What Drives Daily Precipitation Over Central Amazon? Differences Observed Between Wet and Dry Seasons

Thiago S. Biscaro¹, Luiz A. T. Machado¹, Scott E. Giangrande², and Michael P. Jensen²

¹National Institute for Space Research, Cachoeira Paulista, São Paulo, 12630000, Brazil.
²Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA.
³Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany

Correspondence to: Thiago S. Biscaro (thiago.biscaro@inpe.br)

Abstract. This study offers an alternative presentation approach regarding how diurnal precipitation is modulated by convective, the nighttime events that developed over the Central Amazon during the preceding nighttime period. We used data collected during the Observations and Modelling of the Green Ocean Amazon (GoAmazon 2014/5) field campaign that took place from 01 January 2014 through 30 November 2015 in the Central Amazon as well as radar and satellite data. Local surface-based observations of cloud occurrences, soil temperature, surface fluxes, and planetary boundary layer characteristics are coupled with satellite data to identify the physical mechanisms that control the diurnal rainfall in Amazonas Central Amazon during the wet and dry seasons. This is accomplished through evaluation of the atmospheric properties during the nocturnal periods preceding from the days prior to raining and non-raining events. Comparisons between these non-rainingy and raining transitions are presented for the wet (January to April) and dry (June to September) seasons. The results suggest that wet season diurnal precipitation is modulated mainly by night-time cloud coverage and local influences such as heating-induced turbulence, whereas the dry season rain events are mainly controlled by larger mesoscale large scale circulations, or regional large mesoscale circulations (O(50 km)).

1 Introduction

As a key component of the atmospheric system, convective cloud processes and their ongoing inadequate model representations over-in tropical regions introduce significant uncertainty in numerical weather and climate model predictions (Betts and Jakob, 2002; Dai, 2006). In particular, the tropical diurnal precipitation cycle and its representation has been studied for decades, using various numerical models (Bechtold et al., 2004; Sato et al., 2009; Stratton and Stirling, 2012) and observational techniques (Itterly et al., 2016; Machado et al., 2002; Oliveira et al., 2016). Despite the numerous efforts—many years of studies, there remains no one can point to several unresolved climate model issues over-related to the representation of the tropical precipitation in large-scale atmospheric models—modeling and its diurnal cycles, including: a) an incorrect phasing of the diurnal cycle of precipitation; b) the poor positioning and potential doubling of the Intertropical Convergence Zone (Hwang and Frierson, 2013); and c) the underestimation of rainfall over the Amazon forest (Huntingford et al., 2004). Regarding the diurnal cycle of precipitation, Guichard et al. (2004) and Grabowski et al. (2006) demonstrated that single-column models (SCM), using parameterizations to represent moist convection and clouds, reproduced the same early-precipitation behavior presented in full 3D large-scale models. Also, SCMs predict instantaneous growth of deep convective clouds within one timestep after their tops overcome the surface-based convective inhibition. Hence, a correct depiction of the convective diurnal cycle depends not only on the correct representation of deep convection, but also on the representation of a progression of regimes, from dry to moist non-precipitating to precipitating convection. Cloud resolving models (CRMs), on the other hand, can capture qualitative aspects of the convective diurnal cycle, although they are subject to model resolution and sub-grid scale processes representation.
Given its unique tropical location and propensity for deep convective clouds, shallow convection and cloud transitions to deeper convective modes have been identified as a continuing challenge for the correct representation of the diurnal cycle in GCMs (Khairoutdinov and Randall, 2006). Experimental studies of shallow-to-deep convection transition were carried by Adams et al., (2015; 2017), particularly focusing around the 1h transition time. These studies used Global Navigational Satellite System (GNSS) meteorological stations to investigate the water vapor convergence to characterize the evolution of deep convection. Shallow-to-deep transition representation remains an open debate in the numerical modeling community. Recently, Zhuang et al., (2017) carried out an observational analysis and proposed that diurnal shallow-to-deep transition are highly correlated with large scale moisture transport convergence, lower surface temperature, higher surface humidity, shallower mixed layer, and smaller sensible heat flux and smaller surface wind speed. Similarly, Meyer and Haerter (2020) showed numerically that in the absence of large-scale moisture advection, cold pool collisions act as precursors of shallow-to-deep transition. Shallow-to-deep transition are also connected with the representation of the diurnal cycle of precipitation (Covreux et al., 2015) and medium-range predictability associated with the Madden-Julian Oscillation (Klingaman et al., 2015). While proximity to topography or coastlines that drive local circulations can regions where topography or ocean proximity plays an important role in Amazonian convective lifecycle, shallow clouds over the Central Amazon and their transition to deep convection are associated with the growth of diurnally-driven evening the evening time deep convection, and so their transition to deep convection as well (Chakraborty et al., 2020).

Since convection is parameterized in GCMs with convective cloud scales ranging from smaller to larger than the typical GCM grid resolution, the differences in the convective scale driven by the large-scale circulation should be considered in convection parametrization schemes and satellite-based rainfall retrievals (Rickenbach et al., 2002). Knowledge of the factors controlling the dynamical, microphysical, and environmental differences between the organized (i.e., larger area coverage cloud regimes, Mesoscale Convective Systems MCS; Houze 2018) and/or isolated convective cloud regimes (Schiro and Neelin, 2018) have also been highlighted as challenges for the correct representation of convective processes in the Amazon. Specific to the diurnal cycle of cloud systems in the Amazon, diurnal cycle themes, the deficiencies in specific to Amazon basin convective cloud studies, model treatments offer shallow convection and cloud transitions to deeper convective modes have been identified as a continuing challenge for the correct representation of the diurnal cycle in GCMs (Khairoutdinov and Randall, 2006). Experimental studies of shallow-to-deep convection transition were carried by Adams et al., (2015; 2017), particularly focusing around the 1h transition time. These studies used Global Navigational Satellite System (GNSS) meteorological stations to investigate the water vapor convergence to characterize the evolution of deep convection. Shallow-to-deep transition representation remains an open debate in the numerical modeling community. Recently, Zhuang et al., (2017) carried out an observational analysis and proposed that diurnal shallow-to-deep transition are highly correlated with large scale moisture transport convergence, lower surface temperature, higher surface humidity, shallower mixed layer, and smaller sensible heat flux and smaller surface wind speed. Similarly, Meyer and Haerter (2020) showed numerically that in the absence of large-scale moisture advection, cold pool collisions act as precursors of shallow-to-deep transition. Shallow-to-deep transition are also connected with the representation of the diurnal cycle of precipitation (Covreux et al., 2015) and medium-range predictability associated with the Madden-Julian Oscillation (Klingaman et al., 2015). While proximity to topography or coastlines that drive local circulations can regions where topography or ocean proximity plays an important role in Amazonian convective lifecycle, shallow clouds over the Central Amazon and their transition to deep convection are associated with the growth of diurnally-driven evening the evening time deep convection, and so their transition to deep convection as well (Chakraborty et al., 2020).

