

1 Variations in N_{cn} and N_{ccn} over China marginal seas related to marine traffic 2 emissions, new particle formation and aerosol aging

3 Yang Gao^{1,2#*}, Deqiang Zhang^{1#}, Juntao Wang¹, Huiwang Gao^{1,2} and Xiaohong Yao^{1,2*}

4 ¹Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory
5 of Marine Environment and Ecology, Ministry of Education, Ocean University of China,
6 Qingdao, 266100, China

7 ²Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for
8 Marine Science and Technology, Qingdao, 266237, China

⁹ #Authors contribute equally to this study

10 *Correspondence to yanggao@ouc.edu.cn; xhyao@ouc.edu.cn

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **Abstract**

27

28 In this study, a cruise campaign was conducted over China marginal seas to measure
29 concentrations of condensation nuclei (N_{cn}), cloud condensation nuclei (N_{ccn}) and other
30 pollutants during DOY 110 to DOY 135 of 2018. With exhaustedly excluded self-ship
31 emission signals, the mean values of N_{ccn} during the cruise campaign slightly increased
32 from $3.2 \pm 1.1 \times 10^3 \text{ cm}^{-3}$ (mean \pm standard) at supersaturation (SS) of 0.2% to $3.9 \pm$
33 $1.4 \times 10^3 \text{ cm}^{-3}$ at SS of 1.0%, and the mean value for N_{cn} was $8.1 \pm 4.4 \times 10^3 \text{ cm}^{-3}$. Data
34 analysis showed that marine traffic emissions apparently yielded a large contribution to
35 the increase of N_{cn} in daytime, especially in marine atmospheres over their heavily
36 travelled sea zones; however, the fresh sources had no clear contribution to the increase
37 of N_{ccn} . This finding was supported by the quantitative relations between N_{cn} and N_{ccn}
38 at SS=0.2-1.0% against mixing ratios of SO_2 in self-ship emission plumes, i.e., 1 ppb
39 increase in SO_2 corresponds to $1.4 \times 10^4 \text{ cm}^{-3}$ increase in N_{cn} , but only 30-170 cm^{-3}
40 increase in N_{ccn} possibly because of abundant organics in the aerosols. The smooth
41 growth of marine traffic derived particles can be observed, reflecting aerosol aging. The
42 estimated hygroscopicity parameter (κ) values were generally as high as 0.46-0.55
43 under the dominant onshore winds, suggesting inorganic ammonium aerosols likely
44 acting as the major contributor to N_{ccn} through aerosol aging processes largely
45 decomposed organics. Moreover, the influences of the transported new particles from
46 the continent on N_{cn} and N_{ccn} in the marine atmosphere were also investigated.

47

48 **Key words:** N_{cn} ; N_{ccn} ; marine traffic emissions; hygroscopicity parameter; SO_2

49

50

51

52

53

54

55

56

57

58

59

60

61

62 1. Introduction

63

64 Oceans occupy approximately 2/3 of the Earth's surface and water evaporation from
65 oceans acts as the major source of moisture in the atmosphere. Aerosol-cloud
66 interactions in marine atmospheres, covering from tropics to polar regions, thereby
67 attract great attentions in the past few decades due to their impact on the climate change
68 (Brooks and Thornton, 2018; Huebert et al., 2003; Quinn and Bates, 2011; Rosenfeld
69 et al., 2019; Wang et al., 2014; Yu and Luo, 2009). However, large uncertainties still
70 exist in various marine atmospheres, e.g., the sources of aerosols, concentrations of
71 bulk cloud condensation nuclei (CCN) and aerosol CCN activation under various of
72 supersaturation, etc. (Clarke et al., 2006; Decesari et al., 2011; Quinn and Bates, 2011;
73 Rosenfeld et al., 2019; Saliba et al., 2019). The uncertainties are mainly determined by
74 limited observations in marine atmospheres, although a few additional observations of
75 number concentrations of aerosol (N_{cn}) and CCN (N_{ccn}) were recently reported in
76 different marine atmospheres, e.g., over Mediterranean, Sea of Japan, Bay of Bengal,
77 coast of California and the Northwest Pacific Ocean etc. (Bougiatioti et al., 2009;
78 Ramana and Devi, 2016; Ruehl et al., 2009; Wang et al., 2019; Yamashita et al., 2011).

79

80 Including sea-spray aerosols and secondarily formed aerosols from sea-derived gaseous
81 precursors (Blot et al., 2013; Clarke et al., 2006; Fossum et al., 2018; O'Dowd et al.,
82 1997; Quinn and Bates, 2011), marine traffics also emit a large amount of aerosols and
83 reactive gases (Chen et al., 2017a). These pollutants may also directly or indirectly
84 contribute to CCN therein, to some extent (Langley et al., 2010). In addition, the long-
85 range transport of continental aerosols widely reportedly acted as an important source
86 of CCN in marine atmospheres (Charlson et al., 1987; Fu et al., 2017; Huebert et al.,
87 2003; Royalty et al., 2017; Sato and Suzuki, 2019; Wang et al., 2019). The continent-
88 derived aerosol particles observed in marine atmospheres usually mix with different
89 sources such as biomass burning, dust and anthropogenic emissions (Feng et al., 2017;
90 Guo et al., 2014; Guo et al., 2016; Lin et al., 2015). An appreciable fraction of organics

91 reportedly exists in marine aerosols and continental aerosols upwind of oceans (Ding
92 et al., 2019; Feng et al., 2012; Feng et al., 2016; O'Dowd et al., 2004; Quinn et al., 2015;
93 Song et al., 2018). However, ammonium sulfate aerosols have been frequently reported
94 to dominantly contribute to CCN-related aerosols in many marine atmospheres and lead
95 to hygroscopicity parameter (κ) larger than 0.5 (Cai et al., 2017; Fu et al., 2017;
96 Mochida et al., 2010; Phillips et al., 2018; Royalty et al., 2017). A question is
97 automatically raised, i.e., where do particulate organics go in the marine aerosols
98 enriched in ammonium sulfate? Anthropogenic emission such as SO_2 , NO_x in general
99 increase since 1980s, until recently started to decrease, i.e., SO_2 start to decrease from
100 2006 (Li et al., 2017) whereas NO_x started to decrease since 2011 (Li et al., 2017; Liu
101 et al., 2016). Together with the influence of the Asian Monsson, the marginal seas of
102 China are, therefore, inevitably affected by the outflow of continental aerosols (Feng
103 et al., 2017; Guo et al., 2016). Observations of N_{cn} and N_{ccn} in marine atmospheres over
104 China marginal seas helps to resolve the data scarcity, understand their sources and
105 dynamic changes and better service the study of their potential climate impacts.

106

107 In this study, cruise campaigns were conducted to measure the N_{ccn} , N_{cn} , particle
108 number size distributions, gaseous pollutants and aerosol composition of water-soluble
109 ionic species over the marginal seas from 20 April 2018 (day of year (DOY) 110) to 15
110 May 2018 (DOY 135), traveling from the East China sea to the South China sea, and
111 returning to the Yellow sea. Spatiotemporal variations in N_{cn} , N_{ccn} and CCN activities
112 of aerosol particles were studied. The κ values of aerosol particles from DOY 110
113 to DOY 118 over the marine were calculated and analyzed. Finally, we tried to establish
114 the correlations of N_{cn} and N_{ccn} with mixing ratios of SO_2 in self-ship plumes and
115 ambient marine air. The correlation equations are valuable for a rough estimation of N_{cn}
116 and N_{ccn} from SO_2 when their direct observations are not available.

117

118 2. Experimental design

119 2.1 Instruments and data sources

120 A cruise campaign was conducted across China marginal seas, including the East China
121 sea, the South China sea and the Yellow sea from Day of Year (DOY) 110 to DOY 135
122 of 2018 (Fig. 1a,b). A suite of instruments including a Fast Mobility Particle Sizer
123 (FMPS, TSI Model 3091), CCN counter (CCNC, DMT Model 100), Condensation
124 Particle Counter (CPC, TSI Model 3775), gas analyzers, Ambient Ion Monitor-Ion
125 chromatography (AIM-IC) etc., were onboard a commercial cargo ship *Anqiang 87* for
126 measurements. The FMPS were used to measure particle number size distributions with
127 mobility diameters from 5.6 nm to 560 nm in 32 channels at 1-second temporal
128 resolution with an inlet flow of 10 L min⁻¹. The CPC were used to report the total
129 number concentrations of particles in the range of 3-3000 nm (N_{cn}) in 2-second time
130 resolution with an inlet flow of 1.5 L min⁻¹. The N_{cn} was then used to calibrate the
131 particle number size distributions simultaneously measured by the FMPS, on basis of
132 the procedure proposed by Zimmerman et al. (2015). Due to the severe oceanic
133 condition and humid weather conditions, the FMPS and CPC were out of service after
134 DOY 118 and DOY 122, respectively. Prior to the campaign, the CCNC was calibrated
135 with ammonium sulfate particles based on the standard procedure detailed at Rose et al.
136 (2008). The total flow rate of CCNC was 0.45 L min⁻¹, with a ratio of sample to sheath
137 at 1/10, and five super saturations (SS) conditions were selected including 0.2 %, 0.4 %,
138 0.6 %, 0.8 %, and 1.0 %. More detailed information about the collection of CCN can
139 be found in Wang et al. (2019).

140

141 During the measurement, ambient particles were first sampled through a conductive
142 tube (TSI, US) and a diffusion dryer filled with silica gel (TSI, US), and then splitted
143 into different instruments with a splitter. All instruments were placed in an air-
144 conditioned container on the deck of ship, with inlet height of approximately 6 m above
145 the sea level. Regarding the gas analyzers, the ambient O₃ (Model 49i, Thermo
146 Environmental Instrument Inc., USA C-series), SO₂ (Model 43i, Thermo
147 Environmental Instrument Inc., USA C-series), and NO_x (Model 42i, Thermo
148 Environmental Instrument Inc., USA C-series) were measured in mixing ratios with
149 temporal resolution of one-minute. The CCNC and gas analyzers were operated

150 properly throughout the entire campaign. The same was true for Ambient Ion Monitor-
151 Ion chromatography (AIM-IC), which was used to measure water-soluble ionic species
152 in ambient particles less than 2.5 μm .

153

154 In this study, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
155 model from the NOAA Air Resources Laboratory was used to track the particle sources.
156 The input of HYSPLIT such as wind speed and wind direction was from European
157 Centre for Medium-Range Weather Forecasts (ECMWF). Meanwhile, the data of fire
158 spots was available at the Fire Information for Resource Management System
159 (FIRMS; <http://firefly.geog.umd.edu/firemap>).

