset by the increase of O3 

exceeding National Ambient Air Quality Standards. After the lockdown the concentrations returned to 

levels similar to those in the plume. For Group 3 cities the concentrations were initially reduced but 

after a few weeks increased to inside the plume. Hence, apart from the first weeks, the lockdown did not 

have a significant effect on the AQ in the Group 3 cities, in spite of the substantial reduction of the NO2 720 

concentrations which returned to normal levels after about 9 weeks. The AQI seems to be mostly 

influenced by PM2.5.The use of AQI is questionable because its definition is not following a physical 

quantity: even when AQI indicates good AQ, limits may be exceeded.  
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6. Holidays like the Tomb Sweeping Festival and the May holidays are expected to have some effect on 

the air quality, but in 2020 this was hardly noticeable. However, in Beijing the air quality during the 725 

Party Congress, at the end of May, was better than during the weeks before. It is noted that throughout 

the whole study period of 19 weeks, the NO2 concentrations in Beijing were strongly reduced with 

respect to those in the preceding 4 years. 

 

This study was undertaken for China, but the methodology and results can in part also be applied to other areas. 730 

In particular this applies to the temporal resolution, which in this study was taken as 1 week, as opposed to 1 day 

or 1 month in earlier studies such as Fan et al. (2020a). As discussed above, meteorological variations 

influencing air quality, such as formation and dissipation of haze, take place on rather short time scales. Whereas, 

for the determination of effects of sudden changes in emissions on pollutant concentrations such short term 

meteorological effects need to be considered, as well as interannual changes. The baseline correction using 735 

multi-annual data also needs to account for (changes in) long term trends and seasonal variations as discussed in 

detail for NO2.  

Appendix A.  

The air quality index (AQI) is based on measured mass concentrations of aerosols and trace gases. The method 

to determine the AQI is described in (Yuan and Yang, 2019) and is calculated according to the National 740 

Standards on Air Quality Measurement published by the Chinese Ministry of Environmental Protection on 29 

February 2012 -Ambient air quality standards (GB 3095-2012) (Ministry of Environmental Protection of the 

People’s Republic of China, MEE, 2012) and the Technical Regulation on Ambient Air Quality Index (on trial) 

(HJ 633-2012) (MEP(Ministry of Environmental Protection of the People’s Republic of China), 2012) that 

became effective on January 1st, 2016). The aerosol mass concentrations considered are PM2.5 and PM10 and the 745 

trace gases are NO2, SO2, O3 and CO. The AQI is calculated using the method described in (MEP(Ministry of 

Environmental Protection of the People’s Republic of China), 2012). The individual AQI of each of these 6 

pollutants (IAQIP) is calculated using (Yuan and Yang, 2019):    

IAQI௉ =
ூ஺ொூಹ೔ିூ஺ொூಽ೚

஻௉ಹ೔ି஻௉ಽ೚
(𝐶௉ − 𝐵𝑃௅௢) + 𝐼𝐴𝑄𝐼௅௢ ,    (A1) 

Where CP is the mass concentration of pollutant P, BPHi and BPLo are the higher and lower threshold of pollutant 750 

concentration near CP corresponding to specified IAQI (Individual Air Quality Index) regulated by government 

policy. IAQIHi and IAQILo are the corresponding IAQI to BPHi and BPLo, respectively. The AQI is the highest of 

the 6 individual IAQIP:  

AQI = max {IAQI1, IAQI2, … , IAQI6}                  (A2) 

Eq (A2) shows that the AQI reflects only one pollutant, with the highest IAQI, and is not a combination of all 6 755 

(Yuan and Yang, 2019).  

An AQI of 50 means that the air quality is excellent, and AQI between 50 and 100 means it is good. When 100< 

AQI< 150 the AQ is lightly polluted, for 150<AQI<200 AQ is moderately polluted and for 200<AQI<300 AQ is 

heavily polluted. AQI > 300 indicates severe pollution (MEP(Ministry of Environmental Protection of the 

People’s Republic of China), 2012). 760 
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Table A1. Definition of the weeks around the Chinese Spring Festival, as used in this study, from 2015 to 2020. The first day 

of week 0 in each year is defined as the first day of the Lunar New Year, which in the solar calendar changes from year to 

year. 