Recently, the Observations and Modelling of the Green Ocean Amazon (GoAmazon2014/5) campaign (Martin et al., 2016) was concluded a two-year deployment over Manaus, Brazil and its surroundings, including an advanced complement of cloud
and precipitation profiling instruments. This unique deployment enabled an unprecedented new investigation of cloud lifecycle and associated environmental controls sampled prior to cloud initiation and during subsequent cloud development stages, as well as the associated cloud and precipitation properties. The purpose of this study is to compare the environmental conditions observed within the diurnal rainfall cycle in the Amazonas-Central Amazon and contrast the variability between the wet and dry seasons variability. Specifically, this study emphasizes the changes in the atmospheric conditions and cloud properties observed during the nocturnal periods from days preceding to events having no rainfall, and those event-st days with no rainfall. We do not assume that convection is only dependent on nocturnal conditions, but our aim is to isolate the potential factors in the evolution of the convective environment that may lead to diurnal precipitation. This is a convenient simplification, as isolated convection also may occur during overnight periods (which would affect soil moisture and atmospheric stability during the morning, among other factors), and expanding this period would result in observing previous day convection. One motivation for this study is to establish potential physical mechanisms responsible for these contrasts between raining and non-raining days. These analyses consider the atmospheric cloud and environmental conditions over multiple scales by incorporating local convection and/or column-type observations with versus mesoscale/regional cloud properties. This paper is structured as follows: section 2 presents the data used, section 3 defines the transition approach of our methodology for quantifying the precipitation transitions, section 4 presents the results, and while the conclusions are shown in section 5.

2 Data

The GoAmazon2014/5 field campaign was conducted between January 2014 and December of 2015. The main site (herein, T3) was located in Manacapuru, state of Amazonas (3.213°S, 60.598°W), which is at a location which is roughly 70 km west of Manaus. A comprehensive suite of instruments to measure cloud, precipitation, aerosol and atmospheric state was deployed at T3 as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM; Ackerman and Stokes, 2003; Mather and Voyles, 2013) Mobile Facility 1 (AMF1; Miller et al. 2016) during GoAmazon2014/5. Additional details on the AMF deployment and its dataset collection to include an overview of the cloud coverage and radiative properties, as well as campaign thermodynamic conditions, are provided by Giangrande et al. (2017; 2020).

The primary ARM data source for this study is the Active Remote Sensing of Clouds (ARSCL; e.g., Clothiaux et al., 2000) Value-Added Product. This data product combines measurements from a ceilometer, a micro pulse lidar, and a vertically pointing W-Band (94 GHz) radar (ARM, 2014b). We use the cloud mask available in the ARSCL product to derive profiles of cloud frequency of occurrence. These cloud frequency values were calculated by averaging the occurrences observed over our periods of observation and for the cloud transitions as defined in section 3. Similarly, we draw from the ARM Eddy Correlation Flux Measurement System (ECOR) (ARM, 2014a) observations that are used to derive the turbulent kinetic energy and latent and sensible heat fluxes. The T3 site also included a Surface Energy Balance System (SEBS) (ARM, 2013eb), used to compute the soil temperature, and a radiometer used to measure derive longwave irradiances. Finally, GoAmazon2014/15 included frequent radiosonde (ARM, 1993) launches (4 times a day, at fixed 0, 6, 12, and 18 GMT) that are used to estimate convective indices, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) (Jensen et al., 2015). For CAPE and CIN calculations, the traditional approach of parcel theory was applied – water vapor phase changes only, and irreversible parcel ascent in a virtual potential temperature framework (Bryan and Fritsch, 2002). We define the originating level of the convective parcels as the level of maximum virtual temperature in the lowest 1000 m of the atmosphere representing the most buoyant parcel in the boundary layer, maximizing the CAPE and minimizing the CIN. Finally, a ceilometer-based approach is used to derive the estimates of the Planetary Boundary Layer (PBL) height (ARM, 2013eb).
Rainfall observations are collected by an automatic weather station, with additional support from a nearby surveillance radar to identify rainfall in the vicinity of the site. The nearby SIPAM (Amazonian Protection System) S-Band (2.2 GHz) radar is a single polarization, Doppler weather radar that performs a volume scan every 12 minutes, with a 2° beam width and radial (gate) resolution of 500 m. The SIPAM radar is located in Manaus and has a 240 km radius range coverage area. For spatial cloud field property analysis, the GOES 10.4 μm brightness temperature data acquired over a 10° x 10° box centered on T3 were used to verify the occurrence of cold cloud tops that would indicate the presence of precipitating clouds around the studied region. GOES data were received and processed operationally by CPTEC/INPE (Centre for Weather Forecasting and Climate Research/National Institute for Space Research) (Costa et al., 2018).

