

Variations in N_{cn} and N_{ccn} over China marginal seas related to marine traffic emissions, new particle formation and aerosol aging

Yang Gao^{1,2#*}, Deqiang Zhang^{1#}, Juntao Wang¹, Huiwang Gao^{1,2} and Xiaohong Yao^{1,2*}

4 ¹Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory
5 of Marine Environment and Ecology, Ministry of Education, Ocean University of China,
6 Qingdao, 266100, China

7 ²Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for
8 Marine Science and Technology, Qingdao, 266237, China

⁹ #Authors contribute equally to this study

*Correspondence to yanggao@ouc.edu.cn; xhyao@ouc.edu.cn

11

12

13

14

15

16

17

18

19

30

31

22

22

24

25

26 **Abstract**

27

28 In this study, a cruise campaign was conducted over China marginal seas to measure
29 concentrations of condensation nuclei (N_{cn}), cloud condensation nuclei (N_{ccn}) and other
30 pollutants during DOY 110 to DOY 135 of 2018. With exhaustedly excluded self-ship
31 emission signals, the mean values of N_{ccn} during the cruise campaign slightly increased
32 from $3.2 \pm 1.1 \times 10^3 \text{ cm}^{-3}$ (mean \pm standard) at supersaturation (SS) of 0.2% to $3.9 \pm$
33 $1.4 \times 10^3 \text{ cm}^{-3}$ at SS of 1.0%, and the mean value for N_{cn} was $8.1 \pm 4.4 \times 10^3 \text{ cm}^{-3}$. Data
34 analysis showed that marine traffic emissions apparently yielded a large contribution to
35 the increase of N_{cn} in daytime, especially in marine atmospheres over their heavily
36 travelled sea zones; however, the fresh sources had no clear contribution to the increase
37 of N_{ccn} . This finding was supported by the quantitative relations between N_{cn} and N_{ccn}
38 at SS=0.2-1.0% against mixing ratios of SO_2 in self-ship emission plumes, i.e., 1 ppb
39 increase in SO_2 corresponds to $1.4 \times 10^4 \text{ cm}^{-3}$ increase in N_{cn} , but only $30-170 \text{ cm}^{-3}$
40 increase in N_{ccn} possibly because of abundant organics in the aerosols. The smooth
41 growth of marine traffic derived particles can be observed, reflecting aerosol aging. The
42 estimated hygroscopicity parameter (κ) values were generally as high as 0.46-0.55
43 under the dominant onshore winds, suggesting inorganic ammonium aerosols likely
44 acting as the major contributor to N_{ccn} through aerosol aging processes largely
45 decomposed organics. Moreover, the influences of the transported new particles from
46 the continent on N_{cn} and N_{ccn} in the marine atmosphere were also investigated.

47

48 **Key words:** N_{cn} ; N_{ccn} ; marine traffic emissions; hygroscopicity parameter; SO_2

49

50

51

52

53

54

55

56

57

58

59

60 **1. Introduction**

61

62 Oceans occupy approximately 2/3 of the Earth's surface and water evaporation from
63 oceans acts as the major source of moisture in the atmosphere. Aerosol-cloud
64 interactions in marine atmospheres, covering from tropics to polar regions, thereby
65 attract great attentions in the past few decades due to their impact on the climate change
66 (Huebert et al., 2003; Yu and Luo, 2009; Quinn and Bates, 2011; Wang et al., 2014;
67 Brooks and Thornton, 2018; Rosenfeld et al., 2019). However, large uncertainties still
68 exist in various marine atmospheres, e.g., the sources of aerosols, concentrations of
69 bulk cloud condensation nuclei (CCN) and aerosol CCN activation under various of
70 supersaturation, etc. (Clarke et al., 2006; Decesari et al., 2011; Quinn and Bates, 2011;
71 Saliba et al., 2019; Rosenfeld et al., 2019). The uncertainties are mainly determined by
72 limited observations in marine atmospheres, although a few additional observations of
73 number concentrations of aerosol (N_{cn}) and CCN (N_{ccn}) were recently reported in
74 different marine atmospheres, e.g., over Mediterranean (Bougiatioti et al., 2009), Sea
75 of Japan (Yamashita et al., 2011), Bay of Bengal (Ramana and Devi, 2016), coast of
76 California (Ruehl et al., 2009) and the Northwest Pacific Ocean (Wang et al., 2019),
77 etc.

78

79 Besides sea-spray aerosols and secondarily formed aerosols from sea-derived gaseous
80 precursors (O'Dowd et al., 1997; Clarke et al., 2006; Quinn and Bates, 2011; Blot et al.,
81 2013; Fossum et al., 2018), marine traffics also emit a large amount of aerosols and
82 reactive gases (Chen et al., 2017). These pollutants may also directly or indirectly
83 contribute to CCN therein, to some extent (Langley et al., 2010). In addition, the long-
84 range transport of continental aerosols widely reportedly acted as an important source
85 of CCN in marine atmospheres (Charlson et al., 1987; Huebert et al., 2003; Fu et al.,
86 2017; Royalty et al., 2017; Sato and Suzuki, 2019; Wang et al., 2019). The continent-
87 derived aerosol particles observed in marine atmospheres usually mix with different
88 sources such as biomass burning, dust and anthropogenic emissions (Feng et al., 2017;
89 Lin et al., 2015; Guo et al., 2014; Guo et al., 2016). An appreciable fraction of organics

90 reportedly exists in marine aerosols and continental aerosols upwind of oceans
91 (O'Dowd et al., 2004; Feng et al., 2012; Quinn et al., 2015; Feng et al., 2016; Song et
92 al., 2018; Ding et al., 2019). However, ammonium sulfate aerosols have been frequently
93 reported to dominantly contribute to CCN-related aerosols in many marine atmospheres
94 and lead to hygroscopicity parameter (κ) larger than 0.5 (Mochida et al., 2010; Cai et
95 al., 2017; Fu et al., 2017; Royalty et al., 2017; Phillips et al., 2018). A question is
96 automatically raised, i.e., where do particulate organics go in the marine aerosols
97 enriched in ammonium sulfate? Anthropogenic emission such as SO_2 , NO_x in general
98 increase since 1980s, until recently started to decrease, i.e., SO_2 start to decrease from
99 2006 (Li et al., 2017) whereas NO_x started to decrease since 2011 (Li et al., 2017; Liu
100 et al., 2016). Together with the influence of the Asian Monsoon, the marginal seas of
101 China are, therefore, inevitably affected by the outflow of continental aerosols (Guo et
102 al., 2016; Feng et al., 2017). Observations of N_{cn} and N_{ccn} in marine atmospheres over
103 China marginal seas helps to resolve the data scarcity, understand their sources and
104 dynamic changes and better service the study of their potential climate impacts.

105

106 In this study, cruise campaigns were conducted to measure the N_{ccn} , N_{cn} , particle
107 number size distributions, gaseous pollutants and aerosol composition of water-soluble
108 ionic species over the marginal seas from 20 April 2018 (day of year (DOY) 110) to 15
109 May 2018 (DOY 135), traveling from the East China sea to the South China sea, and
110 returning to the Yellow sea. Spatiotemporal variations in N_{cn} , N_{ccn} and CCN activities
111 of aerosol particles were studied. The *Kappa* values of aerosol particles from DOY 110
112 to DOY 118 over the marine were calculated and analyzed. Finally, we tried to establish
113 the correlations of N_{cn} and N_{ccn} with mixing ratios of SO_2 in self-ship plumes and
114 ambient marine air. The correlation equations are valuable for the estimation of N_{cn} and
115 N_{ccn} from SO_2 when the direct observations of N_{cn} and N_{ccn} are not available.

116

117 **2. Experimental design**

118 *2.1 Instruments and data sources*

119 A cruise campaign was conducted across China marginal seas from DOY 110 to DOY
120 135 of 2018 (Fig. 1a,b). A suite of instruments including a Fast Mobility Particle Sizer
121 (FMPS, TSI Model 3091), CCN counter (CCNC, DMT Model 100), Condensation
122 Particle Counter (CPC, TSI Model 3775), gas analyzers, Ambient Ion Monitor-Ion
123 chromatography (AIM-IC) etc., were onboard a commercial cargo ship *Anqiang 87* for
124 measurements. The FMPS was used to measure particle number size distributions with
125 mobility diameters from 5.6 nm to 560 nm in 32 channels at 1-second temporal
126 resolution with an inlet flow of 10 L min^{-1} . The CPC was used to report the N_{cn} ranging
127 from 4 nm (50% efficiency) to 3000 nm (N_{cn}) in 2-second time resolution with an inlet
128 flow of 1.5 L min^{-1} . The N_{cn} was then used to calibrate the particle number size
129 distributions simultaneously measured by the FMPS, on basis of the procedure
130 proposed by Zimmerman et al. (2015). Due to the severe oceanic condition and humid
131 weather conditions, the FMPS and CPC were out of service after DOY 118 and DOY
132 122, respectively. Prior to the campaign, the CCNC was calibrated with ammonium
133 sulfate particles based on the standard procedure detailed at Rose et al. (2008). The
134 calibration curve was shown in Fig. S1. The total flow rate of CCNC was 0.45 L min^{-1} ,
135 with a ratio of sample to sheath at 1/10, and five super saturations (SS) conditions were
136 selected including 0.2 %, 0.4 %, 0.6 %, 0.8 %, and 1.0 %. More detailed information
137 about the measurement of N_{cn} can be found in Wang et al. (2019).