 2015 2016 2017 2018 2019 2020 

Week-3 01.29-02.04 01.18-01.24 01.07-01.13 01.26-02.01 01.15-01.21 01.04-01.10 

Week-2 02.05-02.11 01.25-01.31 01.14-01.20 02.02-02.08 01.22-01.28 01.11-01.17 

Week-1 02.12-02.18 02.01-02.07 01.21-01.27 02.09-02.15 01.29-02.04 01.18-01.24 

Week 0 02.19-02.25 02.08-02.14 01.28-02.03 02.16-02.22 02.05-02.11 01.25-01.31 

Week 1 02.26-03.04 02.15-02.21 02.04-02.10 02.23-03.01 02.12-02.18 02.01-02.07 

Week 2 03.05-03.11 02.22-02.28 02.11-02.17 03.02-03.08 02.19-02.25 02.08-02.14 

Week 3 03.12-03.18 02.29-03.06 02.18-02.24 03.09-03.15 02.26-03.04 02.15-02.21 

Week 4 03.19-03.25 03.07-03.13 02.25-03.03 03.16-03.22 03.05-03.11 02.22-02.28 

Week 5 03.26-04.01 03.14-03.20 03.04-03.10 03.23-03.29 03.12-03.18 02.29-03.06 

Week 6 04.02-04.08 03.21-03.27 03.11-03.17 03.30-04.05 03.19-03.25 03.07-03.13 

Week 7 04.09-04.15 03.28-04.03 03.18-03.24 04.06-04.12 03.26-04.01 03.14-03.20 

Week 8 04.16-04.22 04.04-04.10 03.25-03.31 04.13-04.19 04.02-04.08 03.21-03.27 

Week 9 04.23-04.29 04.11-04.17 04.01-04.07 04.20-04.26 04.09-04.15 03.28-04.03 

Week 10 04.30-05.06 04.18-04.24 04.08-04.14 04.27-05.03 04.16-04.22 04.04-04.10 

Week 11 05.07-05.13 04.25-05.01 04.15-04.21 05.04-05.10 04.23-04.29 04.11-04.17 

Week 12 05.14-05.20 05.02-05.08 04.22-04.28 05.11-05.17 04.30-05.06 04.18-04.24 

Week 13 05.21-05.27 05.09-05.15 04.29-05.05 05.18-05.24 05.07-05.13 04.25-05.01 

Week 14 05.28-06.03 05.16-05.22 05.06-05.12 05.25-05.31 05.14-05.20 05.02-05.08 

Week 15 06.04-06.10 05.23-05.29 05.13-05.19 06.01-06.07 05.21-05.27 05.09-05.15 

Week 16 06.11-06.17 05.30-06.05 05.20-05.26 06.08-06.14 05.28-06.03 05.16-05.22 

Week 17 06.18-06.24 06.06-06.12 05.27-06.02 06.15-06.21 06.04-06.10 05.23-05.29 

Week 18 06.25-07.01 06.13-06.19 06.03-06.09 06.22-06.28 06.11-06.17 05.30-06.05 

Week 19 07.02-07.08 06.20-06.26 06.10-06.16 06.29-07.05 06.18-06.24 06.06-06.12 

 765 
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Figure A1. Time series of annual mean NO2 TVCDs, derived from de-seasonalized monthly OMI data, for each of the 11 
regions, plotted on a semi-logarithmic scale. 
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 770 

   

   

   

  

 

Figure A2. Time series of monthly averaged NO2 TVCDs over each of the 11 regions, for each of the months November, 
December, March and April from 2011 to 2019. The data points for each month are connected with dotted lines for easy 
identification. 
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 775 

 

 

Figure A3. Difference plots for weekly averages of NO2 TVCDs minus that for week 0 (Figure 5) for weeks 1-19. Note that 
week number refers to the 2020 Spring Festival, i.e. week 0 starts on Saturday 25 January 2020. As explained in Sect. 2.1, 
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the yellow background in the maps indicates no changes with respect to week 0, red an increase and green a 
decrease of the NO2 TVCD. 

 780 

785 
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Figure A4. Time series of the AQI in 12 cities for the first 16 weeks (week 0 to week 15) after the Spring Festival in 2020, 
together with AQI time series for the same weeks in 2015-2019. See legend for identification. Note that the vertical scales 
vary between different cities.  795 
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