3 Classification of Raining and Non-Raining Events

In the Amazon, convection typically initiates around noon, with the precipitation associated precipitation with these clouds presents its peaking maxima close to around 14 LT (Adams et al., 2013; Machado et al., 2002; Tanaka et al., 2014). This study defines the previous day’s 'nocturnal period' as the period between 00 GMT and 12 GMT (20 LT to 08 LT), and the following day’s ‘diurnal period’ as the period between 12 GMT and 00 GMT (08 LT to 20 LT). Thus, this definition of the diurnal period begins approximately 2 hours after the sunrise in Manacapuru, which consistently occurs around 06 LT and does not vary much throughout the year. To understand what controls the convective development for these daytime diurnal periods that follows, we categorize Amazon observations into two classes: a) days having no rain during the nocturnal period and no rain during the subsequent diurnal period; and b) days having no rain during the nocturnal period, but observing rain during this subsequent diurnal period. We refer to these transitions as NR-NR (No Rain to No Rain) and NR-RR (No Rain to Rain), which represent two separate 24-hour diurnal period rainfall-event outcomes. Our intention is to identify the potential possible controls during nocturnal periods that may initiate or stifle precipitation in the subsequent diurnal window. For completeness, we note that the complete GoAmazon2014/5 dataset includes several days that recording rain within the nocturnal period: we define above (39% of the days during the wet season, and 9% during the dry season). These days are not considered for our current analysis since as we are only interested in simpler, archetypal diurnal-cloud cycling examples associated with daytime and the onset of clouds and precipitation. Our choice for a precipitation-free 12-hour nocturnal period having no precipitation also acts as a provides an additional control, since daytime convection having precipitation organized MCS or other widespread precipitation may propagates into the Amazon basin at all times; frequent, and are especially frequently found during the wet and transitional seasons (e.g., Giangrande et al., 2020). Moreover, thus, one cannot assume that convection (generic) is only dependent on nocturnal conditions. Thus, this study offers partial insights into these themes, but noting that expanding proposed such analyses periods into the prior day diurnal period a full (prior) day conditions would increases the often result in likelihood of lingering clouds and precipitation including precipitation thinfluencing these efforts observations. Precipitation events are defined by using [We used local weather station datasets at T3, as well as gridded SIPAM radar datasets (1 km-horizontally gridded, 3 km-level constant altitude plan position indicator (CAPPI)) to define precipitation events. The SIPAM datasets act as an additional areal constraint monitoring of the area was done to include days where point/Local Column T3 observations may would otherwise have missmiseragized reasonable rainfall events due to an unrepresentative or poor gauge measurements. A 50 x 50 km area (similar to a typical GCM gridbox resolution) centered at the T3 site was adopted for these SIPAM checks, with and gridded radar reflectivity factor values greater than 25 dBZ in this domain were considered to bear "precipitation" echoes if observed. For these checks, if more than 10% of the area was covered by such SIPAM reflectivity values greater than 25 dBZ at any time during any given hour, or if the local weather station reported a rainfall accumulation greater than 1 mm during that same hour, then we defined the day was categorized as a rain (NR-RR) event.
For this study, we defined the ‘wet’ season has been defined as the period between January and April, and the ‘dry’ season as the period between June and September (Giangrande et al., 2017, Machado et al., 2018). To ensure sufficient sampling, we included used all of the available entire GoAmazon2014/5 record (2014 and 2015) in our analysis and did not attempt to differentiate year-to-year GoAmazon2014/5 dataset variability, such as the case in previous Amazon efforts (e.g., Jiménez-Muñoz et al., 2016). Following the previous our definitions presented above, we identified 51 NR-NR cases and 113 NR-RR cases during the wet season. The dry season event breakdown was the reverse showed a reversal in event frequency, with 148 NR-NR cases and 64 NR-RR cases. These cases were distributed throughout the campaign period as presented in Figure 1. No obvious intra-seasonal variability is apparent observed from these case distributions, however an-the ENSO event of 2015 is suggested pronounced (e.g., Jiménez-Muñoz et al., 2016), as suggested represented by the larger number of NR-NR cases during the dry season of 2015 (Figure 1(d)).

While not the focus of this study Also, NR-RR days with an active Kelvin wave mode were only found associated with for 7% of our this wet season dataset (not shown, a classification of Kelvin wave activity was kindly provided by Dr. Yolande Serra from the Joint Institute for the Study of the Atmosphere and Ocean – University of Washington). Additional complete discussion on the about the relationships between Kelvin Waves activity and deep convection over Central Amazon can be found in Serra et al., (2020). Similarly, possible river-breeze or other land contrasts influences in the rainfall distribution are expected, but they are not considered in our analyses object of this study. For example, land-breeze effects are known to enhance the nocturnal and early morning rainfall in near-river areas (Cohen et al., 2014; Fitzjarrald et al., 2008; Tanaka et al., 2014) and affect local low-level circulation in near-river areas (de Oliveira and Fitzjarrald, 1993). Moreover, the diurnal cycle of precipitable water vapor near river areas are influenced by their location with respect to the dominant lower-tropospheric easterly winds (Adams et al., 2015). Note, most All of our data for this effort were obtained over the same site (T3) that is located 10 km from the Solimões river and 25 km from the Negro river. Cumulative radar analyses (not shown) suggest that precipitation is enhanced southwest from the SIPAM radar during this campaign period, which may complicate any attemptst to attribute select behaviors to river proximity. To the best of the authors’ knowledge, if the site and its surroundings also did not suffer any deforestation or change in its surface coverage over the 2 year period of our analysis. Furthermore, radar analysis provided by Dr. Die Wang from the Brookhaven National Laboratory has shown that precipitation is enhanced southwest from the SIPAM radar, regardless of river proximity Overall. Therefore, we define “local influences” as influences within a few kilometers around the site, occurring in this area between the rivers, which may could be represented as occupying is a typical GCM gridbox.

4 Results

4.1 Results from local observations

4.1.1 Low cloud diurnal cycle from cloud radar

In Figure 2, we display ARSCL-derived mean cloud fraction values. The plots present the average fraction of time when clouds were observed over the site during each observation period, and for the various rain regime separations (e.g., various pairings for NR-NR/NR-RR modes under wet/dry season breakdowns, and NR-NR/NR-RR modes). Our initial emphasis is on the lower portion of the atmosphere below the freezing level (approximately 4.5 km AGL for these discussions), since we anticipate shallow clouds may play a pivotal role during non-raining nocturnal periods. HereNote, residual cirrus from the previous day’s deeper cumulus clouds (or advected into the domain from a distance) are also may be anticipated, however, these upper level clouds of a similar frequency are not the focus of this analysis ubiquitous for the T3 location (e.g., Giangrande et al., 2020). In the bottom panels of Figure 2, we plot the difference...
of the absolute cloud occurrence difference between the various modes for the wet and dry seasons, respectively. The local time axes on these images have been extended to 12 LT to better illustrate the onset of convection (or lack thereof) in these composites mode and difference properties.

