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Abstract

In this study, a cruise campaign was conducted over China marginal seas to measure
concentrations of condensation nuclei (Ncn), cloud condensation nuclei (Ncen) and other
pollutants during DOY 110 to DOY 135 of 2018. With exhaustedly excluded self-ship
emission signals, the mean values of Necen during the cruise campaign slightly increased
from 3.2 + 1.1 X10° cm™ (mean = standard) at supersaturation (SS) of 0.2% to 3.9 +
1.4X10° cm™ at SS of 1.0%, and the mean value for Nen was 8.1 + 4.4 X 10° cm™. Data
analysis showed that marine traffic emissions apparently yielded a large contribution to
the increase of Nen in daytime, especially in marine atmospheres over their heavily
travelled sea zones; however, the fresh sources had no clear contribution to the increase
of Ncen. This finding was supported by the quantitative relations between Nen and Neen
at SS=0.2-1.0% against mixing ratios of SOz in self-ship emission plumes, i.e., 1 ppb
increase in SOz corresponds to 1.4x10* cm™ increase in Nen, but only 30-170 cm™
increase in Necen possibly because of abundant organics in the aerosols. The smooth
growth of marine traffic derived particles can be observed, reflecting aerosol aging. The
estimated hygroscopicity parameter (k) values were generally as high as 0.46-0.55
under the dominant onshore winds, suggesting inorganic ammonium aerosols likely
acting as the major contributor to Necen through aerosol aging processes largely
decomposed organics. Moreover, the influences of the transported new particles from

the continent on Nen and Neen in the marine atmosphere were also investigated.

Key words: Ncn; Neen; marine traffic emissions; hygroscopicity parameter; SOz
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1. Introduction

Oceans occupy approximately 2/3 of the Earth’s surface and water evaporation from
oceans acts as the major source of moisture in the atmosphere. Aerosol-cloud
interactions in marine atmospheres, covering from tropics to polar regions, thereby
attract great attentions in the past few decades due to their impact on the climate change
(Huebert et al., 2003; Yu and Luo, 2009; Quinn and Bates, 2011; Wang et al., 2014;
Brooks and Thornton, 2018; Rosenfeld et al., 2019). However, large uncertainties still
exist in various marine atmospheres, e.g., the sources of aerosols, concentrations of
bulk cloud condensation nuclei (CCN) and aerosol CCN activation under various of
supersaturation, etc. (Clarke et al., 2006; Decesari et al., 2011; Quinn and Bates, 2011;
Saliba et al., 2019; Rosenfeld et al., 2019). The uncertainties are mainly determined by
limited observations in marine atmospheres, although a few additional observations of
number concentrations of aerosol (Nen) and CCN (Ncen) were recently reported in
different marine atmospheres, e.g., over Mediterranean (Bougiatioti et al., 2009), Sea
of Japan (Yamashita et al., 2011), Bay of Bengal (Ramana and Devi, 2016), coast of
California (Ruehl et al., 2009) and the Northwest Pacific Ocean (Wang et al., 2019),

etc.

Besides sea-spray aerosols and secondarily formed aerosols from sea-derived gaseous
precursors (O'Dowd et al., 1997; Clarke et al., 2006; Quinn and Bates, 2011; Blot et al.,
2013; Fossum et al., 2018), marine traffics also emit a large amount of aerosols and
reactive gases (Chen et al., 2017). These pollutants may also directly or indirectly
contribute to CCN therein, to some extent (Langley et al., 2010). In addition, the long-
range transport of continental aerosols widely reportedly acted as an important source
of CCN in marine atmospheres (Charlson et al., 1987; Huebert et al., 2003; Fu et al.,
2017; Royalty et al., 2017; Sato and Suzuki, 2019; Wang et al., 2019). The continent-
derived aerosol particles observed in marine atmospheres usually mix with different
sources such as biomass burning, dust and anthropogenic emissions (Feng et al., 2017;

Linetal., 2015; Guo et al., 2014; Guo et al., 2016). An appreciable fraction of organics
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reportedly exists in marine aerosols and continental aerosols upwind of oceans
(O'Dowd et al., 2004; Feng et al., 2012; Quinn et al., 2015; Feng et al., 2016; Song et
al., 2018; Ding et al., 2019). However, ammonium sulfate acrosols have been frequently
reported to dominantly contribute to CCN-related aerosols in many marine atmospheres
and lead to hygroscopicity parameter (k) larger than 0.5 (Mochida et al., 2010; Cai et
al., 2017; Fu et al., 2017; Royalty et al., 2017; Phillips et al., 2018). A question is
automatically raised, i.e., where do particulate organics go in the marine aerosols
enriched in ammonium sulfate? Anthropogenic emission such as SOz, NOx in general
increase since 1980s, until recently started to decrease, i.e., SOz start to decrease from
2006 (Li et al., 2017) whereas NOx started to decrease since 2011 (Li et al., 2017; Liu
et al., 2016). Together with the influence of the Asian Monsoon, the marginal seas of
China are, therefore, inevitably affected by the outflow of continental aerosols (Guo et
al., 2016; Feng et al., 2017). Observations of Nen and Neen in marine atmospheres over
China marginal seas helps to resolve the data scarcity, understand their sources and

dynamic changes and better service the study of their potential climate impacts.