138

139 During the experiment, ambient particles were first sampled through a conductive tube
140 (TSI, US) and a diffusion dryer filled with silica gel (TSI, US), and then splitted into
141 different instruments with a splitter. All instruments were placed in an air-conditioned
142 container on the deck of ship, with inlet height of approximately 6 m above the sea
143 level. Regarding the gas analyzers, the ambient O_3 (Model 49i, Thermo Environmental
144 Instrument Inc., USA C-series), SO_2 (Model 43i, Thermo Environmental Instrument
145 Inc., USA C-series), and NO_x (Model 42i, Thermo Environmental Instrument Inc., USA
146 C-series) were measured in mixing ratios with temporal resolution of one-minute. The
147 CCNC and gas analyzers were operated properly throughout the entire campaign. The
148 same was true for AIM-IC, which was used to measure water-soluble ionic species in

149 ambient particles less than 2.5 μm .

150

151 In this study, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
152 model from the NOAA Air Resources Laboratory was used to track the particle sources.
153 The input of HYSPLIT such as wind speed and wind direction was from the National
154 Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS)
155 with spatial resolution of 0.5 degree.

156

157 The hygroscopicity parameter (κ) was calculated according to the method proposed by
158 Petters and Kreidenweis (2007).

$$159 \quad \kappa = \frac{4A^3}{27D_d^3 \ln^2 S_c}, \quad A = \frac{4\sigma_{s/a} M_w}{RT\rho_w}$$

160 where D_d is the dry diameter, S_c is the super saturation, M_w is the molecular weight
161 of water, $\sigma_{s/a}$, a constant of 0.072 J m^{-2} , represents the surface tension over the
162 interface of the solution and air, R is the universal gas constant, T is the ambient
163 temperature and ρ_w is the water density. The D_d was not measured directly and
164 assumed to be equal to the critical diameter for CCN activation (D_{crit}). D_{crit} was defined
165 as the particle diameter down to which by integrating from the largest diameter with
166 the number concentration equals to CCN concentration (Hung et al., 2014; Cheung et
167 al., 2020). The FMPS has a low size resolution, particularly at the size greater than 90
168 nm, which doesn't allow accurately calculating *Kappa* values at SS=0.2%. At SS=0.6%
169 and 0.8%, the *Kappa* value was not calculated considering the complication in the
170 explanation of the value, possibly reflecting the combined effects of particle size,
171 mixing state and chemical composition.

172

173 2.2 Separating ambient signals of N_{cn} and N_{ccn} from self-ship emission

174 The data measured during the cruise campaign were frequently interfered by self-ship
175 emission signals. The N_{cn} and N_{ccn} over the marginal seas were first distinguished based
176 on the source of ambient environment or self-ship emission. The data measured at
177 18:00-24:00 on DOY 115 were used to illustrate the separation (Fig. 2), with the size

178 distribution of particle number concentration during DOY 110-118 shown in Fig. S2-
179 S10 in the supporting information. At 18:00-21:11 LT (Local Time), the low N_{cn} of
180 $5.8 \pm 0.4 \times 10^3 \text{ cm}^{-3}$ were observed. The accumulation mode dominated in particle
181 number concentration with the median mobility mode diameter at $105 \pm 4 \text{ nm}$ (Fig. 2a).
182 Afterwards, the N_{cn} rapidly increased by over one order of magnitude (Fig. 2b). The
183 dominant particle number concentration mode changed from accumulation mode to
184 Aitken mode, with the median mobility diameter of Aitken mode stabilized at $47 \pm 4 \text{ nm}$
185 in approximately 90% of the time. The rapid increase in N_{cn} and the change in mode
186 size indicated the signal of ship emission itself. The self-ship emission interference after
187 21:11 was also supported by additional evidences, e.g., a large decrease in activation
188 ratio (AR), defined as the quotient of N_{ccn} and N_{cn} , from >0.5 to <0.2 at SS=0.4% (Fig.
189 2c) due to large increase of N_{cn} but much smaller magnitude enhancement of N_{ccn} (Fig.
190 2b), a rapid increase of NO_x from $<10 \text{ ppb}$ to $192 \pm 99 \text{ ppb}$, NO/NO_2 from <0.1 to
191 0.7 ± 0.3 , as well as SO_2 from $<2 \text{ ppb}$ to $6.2 \pm 2.4 \text{ ppb}$. The large changes were expected
192 because the ship smoke stock was approximately only 10 meters away from these
193 detectors. Thus, based upon the feature described above certain criteria were designed
194 in this study to identify self-ship emission signals so as to separate from ambient signals,
195 i.e., a net increase in N_{cn} beyond $5 \times 10^4 \text{ cm}^{-3}$ in five minutes, the median mobility mode
196 diameter around 50 nm, $\text{NO}_2 > 30 \text{ ppb}$ and $\text{NO}/\text{NO}_2 > 0.5$.
197

198 **3. Results and discussion**

199 *3.1 Spatiotemporal variations in ambient N_{cn} during the cruise period*

200 Fig. 3 shows a time series of minutely averaged distributions of N_{cn} , N_{ccn} and AR at SS
201 of 0.4% and 1.0% from DOY 110 to DOY 135 2018, when self-ship emission signals
202 had been exhaustedly removed.

203 When spatiotemporal variations in N_{cn} were examined during the first half cruise period
204 (Fig. 3a), the N_{cn} spanned a broad range of $0.2-4.5 \times 10^4 \text{ cm}^{-3}$ with the average value
205 of $8.1 \pm 4.4 \times 10^3 \text{ cm}^{-3}$. Specifically, the N_{cn} were only $6.5 \pm 0.8 \times 10^3 \text{ cm}^{-3}$ at 00:00-
206 06:00 LT on DOY110 when the ship anchored at the Yangtze River estuary near
207

208 Shanghai (Fig. 1). The low N_{cn} were comparable to the mean value of N_{cn} ($5.4 \times 10^3 \text{ cm}^{-3}$) in marine-air cases during January-December 2010 in Shanghai reported by Leng et
209 al. (2013). The N_{cn} largely increased to $1.9 \pm 0.7 \times 10^4 \text{ cm}^{-3}$ at 08:00-21:00 LT on
210 DOY110 when the ship cruised across the Yangtze River estuary. The measured
211 particles in number concentration were dominantly distributed at Aitken mode on that
212 day while the median Aitken mode diameter shifted from $49 \pm 5 \text{ nm}$ at 00:00-06:00 to
213 $40 \pm 5 \text{ nm}$ at 08:00-21:00 (Fig. S2). The Yangtze River estuary contains several world-
214 class ports and is heavily travelled by marine traffics in daytime (Chen et al., 2017).
215 Since the onshore wind dominated on that day (not shown), the increase in N_{cn} and the
216 decrease in median Aitken mode diameter at 08:00-21:00 LT possibly reflected the
217 increased contribution from marine traffic emissions. Marine traffics visibly decreased
218 when the ship left the Yangtze River estuary toward the south. The N_{cn} were then
219 significantly decreased, i.e., $9.5 \pm 4.4 \times 10^3 \text{ cm}^{-3}$ in the marine atmosphere over the sea
220 zone in Zhejiang Province (at 07:00 LT on DOY111 - 17:00 LT on DOY 114), with
221 $P < 0.01$. The N_{cn} further decreased to the lower values of $5.8 \pm 1.7 \times 10^3 \text{ cm}^{-3}$ in the
222 marine atmosphere over the sea zone in Fujian Province (at 18:00 LT on DOY114 -
223 14:00 LT on DOY 117). All these values were, however, 1-2 orders of magnitude larger
224 than the background values in remote clear marine atmospheres, e.g., $< 300 \text{ particle cm}^{-3}$
225 without the influence of industrial activities in the western Pacific and the tropical
226 Pacific (Ueda et al., 2016) and those reported by Quinn and Bates (2011) and Saliba et
227 al. (2019), indicating overwhelming contributions from non-sea-spray aerosols
228 including marine traffic emissions, the long-range continental transport, newly formed
229 particles in marine atmospheres, etc. As reported, atmospheric particles over China
230 marginal seas can be further transported to the remote northwest Pacific Ocean (NWPO)
231 in spring under westerly winds, e.g., N_{cn} observed over the NWPO in March-April 2014
232 were as high as $2.8 \pm 1.0 \times 10^3 \text{ cm}^{-3}$ and approximately half of that over China marginal
233 seas observed in March 2014 (Wang et al., 2019).

235
236 The mean value of N_{cn} ($8.1 \pm 4.4 \times 10^3$) observed in this study was close to that of 7.6
237 $\pm 4.0 \times 10^3 \text{ cm}^{-3}$ (the number concentrations of particles larger than 10 nm) over the
238 eastern part of the Yellow sea in spring 2017 reported by Park et al. (2018). They
239 attributed the high number concentrations of particles within nucleation and Aitken
240 modes to the long-range transport of air pollutants over eastern China under the

241 influence of westerly winds. Consistently, larger values of N_{cn} were frequently observed
242 in the continental atmospheres upwind of the Yellow sea, e.g., the mean values of $1.8 \pm$
243 $1.4 \times 10^4 \text{ cm}^{-3}$ in May 2013 in Qingdao, a coastal city in proximity to the Yellow Sea (Li
244 et al., 2015), $3.18 \times 10^4 \text{ cm}^{-3}$ in February-August 2014 in Beijing (Dal Maso et al., 2016),
245 and $1.0 \times 10^4 \text{ cm}^{-3}$ in continental-air cases during January-December 2010 in Shanghai
246 (Leng et al., 2013).