Consulting wet season properties along the leftmost panels, one can note that the NR-NR transition (Figure 2 (a)) presents reveals higher cloud coverage during the overnight period than the NR-RR mode (Figure 2 (b)). The NR-NR mode features low-level (0–3 km) cloud occurrences exceeding 20% from 22 LT to 04 LT between 1 and 3 km, and from 00 LT and 04 LT in several cases. In addition, the NR-NR mode suggests an earlier onset for shallow clouds than the NR-RR transition days, and the near-surface occurrences are higher than exceed 20% frequently in the times most of the times between from 00 LT to 04 LT. These near surface shallow clouds may be attributed to fog, frequently observed from midnight to noon during the wet season (Anber et al., 2015, Giangrande et al., 2020). From sunrise (around 06 LT) until 10 LT, the NR-RR mode also suggests low-level cloud activity, possibly related to fog occurrence as well. During the late morning, the NR-NR mode indicates a high frequency of shallow convection after 10 LT, with cloud occurrences exceeding 45% confined to a shallow layer around 1 km altitude. During the raining transition to rainy NR-RR conditions, the 1 km-layer cloud coverage is generally lower compared to the NR-NR mode, where in before 06 LT the NR-NR cloud occurrence rarely exceeds 15%. The shallow convective activity observed at sunrise is weaker in the NR-RR composites than found for the wet season NR-NR mode, but after 10 LT cloud occurrence exceeds 45% and its 30% contour height reaches 2.5 km. Note, since we extend our period of study from 06 LT to 12 LT, there will be raining clouds contaminating these results after 08 LT, for all transition modes and seasons. The absolute difference (Figure 2 (c)) indicates shows that primarily between the times from for most times from 22 LT to 04 LT, the non-raining NR-NR mode has higher cloud occurrence, particularly with emphasis on clouds especially below 6 km. These differences are approximately round 20% in occurrence, and are which happen also frequently found at higher levels (around 10 km) between 20 LT and 22 LT. After 10 LT, the NR-RR mode shows the maximum negative cloud differences, reaching -20%.

One physical interpretation of these wet season results characteristics is that this higher cloud occurrence in the NR-NR mode during the nocturnal periods would imply additional consumption of energy that might have been available for convection during the following daytime period. A question is whether these night-time clouds could be formed by radiative cooling from the top of the boundary layer, thus not associated with consumption of CAPE. However, CAPE and CIN observations (subsequent sections to follow) indicate that these thermodynamic parameters are reduced for these NR-NR modes. In addition, cloud coverage during early mornings (frequency over 25% observed between 06 and 07 LT near the surface and at 3 km AGL) would limit surface heating, e.g., through a reduction offed downwelling incident solar radiation. Alternatively, an increase in downwelling the incidence of solar radiation during the NR-NR mode associated with reduced cloud coverage generates surface heating that would favor subsequent daytime convective development. This behavior was discussed from an energy budget standpoint by Machado (2000), where it was shown that the surface loses more energy than it receives during convective events and therefore, reduced energy is available at the surface following a cloudy period. Using observations over the Amazon, Machado (2002) show that the surface absorption of solar energy was always smaller (larger) than the total surface flux provided to the atmosphere throughout convective (non-convective) events. The quantity of energy stored at the surface seemed to be constrained, and defines a timescale, during which the surface needs to export or receive energy to stabilize its deficit or gain of energy. Beginning at 06 LT, the differences throughout the whole column (except close to surface between 06 and 07 LT) favor the NR-NR mode.

The dry season behaviors results in Figure 2 suggest illustrate most of the cloud activity during the night-time window occurs at the higher cloud levels (i.e., above 7 km), and this provides strong contrasts with the increased lower level cloud coverage observed during the wet season (e.g., between 0 and 6 km). The NR-NR mode (Figure 2 (d)) suggests reduced cloud occurrence (e.g., frequency values less than 15%) during the night-time hours. The NR-RR cases (Figure 2 (e)) suggest increasing cloud coverage above 1 km and additional near-surface/lownlow clouds after 08 LT, again in which contrasts to with the NR-NR modes.
that suggest low-cloud occurrence less than below 5%. The difference field for the dry season (Figure 2 (f)) implies that the raining mode is predominantly cloudier than the NR-NR mode. During the nocturnal period, the maximum difference in cloud occurrence lies falls between an 8% to 12% increase in the favor of the NR-RR mode (here, for the levels between 2 km and 4 km). Thus, these dry season non-rain to rainy differences are reduced (in absolute value) when compared to the wet season behaviors. A physical interpretation for these dry season behaviors will be discussed in section 4.2.

4.1.2 Radiosonde analysis

In Figure 3, we present statistics for the thermodynamic parameters CAPE and CIN using data derived from the nocturnal (20, 02, and 08 LT) radiosondes launched at T3. The boxplots were constructed to display the minimum, lower quartile, median, upper quartile, and maximum values. For CAPE and CIN calculations the traditional approach of parcel theory was applied – water vapor phase changes only, and irreversible parcel ascent in a virtual potential temperature framework (Bryan and Fritsch, 2002). By choosing the maximum virtual temperature in the first 1000 m of the atmosphere we define the level from which the parcels are lifted. We expect that the calculations for CAPE and CIN thus represent the most buoyant parcel in the boundary layer.

As previously introduced, the wet season CAPE estimates results (Figure 3 (a)) suggest a reduction of the potential energy from 20 to 02 LT during the NR-NR transition (grey boxes), whereas the NR-RR mode CAPE estimates results (blue boxes) are similar for these two times measurements. Recall, a physical explanation for this reduction in CAPE between the two first observations (20 and 02 LT) is convective cloud energy consumption, since a cloudier condition is observed argued between 22 and 02 LT for these NR-NR transition events (see Fig. 2 (c)). The NR-NR CAPE at 20 LT is the highest magnitude/distribution we observe, suggestive of an eventual increase of the cloud coverage, which in turn consumes this energy, yet ultimately decreasing the CAPE by the measurements from the subsequent soundings. Between 02 and 08 LT, we observe an increase in the distributions for CAPE for NR-NR and NR-RR modes (during the wet season). This increase is suggested as owing to the surface heating and the increase of the surface temperature after the sunrise. Elevated CAPE values are observed higher for the NR-RR mode for a few hours of the 02 LT and morning 08 LT radiosondes when compared toNR-NR transitions. The wet season CAPE changes observed between 20 and 02 LT are subtle: a slight increase of the upper quartile value and a decrease of the maximum value. A physical explanation for the similarities between the 20 and 02 LT results, for both modes, and their differences in comparison with the wet season results, is the reduced cloud coverage (overall). Moreover, reduced or less favorable cloud coverage, as found observed during the dry season, implies a lower convective activity overall. The 02 LT sounding values are similar for the dry and wet seasons, for both NR-NR and NR-RR transitions. The wet season CAPE (Figure 3 (c)) shows that the convective inhibition is less intense than those observed during the dry season (Figure 3 (d)), for all times and transitions. For both seasons the largest inhibitions are displayed during the 02 LT sounding, for the NR-NR mode. Between 02 and 08 LT, CIN reduction observed in both seasons for the NR-RR mode implies a higher probability of deep/precipitating convection during the afternoon.