In this study, cruise campaigns were conducted to measure the Neen, Nen, particle
number size distributions, gaseous pollutants and aerosol composition of water-soluble
ionic species over the marginal seas from 20 April 2018 (day of year (DOY) 110) to 15
May 2018 (DOY 135), traveling from the East China sea to the South China sea, and
returning to the Yellow sea. Spatiotemporal variations in Nen, Neecn and CCN activities
of aerosol particles were studied. The Kappa values of aerosol particles from DOY 110
to DOY 118 over the marine were calculated and analyzed. Finally, we tried to establish
the correlations of Nen and Neen With mixing ratios of SOz in self-ship plumes and
ambient marine air. The correlation equations are valuable for the estimation of Nen and

Neen from SO2 when the direct observations of Nen and Neen are not available.

2. Experimental design

2.1 Instruments and data sources
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A cruise campaign was conducted across China marginal seas from DOY 110 to DOY
135 0f 2018 (Fig. 1a,b). A suite of instruments including a Fast Mobility Particle Sizer
(FMPS, TSI Model 3091), CCN counter (CCNC, DMT Model 100), Condensation
Particle Counter (CPC, TSI Model 3775), gas analyzers, Ambient lon Monitor-lon
chromatography (AIM-IC) etc., were onboard a commercial cargo ship Angiang 87 for
measurements. The FMPS was used to measure particle number size distributions with
mobility diameters from 5.6 nm to 560 nm in 32 channels at 1-second temporal
resolution with an inlet flow of 10 L min"!. The CPC was used to report the Nen ranging
from 4 nm (50% efficiency) to 3000 nm (Nen) in 2-second time resolution with an inlet
flow of 1.5 L min™!. The Nen was then used to calibrate the particle number size
distributions simultaneously measured by the FMPS, on basis of the procedure
proposed by Zimmerman et al. (2015). Due to the severe oceanic condition and humid
weather conditions, the FMPS and CPC were out of service after DOY 118 and DOY
122, respectively. Prior to the campaign, the CCNC was calibrated with ammonium
sulfate particles based on the standard procedure detailed at Rose et al. (2008). The
calibration curve was shown in Fig. S1. The total flow rate of CCNC was 0.45 L min™,
with a ratio of sample to sheath at 1/10, and five super saturations (SS) conditions were
selected including 0.2 %, 0.4 %, 0.6 %, 0.8 %, and 1.0 %. More detailed information

about the measurement of Nccn can be found in Wang et al. (2019).

During the experiment, ambient particles were first sampled through a conductive tube
(TSI, US) and a diffusion dryer filled with silica gel (TSI, US), and then splitted into
different instruments with a splitter. All instruments were placed in an air-conditioned
container on the deck of ship, with inlet height of approximately 6 m above the sea
level. Regarding the gas analyzers, the ambient O3 (Model 491, Thermo Environmental
Instrument Inc., USA C-series), SO2 (Model 43i, Thermo Environmental Instrument
Inc., USA C-series), and NOx (Model 421, Thermo Environmental Instrument Inc., USA
C-series) were measured in mixing ratios with temporal resolution of one-minute. The
CCNC and gas analyzers were operated properly throughout the entire campaign. The

same was true for AIM-IC, which was used to measure water-soluble ionic species in
5
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ambient particles less than 2.5 um.

In this study, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
model from the NOAA Air Resources Laboratory was used to track the particle sources.
The input of HY SPLIT such as wind speed and wind direction was from the National
Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS)

with spatial resolution of 0.5 degree.

The hygroscopicity parameter (k) was calculated according to the method proposed by

Petters and Kreidenweis (2007).

_ 4A3 __405/a My
“ 2703 In2S¢ °© RTpy

where Dy is the dry diameter, Sc is the super saturation, M,, is the molecular weight

2

of water, o/, a constant of 0.072 J m™~, represents the surface tension over the

interface of the solution and air, R is the universal gas constant, T is the ambient
temperature and p,, is the water density. The Dd was not measured directly and
assumed to be equal to the critical diameter for CCN activation (Derit). Derit was defined
as the particle diameter down to which by integrating from the largest diameter with
the number concentration equals to CCN concentration (Hung et al., 2014; Cheung et
al., 2020). The FMPS has a low size resolution, particularly at the size greater than 90
nm, which doesn’t allow accurately calculating Kappa values at SS=0.2%. At SS=0.6%
and 0.8%, the Kappa value was not calculated considering the complication in the
explanation of the value, possibly reflecting the combined effects of particle size,

mixing state and chemical composition.