160

161 The hygroscopicity parameter (κ) was calculated according to the method proposed by
162 Petters and Kreidenweis (2007).

$$163 \kappa = \frac{4A^3}{27D_d^3 \ln^2 S_C}, \quad A = \frac{4\sigma_{s/a} M_w}{RT\rho_w}$$

164 where D_d is the dry diameter, S_C is the super saturation, M_w is the molecular weight
165 of water, $\sigma_{s/a}$, as a constant of 0.072 J m^{-2} , represent the surface tension over the
166 interface of the solution and air, R is the universal gas constant, T is the ambient
167 temperature and ρ_w is the water density. The FMPS has a low size resolution,
168 particularly at the size greater than 90 nm, which doesn't allow accurately calculating
169 $Kappa$ values at SS=0.2%. At SS=0.6% and 0.8%, the $Kappa$ value was not calculated
170 considering the complication in the explanation of the value, possibly reflecting the
171 combined effects of particle size, mixing state and chemical composition.

172

173 2.2 Separating ambient signals of N_{cn} and N_{ccn} from self-ship emission signals

174 The data measured during the cruise campaign were frequently interfered by self-ship
175 emission signals. Ambient and self-ship emission signals of N_{cn} and N_{ccn} over the
176 marginal seas were first distinguished from each other and studied separately. The data
177 measured at 18:00-24:00 on DOY 115 were used to illustrate the separation, with the
178 size distribution of particle number concentration during DOY 110-118 shown in Fig.

179 S1-S9 in the supporting information. At 18:00-21:11 LT (Local Time), the low N_{cn} of
180 $5.8 \pm 0.4 \times 10^3 \text{ cm}^{-3}$ were observed. The accumulation mode dominated in particle
181 number concentration with the median mobility mode diameter at $105 \pm 4 \text{ nm}$ (Fig. 2a).
182 Afterwards, the N_{cn} rapidly increased by over one order of magnitude (Fig. 2b). The
183 dominant particle number concentration mode changed from accumulation mode to
184 Aitken mode, with the median mobility diameter of Aitken mode stabilized at $47 \pm 4 \text{ nm}$
185 in approximately 90% of the time. The rapid increase in N_{cn} and the change in mode
186 size indicated the signal of ship emission itself. The self-ship emission interference after
187 21:11 was also supported by additional evidences, e.g., a large decrease in activation
188 ratio (AR), defined as the quotient of N_{ccn} and N_{cn} , from >0.5 to <0.2 at SS=0.4% (Fig.
189 2c) due to large increase of N_{cn} but much smaller magnitude enhancement of N_{ccn} (Fig.
190 2b), a rapid increase of NO_x from $<10 \text{ ppb}$ to $192 \pm 99 \text{ ppb}$, NO/NO_2 from <0.1 to
191 0.7 ± 0.3 , as well as SO_2 from $<2 \text{ ppb}$ to $6.2 \pm 2.4 \text{ ppb}$. The large changes were expected
192 because the ship smoke stock was approximately only 10 meters away from these
193 detectors. Thus, based upon the feature described above certain criteria were designed
194 in this study to identify self-ship emission signals so as to separate from ambient signals,
195 i.e., a net increase in N_{cn} beyond $5 \times 10^4 \text{ cm}^{-3}$ in five minutes, the median mobility mode
196 diameter around 50 nm, $\text{NO}_2 > 30 \text{ ppb}$ and $\text{NO}/\text{NO}_2 > 0.5$. Please note that there was a
197 short period lasting a few minutes during the transition of signals dominant by either
198 ambient environment or self-ship emission. which was excluded from the following
199 analysis.
200

201 **3. Results and discussion**

202 *3.1 Spatiotemporal variations in ambient N_{cn} during the cruise period*

203 Fig. 3 shows a time series of minutely averaged distributions of N_{cn} , N_{ccn} and AR at SS
204 of 0.4% and 1.0% from DOY 110 to DOY 135 2018, when self-ship emission signals
205 had been exhaustedly removed.
206

207 When spatiotemporal variations in N_{cn} were examined during the first half cruise period
208 (Fig. 3a), the N_{cn} spanned a broad range of $0.2-4.5 \times 10^4 \text{ cm}^{-3}$ with the average value

209 of $8.1 \pm 4.4 \times 10^3 \text{ cm}^{-3}$. Specifically, the N_{cn} were only $6.5 \pm 0.8 \times 10^3 \text{ cm}^{-3}$ at 00:00-
210 06:00 LT on DOY110 when the ship anchored at the Yangtze River estuary near
211 Shanghai (Fig. 1). The low N_{cn} were comparable to the mean value of N_{cn} ($5.4 \times 10^3 \text{ cm}^{-3}$) in marine-air cases during January-December 2010 in Shanghai reported by Leng et
212 al. (2013). The N_{cn} largely increased to $1.9 \pm 0.7 \times 10^4 \text{ cm}^{-3}$ at 08:00-21:00 LT on
213 DOY110 when the ship cruised across the Yangtze River estuary. The measured
214 particles in number concentration were dominantly distributed at Aitken mode on that
215 day while the median Aitken mode diameter shifted from $49 \pm 5 \text{ nm}$ at 00:00-06:00 to
216 $40 \pm 5 \text{ nm}$ at 08:00-21:00 (Fig. S1). The Yangtze River estuary contains several world-
217 class ports and is heavily travelled by marine traffics in daytime (Chen et al., 2017).
218 Since the onshore wind dominated on that day (not shown), the increase in N_{cn} and the
219 decrease in median Aitken mode diameter at 08:00-21:00 LT possibly reflected the
220 increased contribution from marine traffic emissions. Marine traffics visibly decreased
221 when the ship left the Yangtze River estuary toward the south. The N_{cn} were then
222 significantly decreased, i.e., $9.5 \pm 4.4 \times 10^3 \text{ cm}^{-3}$ in the marine atmosphere over the sea
223 zone in Zhejiang Province (at 07:00 LT on DOY111 - 17:00 LT on DOY 114), with
224 $P < 0.01$. The N_{cn} further decreased to the lower values of $5.8 \pm 1.7 \times 10^3 \text{ cm}^{-3}$ in the
225 marine atmosphere over the sea zone in Fujian Province (at 18:00 LT on DOY114 -
226 14:00 LT on DOY 117). All these values were, however, 1-2 orders of magnitude larger
227 than the background values in remote clear marine atmospheres, e.g., $< 300 \text{ particle cm}^{-3}$
228 without the influence of industrial activities in the western Pacific and the tropical
229 Pacific (Ueda et al., 2016) and those reported by Quinn and Bates (2011) and Saliba et
230 al. (2019), indicating overwhelming contributions from non-sea-spray aerosols
231 including marine traffic emissions, the long-range continental transport, newly formed
232 particles in marine atmospheres, etc. As reported, atmospheric particles over China
233 marginal seas can be further transported to the remote northwest Pacific Ocean (NWPO)
234 in spring under westerly winds, e.g., N_{cn} observed over the NWPO in March-April 2014
235 were as high as $2.8 \pm 1.0 \times 10^3 \text{ cm}^{-3}$ and approximately half of that over China marginal
236 seas observed in March 2014 (Wang et al., 2019).
237
238 The mean value of N_{cn} ($8.1 \pm 4.4 \times 10^3$) observed in this study was close to that of 7.6
239 $\pm 4.0 \times 10^3 \text{ cm}^{-3}$ (the number concentrations of particles larger than 10 nm) over the
240 eastern part of the Yellow sea in spring 2017 reported by Park et al. (2018). They

242 attributed the high number concentrations of particles within nucleation and Aitken
243 modes to the long-range transport of air pollutants over eastern China under the
244 influence of westerly winds. Consistently, larger values of N_{cn} were frequently observed
245 in the continental atmospheres upwind of the Yellow sea, e.g., the mean values of $1.8 \pm$
246 $1.4 \times 10^4 \text{ cm}^{-3}$ in May 2013 in Qingdao, a coastal city in proximity to the Yellow Sea (Li
247 et al., 2015), $3.18 \times 10^4 \text{ cm}^{-3}$ in February-August 2014 in Beijing (Dal Maso et al., 2016),
248 and $1.0 \times 10^4 \text{ cm}^{-3}$ in continental-air cases during January-December 2010 in Shanghai
249 (Leng et al., 2013).

250

251 *3.2 Spatiotemporal variations in ambient N_{cn} during the cruise period*

252 N_{cn} data were generally available during the entire campaign (Fig. 3b). The mean
253 values of N_{cn} over China marginal seas during the DOY 110 to DOY 135, 2018 were
254 from $3.2 \pm 1.1 \times 10^3 \text{ cm}^{-3}$ to $3.9 \pm 1.4 \times 10^3 \text{ cm}^{-3}$ under SS ranging from 0.2% to
255 1.0% (Table 1), two to four times larger than the N_{cn} at the same SS over the NWPO in
256 March-April 2014 (Wang et al., 2019), and much higher, i.e., 1-2 orders of magnitude,
257 than the pristine marine background values (Quinn and Bates, 2011). As was discussed
258 in the previous section, the mean N_{cn} in this study ($8.1 \pm 4.4 \times 10^3 \text{ cm}^{-3}$) was comparable
259 to that of N_{cn} ($7.6 \pm 4.0 \times 10^3 \text{ cm}^{-3}$) over the Yellow Sea in spring 2017 in Park et al.
260 (2018); however, the comparison of mean N_{cn} reveals that mean value ($3.6 \pm 1.2 \times 10^3$
261 cm^{-3}) at SS of 0.6% in this study was approximately 25% smaller than that (4.8×10^3
262 cm^{-3} at similar SS of 0.65%) in Park et al. (2018), likely a result of long range transport,
263 considering the relatively distant (i.e., 500-600 km) observations away from the land
264 depicted in Fig. 1 of Park et al., 2018, and the subsequently higher extent of aerosol
265 aging. N_{cn} under SS of 0.2% in this study ($3.2 \pm 1.1 \times 10^3$) is comparable to that (3.1 ± 1.9
266 $\times 10^3$) by Li et al. (2015) in the continental atmosphere of Qingdao in May 2013,
267 however, the increment of N_{cn} with the increase of SS was much weaker in our study,
268 resulting in an average of 36% smaller in N_{cn} under SS of 0.4% to 1.0% compared to
269 Li et al. (2015). Consistently, the sensitivity differences of N_{cn} to SS between relatively
270 clean (i.e., N_{cn} ($8.1 \pm 4.4 \times 10^3$) in this study) and polluted (with N_{cn} of $1.8 \pm 1.4 \times 10^4$
271 cm^{-3}) environment in Li et al. (2015) is also reported by Nair et al. (2019), who found

272 little sensitivity of N_{ccn} to changes in SS over the equatorial Indian Ocean ($< 6^{\circ}\text{N}$) with
273 relative clean air, and much larger enhancement of N_{ccn} with the increase of SS in
274 polluted marine atmospheres ($> 6^{\circ}\text{N}$).