247

248 *3.2 Spatiotemporal variations in ambient N_{ccn} during the cruise period*

249 N_{ccn} data were generally available during the entire campaign (Fig. 3b). The mean
250 values of N_{ccn} over China marginal seas during the DOY 110 to DOY 135, 2018 were
251 from $3.2 \pm 1.1 \times 10^3 \text{ cm}^{-3}$ to $3.9 \pm 1.4 \times 10^3 \text{ cm}^{-3}$ under SS ranging from 0.2% to
252 1.0% (Table 1), two to four times larger than the N_{ccn} at the same SS over the NWPO in
253 March-April 2014 (Wang et al., 2019), and much higher, i.e., 1-2 orders of magnitude,
254 than the pristine marine background values (Quinn and Bates, 2011). As was discussed
255 in the previous section, the mean N_{cn} in this study ($8.1 \pm 4.4 \times 10^3 \text{ cm}^{-3}$) was comparable
256 to that of N_{cn} ($7.6 \pm 4.0 \times 10^3 \text{ cm}^{-3}$) over the Yellow Sea in spring 2017 in Park et al.
257 (2018); however, the comparison of mean N_{ccn} reveals that mean value ($3.6 \pm 1.2 \times 10^3$
258 cm^{-3}) at SS of 0.6% in this study was approximately 25% smaller than that (4.8×10^3
259 cm^{-3} at similar SS of 0.65%) in Park et al. (2018), likely a result of long range transport,
260 considering the relatively distant (i.e., 500-600 km) observations away from the land
261 depicted in Fig. 1 of Park et al., 2018, and the subsequently higher extent of aerosol
262 aging. N_{ccn} under SS of 0.2% in this study ($3.2 \pm 1.1 \times 10^3$) is comparable to that (3.1 ± 1.9
263 $\times 10^3$) by Li et al. (2015) in the continental atmosphere of Qingdao in May 2013,
264 however, the increment of N_{ccn} with the increase of SS was much weaker in our study,
265 resulting in on average of 36% smaller in N_{ccn} under SS of 0.4% to 1.0% compared to
266 Li et al. (2015). Consistently, the sensitivity differences of N_{ccn} to SS between relatively
267 clean (i.e., N_{cn} ($8.1 \pm 4.4 \times 10^3$) in this study) and polluted (with N_{cn} of $1.8 \pm 1.4 \times 10^4$
268 cm^{-3}) environment in Li et al. (2015) is also reported by Nair et al. (2019), who found
269 little sensitivity of N_{ccn} to changes in SS over the equatorial Indian Ocean ($< 6^\circ\text{N}$) with
270 relatively clean air, and much larger enhancement of N_{ccn} with the increase of SS in

271 polluted marine atmospheres ($> 6^{\circ}\text{N}$).

272

273 In addition, N_{ccn} at SS from 0.1% to 1.0% during the period with high NH_4^+ (17:00 LT
274 on DOY 114 to 10:00 LT on DOY 120) is statistically significant higher ($P < 0.01$) in
275 comparison to the poor NH_4^+ period (11:00 LT on DOY 120 to 7:00 LT on DOY 136;
276 Fig. 3b). More specifically, a large increase in NH_4^+ concentration, with mean
277 concentration of $6.3 \pm 2.5 \mu\text{g m}^{-3}$, can be observed during the period from 17:00 LT on
278 DOY 114 to 10:00 LT on DOY 120 (Fig. 3b). The mean N_{ccn} during this period varied
279 from $3.5 \pm 1.0 \times 10^3 \text{ cm}^{-3}$ to $4.0 \pm 1.1 \times 10^3 \text{ cm}^{-3}$ at SS ranging of 0.2% to 1.0%. In contrast,
280 after DOY 120, the concentration of NH_4^+ ($0.67 \pm 0.70 \mu\text{g m}^{-3}$) substantially decreased
281 by almost 90%, during which the mean N_{ccn} at each SS showed statistically significant
282 decrease of 8% to 15%, implicative of the vital contribution to CCN of secondary
283 ammonium salt aerosols.

284

285 Another feature depicted in Fig. 3b is the N_{ccn} during the low NH_4^+ period may even
286 exceed the maximal value of N_{ccn} during the high NH_4^+ period. To elucidate the
287 underlying mechanism, the N_{ccn} , under each SS, was composited and compared
288 between the days with NH_4^+ concentration higher than the upper quartile and the days
289 in the lower quartile, yielding some interesting findings. At SS=0.2%, the composited
290 N_{ccn} under high NH_4^+ period was higher than that during low NH_4^+ period with
291 statistical significance level of 0.01. There was no significant difference in N_{ccn} between
292 the two composited periods at SS of 0.4% and 0.6%. However, the composited N_{ccn}
293 (i.e., only selection of the upper quartile) during the high NH_4^+ period was significantly
294 lower than the composited value during the low NH_4^+ period with $P < 0.01$, e.g., $5.1 \pm$
295 $0.5 \times 10^3 \text{ cm}^{-3}$ versus $5.3 \pm 0.7 \times 10^3 \text{ cm}^{-3}$ at SS=0.8%, $5.2 \pm 0.5 \times 10^3 \text{ cm}^{-3}$ versus $5.7 \pm$
296 $0.7 \times 10^3 \text{ cm}^{-3}$ at SS =1.0%. During the low NH_4^+ period, the marine atmospheres over
297 the observational zones may sometimes receive strong continental inputs and/or marine
298 traffic emissions, leading to the larger N_{ccn} . Enhanced formation of ammonium salt
299 aerosols during the high NH_4^+ period likely canceled out or even overwhelmed
300 continental inputs and/or marine traffic emissions in increasing N_{ccn} at SS=0.2%.

301 In addition, fresh marine traffic emissions likely yielded a negligible contribution to
302 N_{ccn} in the marine atmosphere because of a large amount of aged aerosols from various
303 sources therein. For example, the mean values of N_{ccn} were $3.2 \times 10^3 \text{ cm}^{-3}$ and 4.5×10^3
304 cm^{-3} at SS=0.4% and 1.0% at 08:30-11:30 on DOY110, respectively. They were almost
305 same as $3.2 \times 10^3 \text{ cm}^{-3}$ at SS=0.4% and $3.8 \times 10^3 \text{ cm}^{-3}$ at SS=1.0% before 06:00 on that
306 day. The mean values of N_{ccn} , however, largely increased from $6.5 \pm 0.8 \times 10^3 \text{ cm}^{-3}$ before
307 06:00 to $1.3 \pm 0.3 \times 10^4 \text{ cm}^{-3}$ at 08:30-11:30 when the ship cruised across the Yangtze
308 River estuary (Fig. 3b).

309

310 *3.3 Spatiotemporal variations in CCN activation and Kappa values*

311 AR values at SS of 0.4% and 1.0% were examined in the section, shown in Fig. 3c. At
312 SS=0.4%, AR values largely varied from 0.06 to 0.92 with the median value of 0.51.
313 Specifically, AR values narrowly varied around 0.51 ± 0.04 at 00:00-06:00 LT on
314 DOY110. At 08:00-21:00 LT on that day when the ship cruised across the Yangtze River
315 estuary, the AR values were substantially decreased to 0.26 ± 0.06 concurrently with
316 approximate 200% increase in N_{ccn} values, i.e., N_{ccn} value of $6.5 \pm 0.8 \times 10^3 \text{ cm}^{-3}$ at
317 00:00-06:00 LT and $2.0 \pm 0.7 \times 10^4 \text{ cm}^{-3}$ at 08:00-21:00 LT on DOY110 (Fig. 3a). The
318 AR values then exhibited an oscillating increase from DOY 111 to DOY113. Low AR
319 values of 0.12 ± 0.04 were suddenly observed at 10:00-18:00 LT on DOY114 in the
320 presence of strong new particle signals transported from the upwind continental
321 atmosphere, as discussed later. AR values, however, reached 0.34 ± 0.04 at 06:00-08:00
322 LT and 0.39 ± 0.08 at 19:00-24:00 LT on DOY114 with the new particle signals largely
323 reduced. Even excluding the AR values on DOY 114, a significant difference was still
324 obtained between AR values of 0.61 ± 0.12 during the high NH_4^+ period and those of
325 0.55 ± 0.17 during the low NH_4^+ period. Enhanced formation of ammonium salts
326 seemingly increased CCN activity to some extent. At SS=1.0%, AR values showed
327 large fluctuation with the median value of 0.57 ± 0.17 (Fig. 3c) and the temporal trend
328 was similar to that at SS=0.4%.