Finally, A & Student’s t-test was applied to the radiosonde CAPE/CIN dataset. These tests suggests efforts found that the differences between the modes were significant at the 0.05 level for the 02 and 08 LT results above. However, the 20 LT
observations were not found to meet these significance criteria. These statements coverinclude both the CAPE and CIN behaviors, and the behaviors for wet and dry seasons. Overall, less conclusive these findings results may be somewhat expected, but these properties are presented to demonstrate a strong consistency with behaviors discussed for the NR-NR versus NR-RR modes.

The composite radiosonde profiles are presented in Figure 4, Figure 4 (02 LT composite) and Figure 5, Figure 5 (08 LT composite). Left panels indicate wet season observations, solid lines are NR-RR data, and dashed lines are NR-NR data. As expected, one might expect, the dry season composites are much drier at most levels than their those from the wet season. One feature that is apparent can be noticed in these composites is higher temperatures close to the surface in the 02 LT data than those observed in the 08 LT sounding, corroborating with the surface temperature observations (not shown) that indicated presented higher temperatures from 02 LT through up to 08 LT. The dry season temperature profiles present subtle differences between NR-RR and NR-NR modes during the dry season, though these temperature profiles and they are almost the are nearly identical same for the wet season composites. Rain/no-rain differences in the dew point temperature profiles are more pronounced than those observed in the dry temperature profiles (especially during the dry season). There is evidence that dry season precipitation is linked to larger-scale moisture advection, as we will discuss in section 4.1.5.

4.1.3 Sensible and latent heat fluxes analysis

Cloud coverage directly impacts the incoming solar radiation by changing the Earth-system albedo. A higher-greater (lower-less) cloud coverage will generally result imply in less (more) incident solar radiation reaching the surface, altering the sensible and latent heat flux balance. As the surface heats up, thermally induced turbulence is produced, via convection. As Figure 2, the wet season NR-RR mode suggests presents lower cloud occurrences up to 1 hour after the sunrise, when the magnitude of both sensible and latent heat fluxes begin to grow. To examine the relationships between cloud coverage and surface fluxes, we present the mean latent heat flux and the mean sensible heat flux measured by the ECOR system, in Figure 6 and Figure 7. Since the ECOR did not operate during the year of 2014, only 2015 data are available for this analysis plotted. As mentioned before, we are this study is not interested in large time-scale variability, thus, it would be better to study a limited dataset than just displaying a case study (in contrast to all mean/composites analysis presented) or use reanalysis to compare the NR-NR and NR-RR seasonal behaviors.

During the dry season (Figure 6 and Figure 7, right panels) both the sensible and latent heat fluxes have similar approximately the same values during NR-NR and NR-RR both modes, with mean behaviors often superimposed most of the times during boundary layer growth. However, in the wet season, the latent and sensible heat fluxes (Figure 6 and Figure 7, left panels) present different characteristics during the NR-NR and NR-RR modes. We observe higher flux values during the NR-RR modes up to 08 LT. After 08 LT, with the onset of precipitation, temperature decreases and the differences between the NR-RR and NR-RR fluxes becomes negative. The fluxes analysis seems to corroborate the local cloud occurrence results (e.g., Figure 2). This is argued since the dry season fluxes are statistically the same (when looking at low cloud occurrence differences), while and during the wet season, the NR-NR fluxes are lower and associated with when additional we notice more cloud coverage during the NR-RR mode, reducing the incoming solar radiation and, therefore, surface heating (in comparison with the NR-RR mode). This analysis also indicates the role of the surface moisture in the PBL development, since higher soil moisture in the wet season may lower the Bowen ratio, thus lowering the PBL compared to the dry season, as also discussed in the next sections. This analysis also suggests indicates the role of the surface moisture in the PBL development. The higher soil moisture in the wet season may lower the Bowen ratio, favoring latent heat and developing more clouds, thus decrease lowering the PBL depth (e.g., Giangrande et al., 2020), as we discuss in the next sections.
4.1.4 Planetary boundary layer analysis

The PBL planet boundary layer over the Amazon was the subject of study for several previous field-campaigns, including such as the Amazon Boundary-Layer Experiment (ABLE2a and ABLE2b; Harris et al., 1988; Garstang et al., 1990) and also during the Large Scale Biosphere-Atmosphere Experiment (LBA) (Silva Dias et al., 2002). Studies such as Martin et al., (1988), and Fisch et al., (2004), described the characteristics and evolution of the PBL over the Amazon during these experiments. The depth of the mixed layer below cloud base, as well as the near surface relative humidity near surface and the lifting condensation level, are tightly coupled in the diurnal convective boundary layer over the Amazon (Betts et al., 2006). The composite dataset PBL planetary boundary layer heights variability properties for the various modes and seasons as estimated using ceilometer are plotted in Figure 8. PBL height is derived from the gradient in aerosol backscatter profile (not from cloud detections, but the DOE ARM “Value-Added Product” CEILPBLHT, e.g., ARM 2013a). It is important to note that there is a cloud/precipitation filter associated with this product. This is different than radiosonde-based products that may associate PBL with LCL (e.g., Thomas et al., 2018).

As already demonstrated in previous studies (e.g., Betts et al., 2002, 2013), the wet season, as being the season with the most convective precipitation activity overall, has indicates the present lower PBL heights compared to the dry season. As shown in from Figure 8, the observed PBL heights during the dry season are higher than estimated during the wet season ones, noting that and even the precipitating NR-RR mode of the dry season is associated with a higher PBL than the wet season non-precipitating NR-NR mode. During the wet season, the distinction between the NR-NR and NR-RR transitions begins to appear at 08 LT. The diurnal maximum in PBL height (approximately 1000 m) is reached around local noon for the NR-RR transition, whereas the NR-NR maximum is 500 m higher and attained reached 2 hours later. Both these height and time differences that we observed can be explained physically by the more frequent convective development that occurs during the wet season. With moisture freely available during the wet season, any conditional instability that favors cloud development such as surface heating or local instabilities can trigger convection, thus lowering the PBL height. For example, Carneiro (2018) and Carneiro et al. (2020), using observational data from ceilometer, LIDAR, and LES simulations showed that the erosion of the nocturnal boundary layer occurs 2 hours after the sunrise during the dry season and 3 hours after the sunrise during the wet season.