275

276 In addition, N_{ccn} at SS from 0.1% to 1.0% during the period with high NH_4^+ (17:00 LT
277 on DOY 114 to 10:00 LT on DOY 120) is statistically significant higher ($P < 0.01$) in
278 comparison to the poor NH_4^+ period (11:00 LT on DOY 120 to 7:00 LT on DOY 136;
279 Fig. 3b). More specifically, a large increase in NH_4^+ concentration, with mean
280 concentration of $6.3 \pm 2.5 \mu\text{g m}^{-3}$, can be observed during the period from 17:00 LT on
281 DOY 114 to 10:00 LT on DOY 120 (Fig. 3b). The mean N_{ccn} during this period varied
282 from $3.5 \pm 1.0 \times 10^3 \text{ cm}^{-3}$ to $4.0 \pm 1.1 \times 10^3 \text{ cm}^{-3}$ at SS ranging of 0.2% to 1.0%. In contrast,
283 after DOY 120, the concentration of NH_4^+ ($0.67 \pm 0.70 \mu\text{g m}^{-3}$) substantially decreased
284 by almost 90%, during which the mean N_{ccn} at each SS showed statistically significant
285 decrease of 8% to 15%, implicative of the vital contribution to CCN of secondary
286 ammonium salt aerosols.

287

288 Another feature depicted in Fig. 3b is the N_{ccn} during the low NH_4^+ period may even
289 exceed the maximal value of N_{ccn} during the high NH_4^+ period. To elucidate the
290 underlying mechanism, the N_{ccn} , under each SS, was composited and compared
291 between the days with NH_4^+ concentration higher than the upper quartile and the days
292 in the lower quartile, yielding some interesting findings. At SS=0.2%, the composited
293 N_{ccn} under high NH_4^+ period was higher than that during low NH_4^+ period with
294 statistical significance level of 0.01. There was no significant difference in N_{ccn} between
295 the two composited periods at SS of 0.4% and 0.6%. However, the composited N_{ccn}
296 (i.e., only selection of the upper quartile) during the high NH_4^+ period was significantly
297 lower than the composited value during the low NH_4^+ period with $P < 0.01$, e.g., $5.1 \pm$
298 $0.5 \times 10^3 \text{ cm}^{-3}$ versus $5.3 \pm 0.7 \times 10^3 \text{ cm}^{-3}$ at SS=0.8%, $5.2 \pm 0.5 \times 10^3 \text{ cm}^{-3}$ versus $5.7 \pm$
299 $0.7 \times 10^3 \text{ cm}^{-3}$ at SS =1.0%. During the low NH_4^+ period, the marine atmospheres over
300 the observational zones may sometimes receive strong continental inputs and/or marine
301 traffic emissions, leading to the larger N_{ccn} . Enhanced formation of ammonium salt

302 aerosols during the high NH_4^+ period likely canceled out or even overwhelmed
303 continental inputs and/or marine traffic emissions in increasing N_{ccn} at $\text{SS}=0.2\%$.

304

305 In addition, fresh marine traffic emissions likely yielded a negligible contribution to
306 N_{ccn} in the marine atmosphere because of a large amount of aged aerosols from various
307 sources therein. For example, the mean values of N_{ccn} were $3.2 \times 10^3 \text{ cm}^{-3}$ and 4.5×10^3
308 cm^{-3} at $\text{SS}=0.4\%$ and 1.0% at 08:30-11:30 on DOY110, respectively. They were almost
309 same as $3.2 \times 10^3 \text{ cm}^{-3}$ at $\text{SS}=0.4\%$ and $3.8 \times 10^3 \text{ cm}^{-3}$ at $\text{SS}=1.0\%$ before 06:00 on that
310 day. The mean values of N_{ccn} , however, largely increased from $6.5 \pm 0.8 \times 10^3 \text{ cm}^{-3}$ before
311 06:00 to $1.3 \pm 0.3 \times 10^4 \text{ cm}^{-3}$ at 08:30-11:30 when the ship cruised across the Yangtze
312 River estuary (Fig. 3b).

313

314 *3.3 Spatiotemporal variations in CCN activation and Kappa values*

315 AR values at SS of 0.4% and 1.0% were examined in the section, shown in Fig. 3c. At
316 $\text{SS}=0.4\%$, AR values largely varied from 0.06 to 0.92 with the median value of 0.51.
317 Specifically, AR values narrowly varied around 0.51 ± 0.04 at 00:00-06:00 LT on
318 DOY110. At 08:00-21:00 LT on that day when the ship cruised across the Yangtze River
319 estuary, the AR values were substantially decreased to 0.26 ± 0.06 concurrently with
320 approximate 200% increase in N_{ccn} values, i.e., N_{ccn} value of $6.5 \pm 0.8 \times 10^3 \text{ cm}^{-3}$ at
321 00:00-06:00 LT and $2.0 \pm 0.7 \times 10^4 \text{ cm}^{-3}$ at 08:00-21:00 LT on DOY110 (Fig. 3a). The
322 AR values then exhibited an oscillating increase from DOY 111 to DOY113. Low AR
323 values of 0.12 ± 0.04 were suddenly observed at 10:00-18:00 LT on DOY114 in
324 presence of strong new particle signals transported from the upwind continental
325 atmosphere, as discussed later. AR values, however, reached 0.34 ± 0.04 at 06:00-08:00
326 LT and 0.39 ± 0.08 at 19:00-24:00 LT on DOY114 with the new particle signals largely
327 reduced. Even excluding the AR values on DOY 114, a significant difference was still
328 obtained between AR values of 0.61 ± 0.12 during the high NH_4^+ period and those of
329 0.55 ± 0.17 during the low NH_4^+ period. Enhanced formation of ammonium salts
330 seemingly increased CCN activity to some extent. At $\text{SS}=1.0\%$, AR values showed

331 large fluctuation with the median value of 0.57 ± 0.17 (Fig. 3c) and the temporal trend
332 was similar to that at SS=0.4%.

333

334 To minimize the impact from particle sizes, *Kappa* values were further investigated. As
335 was reported by Phillips et al. (2018), *Kappa* values in a high time resolution usually
336 exhibited a broad distribution, reflecting the complexity due to various of factors. To
337 reveal the key factors in determining *Kappa* values in a large spatiotemporal scale, the
338 daily *Kappa* values of atmospheric aerosols were estimated, on basis of the daily mean
339 N_{ccn} and the size distributions of particle number concentration from DOY 110-118 (Fig.
340 3c). Please note that for DOY 110, considering large differences of particle number
341 concentration between 00:00-06:00 and 08:00-21:00 (Fig. S1), *Kappa* values were
342 calculated separately for these two periods. At SS=0.4% (green dashed line in Fig. 3c),
343 the estimated *Kappa* values were as high as 0.66 at 00:00-06:00 LT while it decreased
344 to 0.37 at 08:00-21:00 LT on DOY110. The *Kappa* value varied narrowly from 0.46 to
345 0.55 on DOY 111-113, 115 and 117, implying that inorganic aerosols such as
346 completely and incompletely neutralized ammonium salts may yield a large
347 contribution to the N_{ccn} . These values were generally consistent with reported
348 observations in most of marine atmospheres. For example, Cai et al. (2017) reported
349 the *Kappa* value around 0.5 for particles with sizes of 40-200 nm at a marine site in
350 Okinawa and sulfate to be the dominant component of aerosol particles on 1-9
351 November 2015, and a similar *Kappa* value in spring 2008 over this site was reported
352 by Mochida et al. (2010). Royalty et al. (2017) reported *Kappa* values for 48, 96, and
353 144 nm dry particles to be 0.57 ± 0.12 , 0.51 ± 0.09 , and 0.52 ± 0.08 in the subtropical
354 North Pacific Ocean and sulfate-like particles contributing at most 77–88% to the total
355 aerosol number concentration. *Kappa* values over the Atlantic Ocean were observed
356 around 0.54 ± 0.03 for 284 nm particles (Phillips et al., 2018).

357

358 The estimated *Kappa* values sometimes reached 0.66-0.67 (i.e., on DOY 116), which
359 may be related to unidentified factors. For example, O'Dowd et al. (2014) proposed that
360 some organics derived from sea-spray aerosols may also increase the N_{ccn} , to some

361 extent, by reducing surface intension, leading to increase of *Kappa* values. A small
362 fraction of sea-salt aerosols in submicron particles may also increase *Kappa* values
363 since its *Kappa* value was as high as 1.3 (O'Dowd et al., 2004; O'Dowd et al., 1997).
364 The *Kappa* value of 0.29 was obtained on DOY118, close to *Kappa* values widely
365 observed for continental atmospheric aerosols (~0.3) (Andreae and Rosenfeld, 2008;
366 Poschl et al., 2009; Rose et al., 2010). The estimated *Kappa* value largely decreased to
367 0.15 on DOY114 when new particle formation (NPF) occurred, with detailed discussion
368 in section 3.5. Moreover, at SS of 1.0%, the estimated *Kappa* value was always smaller
369 than 0.2. The *Kappa* value of organics was commonly assumed as 0.1 (Cai et al., 2017;
370 Rose et al., 2011; Singla et al., 2017). In general, the fraction of organics in nanometer
371 particles increases with decreasing particle sizes (Cai et al., 2017; Crippa et al., 2014;
372 Rose et al., 2011; Rose et al., 2010). A combination of the two factors likely led to
373 overall *Kappa* values estimated at SS=1.0% to be much lower.

374

375 *3.4 Particle number size distributions and CCN activation associated with marine*
376 *traffic emissions and aerosol aging*

377 The particle number size distributions during DOY 110-118, shown in Fig. 4, can be in
378 general classified into two categories. Category 1 occurred on DOY110-114, when
379 particle number concentrations were mainly distributed at the Aitken mode, whereas
380 the accumulation mode was generally undetectable. Category 2 occurred on DOY115-
381 118, when the accumulation mode can be clearly identified and generally dominated
382 over the Aitken mode. Hoppel W. A. (1986) proposed cloud-modified aerosols to be
383 mainly distributed at 80-150 nm in the remote tropical Atlantic and Pacific oceans.
384 Cloud-modified aerosols are quietly common in remote marine atmosphere, likely
385 leading to the dominate accumulation mode particles to be observed on DOY115-118.
386 Occasionally, the Aitken mode dominated over the accumulation mode on some day
387 such as DOY 118. To further dive into the sources of different modes of particles, three-
388 day of DOY112, DOY 116 and DOY118 were selected.