329

330 To minimize the impact from particle sizes, *Kappa* values were further investigated. As
331 was reported by Phillips et al. (2018), *Kappa* values in a high time resolution usually
332 exhibited a broad distribution, reflecting the complexity due to various of factors. To
333 reveal the key factors in determining *Kappa* values in a large spatiotemporal scale, the
334 daily *Kappa* values of atmospheric aerosols were estimated, on basis of the daily mean
335 N_{ccn} and the size distributions of particle number concentration from DOY 110-118 (Fig.
336 3c). Please note that for DOY 110, considering large differences of particle number
337 concentration between 00:00-06:00 and 08:00-21:00 (Fig. S2), *Kappa* values were
338 calculated separately for these two periods. At SS=0.4% (green dashed line in Fig. 3c),
339 the estimated *Kappa* values were as high as 0.66 at 00:00-06:00 LT while it decreased
340 to 0.37 at 08:00-21:00 LT on DOY110. The *Kappa* value varied narrowly from 0.46 to
341 0.55 on DOY 111-113, 115 and 117, implying that inorganic aerosols such as
342 completely and incompletely neutralized ammonium salts may yield a large
343 contribution to the N_{ccn} . These values were generally consistent with reported
344 observations in most of marine atmospheres. For example, Cai et al. (2017) reported
345 the *Kappa* value around 0.5 for particles with sizes of 40-200 nm at a marine site in
346 Okinawa and sulfate to be the dominant component of aerosol particles on 1-9
347 November 2015, and a similar *Kappa* value in spring 2008 over this site was reported
348 by Mochida et al. (2010). Royalty et al. (2017) reported *Kappa* values for 48, 96, and
349 144 nm dry particles to be 0.57 ± 0.12 , 0.51 ± 0.09 , and 0.52 ± 0.08 in the subtropical
350 North Pacific Ocean and sulfate-like particles contributing at most 77–88% to the total
351 aerosol number concentration. *Kappa* values over the Atlantic Ocean were observed
352 around 0.54 ± 0.03 for 284 nm particles (Phillips et al., 2018).

353
354 The estimated *Kappa* values sometimes reached 0.66-0.67 (i.e., on DOY 116), which
355 may be related to unidentified factors. For example, O'Dowd et al. (2014) proposed that
356 some organics derived from sea-spray aerosols may also increase the N_{ccn} , to some
357 extent, by reducing surface intension, leading to increase of *Kappa* values. A small
358 fraction of sea-salt aerosols in submicron particles may also increase *Kappa* values
359 since its *Kappa* value was as high as 1.3 (O'Dowd et al., 1997; O'Dowd et al., 2004).

360 The *Kappa* value of 0.29 was obtained on DOY118, close to *Kappa* values widely
361 observed for continental atmospheric aerosols (~0.3) (Andreae and Rosenfeld, 2008;
362 Poschl et al., 2009; Rose et al., 2010). The estimated *Kappa* value largely decreased to
363 0.15 on DOY114 when new particle formation (NPF) occurred, with detailed discussion
364 in section 3.5. Moreover, at SS of 1.0%, the estimated *Kappa* value was always smaller
365 than 0.2. The *Kappa* value of organics was commonly assumed as 0.1 (Rose et al., 2011;
366 Cai et al., 2017; Singla et al., 2017). In general, the fraction of organics in nanometer
367 particles increases with decreasing particle sizes (Rose et al., 2010; Rose et al., 2011;
368 Crippa et al., 2014; Cai et al., 2017). A combination of the two factors likely led to
369 overall *Kappa* values estimated at SS=1.0% to be much lower. However, the direct
370 measurements of chemical composition of nanometer particles needed to confirm the
371 arguments.

372

373 *3.4 Particle number size distributions and CCN activation associated with marine*
374 *traffic emissions and aerosol aging*

375 The particle number size distributions during DOY 110-118, shown in Fig. 4, can be in
376 general classified into two categories. Category 1 occurred on DOY110-114, when
377 particle number concentrations were mainly distributed at the Aitken mode, whereas
378 the accumulation mode was generally undetectable. Category 2 occurred on DOY115-
379 118, when the accumulation mode can be clearly identified and generally dominated
380 over the Aitken mode. Hoppel (1986) proposed cloud-modified aerosols to be mainly
381 distributed at 80-150 nm in the remote tropical Atlantic and Pacific oceans. Cloud-
382 modified aerosols are quite common in remote marine atmosphere, likely leading to the
383 dominate accumulation mode particles to be observed on DOY115-118. Occasionally,
384 the Aitken mode dominated over the accumulation mode on some day such as DOY
385 118. To further dive into the sources of different modes of particles, three-day of
386 DOY112, DOY 116 and DOY118 were selected.

387

388 On DOY 112, the Aitken mode particles accounted for approximately 60% of the total

389 particle number concentration (Fig. 5a), with median Aitken mode diameters around
390 54 ± 8 nm. Like the observations over the Yangtze River estuary, the mean value of N_{cn}
391 increased by approximately 50% concurrently with a decrease in the median Aitken
392 mode diameters by ~ 9 nm at 05:30 – 11:40 LT against those at the early morning before
393 05:30 LT (Fig. 5b). Concomitantly, the AR values decreased to 0.31 ± 0.09 at SS of
394 0.4%, with similar AR decrease at SS of 1.0%, and the lowest AR and *Kappa* values
395 occurring at 06:00-07:00 LT at SS of both 0.4% and 1.0%. All these results pointed
396 towards the increase in Aitken mode particles at 05:30 – 11:40 LT to be likely derived
397 from enhanced marine traffic contributions carried by the onshore wind from the south
398 (Fig. S11). During other time on DOY112, the onshore wind may also carry the marine-
399 traffic derived particles to the observational sea zones. However, the marine-traffic
400 derived particles likely aged to some extent, e.g., the median Aitken mode diameters
401 exhibited an oscillating increase from approximately 50 nm at 19:00 to approximately
402 70 nm at 24:00 LT with the particle growth rate of ~ 4 nm hour $^{-1}$. The AR values,
403 however, narrowly varied around 0.47 ± 0.03 at SS=0.4% and 0.52 ± 0.05 at SS=1.0%
404 during the particle growth period. The *Kappa* values at SS=0.4% gradually decreased
405 from 0.56 at 19:00 to 0.41 at 23:00 LT, reflecting more aged marine-traffic derived
406 particles growing into CCN size.

407

408 On DOY 116, the accumulation mode particles instead of Aitken mode particles
409 dominantly contributed to N_{cn} (Fig. 5d), under the marine air influence from the
410 northeast (Fig. S13). The median accumulation mode diameters narrowly varied around
411 135 ± 5 nm at 01:00-13:00 LT and 102 ± 5 nm at 16:20-24:00 LT with the transition period
412 in between (Fig. 5e). The AR and *Kappa* values, however, showed no statistically
413 significant difference during the two periods at SS of 0.4% and 1.0%, implying that the
414 size change in accumulation mode particles showed a negligible influence on the CCN
415 activation. Hourly variations in AR and *Kappa* values may be associated with other
416 factors, e.g., chemical composition, mixing state, etc. (Gunthe et al., 2011; Rose et al.,
417 2011).

418

419 On DOY 118, under the influence of mixture from the marine and coastal areas from
420 the northeast (Fig. S14), the accumulation mode particles generally dominated the
421 contribution to N_{cn} while the reverse was true in some occasions (Fig. 5g,h). The median
422 accumulation mode diameters exhibited an oscillating increase from approximately 100
423 nm to 130 nm at 00:00-08:00 LT, narrowly varied around 133 ± 5 nm at 08:00-13:00 LT,
424 and then exhibited an oscillating decrease down to approximately 100 nm at 20:00 LT.
425 The AR values and *Kappa* values at SS=0.4%, however, exhibited an inverted bell-
426 shape with the lowest values at 0.31 and 0.11 at 13:00. The decreases in AR values and
427 *Kappa* may be related to organic condensed on accumulation mode particles since the
428 median accumulation mode diameters were almost largest at 13:00. The number
429 concentration of Aitken mode particles evidently enhanced at 14:00-15:00, but the
430 influence on AR values and *Kappa* values at SS=0.4% was undetectable (Fig. 5i).

431

432 3.5 The long-range transport of grown new particles on DOY 114

433 No hour-long sharp increase in number concentration of nucleation mode particles (<
434 20 nm) was observed during the period from DOY 110 to DOY 118, except on DOY114
435 (Fig. 4). According to the conventional definition of NPF events (Kulmala et al., 2004;
436 Dal Maso et al., 2005), the occurrence frequency of NPF events was low in this study.
437 Unlike continental atmospheres where a high occurrence frequency of NPF events has
438 been observed globally in spring (Kulmala et al., 2004; Kerminen et al., 2018), a low
439 occurrence frequency reportedly occurred over the seas during the “Meiyu (plum-rain)
440 season” in spring because of frequent rainy, foggy or cloudy weather conditions (Zhu
441 et al., 2019). Lack of NPF events in the marine atmospheres implied N_{cn} and N_{ccn} to be
442 mainly contributed by primarily emitted aerosols and their aged products.