The normalized hourly rainfall occurrence distribution (Figure 9) suggests that the precipitation occurrences are more distributed over the daytime window during the wet season, while the dry season distribution indicates a distinct peak around noon. In total, 502 events were observed in the wet season and 192 events were observed in the dry season during this GoAmazon2014/5 period. The seasonal differences between the diurnal cycles of the rainfall occurrence may help explain the contrasts observed between the PBL heights. In the dry season, one third of the rainfall occurrences is observed between 12 and 14 LT, which corresponds to the time when the NR-RR and NR-NR PBL heights begin to present a more prominent difference, in contrast with the wet season, where the PBL heights are different from 08 LT.

The ECOR derived turbulent kinetic energy (TKE) properties results are presented in Figure 10. TKE was measured at 3 m from surface. Note, TKE observations from aircraft and although flights were available during the campaign (Martin et al., 2016; Wendisch et al., 2016 references), however these observations were scarce (less than 20 flights per IOP), and not sufficient for allowing us to use the data for a statistical analysis. TKE is derived using the variances of the u, v, and w wind components provided by the sonic anemometer which is part of the ECOR system. We did not discard data due to synoptic conditions, hence all good-quality flagged data were included in the analysis. There is additional information on the ARM ECOR located at https://www.arm.gov/capabilities/instruments/ecor, and within the instrument handbook at https://www.arm.gov/publications/tech_reports/handbooks/ecor_handbook.pdf. Result The TKE estimates show that the dry season generally has presents higher values of TKE than the wet season-season, with minor few differences observed between the modes. However, clear differences between the wet season modes are observed, with the NR-RR mode having the higher values of TKE, reaching 1.2 m²s⁻² around the local noon. The NR-NR and NR-RR
wet season curves show significantly different values after 10 LT, indicating a more turbulent low-level atmosphere in the presence of rain during the wet season. Moreover, during the wet season, the raining NR-RR mode has presents higher TKE values overall. Before the onset of convection, this behavior may be physically related to larger surface heat fluxes (presented in Figures 4 and 5, right panels) from 06 to 09 LT. In the presence of rain, the larger TKE values may be explained by turbulence generated by stronger winds observed during rain cell events. Oppositely, the dry season TKE is similar for both NR-NR and NR-RR modes. The similar magnitudes may be an indication of drier soil conditions, overall absence of shallow clouds, an indication of higher temperatures during both modes, or some combinations therein to be discussed below. Nevertheless, but during the wet season, these differences are suggestive for the importance of local cloud processes in the subsequent rainfall events.

Finally, surface temperature also plays an important role on the TKE, since higher surface temperatures will increase thermal turbulence and near-surface wind speed (Jacobson, 2005). For on the TKE behaviors we plot results (Figure 10), we observe that TKE is lower during the wet season, for both modes, which can be a response to the lower temperatures observed in this period (as we present in Figure 11). The wet season temperatures (Figure 11, left panel) show presents larger differences between NR-NR and NR-RR modes beginning at 12 LT, arguably owing due to surface evaporative cooling caused by rainfall onset beginning near 08 LT. Dry season temperatures (Figure 11, right panel) are similar for both modes, which is an indication that the temperature does not change as much during rain events in comparison with the wet season. This offers one helps explain the similarity between NR-NR and NR-RR dry season TKE curves. Also during in the dry season, one might anticipate a drier soil (resulting in higher Bowen ratios), and a drier boundary layer (less clouds), implying in a stronger generation of turbulent boundary layer growth (Giangrande et al., 2020, Jones and Brusnell, 2009).

4.1.5 Local observations – summary

The results presented in the previous sub-sections indicate that the precipitation onset in the dry season is weakly correlated with local factors. However, the local ARM site observations presented – cloud fraction, surface heat fluxes, CAPE/CIN, PBL characteristics, surface temperatures, and turbulence – show distinct differences between non-raining and raining transitions during the wet season, with CAPE/CIN having indicating also showing a potentially more significant difference between raining and non-raining modes during the dry season. Also, the following features are suggested as potential correlates: soil temperature and TKE presents the same NR-NR/NR-RR difference characteristics, as well as PBL height and rainfall, surface fluxes and cloud coverage. Although the dry season analysis above suggests presented similar characteristics between raining and non-rain modes, Ghate and Kollias, (2016) state that during the dry season, local land-atmosphere interactions may trigger the transition from shallow to deeper convection, and indicate a relationship between large-scale moisture advection and precipitation. A model comparison study by Lintner et al. (2017) shows that the water vapor profile is associated with precipitation, and the models examined are typically too dry compared to mean radiosonde profiles, especially during the dry season. Also, Henkes et al. (2021) show that the timing of the morning transition of the nocturnal boundary layer may have an impact on the shallow-to-deep transition. Here, we did not find evidence for local interactions being responsible for dry season diurnal precipitation, nor we analyzed moisture advection, but instead we present focus will be devoted to potential on a large-scale to-mesoscale cloud analysis and controls in the next section.
4.2 Large-mesoscale analysis

To further investigate the influence of local effects versus the influence of the mesoscale macro and mesoscale (meso-α, Orlanski (1975)) cloud patterns from the nocturnal period on the subsequent rain transitions, we calculated the mean field of the GOES 10.4 μm brightness temperatures observed over a 10° x 10° box centered at T3 during the nocturnal period. In addition, we calculated the cumulative distribution function (CDF) and the probability distribution function (PDF) of these brightness temperatures, grouped in 3h intervals and separated by transition type and season. Mean brightness temperature fields during the nocturnal period (20 LT – 08 LT) observed over a 10° x 10° box centered at T3 (the cross mark in each panel) are presented in Figure 12. These are provided for the NR-NR and NR-RR modes (top and middle panels), and for wet/dry season breakdowns (left and right columns, respectively), with absolute differences presented on the bottom panel. Note that these brightness temperature fields should be partially consistent related to the cloud occurrence fields from Figure 2, as higher cloud occurrences will result in lower brightness temperature means.