389

390 On DOY 112, the Aitken mode particles accounted for approximately 60% of the total
391 particle number concentration (Fig. 5a), with median Aitken mode diameters around
392 54 ± 8 nm. Like the observations over the Yangtze River estuary, the mean value of N_{cn}
393 increased by approximately 50% concurrently with a decrease in the median Aitken
394 mode diameters by ~ 9 nm at 05:30 – 11:40 LT against those at the early morning before
395 05:30 LT (Fig. 5b). Concomitantly, the AR values decreased to 0.31 ± 0.09 at SS of
396 0.4%, with similar AR decrease at SS of 1.0%, and the lowest AR and *Kappa* values
397 occurring at 06:00-07:00 LT at SS of both 0.4% and 1.0%. All these results pointed
398 towards the increase in Aitken mode particles at 05:30 – 11:40 LT to be likely derived
399 from enhanced marine traffic contributions carried by the onshore wind from the south
400 (Fig. S10). During other time on DOY112, the onshore wind may also carry the marine-
401 traffic derived particles to the observational sea zones. However, the marine-traffic
402 derived particles likely aged to some extent, e.g., the median Aitken mode diameters
403 exhibited an oscillating increase from approximately 50 nm at 19:00 to approximately
404 70 nm at 24:00 LT with the particle growth rate of ~ 4 nm hour $^{-1}$. The AR values,
405 however, narrowly varied around 0.47 ± 0.03 at SS=0.4% and 0.52 ± 0.05 at SS=1.0%
406 during the particle growth period. The *Kappa* values at SS=0.4% gradually decreased
407 from 0.56 at 19:00 to 0.41 at 23:00 LT, reflecting more aged marine-traffic derived
408 particles growing into CCN size.

409
410 On DOY 116, the accumulation mode particles instead of Aitken mode particles
411 dominantly contributed to N_{cn} (Fig. 5d), under the marine air influence from the
412 northeast (Fig. S12). The median accumulation mode diameters narrowly varied around
413 135 ± 5 nm at 01:00-13:00 LT and 102 ± 5 nm at 16:20-24:00 LT with the transition period
414 in between (Fig. 5e). The AR and *Kappa* values, however, showed no statistically
415 significant difference during the two periods at SS of 0.4% and 1.0%, implying that the
416 size change in accumulation mode particles showed a negligible influence on the CCN
417 activation. Hourly variations in AR and *Kappa* values may be associated with other
418 factors, e.g., chemical composition, mixing state, etc. (Gunthe et al., 2011; Rose et al.,
419 2011).

420

421 On DOY 118, under the influence of mixture from the marine and coastal areas from
422 the northeast (Fig. S13), the accumulation mode particles generally dominated the
423 contribution to N_{cn} while the reverse was true in some occasions (Fig. 5g,h). The median
424 accumulation mode diameters exhibited an oscillating increase from approximately 100
425 nm to 130 nm at 00:00-08:00 LT, narrowly varied around 133 ± 5 nm at 08:00-13:00 LT,
426 and then exhibited an oscillating decrease down to approximately 100 nm at 20:00 LT.
427 The AR values and *Kappa* values at SS=0.4%, however, exhibited an inverted bell-
428 shape with the lowest values at 0.31 and 0.11 at 13:00. The decreases in AR values and
429 *Kappa* may be related to organic condensed on accumulation mode particles since the
430 median accumulation mode diameters were almost largest at 13:00. The Aitken mode
431 particles evidently enhanced at 14:00-15:00, but the influence on AR values and *Kappa*
432 values at SS=0.4% was undetectable (Fig. 5i).

433

434 3.5 The long-range transport of grown new particles on DOY 114

435 No hour-long sharp increase in number concentration of nucleation mode particles (<
436 20 nm) was observed during the period from DOY 110 to DOY 118, except on DOY 114
437 (Fig. 4). According to the conventional definition of NPF events (Dal Maso et al., 2005;
438 Kulmala et al., 2004), the occurrence frequency of NPF events was low in this study.
439 Unlike continental atmospheres where a high occurrence frequency of NPF events has
440 been observed globally in spring (Kerminen et al., 2018; Kulmala et al., 2004), a low
441 occurrence frequency reportedly occurred over the seas during the “Meiyu (plum-rain)
442 season” in spring because of frequent rainy, foggy or cloudy weather conditions (Zhu
443 et al., 2019). Lack of NPF events in the marine atmospheres implied N_{cn} and N_{ccn} to be
444 mainly contributed by primarily emitted aerosols and their aged products.

445 During the period of 10:00-18:00 LT on DOY 114, a large increase in number
446 concentrations of Aitken mode particles (Fig. 6a) likely reflected the long-range
447 transport of grown new particles from upwind continental atmospheres (Fig. S11). The
448 size distributions of particle number concentration showed a dominant Aitken mode at

449 10:00-18:00 LT, when spatiotemporal variations in N_{cn} and median Aitken mode
450 diameters exhibited bell-shape patterns (Fig. 6b). The median Aitken mode diameters
451 increased from 26 nm at 10:00 LT to 33 nm at 12:00-13:00 LT and then decreased to 20
452 nm prior to the signal disappeared, likely reflecting the growth and shrinkage of the
453 Aitken mode particles (Yao et al., 2010; Zhu et al., 2019). The median Aitken mode
454 diameters were evidently smaller than the values, i.e., 40-50 nm for Aitken mode
455 particles, observed over the Yangtze River estuary on DOY 112 (Fig. 5a). Moreover,
456 the number concentrations of 20-40 nm particles increased by 5.8 times at 12:00-13:00
457 LT compared to the mean value at 06:00-09:00 LT while the total number
458 concentrations of particles greater than 90 nm increased by only 67%. These results
459 implied the largely increased number concentrations of Aitken mode particles with a
460 dynamic change in mode diameter observed at 10:00-18:00 LT unlikely to be caused
461 by primarily emitted and aged particles from marine traffic emissions or other
462 combustion sources. The observations of gaseous and particulate species, during the
463 same period, implied air masses to be well-aged and less polluted. For instance, the
464 measured hourly average mixing ratios of SO_2 was no larger than 1.2 ppb (Fig. 6c) and
465 the hourly average concentrations of NH_4^+ in $PM_{2.5}$ were smaller than $2 \mu\text{g m}^{-3}$ (Fig.
466 3b). In addition, the concentrations of K^+ were below $0.3 \mu\text{g m}^{-3}$, suggesting negligible
467 contributions from biomass burning (Fig. 6e).

468

469 Before 09:00 LT, a much weaker spike of nucleation mode particles was intermittently
470 observed (Fig. 6a). The weak and intermittent NPF seems to occur in the marine
471 atmospheres before 09:00 LT when no apparent growth of new particles was observed.
472 Possibly due to the transport from the continent (Fig. S11) and an increase in the
473 condensational sink around 10:00 am (Fig. 6a), the weak NPF signal gradually dropped
474 to a negligible level half an hour later, concomitant with a large increase in the number
475 concentrations of Aitken mode particles at 10:00-18:00 LT.

476

477 N_{cn} at SS=0.4% increased from $1.2 \times 10^3 \text{ cm}^{-3}$ at 06:00-09:00 LT to the peak value of

478 $2.3 \times 10^3 \text{ cm}^{-3}$ at 12:00 LT, with increase of 92%, and N_{ccn} at SS=1.0% increased from
479 $1.6 \times 10^3 \text{ cm}^{-3}$ to $4.0 \times 10^3 \text{ cm}^{-3}$, with increase of 150% (Fig. 6d). The net increase in
480 N_{ccn} at SS=0.4% likely reflected the contribution from pre-existing particles since new
481 particles with the diameter less than 50 nm were unlikely activated as CCN at such low
482 SS (Li et al., 2015; Ma et al., 2016; Wu et al., 2016). The larger net increase in N_{ccn} at
483 SS=1.0% may reflect the contributions mixed from pre-existing particles and grown
484 new particles. The high SS can activate particles as CCN with diameters down 40 nm
485 (Dusek et al., 2006; Li et al., 2015). The invasion of grown new particles also led to the
486 AR values largely decreased from 0.3 to 0.1 at SS=0.4%, and from 0.4 to 0.2 at SS=1.0%
487 (Fig. 6e). After 18:00 LT, the AR values retuned to 0.3-0.4 at SS=0.4% and 0.4-0.6 at
488 SS=1.0%. When the calculated *Kappa* values were examined (Fig. 6c), they decreased
489 from 0.4 to 0.1-0.2 at SS=0.4%. The value returned to 0.3 at 18:00-19:00 LT (FMPS
490 was temporarily malfunctioned after 19:20 LT). The *Kappa* values were below 0.2 at
491 SS=1.0% on that day. The decreases in AR values and *Kappa* values at two SS were
492 likely caused by organic vapor condensed on preexisting particles and new particles
493 (Wu et al., 2016; Zhu et al., 2019).

494

495 *3.6 Correlations of N_{cn} and N_{ccn} with SO_2 in self-ship plumes and ambient air*

496 When self-ship emission signals were detected, the observational values included a
497 combination of contributions from self-ship emissions and ambient concentrations.
498 Although ambient N_{cn} was negligible in comparison with N_{cn} derived from self-ship
499 emissions, it was not the case for N_{ccn} and SO_2 . Based on the minutely data, the signal
500 was considered as vessel-self emission when both N_{cn} greater than $50,000 \text{ cm}^{-3}$ and SO_2
501 greater than 5 ppb. The composited data was then used to derive the hourly average N_{cn} ,
502 N_{ccn} and SO_2 , which was then subtracted by the ambient hourly mean value during the
503 preceding hour with relatively clean conditions (i.e., concentration of N_{cn} lower than
504 $10,000 \text{ cm}^{-3}$, SO_2 lower than 2.5 ppb). Please note uncertainties exist in terms of the
505 criteria and separation between self-ship and ambient signals, however, minimal impact
506 is expected in the relationship examined below.

507

508 Fig. 7a showed correlations of N_{cn} and N_{ccn} with mixing ratio of SO_2 in self-ship plumes,
509 prefixed by Δ for N_{cn} , N_{ccn} and SO_2 to implicate the removal of ambient signals. . A
510 good correlation of 0.66 for R^2 ($P<0.01$) was obtained and the slope indicates that N_{cn}
511 increase by $1.4 \times 10^4 \text{ cm}^{-3}$ for each ppb increase of SO_2 resulted from ship emission
512 (Fig. 7a). High emissions of N_{cn} were generally reported in engine exhausts with high
513 sulfur-content diesel to be used (Yao et al., 2007; Yao et al., 2005). In regard of N_{ccn} at
514 SS of 0.2% to 1.0% (Fig. 7b), it increases from 30 cm^{-3} to 170 cm^{-3} per 1 ppb increase
515 of SO_2 , showing statistical significant correlation at 99th confidence level. The
516 contribution ratio of SO_2 to N_{ccn} is 0.002 (SS of 0.2%), 0.004(SS of 0.4%) and 0.012
517 (SS of 1.0%) to that of N_{cn} , in general consistent with the previous study by Ramana
518 and Devi (2016), in which a range of 0.0012–0.57 was observed for CCN at 0.4% in
519 Bay of Bengal during Aug 13–16, 2012.

520

521 The correlations of hourly averaged N_{cn} and N_{ccn} with SO_2 in ambient air were examined
522 and showed in Fig. 7c,d. The data was segmented into pieces based on SO_2 with interval
523 of 0.2 ppb. A good correlation between the averaged N_{cn} and SO_2 were obtained with
524 R^2 of 0.80 ($P<0.01$) and 1 ppb increase in SO_2 likely increased N_{cn} by $1.6 \times 10^3 \text{ cm}^{-3}$
525 (Fig. 7c). The increase in N_{cn} with SO_2 may reflect the contribution from primary
526 emissions. An intercept was, however, as large as $3.9 \times 10^3 \text{ cm}^{-3}$, likely representing the
527 contribution from well-aged aerosols.