443 During the period of 10:00-18:00 LT on DOY 114, a large increase in number
444 concentrations of Aitken mode particles (Fig. 6a) likely reflected the long-range
445 transport of grown new particles from upwind continental atmospheres (Fig. S12). The
446 size distributions of particle number concentration showed a dominant Aitken mode at
447 10:00-18:00 LT, when spatiotemporal variations in N_{cn} and median Aitken mode

448 diameters exhibited bell-shape patterns (Fig. 6b). The median Aitken mode diameters
449 increased from 26 nm at 10:00 LT to 33 nm at 12:00-13:00 LT and then decreased to 20
450 nm prior to the signal disappearance likely reflecting the growth and shrinkage of the
451 Aitken mode particles (Yao et al., 2010; Zhu et al., 2019). The median Aitken mode
452 diameters were evidently smaller than the values, i.e., 40-50 nm for Aitken mode
453 particles, observed over the Yangtze River estuary on DOY 112 (Fig. 5a). Moreover,
454 the number concentrations of 20-40 nm particles increased by 5.8 times at 12:00-13:00
455 LT compared to the mean value at 06:00-09:00 LT while the total number
456 concentrations of particles greater than 90 nm increased by only 67%. These results
457 implied the largely increased number concentrations of Aitken mode particles with a
458 dynamic change in mode diameter observed at 10:00-18:00 LT unlikely to be caused
459 by primarily emitted and aged particles from marine traffic emissions or other
460 combustion sources. The observations of gaseous and particulate species, during the
461 same period, implied air masses to be well-aged and less polluted. For instance, the
462 measured hourly average mixing ratios of SO₂ was no larger than 1.2 ppb (Fig. 6c) and
463 the hourly average concentrations of NH₄⁺ in PM_{2.5} were smaller than 2 $\mu\text{g m}^{-3}$ (Fig.
464 3b). In addition, the concentrations of K⁺ were below 0.3 $\mu\text{g m}^{-3}$, suggesting negligible
465 contributions from biomass burning (Fig. 6e).

466

467 Before 09:00 LT, a much weaker spike of nucleation mode particles was intermittently
468 observed (Fig. 6a). The weak and intermittent NPF seems to occur in the marine
469 atmospheres before 09:00 LT when no apparent growth of new particles was observed.
470 Possibly due to the transport from the continent (Fig. S12) and an increase in the
471 condensational sink around 10:00 am (Fig. 6a), the weak NPF signal gradually dropped
472 to a negligible level half an hour later, concomitant with a large increase in the number
473 concentrations of Aitken mode particles at 10:00-18:00 LT.

474

475 N_{ccn} at SS=0.4% increased from $1.2 \times 10^3 \text{ cm}^{-3}$ at 06:00-09:00 LT to the peak value of
476 $2.3 \times 10^3 \text{ cm}^{-3}$ at 12:00 LT, with increase of 92%, and N_{ccn} at SS=1.0% increased from

477 $1.6 \times 10^3 \text{ cm}^{-3}$ to $4.0 \times 10^3 \text{ cm}^{-3}$, with increase of 150% (Fig. 6d). The net increase in
478 N_{ccn} at SS=0.4% likely reflected the contribution from pre-existing particles since new
479 particles with the diameter less than 50 nm were unlikely activated as CCN at such low
480 SS (Li et al., 2015; Wu et al., 2016; Ma et al., 2016). The larger net increase in N_{ccn} at
481 SS=1.0% may reflect the contributions mixed from pre-existing particles and grown
482 new particles. The high SS can activate particles as CCN with diameters down to 40
483 nm (Dusek et al., 2006; Li et al., 2015). The invasion of grown new particles also led
484 to the AR values largely decreased from 0.3 to 0.1 at SS=0.4%, and from 0.4 to 0.2 at
485 SS=1.0% (Fig. 6e). After 18:00 LT, the AR values retuned to 0.3-0.4 at SS=0.4% and
486 0.4-0.6 at SS=1.0%. When the calculated *Kappa* values were examined (Fig. 6c), they
487 decreased from 0.4 to 0.1-0.2 at SS=0.4%. The value returned to 0.3 at 18:00-19:00 LT
488 (FMPS was temporarily malfunctioned after 19:20 LT). The *Kappa* values were below
489 0.2 at SS=1.0% on that day. The decreases in AR values and *Kappa* values at two SS
490 were likely caused by organic vapor condensed on preexisting particles and new
491 particles (Wu et al., 2016; Zhu et al., 2019).

492

493 *3.6 Correlations of N_{cn} and N_{ccn} with SO_2 in self-ship plumes and ambient air*

494 When self-ship emission signals were detected, the observational values included a
495 combination of contributions from self-ship emissions and ambient concentrations.
496 Although ambient N_{cn} was negligible in comparison with N_{cn} derived from self-ship
497 emissions, it was not the case for N_{ccn} and SO_2 . Based on the minutely data, the signal
498 was considered as vessel-self emission when both N_{cn} greater than $50,000 \text{ cm}^{-3}$ and SO_2
499 greater than 5 ppb. The composited data was then used to derive the hourly average N_{cn} ,
500 N_{ccn} and SO_2 , which was then subtracted by the ambient hourly mean value during the
501 preceding hour with relatively clean conditions (i.e., concentration of N_{cn} lower than
502 $10,000 \text{ cm}^{-3}$, SO_2 lower than 2.5 ppb). Please note uncertainties exist in terms of the
503 criteria and separation between self-ship and ambient signals, however, minimal impact
504 is expected in the relationship examined below.

505

506 Fig. 7a showed correlations of N_{cn} and N_{ccn} with mixing ratio of SO_2 in self-ship plumes,
507 prefixed by Δ for N_{cn} , N_{ccn} and SO_2 to implicate the removal of ambient signals. A good
508 correlation of 0.66 for R^2 ($P<0.01$) was obtained and the slope indicates that N_{cn}
509 increase by $1.4 \times 10^4 \text{ cm}^{-3}$ for each ppb increase of SO_2 resulted from ship emission
510 (Fig. 7a). High emissions of N_{cn} were generally reported in engine exhausts with high
511 sulfur-content diesel to be used (Yao et al., 2005; Yao et al., 2007). In regard of N_{ccn} at
512 SS of 0.2% to 1.0% (Fig. 7b), it increases from 30 cm^{-3} to 170 cm^{-3} per 1 ppb increase
513 of SO_2 , showing statistical significant correlation at 99th confidence level. The
514 contribution ratio of SO_2 to N_{ccn} is 0.002 (SS of 0.2%), 0.004 (SS of 0.4%) and 0.012
515 (SS of 1.0%) to that of N_{cn} , in general consistent with the previous study by Ramana
516 and Devi (2016), in which a range of 0.0012–0.57 was observed for CCN at 0.4% in
517 Bay of Bengal during Aug 13–16, 2012.

518

519 The correlations of hourly averaged N_{cn} and N_{ccn} with SO_2 in ambient air were examined
520 and showed in Fig. 7c,d. The data was segmented into pieces based on SO_2 with interval
521 of 0.2 ppb. A good correlation between the averaged N_{cn} and SO_2 were obtained with
522 R^2 of 0.80 ($P<0.01$) and 1 ppb increase in SO_2 likely increased N_{cn} by $1.6 \times 10^3 \text{ cm}^{-3}$
523 (Fig. 7c). The increase in N_{cn} with SO_2 may reflect the contribution from primary
524 emissions. An intercept was, however, as large as $3.9 \times 10^3 \text{ cm}^{-3}$, likely representing the
525 contribution from well-aged aerosols.

526

527 Hourly averaged N_{ccn} at different SS generally increased with increase of ambient SO_2
528 (Fig. 7d). A good correlation between the averaged N_{ccn} and SO_2 were obtained with
529 $R^2=0.78-0.91$ ($P<0.01$). 1 ppb increase in SO_2 likely increased N_{ccn} by 0.6×10^3 to 0.8
530 $\times 10^3 \text{ cm}^{-3}$ at SS from 0.2% to 1.0%. The increase in N_{ccn} with SO_2 may also reflect the
531 contribution from primary emissions. The intercepts of 2.2×10^3 – $2.7 \times 10^3 \text{ cm}^{-3}$ at
532 different SS were likely contributed by well-aged aerosols. The relationship may be
533 used as an estimation of N_{ccn} in marine atmospheres over China marginal seas, when
534 no measurements of CCN were available whereas ambient SO_2 can be estimated from
535 web-based satellite data.

536 **4. Conclusions**

537 Spatiotemporal variations in ambient N_{cn} and N_{ccn} were studied during a cruise
538 campaign on DOY 110-135 over China marginal seas. The mean values of N_{cn} (8.1×10^3
539 cm^{-3}) and N_{ccn} ($3.2 - 3.9 \times 10^3 cm^{-3}$) at SS of 0.2%-1.0% were approximately one order
540 of magnitude larger than those in remote clear marine atmospheres, indicating
541 overwhelming contributions from non-sea-spray aerosols such as marine traffic
542 emissions, the long-range continental transport and others.

543

544 Observed self-ship emission signals showed fresh marine traffic emissions can be
545 important sources of N_{cn} , but a minor source of N_{ccn} in the marine atmosphere. The
546 signals showed that 1 ppb increase in SO_2 corresponds to $1.4 \times 10^4 cm^{-3}$ increase in N_{cn}
547 and $30 - 170 cm^{-3}$ increase in N_{ccn} at SS=0.2-1.0%. Data analysis showed that marine
548 traffic emissions largely increased N_{cn} over their heavily travelled sea zones in daytime.