2.2 Separating ambient signals of Nen and Neen from self-ship emission

The data measured during the cruise campaign were frequently interfered by self-ship
emission signals. The Nen and Neen over the marginal seas were first distinguished based
on the source of ambient environment or self-ship emission. The data measured at

18:00-24:00 on DOY 115 were used to illustrate the separation (Fig. 2), with the size
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distribution of particle number concentration during DOY 110-118 shown in Fig. S2-
S10 in the supporting information. At 18:00-21:11 LT (Local Time), the low Nen of
5.840.4 X 10° cm™ were observed. The accumulation mode dominated in particle
number concentration with the median mobility mode diameter at 105+4 nm (Fig. 2a).
Afterwards, the Nen rapidly increased by over one order of magnitude (Fig. 2b). The
dominant particle number concentration mode changed from accumulation mode to
Aitken mode, with the median mobility diameter of Aitken mode stabilized at 47+4 nm
in approximately 90% of the time. The rapid increase in Nen and the change in mode
size indicated the signal of ship emission itself. The self-ship emission interference after
21:11 was also supported by additional evidences, e.g., a large decrease in activation
ratio (AR), defined as the quotient of Ncen and Nen, from >0.5 to <0.2 at SS=0.4% (Fig.
2¢) due to large increase of Nen but much smaller magnitude enhancement of Neen (Fig.
2b), a rapid increase of NOx from <10 ppb to 192+99 ppb, NO/NO: from <0.1 to
0.7+0.3, as well as SOz from <2 ppb to 6.2+2.4 ppb. The large changes were expected
because the ship smoke stock was approximately only 10 meters away from these
detectors. Thus, based upon the feature described above certain criteria were designed
in this study to identify self-ship emission signals so as to separate from ambient signals,
i.e., anet increase in Nen beyond 5 X 10* cm™ in five minutes, the median mobility mode

diameter around 50 nm, NO2>30 ppb and NO/NO2>0.5.

3. Results and discussion

3.1 Spatiotemporal variations in ambient Nen during the cruise period
Fig. 3 shows a time series of minutely averaged distributions of Nen, Neen and AR at SS
of 0.4% and 1.0% from DOY 110 to DOY 135 2018, when self-ship emission signals

had been exhaustedly removed.

When spatiotemporal variations in Nen were examined during the first half cruise period
(Fig. 3a), the Ncn spanned a broad range of 0.2-4.5X 10* cm™ with the average value
of 8.1 £4.4X10° cm?. Specifically, the Nen were only 6.5 = 0.8 X 10° cm™ at 00:00-
06:00 LT on DOY110 when the ship anchored at the Yangtze River estuary near

7
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Shanghai (Fig. 1). The low Nen were comparable to the mean value of Nen (5.4%10° cm”
3) in marine-air cases during January-December 2010 in Shanghai reported by Leng et

al. (2013). The Nen largely increased to 1.9 + 0.7 X 10* cm™ at 08:00-21:00 LT on
DOY110 when the ship cruised across the Yangtze River estuary. The measured
particles in number concentration were dominantly distributed at Aitken mode on that
day while the median Aitken mode diameter shifted from 49+5 nm at 00:00-06:00 to
40£5 nm at 08:00-21:00 (Fig. S2). The Yangtze River estuary contains several world-
class ports and is heavily travelled by marine traffics in daytime (Chen et al., 2017).
Since the onshore wind dominated on that day (not shown), the increase in Nen and the
decrease in median Aitken mode diameter at 08:00-21:00 LT possibly reflected the
increased contribution from marine traffic emissions. Marine traffics visibly decreased
when the ship left the Yangtze River estuary toward the south. The Nen were then
significantly decreased, i.e., 9.5 £4.4X 10> ¢cm™ in the marine atmosphere over the sea
zone in Zhejiang Province (at 07:00 LT on DOY111 - 17:00 LT on DOY 114), with
P<0.01. The Nen further decreased to the lower values of 5.8 £ 1.7X10° cm™ in the
marine atmosphere over the sea zone in Fujian Province (at 18:00 LT on DOY 114 -
14:00 LT on DOY 117). All these values were, however, 1-2 orders of magnitude larger
than the background values in remote clear marine atmospheres, e.g., <300 particle cm’
3 without the influence of industrial activities in the western Pacific and the tropical
Pacific (Ueda et al., 2016) and those reported by Quinn and Bates (2011) and Saliba et
al. (2019), indicating overwhelming contributions from non-sea-spray aerosols
including marine traffic emissions, the long-range continental transport, newly formed
particles in marine atmospheres, etc. As reported, atmsopheric particles over China
marginal seas can be further transported to the remote northwest Pacific Ocean (NWPO)
in spring under westerly winds, e.g., Ncn observed over the NWPO in March-April 2014
were as high as 2.841.0 X 10° cm™ and approxiately half of that over China marginal

seas observed in March 2014 (Wang et al., 2019).

The mean value of Nen (8.1 + 4.4 X 10%) observed in this study was close to that of 7.6
+4.0X10° cm (the number concentrations of particles larger than 10 nm) over the
eastern part of the Yellow sea in spring 2017 reported by Park et al. (2018). They
attributed the high number concentrations of particles within nucleation and Aitken

modes to the long-range transport of air pollutants over eastern China under the
8
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influence of westerly winds. Consistently, larger values of Nen were frequently observed
in the continental atmospheres upwind of the Yellow sea, e.g., the mean values of 1.8 +
1.4x10* cm™ in May 2013 in Qingdao, a coastal city in proximity to the Yellow Sea (Li
etal., 2015), 3.18x10% cm™ in February-August 2014 in Beijing (Dal Maso et al., 2016),
and 1.0x10* cm™ in continental-air cases during January-December 2010 in Shanghai

(Leng et al., 2013).