528

529 Hourly averaged N_{ccn} at different SS generally increased with increase of ambient SO_2
530 (Fig. 7d). A good correlation between the averaged N_{ccn} and SO_2 were obtained with
531 $R^2=0.78-0.91$ ($P<0.01$). 1 ppb increase in SO_2 likely increased N_{ccn} by 0.6×10^3 to 0.8
532 $\times 10^3 \text{ cm}^{-3}$ at SS from 0.2% to 1.0%. The increase in N_{ccn} with SO_2 may also reflect the
533 contribution from primary emissions. The intercepts of 2.2×10^3 - $2.7 \times 10^3 \text{ cm}^{-3}$ at
534 different SS were likely contributed by well-aged aerosols. The relationship may be
535 used as an estimation of N_{ccn} in marine atmospheres over China marginal seas, when
536 no measurements of CCN were available whereas ambient SO_2 can be estimated from

537 web-based satellite data.

538

539 **4. Conclusions**

540 Spatiotemporal variations in ambient N_{cn} and N_{ccn} were studied during a cruise
541 campaign on DOY 110-135 over China marginal seas. The mean values of N_{cn} (8.1×10^3
542 cm^{-3}) and N_{ccn} at SS of 0.2%-1.0% ($3.2 - 3.9 \times 10^3 cm^{-3}$) were approximately one order
543 of magnitude larger than those in remote clear marine atmospheres, indicating
544 overwhelming contributions from non-sea-spray aerosols such as marine traffic
545 emissions, the long-range continental transport and others.

546

547 Observed self-ship emission signals showed fresh marine traffic emissions can be
548 important sources of N_{cn} , but a minor source of N_{ccn} in the marine atmosphere. The
549 signals showed that 1 ppb increase in SO_2 corresponds to $1.4 \times 10^4 cm^{-3}$ increase in N_{cn}
550 and $30 - 170 cm^{-3}$ increase in N_{ccn} at SS=0.2-1.0%. Data analysis showed that marine
551 traffic emissions largely increased N_{cn} over their heavily travelled sea zones in daytime.

552

553 In ambient marine air, the growth of marine traffic derived particles led to a decrease
554 in estimated bulk κ values at 0.4% possibly because some of these particles
555 enriched in organics grew into CCN size. However, strong formation of ammonium
556 salts led to aerosol aging, and significantly increased N_{ccn} at SS of 0.2-1.0% in
557 comparison with those observed during the period poor in ammonium salt aerosols in
558 $PM_{2.5}$ with $P < 0.01$. The estimated bulk κ values from the daily average values
559 varied from 0.46 to 0.55 at SS=0.4% in most of marine atmospheres, indicating
560 inorganic ammonium aerosols may dominantly contribute to the N_{ccn} at SS of 0.4%.
561 The particle number size distributions showed the high bulk κ values could be
562 related to cloud-modified aerosols, which likely led to a large extent of degradation of
563 organics and subsequently lost from the particle phase.

564

565 Humid marine ambient air led to NPF events rarely occurring therein. The dominant

566 onshore winds occurred most of the measurement periods, and should carry primary
567 aerosols and their aged products rather than secondarily formed aerosols to the
568 observational zone. During an occasion when offshore winds blew from the northwest
569 (Fig. S11), new particle signals transported from the continent can be clearly observed.
570 However, NPF in the marine atmosphere was too weak to be important. The transported
571 new particles from the continent yielded the maximal increase in N_{ccn} by 92% at SS of
572 0.4% and 150% at SS of 1.0%. However, consistent with those reported in literature,
573 the estimated κ values largely decreased from 0.4 to 0.1-0.2 at SS=0.4% during
574 most time of the continent-transported NPF event because of the κ value of organic
575 condensation vapor as low as 0.1.

576

577 **Competing interests.** The authors declare that they have no conflict of interest.

578 **Author contributions.** YG and XY designed the research, YG, DZ and XY performed
579 the analysis, JW and HG helped on the interpretation of the results, and all co-authors
580 contributed to the writing of the paper.

581 **Acknowledgment**

582 This research is supported by the National Key Research and Development Program in
583 China (grant no. 2016YFC0200504) and the Natural Science Foundation of China
584 (grant no. 41576118).

585

586 **References**

587 Andreae, M. O., and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The
588 nature and sources of cloud-active aerosols, *Earth-Sci. Rev.*, 89, 13-41,
589 10.1016/j.earscirev.2008.03.001, 2008.

590 Blot, R., Clarke, A. D., Freitag, S., Kapustin, V., Howell, S. G., Jensen, J. B., Shank, L.
591 M., McNaughton, C. S., and Brekhovskikh, V.: Ultrafine sea spray aerosol over the
592 southeastern Pacific: open-ocean contributions to marine boundary layer CCN,
593 *Atmos. Chem. Phys.*, 13, 7263-7278, 10.5194/acp-13-7263-2013, 2013.

594 Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos,

595 N.: Cloud condensation nuclei measurements in the eastern Mediterranean marine
596 boundary layer: CCN closure and droplet growth kinetics, *Atmos. Chem.*
597 *Phys. Discuss.*, 9, 10303-10336, 10.5194/acpd-9-10303-2009, 2009.

598 Brooks, S. D., and Thornton, D. C. O.: *Marine Aerosols and Clouds*, *Annu. Rev. Mar.*
599 *Sci.*, 10, 289-313, 10.1146/annurev-marine-121916-063148, 2018.

600 Cai, M. F., Tan, H. B., Chan, C. K., Mochida, M., Hatakeyama, S., Kondo, Y., Schurman,
601 M. I., Xu, H. B., Li, F., Shimada, K., Li, L., Deng, Y. G., Yai, H., Matsuki, A., Qin,
602 Y. M., and Zhao, J.: Comparison of Aerosol Hygroscopicity, Volatility, and Chemical
603 Composition between a Suburban Site in the Pearl River Delta Region and a Marine
604 Site in Okinawa, *Aerosol. Air. Qual. Res.*, 17, 3194-3208,
605 10.4209/aaqr.2017.01.0020, 2017.

606 Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
607 phytoplankton atmospheric sulphur cloud albedo and climate, *Nature*, 326, 655-661,
608 1987.

609 Chen, D. S., Wang, X. T., Li, Y., Lang, J. L., Zhou, Y., Guo, X. R., and Zhao, Y. H.: High-
610 spatiotemporal-resolution ship emission inventory of China based on AIS data in
611 2014, *Sci. Total Environ.*, 609, 776-787, 10.1016/j.scitotenv.2017.07.051, 2017a.

612 Chen, J. M., Li, C. L., Ristovski, Z., Milic, A., Gu, Y. T., Islam, M. S., Wang, S. X., Hao,
613 J. M., Zhang, H. F., He, C. R., Guo, H., Fu, H. B., Miljevic, B., Morawska, L., Thai,
614 P., Fat, L. A. M. Y., Pereira, G., Ding, A. J., Huang, X., and Dumka, U. C.: A review
615 of biomass burning: Emissions and impacts on air quality, health and climate in
616 China, *Sci. Total Environ.*, 579, 1000-1034, 10.1016/j.scitotenv.2016.11.025, 2017b.

617 Clarke, A. D., Owens, S. R., and Zhou, J. C.: An ultrafine sea-salt flux from breaking
618 waves: Implications for cloud condensation nuclei in the remote marine atmosphere,
619 *J. Geophys. Res.-Atmos.*, 111, Artn D06202, 10.1029/2005jd006565, 2006.

620 Crippa, M., Canonaco, F., Lanz, V. A., Aijala, M., Allan, J. D., Carbone, S., Capes, G.,
621 Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney,
622 E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr,
623 A., Kortelainen, A. M., Kulmala, M., Laaksonen, A., Mensah, A., Mohr, C., Nemitz,
624 E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petaja, T., Poulain, L., Saarikoski, S.,

625 Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prevot,
626 A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe
627 using a consistent ME-2 based source apportionment approach, *Atmos. Chem. Phys.*,
628 14, 6159-6176, 10.5194/acp-14-6159-2014, 2014.

629 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and
630 Lehtinen, K. E. J.: Formation and growth of fresh atmospheric aerosols: eight years
631 of aerosol size distribution data from SMEAR II, Hyytiala, Finland, *Boreal Environ.*
632 *Res.*, 10, 323-336, 2005.

633 Dal Maso, M., Gao, J., Jarvinen, A., Li, H., Luo, D. T., Janka, K., and Ronkko, T.:
634 Improving Urban Air Quality Measurements by a Diffusion Charger Based Electrical
635 Particle Sensors - A Field Study in Beijing, China, *Aerosol. Air. Qual. Res.*, 16, 3001-
636 3011, 10.4209/aaqr.2015.09.0546, 2016.

637 Decesari, S., Finessi, E., Rinaldi, M., Paglione, M., Fuzzi, S., Stephanou, E. G., Tziaras,
638 Spyros, A., Ceburnis, D., O'Dowd, C., Dall'Osto, M., Harrison, R. M., Allan, J.,
639 Coe, H., and Facchini, M. C.: Primary and secondary marine organic aerosols over
640 the North Atlantic Ocean during the MAP experiment, *J. Geophys. Res.-Atmos.*, 116,
641 Artn D22210, 10.1029/2011jd016204, 2011.

642 Ding, X., Qi, J. H., and Meng, X. B.: Characteristics and sources of organic carbon in
643 coastal and marine atmospheric particulates over East China, *Atmos. Res.*, 228, 281-
644 291, 10.1016/j.atmosres.2019.06.015, 2019.

645 Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D.,
646 Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters
647 more than chemistry for cloud-nucleating ability of aerosol particles, *Science*, 312,
648 1375-1378, 10.1126/science.1125261, 2006.

649 Feng, J. L., Guo, Z. G., Zhang, T. R., Yao, X. H., Chan, C. K., and Fang, M.: Source and
650 formation of secondary particulate matter in PM2.5 in Asian continental outflow, *J.*
651 *Geophys. Res.-Atmos.*, 117, Artn D03302, 10.1029/2011jd016400, 2012.

652 Feng, L., Shen, H., Zhu, Y., Gao, H., and Yao, X.: Insight into Generation and Evolution
653 of Sea-Salt Aerosols from Field Measurements in Diversified Marine and Coastal
654 Atmospheres, *Sci. Rep.*, 7, 41260, 10.1038/srep41260, 2017.