549

550 In ambient marine air, the growth of marine traffic derived particles led to a decrease
551 in estimated bulk *kappa* values at 0.4% possibly because some of these particles
552 enriched in organics grew into CCN size. However, strong formation of ammonium
553 salts led to aerosol aging, and significantly increased N_{ccn} at SS of 0.2-1.0% in
554 comparison with those observed during the period poor in ammonium salt aerosols in
555 $PM_{2.5}$ with $P < 0.01$. The estimated bulk *Kappa* values from the daily average values
556 varied from 0.46 to 0.55 at SS=0.4% in most of marine atmospheres, indicating
557 inorganic ammonium aerosols may dominantly contribute to the N_{ccn} at SS of 0.4%.
558 The particle number size distributions showed the high bulk *Kappa* values could be
559 related to cloud-modified aerosols, which likely led to a large extent of degradation of
560 organics and subsequently lost from the particle phase.

561

562 Humid marine ambient air led to NPF events rarely occurring therein. The dominant
563 onshore winds occurred most of the measurement periods, and should carry primary
564 aerosols and their aged products rather than secondarily formed aerosols to the

565 observational zone. During an occasion when offshore winds blew from the northwest
566 (Fig. S12), new particle signals transported from the continent can be clearly observed.
567 However, NPF in the marine atmosphere was too weak to be important. The transported
568 new particles from the continent yielded the maximal increase in N_{ccn} by 92% at SS of
569 0.4% and 150% at SS of 1.0%. However, consistent with those reported in literature,
570 the estimated *kappa* values largely decreased from 0.4 to 0.1-0.2 at SS=0.4% during
571 most time of the continent-transported NPF event because of the *kappa* value of organic
572 condensation vapor as low as 0.1.

573

574 **Competing interests.** The authors declare that they have no conflict of interest.

575 **Author contributions.** YG and XY designed the research, YG, DZ and XY performed
576 the analysis, JW and HG helped on the interpretation of the results, and all co-authors
577 contributed to the writing of the paper.

578 **Acknowledgment**

579 This research is supported by the National Key Research and Development Program in
580 China (grant no. 2016YFC0200504) and the Natural Science Foundation of China
581 (grant no. 41576118).

582

583 **References**

584 Andreae, M. O., and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The
585 nature and sources of cloud-active aerosols, *Earth-Sci. Rev.*, 89, 13-41,
586 10.1016/j.earscirev.2008.03.001, 2008.

587 Blot, R., Clarke, A. D., Freitag, S., Kapustin, V., Howell, S. G., Jensen, J. B., Shank, L.
588 M., McNaughton, C. S., and Brekhovskikh, V.: Ultrafine sea spray aerosol over the
589 southeastern Pacific: open-ocean contributions to marine boundary layer CCN,
590 *Atmos. Chem. Phys.*, 13, 7263-7278, 10.5194/acp-13-7263-2013, 2013.

591 Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos,
592 N.: Cloud condensation nuclei measurements in the eastern Mediterranean marine
593 boundary layer: CCN closure and droplet growth kinetics, *Atmos. Chem.*

594 Phys.Discuss., 9, 10303-10336, 10.5194/acpd-9-10303-2009, 2009.

595 Brooks, S. D., and Thornton, D. C. O.: Marine Aerosols and Clouds, Annu. Rev. Mar.
596 Sci., 10, 289-313, 10.1146/annurev-marine-121916-063148, 2018.

597 Cai, M. F., Tan, H. B., Chan, C. K., Mochida, M., Hatakeyama, S., Kondo, Y., Schurman,
598 M. I., Xu, H. B., Li, F., Shimada, K., Li, L., Deng, Y. G., Yai, H., Matsuki, A., Qin,
599 Y. M., and Zhao, J.: Comparison of Aerosol Hygroscopicity, Volatility, and Chemical
600 Composition between a Suburban Site in the Pearl River Delta Region and a Marine
601 Site in Okinawa, Aerosol. Air. Qual. Res., 17, 3194-3208,
602 10.4209/aaqr.2017.01.0020, 2017.

603 Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
604 phytoplankton atmospheric sulphur cloud albedo and climate, Nature, 326, 655-661,
605 1987.

606 Chen, D. S., Wang, X. T., Li, Y., Lang, J. L., Zhou, Y., Guo, X. R., and Zhao, Y. H.: High-
607 spatiotemporal-resolution ship emission inventory of China based on AIS data in
608 2014, Sci. Total Environ., 609, 776-787, 10.1016/j.scitotenv.2017.07.051, 2017.

609 Cheung, H. C., Chou, C. C.-K., Lee, C. S. L., Kuo, W.-C., and Chang, S.-C.:
610 Hygroscopic properties and cloud condensation nuclei activity of atmospheric
611 aerosols under the influences of Asian continental outflow and new particle
612 formation at a coastal site in eastern Asia, Atmos. Chem. Phys., 20, 5911–5922,
613 <https://doi.org/10.5194/acp-20-5911-2020>, 2020.

614 Clarke, A. D., Owens, S. R., and Zhou, J. C.: An ultrafine sea-salt flux from breaking
615 waves: Implications for cloud condensation nuclei in the remote marine atmosphere,
616 J. Geophys. Res.-Atmos., 111, Artn D06202, 10.1029/2005jd006565, 2006.

617 Crippa, M., Canonaco, F., Lanz, V. A., Aijala, M., Allan, J. D., Carbone, S., Capes, G.,
618 Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney,
619 E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr,
620 A., Kortelainen, A. M., Kulmala, M., Laaksonen, A., Mensah, A., Mohr, C., Nemitz,
621 E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petaja, T., Poulain, L., Saarikoski, S.,
622 Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prevot,
623 A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe

624 using a consistent ME-2 based source apportionment approach, *Atmos. Chem. Phys.*,
625 14, 6159-6176, 10.5194/acp-14-6159-2014, 2014.

626 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and
627 Lehtinen, K. E. J.: Formation and growth of fresh atmospheric aerosols: eight years
628 of aerosol size distribution data from SMEAR II, Hyytiala, Finland, *Boreal Environ.*
629 *Res.*, 10, 323-336, 2005.

630 Dal Maso, M., Gao, J., Jarvinen, A., Li, H., Luo, D. T., Janka, K., and Ronkko, T.:
631 Improving Urban Air Quality Measurements by a Diffusion Charger Based Electrical
632 Particle Sensors - A Field Study in Beijing, China, *Aerosol. Air. Qual. Res.*, 16, 3001-
633 3011, 10.4209/aaqr.2015.09.0546, 2016.

634 Decesari, S., Finessi, E., Rinaldi, M., Paglione, M., Fuzzi, S., Stephanou, E. G., Tziaras,
635 T., Spyros, A., Ceburnis, D., O'Dowd, C., Dall'Osto, M., Harrison, R. M., Allan, J.,
636 Coe, H., and Facchini, M. C.: Primary and secondary marine organic aerosols over
637 the North Atlantic Ocean during the MAP experiment, *J. Geophys. Res.-Atmos.*, 116,
638 Artn D22210, 10.1029/2011jd016204, 2011.

639 Ding, X., Qi, J. H., and Meng, X. B.: Characteristics and sources of organic carbon in
640 coastal and marine atmospheric particulates over East China, *Atmos. Res.*, 228, 281-
641 291, 10.1016/j.atmosres.2019.06.015, 2019.

642 Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D.,
643 Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters
644 more than chemistry for cloud-nucleating ability of aerosol particles, *Science*, 312,
645 1375-1378, 10.1126/science.1125261, 2006.

646 Feng, J. L., Guo, Z. G., Zhang, T. R., Yao, X. H., Chan, C. K., and Fang, M.: Source and
647 formation of secondary particulate matter in PM2.5 in Asian continental outflow, *J.*
648 *Geophys. Res.-Atmos.*, 117, Artn D03302, 10.1029/2011jd016400, 2012.

649 Feng, L., Shen, H., Zhu, Y., Gao, H., and Yao, X.: Insight into Generation and Evolution
650 of Sea-Salt Aerosols from Field Measurements in Diversified Marine and Coastal
651 Atmospheres, *Sci. Rep.*, 7, 41260, 10.1038/srep41260, 2017.

652 Feng, T., Li, G. H., Cao, J. J., Bei, N. F., Shen, Z. X., Zhou, W. J., Liu, S. X., Zhang, T.,
653 Wang, Y. C., Huang, R. J., Tie, X. X., and Molina, L. T.: Simulations of organic

654 aerosol concentrations during springtime in the Guanzhong Basin, China, *Atmos.*
655 *Chem. Phys.*, 16, 10045-10061, 10.5194/acp-16-10045-2016, 2016.

656 Fossum, K. N., Ovadnevaite, J., Ceburnis, D., Dall'Osto, M., Marullo, S., Bellacicco, M.,
657 Simo, R., Liu, D. T., Flynn, M., Zuend, A., and O'Dowd, C.: Summertime Primary
658 and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei, *Sci.*
659 *Rep.*, 8, Artn 13844, 10.1038/S41598-018-32047-4, 2018.

660 Fu, X. G., Wang, M., Zeng, S. Q., Feng, X. L., Wang, D., and Song, C. Y.: Continental
661 weathering and palaeoclimatic changes through the onset of the Early Toarcian
662 oceanic anoxic event in the Qiangtang Basin, eastern Tethys, *Palaeogeogr. Palaeocl.*,
663 487, 241-250, 10.1016/j.palaeo.2017.09.005, 2017.

664 Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler,
665 A., Kuwata, M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M.
666 O., and Pöschl, U.: Cloud condensation nuclei (CCN) from fresh and aged air
667 pollution in the megacity region of Beijing, *Atmos. Chem. Phys.*, 11, 11023-11039,
668 10.5194/acp-11-11023-2011, 2011.