3.2 Spatiotemporal variations in ambient Ncen during the cruise period

Ncen data were generally available during the entire campaign (Fig. 3b). The mean
values of Necen over China marginal seas during the DOY 110 to DOY 135, 2018 were
from 3.2 £ 1.1 X 10* cm™ to 3.9 = 1.4X10? cm™ under SS ranging from 0.2% to
1.0%(Table 1), two to four times larger than the Nccn at the same SS over the NWPO in
March-April 2014 (Wang et al., 2019), and much higher, i.e., 1-2 orders of magnitude,
than the pristine marine background values (Quinn and Bates, 2011). As was discussed
in the previous section, the mean Nen in this study (8.1 £ 4.4 X 10° cm™) was comparable
to that of Nen (7.6 £4.0X10° cm™) over the Yellow Sea in spring 2017 in Park et al.
(2018); however, the comparison of mean Neen reveals that mean value (3.6+1.2 X 103
cm™) at SS of 0.6% in this study was approximately 25% smaller than that (4.8 X 10°
cm™ at similar SS of 0.65%) in Park et al. (2018), likely a result of long range transport,
considering the relatively distant (i.e., 500-600 km) observations away from the land
depicted in Fig. 1 of Park et al., 2018, and the subsequently higher extent of aerosol
aging. Neen under SS of 0.2% in this study (3.2+1.1 X 10%) is comparable to that (3.1£1.9
X 10% by Li et al. (2015) in the continental atmosphere of Qingdao in May 2013,
however, the increment of Ncen With the increase of SS was much weaker in our study,
resulting in on average of 36% smaller in Ncen under SS of 0.4% to 1.0% compared to
Lietal. (2015). Consistently, the sensitivity differences of Ncen to SS between relatively
clean (i.e., Nen (8.1 £ 4.4 X 10%) in this study) and polluted (with Ncn of 1.8 + 1.4x10%
cm™) environment in Li et al. (2015) is also reported by Nair et al. (2019), who found
little sensitivity of Neen to changes in SS over the equatorial Indian Ocean (< 6 °N) with

relatively clean air, and much larger enhancement of Ncen With the increase of SS in
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polluted marine atmospheres (> 6 °N).

In addition, Neen at SS from 0.1% to 1.0% during the period with high NH4" (17:00 LT
on DOY 114 to 10:00 LT on DOY 120) is statistically significant higher (P<0.01) in
comparison to the poor NH4" period (11:00 LT on DOY 120 to 7:00LT on DOY 136;
Fig. 3b). More specifically, a large increase in NH4" concentration, with mean
concentration of 6.3+2.5 pg m™, can be observed during the period from 17:00 LT on
DOY 114 to 10:00 LT on DOY 120 (Fig. 3b). The mean Ncen during this period varied
from 3.5+ 1.0x10° cm™ to 4.0 £ 1.1x10% cm™ at SS ranging of 0.2% to 1.0%. In contrast,
after DOY 120, the concentration of NH4" (0.67+0.70 ug m™) substantially decreased
by almost 90%, during which the mean Nccn at each SS showed statistically significant
decrease of 8% to 15%, implicative of the vital contribution to CCN of secondary

ammonium salt aerosols.

Another feature depicted in Fig. 3b is the Neen during the low NH4" period may even
exceed the maximal value of Neen during the high NH4" period. To elucidate the
underlying mechanism, the Necen, under each SS, was composited and compared
between the days with NH4" concentration higher than the upper quartile and the days
in the lower quartile, yielding some interesting findings. At SS=0.2%, the composited
Neen under high NHs™ period was higher than that during low NH4" period with
statistical significance level of 0.01. There was no significant difference in Ncen between
the two composited periods at SS of 0.4% and 0.6%. However, the composited Neen
(i.e., only selection of the upper quartile) during the high NH4" period was significantly
lower than the composited value during the low NH4" period with P<0.01, e.g., 5.1 +
0.5x103 cm? versus 5.3 = 0.7x10° cm™ at SS=0.8%, 5.2 + 0.5x10% cm™ versus 5.7 £+
0.7x10° cm™ at SS =1.0%. During the low NH4" period, the marine atmospheres over
the observational zones may sometimes receive strong continental inputs and/or marine
traffic emissions, leading to the larger Necen. Enhanced formation of ammonium salt
aerosols during the high NH4" period likely canceled out or even overwhelmed

continental inputs and/or marine traffic emissions in increasing Ncen at SS=0.2%.
10
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In addition, fresh marine traffic emissions likely yielded a negligible contribution to
Neen in the marine atmosphere because of a large amount of aged aerosols from various
sources therein. For example, the mean values of Ncen were 3.2x10° cm™ and 4.5x10°
cm™ at SS=0.4% and 1.0% at 08:30-11:30 on DOY 110, respectively. They were almost
same as 3.2x10% em™ at SS=0.4% and 3.8x10° cm™ at SS=1.0% before 06:00 on that
day. The mean values of Nen, however, largely increased from 6.5 + 0.8x10° cm™ before
06:00 to 1.3£0.3x10* cm™ at 08:30-11:30 when the ship cruised across the Yangtze

River estuary (Fig. 3b).