655 Feng, T., Li, G. H., Cao, J. J., Bei, N. F., Shen, Z. X., Zhou, W. J., Liu, S. X., Zhang, T.,
656 Wang, Y. C., Huang, R. J., Tie, X. X., and Molina, L. T.: Simulations of organic
657 aerosol concentrations during springtime in the Guanzhong Basin, China, *Atmos.*
658 *Chem. Phys.*, 16, 10045-10061, 10.5194/acp-16-10045-2016, 2016.

659 Fossum, K. N., Ovadnevaite, J., Ceburnis, D., Dall'Osto, M., Marullo, S., Bellacicco, M.,
660 Simo, R., Liu, D. T., Flynn, M., Zuend, A., and O'Dowd, C.: Summertime Primary
661 and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei, *Sci.*
662 *Rep.*, 8, Artn 13844, 10.1038/S41598-018-32047-4, 2018.

663 Fu, X. G., Wang, M., Zeng, S. Q., Feng, X. L., Wang, D., and Song, C. Y.: Continental
664 weathering and palaeoclimatic changes through the onset of the Early Toarcian
665 oceanic anoxic event in the Qiangtang Basin, eastern Tethys, *Palaeogeogr. Palaeocl.*,
666 487, 241-250, 10.1016/j.palaeo.2017.09.005, 2017.

667 Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler,
668 A., Kuwata, M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M.
669 O., and Pöschl, U.: Cloud condensation nuclei (CCN) from fresh and aged air
670 pollution in the megacity region of Beijing, *Atmos. Chem. Phys.*, 11, 11023-11039,
671 10.5194/acp-11-11023-2011, 2011.

672 Guo, L., Chen, Y., Wang, F., Meng, X., Xu, Z., and Zhuang, G.: Effects of Asian dust on
673 the atmospheric input of trace elements to the East China Sea, *Mar. Chem.*, 163, 19-
674 27, 10.1016/j.marchem.2014.04.003, 2014.

675 Guo, T., Li, K., Zhu, Y., Gao, H., and Yao, X.: Concentration and size distribution of
676 particulate oxalate in marine and coastal atmospheres – Implication for the increased
677 importance of oxalate in nanometer atmospheric particles, *Atmos. Environ.*, 142, 19-
678 31, 10.1016/j.atmosenv.2016.07.026, 2016.

679 Hoppel W. A., F. G. M., and Larson R. E.: Effect of non-precipitating clouds on the
680 aerosol size distribution, *Geophys. Res. Lett.*, 13, 125-128, 1986.

681 Huebert, B. J., Bates, T., Russell, P. B., Shi, G. Y., Kim, Y. J., Kawamura, K., Carmichael,
682 G., and Nakajima, T.: An overview of ACE-Asia: Strategies for quantifying the
683 relationships between Asian aerosols and their climatic impacts, *J. Geophys. Res.-*
684 *Atmos.*, 108, Artn 8633, 10.1029/2003jd003550, 2003.

685 Kerminen, V. M., Chen, X. M., Vakkari, V., Petaja, T., Kulmala, M., and Bianchi, F.:
686 Atmospheric new particle formation and growth: review of field observations, Environ.
687 Res. Lett., 13, Art. 103003, 10.1088/1748-9326/Aadf3c, 2018.

688 Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V. M.,
689 Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine
690 atmospheric particles: a review of observations, J. Aer. Sci., 35, 143-176,
691 10.1016/j.jaerosci.2003.10.003, 2004.

692 Langley, L., Leaitch, W. R., Lohmann, U., Shantz, N. C., and Worsnop, D. R.:
693 Contributions from DMS and ship emissions to CCN observed over the summertime
694 North Pacific, Atmos. Chem. Phys., 10, 1287-1314, DOI 10.5194/acp-10-1287-2010,
695 2010.

696 Leng, C., Cheng, T., Chen, J., Zhang, R., Tao, J., Huang, G., Zha, S., Zhang, M., Fang,
697 W., Li, X., and Li, L.: Measurements of surface cloud condensation nuclei and
698 aerosol activity in downtown Shanghai, Atmos. Environ., 69, 354-361,
699 10.1016/j.atmosenv.2012.12.021, 2013.

700 Li, K., Zhu, Y., Gao, H., and Yao, X.: A comparative study of cloud condensation nuclei
701 measured between non-heating and heating periods at a suburb site of Qingdao in the
702 North China, Atmos. Environ., 112, 40-53, 10.1016/j.atmosenv.2015.04.024, 2015.

703 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man,
704 H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review,
705 Natl. Sci. Rev., 4, 834-866, 10.1093/nsr/nwx150, 2017.

706 Lin, Y. C., Chen, J. P., Ho, T. Y., and Tsai, I. C.: Atmospheric iron deposition in the
707 northwestern Pacific Ocean and its adjacent marginal seas: The importance of coal
708 burning, Global. Biogeochem. Cy., 29, 138-159, 10.1002/2013GB004795, 2015.

709 Liu, F., Zhang, Q., A., R. J. v. d., Zheng, B., Tong, D., Yan, L., Zheng, Y., and He, K.:
710 Recent reduction in NO x emissions over China: synthesis of satellite observations
711 and emission inventories, Environ. Res. Lett., 11, 114002, 2016.

712 Ma, N., Zhao, C. S., Tao, J. C., Wu, Z. J., Kecorius, S., Wang, Z. B., Gross, J., Liu, H.
713 J., Bian, Y. X., Kuang, Y., Teich, M., Spindler, G., Muller, K., van Pinxteren, D.,
714 Herrmann, H., Hu, M., and Wiedensohler, A.: Variation of CCN activity during new

715 particle formation events in the North China Plain, *Atmos. Chem. Phys.*, 16, 8593-
716 8607, 10.5194/acp-16-8593-2016, 2016.

717 Mochida, M., Nishita-Hara, C., Kitamori, Y., Aggarwal, S. G., Kawamura, K., Miura,
718 K., and Takami, A.: Size-segregated measurements of cloud condensation nucleus
719 activity and hygroscopic growth for aerosols at Cape Hedo, Japan, in spring 2008, *J.
720 Geophys. Res.*, 115, 10.1029/2009jd013216, 2010.

721 Nair, V. S., Nair, J. V., Kompalli, S. K., Gogoi, M. M., and Babu, S. S.: Cloud
722 Condensation Nuclei properties of South Asian outflow over the northern Indian
723 Ocean during winter, *Atmos. Chem. Phys. Discuss.*, 10.5194/acp-2019-828, 2019.

724 O'Dowd, C., Ceburnis, D., Ovadnevaite, J., Vaishya, A., Rinaldi, M., and Facchini, M.
725 C.: Do anthropogenic, continental or coastal aerosol sources impact on a marine
726 aerosol signature at Mace Head?, *Atmos. Chem. Phys.*, 14, 10687-10704,
727 10.5194/acp-14-10687-2014, 2014.

728 O'Dowd, C. D., Smith, M. H., Consterdine, I. E., and Lowe, J. A.: Marine aerosol, sea-
729 salt, and the marine sulphur cycle: A short review, *Atmos. Environ.*, 31, 73-80, Doi
730 10.1016/S1352-2310(96)00106-9, 1997.

731 O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S.,
732 Fuzzi, S., Yoon, Y. J., and Putaud, J. P.: Biogenically driven organic contribution to
733 marine aerosol, *Nature*, 431, 676-680, 10.1038/nature02959, 2004.

734 Park, M., Yum, S. S., Kim, N., Cha, J. W., Shin, B., and Ryoo, S.-B.: Characterization
735 of submicron aerosols and CCN over the Yellow Sea measured onboard the Gisang
736 1 research vessel using the positive matrix factorization analysis method, *Atmos.
737 Res.*, 214, 430-441, 10.1016/j.atmosres.2018.08.015, 2018.

738 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic
739 growth and cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7, 1961-1971,
740 DOI 10.5194/acp-7-1961-2007, 2007.

741 Phillips, B. N., Royalty, T. M., Dawson, K. W., Reed, R., Petters, M. D., and Meskhidze,
742 N.: Hygroscopicity- and Size-Resolved Measurements of Submicron Aerosol on the
743 East Coast of the United States, *J. Geophys. Res.-Atmos.*, 123, 1826-1839,
744 10.1002/2017JD027702, 2018.

745 Pöschl, U., Rose, D., & Andreae, M. O. (2009). Climatologies of Cloud-related Aerosols.
746 Part 2: Particle Hygroscopicity and Cloud Condensation Nucleus Activity. In J.
747 Heintzenberg, & R. J. Charlson (Eds.), *Clouds in the Perturbed Climate System:*
748 Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation (pp.
749 58-72). Cambridge: MIT Press.

750 Quinn, P. K., and Bates, T. S.: The case against climate regulation via oceanic
751 phytoplankton sulphur emissions, *Nature*, 480, 51-56, 10.1038/nature10580, 2011.

752 Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T. S.: Chemistry
753 and Related Properties of Freshly Emitted Sea Spray Aerosol, *Chem. Rev.*, 115,
754 4383-4399, 10.1021/cr500713g, 2015.

755 Ramana, M. V., and Devi, A.: CCN concentrations and BC warming influenced by
756 maritime ship emitted aerosol plumes over southern Bay of Bengal, *Sci. Rep.*, 6,
757 30416, 10.1038/srep30416, 2016.

758 Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and
759 Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud
760 condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate
761 and sodium chloride aerosol particles in theory and experiment, *Atmos. Chem. Phys.*,
762 8, 1153–1179, <https://doi.org/10.5194/acp-8-1153-2008>, 2008.

763 Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y.,
764 Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and
765 biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved
766 measurements and implications for the modeling of aerosol particle hygroscopicity
767 and CCN activity, *Atmos. Chem. Phys.*, 10, 3365-3383, DOI 10.5194/acp-10-3365-
768 2010, 2010.

769 Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F.,
770 Wehner, B., Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu,
771 M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted
772 air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-
773 resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly
774 CCN-active soot particles, *Atmos. Chem. Phys.*, 11, 2817-2836, 10.5194/acp-11-

775 2817-2011, 2011.

776 Rosenfeld, D., Zhu, Y. N., Wang, M. H., Zheng, Y. T., Goren, T., and Yu, S. C.: Aerosol-
777 driven droplet concentrations dominate coverage and water of oceanic low-level
778 clouds, *Science*, 363, 10.1126/science.aav0566, 2019.

779 Royalty, T. M., Phillips, B. N., Dawson, K. W., Reed, R., Meskhidze, N., and Petters, M.
780 D.: Aerosol Properties Observed in the Subtropical North Pacific Boundary Layer, *J.
781 Geophys. Res.-Atmos.*, 122, 9990-10012, 10.1002/2017JD026897, 2017.

782 Ruehl, C. R., Chuang, P. Y., and Nenes, A.: Distinct CCN activation kinetics above the
783 marine boundary layer along the California coast, *Geophys. Res. Lett.*, 36, L15814,
784 10.1029/2009gl038839, 2009.