669 Guo, L., Chen, Y., Wang, F., Meng, X., Xu, Z., and Zhuang, G.: Effects of Asian dust on
670 the atmospheric input of trace elements to the East China Sea, *Mar. Chem.*, 163, 19-
671 27, 10.1016/j.marchem.2014.04.003, 2014.

672 Guo, T., Li, K., Zhu, Y., Gao, H., and Yao, X.: Concentration and size distribution of
673 particulate oxalate in marine and coastal atmospheres – Implication for the increased
674 importance of oxalate in nanometer atmospheric particles, *Atmos. Environ.*, 142, 19-
675 31, 10.1016/j.atmosenv.2016.07.026, 2016.

676 Hoppel W. A., F. G. M., and Larson R. E.: Effect of non-precipitating clouds on the
677 aerosol size distribution, *Geophys. Res. Lett.*, 13, 125-128, 1986.

678 Huebert, B. J., Bates, T., Russell, P. B., Shi, G. Y., Kim, Y. J., Kawamura, K., Carmichael,
679 G., and Nakajima, T.: An overview of ACE-Asia: Strategies for quantifying the
680 relationships between Asian aerosols and their climatic impacts, *J. Geophys. Res.-*
681 *Atmos.*, 108, Artn 8633, 10.1029/2003jd003550, 2003.

682 Hung, H. M., Lu, W. J., Chen, W. N., Chang, C. C., Chou, C. C. K., and Lin, P. H.:
683 Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern

684 Taiwan by anthropogenic emissions, *Atmos. Environ.*, 84, 78-87,
685 10.1016/j.atmosenv.2013.11.032, 2014.

686 Kerminen, V. M., Chen, X. M., Vakkari, V., Petaja, T., Kulmala, M., and Bianchi, F.:
687 Atmospheric new particle formation and growth: review of field observations, *Environ.*
688 *Res. Lett.*, 13, Artn 103003, 10.1088/1748-9326/Aadf3c, 2018.

689 Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V. M.,
690 Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine
691 atmospheric particles: a review of observations, *J. Aer. Sci.*, 35, 143-176,
692 10.1016/j.jaerosci.2003.10.003, 2004.

693 Langley, L., Leaitch, W. R., Lohmann, U., Shantz, N. C., and Worsnop, D. R.:
694 Contributions from DMS and ship emissions to CCN observed over the summertime
695 North Pacific, *Atmos. Chem. Phys.*, 10, 1287-1314, DOI 10.5194/acp-10-1287-2010,
696 2010.

697 Leng, C., Cheng, T., Chen, J., Zhang, R., Tao, J., Huang, G., Zha, S., Zhang, M., Fang,
698 W., Li, X., and Li, L.: Measurements of surface cloud condensation nuclei and
699 aerosol activity in downtown Shanghai, *Atmos. Environ.*, 69, 354-361,
700 10.1016/j.atmosenv.2012.12.021, 2013.

701 Li, K., Zhu, Y., Gao, H., and Yao, X.: A comparative study of cloud condensation nuclei
702 measured between non-heating and heating periods at a suburb site of Qingdao in the
703 North China, *Atmos. Environ.*, 112, 40-53, 10.1016/j.atmosenv.2015.04.024, 2015.

704 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man,
705 H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review,
706 *Natl. Sci. Rev.*, 4, 834-866, 10.1093/nsr/nwx150, 2017.

707 Lin, Y. C., Chen, J. P., Ho, T. Y., and Tsai, I. C.: Atmospheric iron deposition in the
708 northwestern Pacific Ocean and its adjacent marginal seas: The importance of coal
709 burning, *Global. Biogeochem. Cy.*, 29, 138-159, 10.1002/2013GB004795, 2015.

710 Liu, F., Zhang, Q., A., R. J. v. d., Zheng, B., Tong, D., Yan, L., Zheng, Y., and He, K.:
711 Recent reduction in NO x emissions over China: synthesis of satellite observations
712 and emission inventories, *Environ. Res. Lett.*, 11, 114002, 2016.

713 Ma, N., Zhao, C. S., Tao, J. C., Wu, Z. J., Kecorius, S., Wang, Z. B., Gross, J., Liu, H.

714 J., Bian, Y. X., Kuang, Y., Teich, M., Spindler, G., Muller, K., van Pinxteren, D.,
715 Herrmann, H., Hu, M., and Wiedensohler, A.: Variation of CCN activity during new
716 particle formation events in the North China Plain, *Atmos. Chem. Phys.*, 16, 8593-
717 8607, 10.5194/acp-16-8593-2016, 2016.

718 Mochida, M., Nishita-Hara, C., Kitamori, Y., Aggarwal, S. G., Kawamura, K., Miura,
719 K., and Takami, A.: Size-segregated measurements of cloud condensation nucleus
720 activity and hygroscopic growth for aerosols at Cape Hedo, Japan, in spring 2008, *J.*
721 *Geophys. Res.*, 115, 10.1029/2009jd013216, 2010.

722 Nair, V. S., Nair, J. V., Kompalli, S. K., Gogoi, M. M., and Babu, S. S.: Cloud
723 Condensation Nuclei properties of South Asian outflow over the northern Indian
724 Ocean during winter, *Atmos. Chem. Phys. Discuss.*, 10.5194/acp-2019-828, 2019.

725 O'Dowd, C., Ceburnis, D., Ovadnevaite, J., Vaishya, A., Rinaldi, M., and Facchini, M.
726 C.: Do anthropogenic, continental or coastal aerosol sources impact on a marine
727 aerosol signature at Mace Head?, *Atmos. Chem. Phys.*, 14, 10687-10704,
728 10.5194/acp-14-10687-2014, 2014.

729 O'Dowd, C. D., Smith, M. H., Consterdine, I. E., and Lowe, J. A.: Marine aerosol, sea-
730 salt, and the marine sulphur cycle: A short review, *Atmos. Environ.*, 31, 73-80, Doi
731 10.1016/S1352-2310(96)00106-9, 1997.

732 O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S.,
733 Fuzzi, S., Yoon, Y. J., and Putaud, J. P.: Biogenically driven organic contribution to
734 marine aerosol, *Nature*, 431, 676-680, 10.1038/nature02959, 2004.

735 Park, M., Yum, S. S., Kim, N., Cha, J. W., Shin, B., and Ryoo, S.-B.: Characterization
736 of submicron aerosols and CCN over the Yellow Sea measured onboard the Gisang
737 1 research vessel using the positive matrix factorization analysis method, *Atmos.*
738 *Res.*, 214, 430-441, 10.1016/j.atmosres.2018.08.015, 2018.

739 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic
740 growth and cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7, 1961-1971,
741 DOI 10.5194/acp-7-1961-2007, 2007.

742 Phillips, B. N., Royalty, T. M., Dawson, K. W., Reed, R., Petters, M. D., and Meskhidze,
743 N.: Hygroscopicity- and Size-Resolved Measurements of Submicron Aerosol on the

744 East Coast of the United States, *J. Geophys. Res.-Atmos.*, 123, 1826-1839,
745 10.1002/2017JD027702, 2018.

746 Pöschl, U., Rose, D., & Andreae, M. O. (2009). Climatologies of Cloud-related Aerosols.
747 Part 2: Particle Hygroscopicity and Cloud Condensation Nucleus Activity. In J.
748 Heintzenberg, & R. J. Charlson (Eds.), *Clouds in the Perturbed Climate System:
749 Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation* (pp.
750 58-72). Cambridge: MIT Press.

751 Quinn, P. K., and Bates, T. S.: The case against climate regulation via oceanic
752 phytoplankton sulphur emissions, *Nature*, 480, 51-56, 10.1038/nature10580, 2011.

753 Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T. S.: Chemistry
754 and Related Properties of Freshly Emitted Sea Spray Aerosol, *Chem. Rev.*, 115,
755 4383-4399, 10.1021/cr500713g, 2015.

756 Ramana, M. V., and Devi, A.: CCN concentrations and BC warming influenced by
757 maritime ship emitted aerosol plumes over southern Bay of Bengal, *Sci. Rep.*, 6,
758 30416, 10.1038/srep30416, 2016.

759 Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and
760 Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud
761 condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate
762 and sodium chloride aerosol particles in theory and experiment, *Atmos. Chem. Phys.*,
763 8, 1153–1179, <https://doi.org/10.5194/acp-8-1153-2008>, 2008.

764 Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y.,
765 Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and
766 biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved
767 measurements and implications for the modeling of aerosol particle hygroscopicity
768 and CCN activity, *Atmos. Chem. Phys.*, 10, 3365-3383, DOI 10.5194/acp-10-3365-
769 2010, 2010.

770 Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F.,
771 Wehner, B., Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu,
772 M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted
773 air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-

774 resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly
775 CCN-active soot particles, *Atmos. Chem. Phys.*, 11, 2817-2836, 10.5194/acp-11-
776 2817-2011, 2011.

777 Rosenfeld, D., Zhu, Y. N., Wang, M. H., Zheng, Y. T., Goren, T., and Yu, S. C.: Aerosol-
778 driven droplet concentrations dominate coverage and water of oceanic low-level
779 clouds, *Science*, 363, 10.1126/science.aav0566, 2019.