3.3 Spatiotemporal variations in CCN activation and Kappa values

AR values at SS of 0.4% and 1.0% were examined in the section, shown in Fig. 3c. At
SS=0.4%, AR values largely varied from 0.06 to 0.92 with the median value of 0.51.
Specifically, AR values narrowly varied around 0.51 £ 0.04 at 00:00-06:00 LT on
DOY110. At 08:00-21:00 LT on that day when the ship cruised across the Yangtze River
estuary, the AR values were substantially decreased to 0.26 + 0.06 concurrently with
approximate 200% increase in Necn values, i.e., Nen value of 6.5 £ 0.8 X10° cm™ at
00:00-06:00 LT and 2.0 = 0.7 X 10* cm™ at 08:00-21:00 LT on DOY 110 (Fig. 3a). The
AR values then exhibited an oscillating increase from DOY 111 to DOY113. Low AR
values of 0.12 £ 0.04 were suddenly observed at 10:00-18:00 LT on DOY 114 in the
presence of strong new particle signals transported from the upwind continental
atmosphere, as discussed later. AR values, however, reached 0.34+ 0.04 at 06:00-08:00
LT and 0.39+ 0.08 at 19:00-24:00 LT on DOY 114 with the new particle signals largely
reduced. Even excluding the AR values on DOY 114, a significant difference was still
obtained between AR values of 0.61 + 0.12 during the high NH4" period and those of
0.55 + 0.17 during the low NH4" period. Enhanced formation of ammonium salts
seemingly increased CCN activity to some extent. At SS=1.0%, AR values showed
large fluctuation with the median value of 0.57+ 0.17 (Fig. 3c) and the temporal trend

was similar to that at SS=0.4%.
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To minimize the impact from particle sizes, Kappa values were further investigated. As
was reported by Phillips et al. (2018), Kappa values in a high time resolution usually
exhibited a broad distribution, reflecting the complexity due to various of factors. To
reveal the key factors in determining Kappa values in a large spatiotemporal scale, the
daily Kappa values of atmospheric aerosols were estimated, on basis of the daily mean
Neen and the size distributions of particle number concentration from DOY 110-118 (Fig.
3¢). Please note that for DOY 110, considering large differences of particle number
concentration between 00:00-06:00 and 08:00-21:00 (Fig. S2), Kappa values were
calculated separately for these two periods. At SS=0.4% (green dashed line in Fig. 3c¢),
the estimated Kappa values were as high as 0.66 at 00:00-06:00 LT while it decreased
to 0.37 at 08:00-21:00 LT on DOY110. The Kappa value varied narrowly from 0.46 to
0.55 on DOY 111-113, 115 and 117, implying that inorganic aerosols such as
completely and incompletely neutralized ammonium salts may yield a large
contribution to the Ncen. These values were generally consistent with reported
observations in most of marine atmospheres. For example, Cai et al. (2017) reported
the Kappa value around 0.5 for particles with sizes of 40-200 nm at a marine site in
Okinawa and sulfate to be the dominant component of aerosol particles on 1-9
November 2015, and a similar Kappa value in spring 2008 over this site was reported
by Mochida et al. (2010). Royalty et al. (2017) reported Kappa values for 48, 96, and
144 nm dry particles to be 0.57 + 0.12, 0.51 £ 0.09, and 0.52 + 0.08 in the subtropical
North Pacific Ocean and sulfate-like particles contributing at most 77-88% to the total
aerosol number concentration. Kappa values over the Atlantic Ocean were observed

around 0.54 £ 0.03 for 284 nm particles (Phillips et al., 2018).

The estimated Kappa values sometimes reached 0.66-0.67 (i.e., on DOY 116), which
may be related to unidentified factors. For example, O'Dowd et al. (2014) proposed that
some organics derived from sea-spray aerosols may also increase the Necen, to some
extent, by reducing surface intension, leading to increase of Kappa values. A small
fraction of sea-salt aerosols in submicron particles may also increase Kappa values

since its Kappa value was as high as 1.3 (O'Dowd et al., 1997; O'Dowd et al., 2004).
12
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The Kappa value of 0.29 was obtained on DOY 118, close to Kappa values widely
observed for continental atmospheric aerosols (~0.3) (Andreae and Rosenfeld, 2008;
Poschl et al., 2009; Rose et al., 2010). The estimated Kappa value largely decreased to
0.15 on DOY 114 when new particle formation (NPF) occurred, with detailed discussion
in section 3.5. Moreover, at SS of 1.0%, the estimated Kappa value was always smaller
than 0.2. The Kappa value of organics was commonly assumed as 0.1 (Rose et al., 2011;
Cai et al., 2017; Singla et al., 2017). In general, the fraction of organics in nanometer
particles increases with decreasing particle sizes (Rose et al., 2010; Rose et al., 2011;
Crippa et al., 2014; Cai et al., 2017). A combination of the two factors likely led to
overall Kappa values estimated at SS=1.0% to be much lower. However, the direct
measurements of chemical composition of nanometer particles needed to confirm the

arguments.

3.4 Particle number size distributions and CCN activation associated with marine

traffic emissions and aerosol aging

The particle number size distributions during DOY 110-118, shown in Fig. 4, can be in
general classified into two categories. Category 1 occurred on DOY110-114, when
particle number concentrations were mainly distributed at the Aitken mode, whereas
the accumulation mode was generally undetectable. Category 2 occurred on DOY 115-
118, when the accumulation mode can be clearly identified and generally dominated
over the Aitken mode. Hoppel (1986) proposed cloud-modified aerosols to be mainly
distributed at 80-150 nm in the remote tropical Atlantic and Pacific oceans. Cloud-
modified aerosols are quite common in remote marine atmosphere, likely leading to the
dominate accumulation mode particles to be observed on DOY115-118. Occasionally,
the Aitken mode dominated over the accumulation mode on some day such as DOY
118. To further dive into the sources of different modes of particles, three-day of
DOY112, DOY 116 and DOY 118 were selected.