785 Saliba, G., Chen, C. L., Lewis, S., Russell, L. M., Rivellini, L. H., Lee, A. K. Y., Quinn,
786 P. K., Bates, T. S., Haentjens, N., Boss, E. S., Karp-Boss, L., Baetge, N., Carlson, C.
787 A., and Behrenfeld, M. J.: Factors driving the seasonal and hourly variability of sea-
788 spray aerosol number in the North Atlantic, *Proc. Natl. Acad. Sci. U.S.A.*, 116,
789 20309-20314, 10.1073/pnas.1907574116, 2019.

790 Sato, Y., and Suzuki, K.: How do aerosols affect cloudiness?, *Science*, 363, 580-581,
791 10.1126/science.aaw3720, 2019.

792 Si, Y. D., Yu, C., Zhang, L., Zhu, W. D., Cai, K., Cheng, L. X., Chen, L., and Li, S. S.:
793 Assessment of satellite-estimated near-surface sulfate and nitrate concentrations and
794 their precursor emissions over China from 2006 to 2014, *Sci. Total Environ.*, 669,
795 362-376, 10.1016/j.scitotenv.2019.02.180, 2019.

796 Singla, V., Mukherjee, S., Safai, P. D., Meena, G. S., Dani, K. K., and Pandithurai, G.:
797 Role of organic aerosols in CCN activation and closure over a rural background site
798 in Western Ghats, India, *Atmos. Environ.*, 158, 148-159,
799 10.1016/j.atmosenv.2017.03.037, 2017.

800 Song, J. W., Zhao, Y., Zhang, Y. Y., Fu, P. Q., Zheng, L. S., Yuan, Q., Wang, S., Huang,
801 X. F., Xu, W. H., Cao, Z. X., Gromov, S., and Lai, S. C.: Influence of biomass burning
802 on atmospheric aerosols over the western South China Sea: Insights from ions,
803 carbonaceous fractions and stable carbon isotope ratios, *Environ. Pollut.*, 242, 1800-
804 1809, 10.1016/j.envpol.2018.07.088, 2018.

805 Ueda, S., Miura, K., Kawata, R., Furutani, H., Uematsu, M., Omori, Y., and Tanimoto,
806 H.: Number-size distribution of aerosol particles and new particle formation events
807 in tropical and subtropical Pacific Oceans, *Atmos. Environ.*, 142, 324-339,
808 10.1016/j.atmosenv.2016.07.055, 2016.

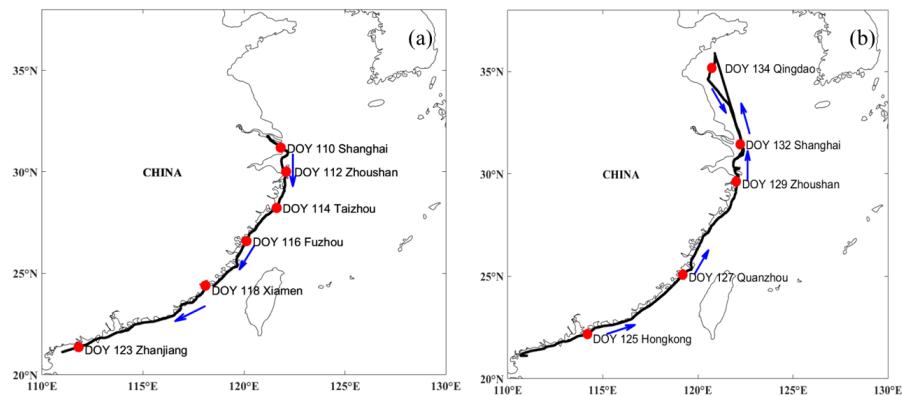
809 Wang, J., Shen, Y., Li, K., Gao, Y., Gao, H., and Yao, X.: Nucleation-mode particle pool
810 and large increases in Ncn and Nccn observed over the northwestern Pacific Ocean
811 in the spring of 2014, *Atmos. Chem. Phys.*, 19, 8845-8861, 10.5194/acp-19-8845-
812 2019, 2019.

813 Wang, Z. J., Du, L. B., Li, X. X., Meng, X. Q., Chen, C., Qu, J. L., Wang, X. F., Liu, X.
814 T., and Kabanov, V. V.: Observations of marine aerosol by a shipborne
815 multiwavelength lidar over the Yellow Sea of China, *Lidar Remote Sensing for*
816 *Environmental Monitoring* XIV. International Society for Optics and Photonics, 9262,
817 10.1117/12.2070297, 2014.

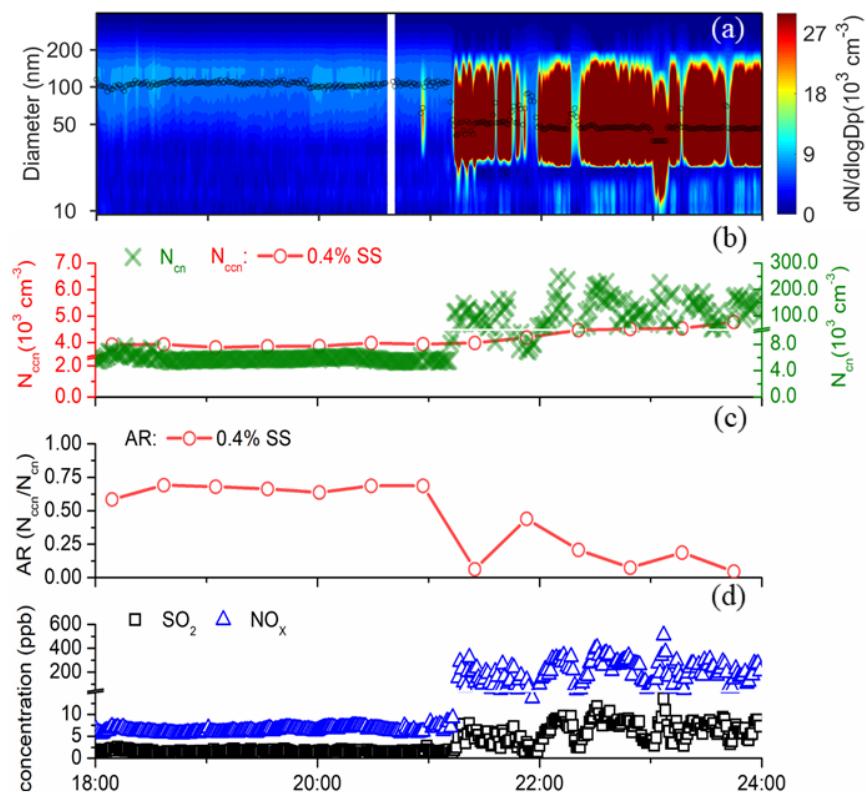
818 Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler, A.,
819 and Hu, M.: Particle hygroscopicity and its link to chemical composition in the urban
820 atmosphere of Beijing, China, during summertime, *Atmos. Chem. Phys.*, 16, 1123-
821 1138, 10.5194/acp-16-1123-2016, 2016.

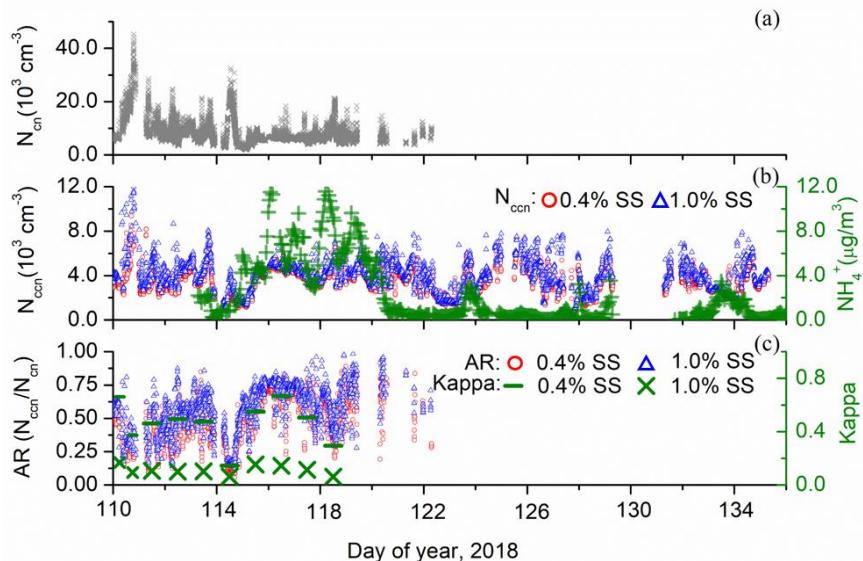
822 Yamashita, K., Murakami, M., Hashimoto, A., and Tajiri, T.: CCN Ability of Asian
823 Mineral Dust Particles and Their Effects on Cloud Droplet Formation, *J. Meteor. Soc.*
824 *Japan*, 89, 581-587, 10.2151/jmsj.2011-512, 2011.

825 Yao, X. H., Lau, N. T., Fang, M., and Chan, C. K.: Real-time observation of the
826 transformation of ultrafine atmospheric particle modes, *Aerosol. Sci. Tech.*, 39, 831-
827 841, 10.1080/02786820500295248, 2005.


828 Yao, X. H., Lau, N. T., Chan, C. K., and Fang, M.: Size distributions and condensation
829 growth of submicron particles in on-road vehicle plumes in Hong Kong, *Atmos.*
830 *Environ.*, 41, 3328-3338, 10.1016/j.atmosenv.2006.12.044, 2007.

831 Yao, X. H., Choi, M. Y., Lau, N. T., Lau, A. P. S., Chan, C. K., and Fang, M.: Growth
832 and Shrinkage of New Particles in the Atmosphere in Hong Kong, *Aerosol. Sci. Tech.*,
833 44, 639-650, Pii 924397031, 10.1080/02786826.2010.482576, 2010.


834 Yu, F., and Luo, G.: Simulation of particle size distribution with a global aerosol model:


835 contribution of nucleation to aerosol and CCN number concentrations, *Atmos. Chem.*
836 *Phys.*, 9, 7691-7710, DOI 10.5194/acp-9-7691-2009, 2009.
837 Zhu, Y. J., Li, K., Shen, Y. J., Gao, Y., Liu, X. H., Yu, Y., Gao, H. W., and Yao, X. H.:
838 New particle formation in the marine atmosphere during seven cruise campaigns,
839 *Atmos. Chem. Phys.*, 19, 89-113, 10.5194/acp-19-89-2019, 2019.
840 Zimmerman, N., Jeong, C.-H., Wang, J. M., Ramos, M., Wallace, J. S., and Evans, G.
841 J.: A source-independent empirical correction procedure for the fast mobility and
842 engine exhaust particle sizers, *Atmos. Environ.*, 100, 178-184,
843 10.1016/j.atmosenv.2014.10.054, 2015.
844

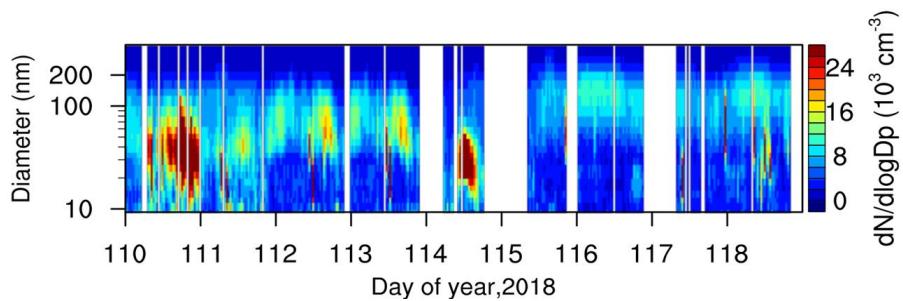

Fig 1 The ship track during the campaign of 2018, and the blue arrows represented the sailing direction, with southward track (a) and northward track (b).