Overall, similar anticipated differences (to those from ARSCL properties in Figure 2) in convective activity between NR-NR and NR-RR transitions during wet and dry seasons are found. When switching to these e-spatial cloud field representations, for example, convection is more intense during the wet season (Figure 12 (a) and (b)), and it is observed over the whole domain. Specific to the wet season, temperatures below 275 K can be observed in more than 90% of the region for both raining and non-raining transition types. Note that approximately 81% of the differences suggested between NR-NR and NR-RR modes are not statistically significant (Figure 12 (c)). This is because these differences among the two transition modes in the wet season are related to the terrain topography. The regions in the north and southwest of the domain, that presents where the main differences are most prevalent, are areas where the dominant wind flow (from northeast) results in clouds being lifted over areas where the terrain elevation increases (Figure 13).

Specific to the dry season properties, the NR-NR transition (Figure 12 (d)) is associated with warmer temperatures compared to the wet season, with values greater than above 280 K occupying almost all the observed region. The dry season NR-RR transition (Figure 12 (e)) suggests colder temperatures, 5 to 10 K lower than the NR-NR transition overall. Approximately 72% of the temperature differences between the non-raining and raining mode are found between 8 and 20 K (Figure 12 (f)). This feature strongly suggests that the large-scale cloud conditions during the dry season are very different between raining and non-raining days.

The mean behavior observed in Figure 12 can be detailed by breaking the observations into fixed time intervals. In Figure 14, we present the PDF of the GOES-13 10.4 μm brightness temperatures grouped into 3 h time steps over the nocturnal period. This breakdown helps diagram the evolution of the convective systems around the T3 site and identify the differences presented found between the seasons and transitions therein. All distributions plotted in Figure 14 are left-skewed unimodal distributions, with peaks between 285 K and 295 K. Wet season distributions (dashed lines, both modes) are similar for both transition modes and for all time intervals considered. Values observed for the wet season are generally lower (colder cloud tops) than those observed in the dry season, indicating stronger convective activity throughout the domain independent of transition type or time interval. Dry season distributions (solid lines, both modes) are quite different during NR-NR (black lines) and NR-RR (red lines) events, with a larger incidence of higher values (e.g., warmer temperatures or absence of higher clouds) during NR-NR transitions.

The wet season mean cloud field similarities are better illustrated in the CDF formats (e.g., Figure 15), where these CDFs indicate that the wet season mean cloud field does not change as much as the dry season distributions during the overnight window, regardless of the precipitation observed during the subsequent day. In other words, the wet season large-meso scale mean convective characteristics have approximately the same characteristics for both transition modes, and the development of precipitating clouds observed at T3 during the wet season appears to be influenced mostly by local factors.
In contrast, the dry season distributions (solid lines) are quite different: the lower quartile (Q1) value of the NR-RR transitions (red lines) is often reached around 250 K, whereas for the NR-NR transitions (black lines), the Q1 value resides lies around 280 K. The NR-NR CDFs are very similar for all time intervals during the dry season, but the NR-RR CDFs change with the time, and the differences between them increase as time passes. The dry season NR-RR curves also suggest colder values than the wet season curves from 23 LT onwards, which implies that when precipitating convection happens during the dry season, these clouds tends to be stronger/deeper than those in the wet season. This finding for intense dry season convection is consistent with several previous studies (e.g.: Itterly et al., 2016; Tanaka et al., 2014). Overall, the difference between the wet/dry seasons and the results presented in section 4.1 (with local observations) suggest that for the dry season, precipitation is controlled directly by large-meso scale circulation, whereas and local effects are less important. In contrast, the wet season suggests that local processes are more of the dominant factor in the night-time hours preceding the next days’ diurnal rainfall.

5 Conclusions

In this paper, we present an alternative approach on how to visualize the potential daily precipitation is controls on the daytime diurnal cycle of precipitation led by isolating the night-time, previous day event influences over on convection in the Central Amazon. Our analysis is based on a starting hypothesis that nighttime cloudiness delays surface solar heating on the following day during the wet season; this contrasts with the dry season that suggests a smaller cloud coverage during those periods. We break-down our results based on season – wet and dry – and 2 modes of transition: non-raining evenings to non-raining days and non-raining evenings to raining days. These results suggest that during the wet season, several local influences are the key drivers of rainfall occurrence over this region of study. During the dry season, mesoscale-large scale factors appear to be more important and dominate the development of the precipitation-observed. Moreover, precipitating cloud development is suggested to be strongly associated with moisture availability, and boundary layer vertical motions or turbulence. We propose that during the wet season, when moisture levels observed are higher, cloud development is a direct effect of the locally-forced vertical motions. During the dry season, with moisture being less available and most of the incident solar radiation being converted to sensible heating, precipitating clouds are driven by large-meso scale circulation.

The results presented here indicate that during the wet season, the diurnal precipitation is modulated mainly by the cloud coverage during overnight hours. Since cloud development is associated with vertical motion and moisture availability, and since during the wet season moisture is freely available, we speculate that the local-scale nocturnal vertical motion is responsible for the cloud development. Therefore, the wet season NR-RR transition has a weaker upward vertical motion during the night (from 22 to 04 LT) and immediately following the sunrise (from 06 to 07 LT), reducing cloud formation during the first hours of the morning. This physical pathway allows the surface to receive more solar energy, favoring instability. These arguments are supported by the soil temperature and turbulent kinetic energy observations during the diurnal period. Since there is ample enough moisture available in the Amazon basin, we hypothesize that heating is transformed into latent heating, building convective cells that will precipitate later during the day. However, in the wet season NR-NR mode, nights with dominant shallow convection will reduce convection during the day, because the clouds formed during the night will reduce solar radiation at the surface during the first hours of the day. Similarly, during the wet season, a clear distinction during the night is observed between the NR-NR and NR-RR days, but for the dry season no significant signal is observed. This indicates that the local processes are not the key mechanism controlling the transition from shallow convection to rainfall during the months from June through September. Previous studies (D’Almeida et al., 2007; Khanna et al., 2018; Lawrence and Vandecar, 2014) show that contrasts in land occupation (e.g.: forest and pasture, forest and deforested areas) have more impact on atmospheric and
hydrological properties – PBL development, precipitation etc. during the dry season. These studies were performed measuring surface and atmospheric properties over different surfaces, showing that land occupation contrasts cause local circulations that can trigger convection and rainfall more often in the dry season. Here, we do not verify such land occupation contrasts, since all of our data was obtained over the same site (T3), and the site and its surrounding did not suffer any deforestation or change in its surface coverage over the 2 year period of our analysis.