On DOY 112, the Aitken mode particles accounted for approximately 60% of the total
13
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particle number concentration (Fig. 5a), with median Aitken mode diameters around
5448 nm. Like the observations over the Yangtze River estuary, the mean value of Nen
increased by approximately 50% concurrently with a decrease in the median Aitken
mode diameters by ~9 nm at 05:30 — 11:40 LT against those at the early morning before
05:30 LT (Fig. 5b). Concomitantly, the AR values decreased to 0.31+0.09 at SS of
0.4%, with similar AR decrease at SS of 1.0%, and the lowest AR and Kappa values
occurring at 06:00-07:00 LT at SS of both 0.4% and 1.0%. All these results pointed
towards the increase in Aitken mode particles at 05:30 — 11:40 LT to be likely derived
from enhanced marine traffic contributions carried by the onshore wind from the south
(Fig. S11). During other time on DOY 112, the onshore wind may also carry the marine-
traffic derived particles to the observational sea zones. However, the marine-traffic
derived particles likely aged to some extent, e.g., the median Aitken mode diameters
exhibited an oscillating increase from approximately 50 nm at 19:00 to approximately
70 nm at 24:00 LT with the particle growth rate of ~4 nm hour’!. The AR values,
however, narrowly varied around 0.47+0.03 at SS=0.4% and 0.52+0.05 at SS=1.0%
during the particle growth period. The Kappa values at SS=0.4% gradually decreased
from 0.56 at 19:00 to 0.41 at 23:00 LT, reflecting more aged marine-traffic derived

particles growing into CCN size.

On DOY 116, the accumulation mode particles instead of Aitken mode particles
dominantly contributed to Nen (Fig. 5d), under the marine air influence from the
northeast (Fig. S13). The median accumulation mode diameters narrowly varied around
135+5nmat 01:00-13:00 LT and 10245 nm at 16:20-24:00 LT with the transition period
in between (Fig. 5e). The AR and Kappa values, however, showed no statistically
significant difference during the two periods at SS of 0.4% and 1.0%, implying that the
size change in accumulation mode particles showed a negligible influence on the CCN
activation. Hourly variations in AR and Kappa values may be associated with other
factors, e.g., chemical composition, mixing state, etc. (Gunthe et al., 2011; Rose et al.,

2011).
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On DOY 118, under the influence of mixture from the marine and coastal areas from
the northeast (Fig. S14), the accumulation mode particles generally dominated the
contribution to Nen While the reverse was true in some occasions (Fig. 5g,h). The median
accumulation mode diameters exhibited an oscillating increase from approximately 100
nm to 130 nm at 00:00-08:00 LT, narrowly varied around 13345 nm at 08:00-13:00 LT,
and then exhibited an oscillating decrease down to approximately 100 nm at 20:00 LT.
The AR values and Kappa values at SS=0.4%, however, exhibited an inverted bell-
shape with the lowest values at 0.31 and 0.11 at 13:00. The decreases in AR values and
Kappa may be related to organic condensed on accumulation mode particles since the
median accumulation mode diameters were almost largest at 13:00. The number
concentration of Aitken mode particles evidently enhanced at 14:00-15:00, but the

influence on AR values and Kappa values at SS=0.4% was undetectable (Fig. 51).

3.5 The long-range transport of grown new particles on DOY 114

No hour-long sharp increase in number concentration of nucleation mode particles (<
20 nm) was observed during the period from DOY 110 to DOY 118, except on DOY114
(Fig. 4). According to the conventional definition of NPF events (Kulmala et al., 2004;
Dal Maso et al., 2005), the occurrence frequency of NPF events was low in this study.
Unlike continental atmospheres where a high occurrence frequency of NPF events has
been observed globally in spring (Kulmala et al., 2004; Kerminen et al., 2018), a low
occurrence frequency reportedly occurred over the seas during the “Meiyu (plum-rain)
season” in spring because of frequent rainy, foggy or cloudy weather conditions (Zhu
etal., 2019). Lack of NPF events in the marine atmospheres implied Nen and Neen to be
mainly contributed by primarily emitted aerosols and their aged products.

During the period of 10:00-18:00 LT on DOY 114, a large increase in number
concentrations of Aitken mode particles (Fig. 6a) likely reflected the long-range
transport of grown new particles from upwind continental atmospheres (Fig. S12). The
size distributions of particle number concentration showed a dominant Aitken mode at