780 Royalty, T. M., Phillips, B. N., Dawson, K. W., Reed, R., Meskhidze, N., and Petters, M.
781 D.: Aerosol Properties Observed in the Subtropical North Pacific Boundary Layer, *J.
782 Geophys. Res.-Atmos.*, 122, 9990-10012, 10.1002/2017JD026897, 2017.

783 Ruehl, C. R., Chuang, P. Y., and Nenes, A.: Distinct CCN activation kinetics above the
784 marine boundary layer along the California coast, *Geophys. Res. Lett.*, 36, L15814,
785 10.1029/2009gl038839, 2009.

786 Saliba, G., Chen, C. L., Lewis, S., Russell, L. M., Rivellini, L. H., Lee, A. K. Y., Quinn,
787 P. K., Bates, T. S., Haentjens, N., Boss, E. S., Karp-Boss, L., Baetge, N., Carlson, C.
788 A., and Behrenfeld, M. J.: Factors driving the seasonal and hourly variability of sea-
789 spray aerosol number in the North Atlantic, *Proc. Natl. Acad. Sci. U.S.A.*, 116,
790 20309-20314, 10.1073/pnas.1907574116, 2019.

791 Sato, Y., and Suzuki, K.: How do aerosols affect cloudiness? *Science*, 363, 580-581,
792 10.1126/science.aaw3720, 2019.

793 Singla, V., Mukherjee, S., Safai, P. D., Meena, G. S., Dani, K. K., and Pandithurai, G.:
794 Role of organic aerosols in CCN activation and closure over a rural background site
795 in Western Ghats, India, *Atmos. Environ.*, 158, 148-159,
796 10.1016/j.atmosenv.2017.03.037, 2017.

797 Song, J. W., Zhao, Y., Zhang, Y. Y., Fu, P. Q., Zheng, L. S., Yuan, Q., Wang, S., Huang,
798 X. F., Xu, W. H., Cao, Z. X., Gromov, S., and Lai, S. C.: Influence of biomass burning
799 on atmospheric aerosols over the western South China Sea: Insights from ions,
800 carbonaceous fractions and stable carbon isotope ratios, *Environ. Pollut.*, 242, 1800-
801 1809, 10.1016/j.envpol.2018.07.088, 2018.

802 Ueda, S., Miura, K., Kawata, R., Furutani, H., Uematsu, M., Omori, Y., and Tanimoto,
803 H.: Number-size distribution of aerosol particles and new particle formation events

804 in tropical and subtropical Pacific Oceans, *Atmos. Environ.*, 142, 324-339,
805 10.1016/j.atmosenv.2016.07.055, 2016.

806 Wang, J., Shen, Y., Li, K., Gao, Y., Gao, H., and Yao, X.: Nucleation-mode particle pool
807 and large increases in Ncn and Nccn observed over the northwestern Pacific Ocean
808 in the spring of 2014, *Atmos. Chem. Phys.*, 19, 8845-8861, 10.5194/acp-19-8845-
809 2019, 2019.

810 Wang, Z. J., Du, L. B., Li, X. X., Meng, X. Q., Chen, C., Qu, J. L., Wang, X. F., Liu, X.
811 T., and Kabanov, V. V.: Observations of marine aerosol by a shipborne
812 multiwavelength lidar over the Yellow Sea of China, *Proc. SPIE* 9262, *Lidar Remote*
813 *Sensing for Environmental Monitoring XIV*, 926218 10.1117/12.2070297, 2014.

814 Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler, A.,
815 and Hu, M.: Particle hygroscopicity and its link to chemical composition in the urban
816 atmosphere of Beijing, China, during summertime, *Atmos. Chem. Phys.*, 16, 1123-
817 1138, 10.5194/acp-16-1123-2016, 2016.

818 Yamashita, K., Murakami, M., Hashimoto, A., and Tajiri, T.: CCN Ability of Asian
819 Mineral Dust Particles and Their Effects on Cloud Droplet Formation, *J. Meteor. Soc.*
820 *Japan*, 89, 581-587, 10.2151/jmsj.2011-512, 2011.

821 Yao, X. H., Lau, N. T., Fang, M., and Chan, C. K.: Real-time observation of the
822 transformation of ultrafine atmospheric particle modes, *Aerosol. Sci. Tech.*, 39, 831-
823 841, 10.1080/02786820500295248, 2005.

824 Yao, X. H., Lau, N. T., Chan, C. K., and Fang, M.: Size distributions and condensation
825 growth of submicron particles in on-road vehicle plumes in Hong Kong, *Atmos.*
826 *Environ.*, 41, 3328-3338, 10.1016/j.atmosenv.2006.12.044, 2007.

827 Yao, X. H., Choi, M. Y., Lau, N. T., Lau, A. P. S., Chan, C. K., and Fang, M.: Growth
828 and Shrinkage of New Particles in the Atmosphere in Hong Kong, *Aerosol. Sci. Tech.*,
829 44, 639-650, Pii 924397031, 10.1080/02786826.2010.482576, 2010.

830 Yu, F., and Luo, G.: Simulation of particle size distribution with a global aerosol model:
831 contribution of nucleation to aerosol and CCN number concentrations, *Atmos. Chem.*
832 *Phys.*, 9, 7691-7710, DOI 10.5194/acp-9-7691-2009, 2009.

833 Zhu, Y. J., Li, K., Shen, Y. J., Gao, Y., Liu, X. H., Yu, Y., Gao, H. W., and Yao, X. H.:

834 New particle formation in the marine atmosphere during seven cruise campaigns,
835 Atmos. Chem. Phys., 19, 89-113, 10.5194/acp-19-89-2019, 2019.

836 Zimmerman, N., Jeong, C.-H., Wang, J. M., Ramos, M., Wallace, J. S., and Evans, G.
837 J.: A source-independent empirical correction procedure for the fast mobility and
838 engine exhaust particle sizers, Atmos. Environ., 100, 178-184,
839 10.1016/j.atmosenv.2014.10.054, 2015.

840

Fig 1 The ship track during the campaign of 2018, and the blue arrows represented the sailing direction, with southward track (a) and northward track (b).

Fig 2 Contour plot of particle number size distribution with the median mobility mode diameter shown in black hollow circles (a), time series of minutely N_{cn} and half-hourly N_{ccn} at SS=0.4% (b), half-hourly AR values at SS=0.4% (c), SO_2 and NO_x at nighttime on DOY 115.

Fig 3 Time series of minutely N_{cn} from DOY 110 to 122 (a), minutely N_{ccn} at SS of 0.4% and 1.0% during DOY 110-135 and hourly NH_4^+ during DOY 113-135 (b), and minutely AR at SS of 0.4% and 1.0% during DOY 110-122 and daily *Kappa* values at SS of 0.4% and 1.0% from DOY 110 to 118 due to data availability (c). Please note that for Fig. 3c, most *Kappa* values were based on daily scale, except on DOY 110, during which two *Kappa* values were calculated from 00:00-06:00 and 08:00-21:00, respectively.

Fig 4 Contour plot of particle number size distribution on DOY 110-118 with self-ship emission signals removed.

Fig 5 Daily average (top row) and contour plot (middle row) of particle number size distributions, and time series of hourly averaged AR at SS of 0.4% and 1.0% and *Kappa* value on DOY112, DOY116 and DOY118. The bars represent the standard deviation with mean indicated by the hollow circles.

Fig 6 Contour plot of particle number size distributions for the day of DOY 114 2018 (a), the size distributions of particle number concentration during 10:00 -18:00 LT DOY 114 2018 (b), time series of hourly averaged SO₂ and *Kappa* values at SS of 0.4% and 1.0% (c), N_{ccn} at SS of 0.4% and 1.0% (d), and AR values at SS of 0.4% and 1.0% and K⁺ (e) for the day of DOY 114 2018.

Fig 7 Correlations of hourly averaged N_{cn} and N_{ccn} with SO_2 at SS of 0.2%, 0.4% and 1.0%. For Fig. 7a,b, ΔN_{cn} , ΔN_{ccn} and ΔSO_2 reflects the impact from self-ship emission after the removal of ambient concentration. For Fig. 7c,d each bar indicates standard deviation with mean value marked as the hollow circles (or triangles, squares), and the interval of SO_2 is 0.2 ppb for each bar.

Table 1. N_{cn} and N_{ccn}, AR and SO₂ mixing ratios on DOY 110-135, 2018 over China

marginal seas. Please note that N_{cn} and AR are from 110-122, 2018.

Variables	Supersaturation (SS)	Ranges	Mean ± standard deviation
N _{cn} ($\times 10^3$ cm $^{-3}$)		2.0-45	8.1±4.4
	SS=0.2%	0.4-8.8	3.2±1.1
	SS=0.4%	0.5-9.4	3.4±1.1
N _{ccn} ($\times 10^3$ cm $^{-3}$)	SS=0.6%	0.5-8.6	3.6±1.2
	SS=0.8%	0.5-11	3.8±1.2
	SS=1.0%	0.6-12	3.9±1.4
AR	SS=0.2%	0.06-0.89	0.49±0.17
	SS=0.4%	0.06-0.92	0.51±0.17
	SS=0.6%	0.10-0.94	0.54±0.17
	SS=0.8%	0.08-0.95	0.56±0.17
	SS=1.0%	0.11-0.98	0.57±0.17
SO ₂ (ppb)		0.25-9.7	1.7±1.1