Fig 2 Contour plot of particle number size distribution with the median mobility mode diameter shown in black hollow circles (a), time series of minutely N_{cn} and half-hourly N_{ccn} at SS=0.4% (b), half-hourly AR values at SS=0.4% (c), SO_2 and NO_x at nighttime on DOY 115.

Fig 3 Time series of minutely N_{cn} from DOY 110 to 122 (a), minutely N_{ccn} at SS of 0.4% and 1.0% during DOY 110-135 and hourly NH_4^+ during DOY 113-135 (b), and minutely AR at SS of 0.4% and 1.0% during DOY 110-122 and daily *Kappa* values at SS of 0.4% and 1.0% from DOY 110 to 118 due to data availability (c). Please note that for Fig. 3c, most *Kappa* values were based on daily scale, except on DOY 110, during which two *Kappa* values were calculated from 00:00-06:00 and 08:00-21:00, respectively.

Fig 4 Contour plot of particle number size distribution on DOY 110-118 with self-ship emission signals removed.

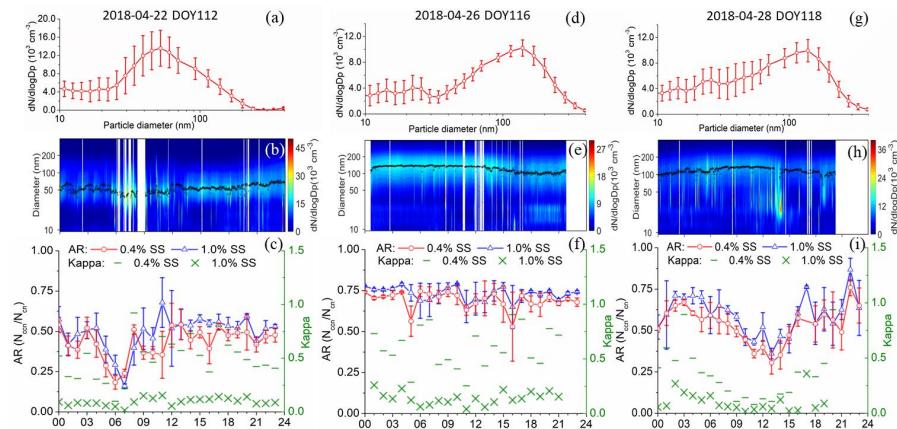
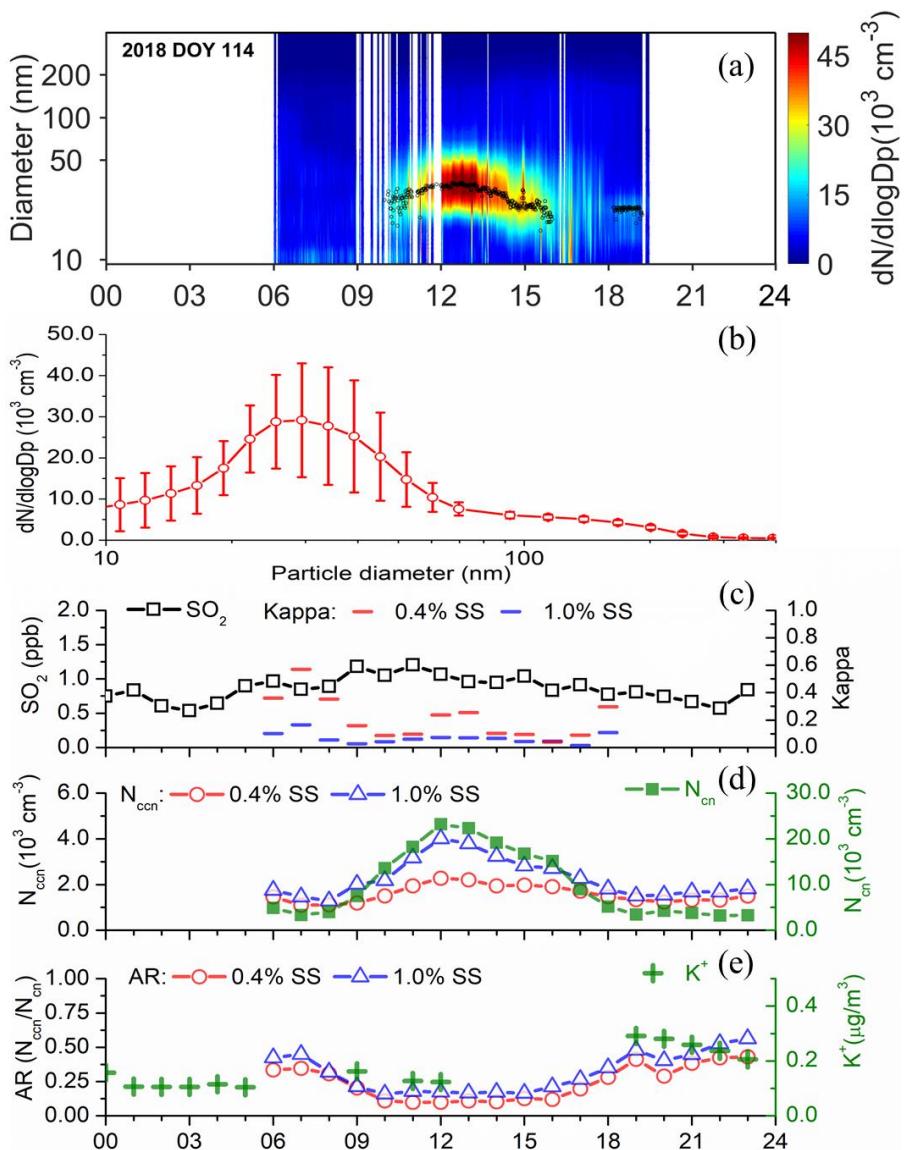
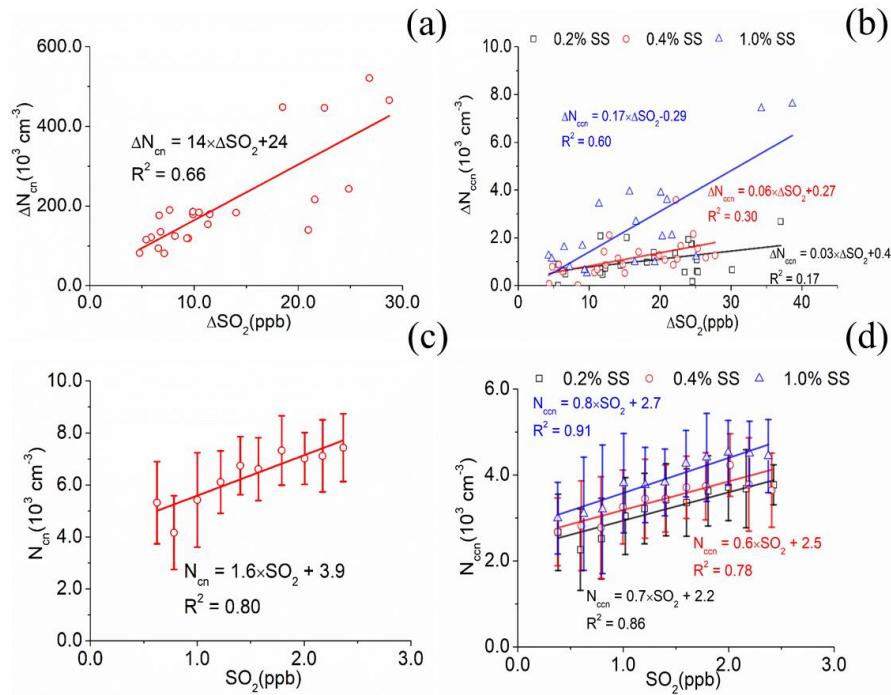




Fig 5 Daily average (top row) and contour plot (middle row) of particle number size distributions, and time series of hourly averaged AR at SS of 0.4% and 1.0% and *Kappa* value on DOY112, DOY116 and DOY118. The bars represent the standard deviation with mean indicated by the hollow circles.

Fig 6 Contour plot of particle number size distributions for the day of DOY 114 2018 (a), the size distributions of particle number concentration during 10:00 -18:00 LT DOY 114 2018 (b), time series of hourly averaged SO_2 and *Kappa* values at SS of 0.4% and 1.0% (c), N_{ccn} at SS of 0.4% and 1.0% (d), and AR values at SS of 0.4% and 1.0% and K^+ (e) for the day of DOY 114 2018.

Fig 7 Correlations of hourly averaged N_{cn} and N_{ccn} with SO_2 at SS of 0.2%, 0.4% and 1.0%. For Fig. 7a,b, ΔN_{cn} , ΔN_{ccn} and ΔSO_2 reflects the impact from self-ship emission after the removal of ambient concentration. For Fig. 7c,d each bar indicates standard deviation with mean value marked as the hollow circles (or triangles, squares), and the interval of SO_2 is 0.2 ppb for each bar.

Table 1. N_{cn} and N_{ccn}, AR and SO₂ mixing ratios on DOY 110-135, 2018 over China

marginal seas. Please note that N_{cn} and AR are from 110-122, 2018.

Variables	Supersaturation (SS)	Ranges	Mean \pm standard deviation
N _{cn} ($\times 10^3$ cm ⁻³)		2.0-45	8.1 \pm 4.4
	SS=0.2%	0.4-8.8	3.2 \pm 1.1
	SS=0.4%	0.5-9.4	3.4 \pm 1.1
N _{ccn} ($\times 10^3$ cm ⁻³)	SS=0.6%	0.5-8.6	3.6 \pm 1.2
	SS=0.8%	0.5-11	3.8 \pm 1.2
	SS=1.0%	0.6-12	3.9 \pm 1.4
AR	SS=0.2%	0.06-0.89	0.49 \pm 0.17
	SS=0.4%	0.06-0.92	0.51 \pm 0.17
	SS=0.6%	0.10-0.94	0.54 \pm 0.17
	SS=0.8%	0.08-0.95	0.56 \pm 0.17
	SS=1.0%	0.11-0.98	0.57 \pm 0.17
SO ₂ (ppb)		0.25-9.7	1.7 \pm 1.1