10:00-18:00 LT, when spatiotemporal variations in Nen and median Aitken mode
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diameters exhibited bell-shape patterns (Fig. 6b). The median Aitken mode diameters
increased from 26 nm at 10:00 LT to 33 nm at 12:00-13:00 LT and then decreased to 20
nm prior to the signal disappearance likely reflecting the growth and shrinkage of the
Aitken mode particles (Yao et al., 2010; Zhu et al., 2019). The median Aitken mode
diameters were evidently smaller than the values, i.e., 40-50 nm for Aitken mode
particles, observed over the Yangtze River estuary on DOY 112 (Fig. 5a). Moreover,
the number concentrations of 20-40 nm particles increased by 5.8 times at 12:00-13:00
LT compared to the mean value at 06:00-09:00 LT while the total number
concentrations of particles greater than 90 nm increased by only 67%. These results
implied the largely increased number concentrations of Aitken mode particles with a
dynamic change in mode diameter observed at 10:00-18:00 LT unlikely to be caused
by primarily emitted and aged particles from marine traffic emissions or other
combustion sources. The observations of gaseous and particulate species, during the
same period, implied air masses to be well-aged and less polluted. For instance, the
measured hourly average mixing ratios of SO2 was no larger than 1.2 ppb (Fig. 6¢) and
the hourly average concentrations of NH4" in PM25 were smaller than 2 pg m™ (Fig.
3b). In addition, the concentrations of K were below 0.3 pg m~, suggesting negligible

contributions from biomass burning (Fig. 6e).

Before 09:00 LT, a much weaker spike of nucleation mode particles was intermittently
observed (Fig. 6a). The weak and intermittent NPF seems to occur in the marine
atmospheres before 09:00 LT when no apparent growth of new particles was observed.
Possibly due to the transport from the continent (Fig. S12) and an increase in the
condensational sink around 10:00 am (Fig. 6a), the weak NPF signal gradually dropped
to a negligible level half an hour later, concomitant with a large increase in the number

concentrations of Aitken mode particles at 10:00-18:00 LT.

Neen at SS=0.4% increased from 1.2 X 10° cm™ at 06:00-09:00 LT to the peak value of
2.3X10° cm™ at 12:00 LT, with increase of 92%, and Neen at SS=1.0% increased from
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1.6X10° cm™ to 4.0 X 10> cm™, with increase of 150% (Fig. 6d). The net increase in
Neen at SS=0.4% likely reflected the contribution from pre-existing particles since new
particles with the diameter less than 50 nm were unlikely activated as CCN at such low
SS (Li et al., 2015; Wu et al., 2016; Ma et al., 2016). The larger net increase in Neen at
SS=1.0% may reflect the contributions mixed from pre-existing particles and grown
new particles. The high SS can activate particles as CCN with diameters down to 40
nm (Dusek et al., 2006; Li et al., 2015). The invasion of grown new particles also led
to the AR values largely decreased from 0.3 to 0.1 at SS=0.4%, and from 0.4 to 0.2 at
SS=1.0% (Fig. 6¢e). After 18:00 LT, the AR values retuned to 0.3-0.4 at SS=0.4% and
0.4-0.6 at SS=1.0%. When the calculated Kappa values were examined (Fig. 6¢), they
decreased from 0.4 to 0.1-0.2 at SS=0.4%. The value returned to 0.3 at 18:00-19:00 LT
(FMPS was temporarily malfunctioned after 19:20 LT). The Kappa values were below
0.2 at SS=1.0% on that day. The decreases in AR values and Kappa values at two SS
were likely caused by organic vapor condensed on preexisting particles and new

particles (Wu et al., 2016; Zhu et al., 2019).

3.6 Correlations of Nen and Ncen with SO: in self-ship plumes and ambient air

When self-ship emission signals were detected, the observational values included a
combination of contributions from self-ship emissions and ambient concentrations.
Although ambient Nen was negligible in comparison with Nen derived from self-ship
emissions, it was not the case for Ncen and SO2.  Based on the minutely data, the signal
was considered as vessel-self emission when both Nen greater than 50,000 cm™ and SO2
greater than 5 ppb. The composited data was then used to derive the hourly average Nen,
Neen and SO2, which was then subtracted by the ambient hourly mean value during the
preceding hour with relatively clean conditions (i.e., concentration of Nen lower than
10,000 cm™, SOz lower than 2.5 ppb). Please note uncertainties exist in terms of the
criteria and separation between self-ship and ambient signals, however, minimal impact

is expected in the relationship examined below.
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Fig. 7a showed correlations of Nenand Neen with mixing ratio of SOz in self-ship plumes,
prefixed by A for Nen, Neen and SOz to implicate the removal of ambient signals. A good
correlation of 0.66 for R? (P<0.01) was obtained and the slope indicates that Nen
increase by 1.4X10* cm™ for each ppb increase of SO> resulted from ship emission
(Fig. 7a). High emissions of Nen were generally reported in engine exhausts with high
sulfur-content diesel to be used (Yao et al., 2005; Yao et al., 2007). In regard of Nccn at
SS 0f 0.2% to 1.0% (Fig. 7b), it increases from 30 cm™ to 170 cm™ per 1 ppb increase
of SO2, showing statistical significant correlation at 99" confidence level. The
contribution ratio of SO2 to Neen is 0.002 (SS of 0.2%), 0.004(SS of 0.4%) and 0.012
(SS of 1.0%) to that of Nen, in general consistent with the previous study by Ramana
and Devi (2016), in which a range of 0.0012—-0.57 was observed for CCN at 0.4% in
Bay of Bengal during Aug 13-16, 2012.