Our PBL analysis indicates that thermal turbulence does not play a major role on cloud formation during the dry season – there are no distinguishable differences between the NR-NR and the NR-RR transitions. Alternatively, the distinction between the transitions are clear during the wet season – both the turbulent kinetic energy and PBL heights have different values between raining and non-raining modes. TKE observations are corroborated by the soil temperature measurements, showing a connection between seasonal and rain-induced temperature differences and TKE observed.

In addition, the satellite data analysis suggests shows that during the dry season, precipitation is observed at T3 during days where cloud activity is seen throughout the region and its surroundings during the overnight hours. This implies, indicating a large-meso scale modulation in the convection during this season. There is a clear difference in the PDFs and CDFs between the raining modes. However, wet season brightness temperature distributions are similar for NR-NR and NR-RR transitions. Statistically significant differences between NR-NR and NR-RR modes during the wet season are less frequent than those observed in the wet season, indicating that rainfall modulation during the wet season is less affected by the large-scale cloud background.

In summary, these results may highlight the complexity of the Amazon, specifically that models and parameterizations may consider different formulations based on the seasonal cycle to correctly resolve the precipitating convection over central Amazon. A convective parameterization scheme using only local or small-scale interactions could give poor results during the dry season based on our the suggested findings. On the other hand, larger mass-flux convergence approaches will not perform well during the wet season, triggering precipitation at the wrong times or quantifying it erroneously. Parameterizations schemes must consider seasonal differences in their formulation, and as noted by several studies (D’Andrea et al., 2014; Grabowski et al., 2006; Guichard et al., 2004 and references therein) Parameterizations schemes must consider seasonal differences in their formulation, and as already pointed out in several studies (D’Andrea et al., 2014; Gentine et al., 2013 and references therein), and unified PBL/shallow convection/deep convection parametrization schemes seems to present the better option to correct representation of the rainfall diurnal cycle.

Data availability

All ARM datasets used for this study can be downloaded at http://www.arm.gov and are associated with several “value added” product streams.

Author contributions

Thiago Biscaro: formal analysis, investigation, writing – original draft preparation, data curation. Luiz Machado: funding acquisition, conceptualization, writing – review and editing. Scott Giangrande and Michael Jensen: data curation, writing – review and editing.

Competing interests.

The authors declare that they have no conflict of interest.
Acknowledgements

We acknowledge FAPESP (São Paulo Research Foundation) projects 2009/15235-8 and 2015/14497-0. This paper has been authored by employees of Brookhaven Science Associates, LLC, under contract no DE-SC0012704 with the U.S. Department of Energy (DOE). The publisher by accepting the paper for publication acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes. We also acknowledge the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a user facility of the U.S. DOE, Office of Science, sponsored by the Office of Biological and Environmental Research, and support from the ASR program of that office. We would like to thank SIPAM for providing the S-Band radar data. The manuscript was greatly improved by suggestions from David R. Fitzjarrald (Atmospheric Sciences Research Center, UAlbany, SUNY).

References


Geostationary Operational Environmental Satellites GOES-10 and -12 Supporting Brazil, *Bulletin of the American Meteorological Society*, 99(1), 33–47; doi:10.1175/BAMS-D-16-0029.1, 2018


Figure 1: NR-NR and NR-RR cases distribution during the wet and dry seasons of 2014 and 2015. Day zero is defined as the January 1st for the wet season and June 1st for the dry season.
Figure 2: Cloud occurrence and absolute differences between non-raining and raining transitions, for wet and dry seasons. Subpanel (a): wet-season NR-NR cloud fraction; (b) wet-season NR-RR cloud fraction; (c) wet-season cloud fraction difference between NR-NR and NR-RR modes; (d): dry-season NR-NR cloud fraction; (e) dry-season NR-RR cloud fraction; (f) dry-season cloud fraction difference between NR-NR and NR-RR modes. Non-significant differences (areas where differences and their standard deviations overlap) are marked in white in the bottom panels.
Figure 3: CAPE and CIN statistics derived with the radiosondes during the nocturnal period at T3, for dry and wet seasons and NR-NR and NR-RR transitions. The boxes and whiskers represent the minimum (excluding possible outliers), the lower quartile, the median, the upper quartile, and the maximum (excluding possible outliers).
Figure 4: Composite 02 LT radiosondes launched at T3. Left panel shows the wet season and right panel shows the dry season. Solid lines are NR-RR data, and dashed lines are NR-NR data. The red line is dry temperature and green the dewpoint temperature. 
Shaded areas represent one standard deviation.

Figure 5: Same as Figure 4 but for the 08 LT radiosondes.
Figure 6: Mean (composite dataset) latent heat fluxes measured by ECOR, for dry and wet seasons and NR-NR and NR-RR transitions. Shaded areas represent one standard deviation.

Figure 7: Mean (composite dataset) sensible heat fluxes measured by ECOR, for dry and wet seasons and NR-NR and NR-RR transitions. Shaded areas represent one standard deviation.
Figure 8: Planetary Boundary Layer mean (composite dataset) height derived with the ceilometer, for dry and wet seasons and NR-NR and NR-RR transitions. Shaded areas represent one standard deviation.

Figure 9: Normalized hourly rainfall occurrence distribution observed over T3, for the wet and dry seasons (NR-RR days only).
Figure 10: Mean (composite dataset) turbulent kinetic energy derived with the ECOR, for dry and wet seasons and NR-NR and NR-RR transitions. Shaded areas represent one standard deviation.

Figure 11: Mean (composite dataset) soil temperature as measured by SEBS, for dry and wet seasons and NR-NR and NR-RR transitions. Shaded areas represent one standard deviation.
Figure 12: Mean GOES 10.4 μm brightness temperature fields and absolute differences from 20 LT to 08 LT, for dry and wet seasons and NR-NR and NR-RR transitions. The cross mark represents the T3 position. Non-significant differences (areas where differences and their standard deviations overlap) are marked in white.
Figure 13: Terrain elevation for the large-mesoscale analysis domain.

Figure 14: Probability distributions (grouped in 3h groups) of GOES 10.4 μm brightness temperatures, for dry and wet seasons and NR-NR and NR-RR transitions during the night-time period. Time at each panel is the start time (LT).
Figure 15: Cumulative distribution functions (grouped in 3h groups) of GOES 10.4 μm brightness temperatures, for dry and wet seasons and NR-NR and NR-RR transitions during the night-time period. Time at each panel is the start time (LT).