The correlations of hourly averaged Nen and Neen with SO2 in ambient air were examined
and showed in Fig. 7c,d. The data was segmented into pieces based on SO2 with interval
of 0.2 ppb. A good correlation between the averaged Nen and SOz were obtained with
R? of 0.80 (P<0.01) and 1 ppb increase in SO2 likely increased Nea by 1.6 X10° cm™
(Fig. 7¢). The increase in Nen with SO2 may reflect the contribution from primary
emissions. An intercept was, however, as large as 3.9 X 10° cm™, likely representing the

contribution from well-aged aerosols.

Hourly averaged Ncen at different SS generally increased with increase of ambient SO2
(Fig. 7d). A good correlation between the averaged Ncen and SO2 were obtained with
R?=0.78-0.91 (P<0.01). 1 ppb increase in SO: likely increased Neen by 0.6 X 10° to 0.8
X 10* cm™ at SS from 0.2% to 1.0%. The increase in Neen with SO2 may also reflect the

3 at

contribution from primary emissions. The intercepts of 2.2 X 103-2.7 X 10°> cm’
different SS were likely contributed by well-aged aerosols. The relationship may be
used as an estimation of Neen in marine atmospheres over China marginal seas, when

no measurements of CCN were available whereas ambient SO2 can be estimated from

web-based satellite data.
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4. Conclusions

Spatiotemporal variations in ambient Nen and Neen were studied during a cruise
campaign on DOY 110-135 over China marginal seas. The mean values of Nea (8.1x10°
cm™) and Neen (3.2 -3.9 x10° cm™) at SS of 0.2%-1.0% were approximately one order
of magnitude larger than those in remote clear marine atmospheres, indicating
overwhelming contributions from non-sea-spray aerosols such as marine traffic

emissions, the long-range continental transport and others.

Observed self-ship emission signals showed fresh marine traffic emissions can be
important sources of Necn, but a minor source of Neen in the marine atmosphere. The
signals showed that 1 ppb increase in SOz corresponds to 1.4 X 10* cm™ increase in Nen
and 30-170 cm™ increase in Neen at SS=0.2-1.0%. Data analysis showed that marine

traffic emissions largely increased Nen over their heavily travelled sea zones in daytime.

In ambient marine air, the growth of marine traffic derived particles led to a decrease
in estimated bulk kappa values at 0.4% possibly because some of these particles
enriched in organics grew into CCN size. However, strong formation of ammonium
salts led to aerosol aging, and significantly increased Necen at SS of 0.2-1.0% in
comparison with those observed during the period poor in ammonium salt aerosols in
PM:2s with P<0.01. The estimated bulk Kappa values from the daily average values
varied from 0.46 to 0.55 at SS=0.4% in most of marine atmospheres, indicating
inorganic ammonium aerosols may dominantly contribute to the Ncen at SS of 0.4%.
The particle number size distributions showed the high bulk Kappa values could be
related to cloud-modified aerosols, which likely led to a large extent of degradation of

organics and subsequently lost from the particle phase.

Humid marine ambient air led to NPF events rarely occurring therein. The dominant
onshore winds occurred most of the measurement periods, and should carry primary

aerosols and their aged products rather than secondarily formed aerosols to the
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observational zone. During an occasion when offshore winds blew from the northwest
(Fig. S12), new particle signals transported from the continent can be clearly observed.
However, NPF in the marine atmosphere was too weak to be important. The transported
new particles from the continent yielded the maximal increase in Ncen by 92% at SS of
0.4% and 150% at SS of 1.0%. However, consistent with those reported in literature,
the estimated kappa values largely decreased from 0.4 to 0.1-0.2 at SS=0.4% during
most time of the continent-transported NPF event because of the kappa value of organic

condensation vapor as low as 0.1.
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Fig 2 Contour plot of particle number size distribution with the median mobility
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value on DOY 112, DOY 116 and DOY118. The bars represent the standard deviation
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Fig 6 Contour plot of particle number size distributions for the day of DOY 114 2018
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Fig 7 Correlations of hourly averaged Nen and Neen with SOz at SS of 0.2%, 0.4% and

1.0%. For Fig. 7a,b, ANcn, ANcen and ASO2 reflects the impact from self-ship emission

after the removal of ambient concentration. For Fig. 7c,d each bar indicates standard

deviation with mean value marked as the hollow circles (or triangles, squares), and the

interval of SOz is 0.2 ppb for each bar.
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Table 1. Necn and Neen, AR and SOz mixing ratios on DOY 110-135, 2018 over China

marginal seas. Please note that Ncn and AR are from 110-122, 2018.

Variables Supersaturation (SS)  Ranges = Mean + standard deviation

Nen (X10° cm™) 2.0-45 8.1+4.4
SS=0.2% 0.4-8.8 3.2+1.1
SS=0.4% 0.5-9.4 3.4+1.1
Neen (x10° cm™) $S=0.6% 0.5-8.6 3.6+1.2
SS=0.8% 0.5-11 3.8+1.2
SS=1.0% 0.6-12 3.9+1.4

SS=0.2% 0.06-0.89 0.49+0.17

SS=0.4% 0.06-0.92 0.51+0.17

AR SS=0.6% 0.10-0.94 0.54+0.17

SS=0.8% 0.08-0.95 0.56+0.17

SS=1.0% 0.11-0.98 0.57+0.17

SOz (ppb) 0.25-9.7 1.7£1.1
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